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Abstract— It is estimated that by 2050 approximately one in ten 

individuals globally will experience disabling hearing impairment. 

In the presence of everyday reverberant noise, a substantial 

proportion of individual users encounter challenges in speech 

comprehension. This study introduces a novel application of 

neuro-fuzzy modelling that synergizes and fuses audio-visual 

speech enhancement (AV SE) with an initial user preference 

learning based framework. Specifically, our approach uniquely 

integrates multimodal AV speech data with innovative SE 

methods and fuzzy inferencing techniques. This integration is 

further enriched by incorporating a user-preference learning 

model that adapts to environmental and user-specific contexts, 

including signal-to-noise ratios, sound power, and the quality of 

visual information. The proposed framework facilitates the 

incorporation of clinical measures such as user cognitive load (or 

listening effort) with real-world uncertainty to steer the system 

outputs. We employ an adaptive fuzzy neural network to derive 

the most effective Sugeno fuzzy inference model, employing 

particle swarm optimization to ensure optimal SE by considering 

sound power, ambient noise levels, and visual quality. 

Experimental results utilise our new benchmark AV multi-talker 

Challenge dataset to demonstrate the superiority of our user 

preference-informed, context-aware AV SE approach in 

enhancing speech intelligibility and quality in challenging noisy 

conditions, marking a significant advancement over conventional 

methods while reducing energy consumption.  The conclusion 

supports the ecological scalability of our approach and its 

potential for real-world applications, setting a new benchmark in 

AV SE research, paving the way for future assistive hearing and 

communication technologies. 

  
Index Terms— Fuzzy inference, deep neural networks, 

preference learning, speech enhancement. 

 

 
 

I. INTRODUCTION 

In the realm of modern communication, speech 

enhancement (SE) plays an important role in improving speech 

clarity and intelligibility within noisy environments [1]. The 

effectiveness of SE technologies is impacted by a number of 

challenges, mainly the difficulty of accurately separating 

speech from background noise without distorting the speech 

signal itself. Many conventional methods rely on assumptions 

about the noise characteristics that may not apply in all real-

world scenarios. While recent deep learning (DL) based audio-

visual (AV) SE techniques have made substantial 

improvements in this area, they often struggle to adapt to the 

dynamic nature of communication scenarios, where speech 

signals are excessively masked in the audio and/or visual 

domain. This results in a further compromise between noise 

reduction and speech distortion [2, 3]. In light of this, recent 

studies have proposed generative modelling approaches [4], 

[5]. However, these approaches still face significant 

computational complexity constraints, which makes them 

impractical for real-time Hearing Aids (HA) or other devices 

with limited processing power. Furthermore, these methods  

may not fully consider   listener’s preferences for the noise 

reduction within the specific context of communication [6]. 

Additionally, HA devices have limited battery capacity, which 

requires power sensitive optimisation of SE processing. 

Overall, while SE is essential for clear communication in a 

noisy world, overcoming the limitations of traditional and 

modern techniques requires innovative approaches that are 

adaptable, efficient, and responsive to the needs of diverse 

users and situations [7]. 

In the SE literature, AV and audio-only (A-only) based 

methods advocate significant differences in their approach and 

outcome. AV enhancement leverages both sound and visual 

cues, such as lip movements, to improve speech intelligibility. 

These methods have been shown to result in superior speech 

clarity compared to A-only approaches, especially in 

challenging noisy environments or when the audio signal is 

weak [8]. However, the integration of visual data requires more 

complex processing algorithms, which can increase the time 

and energy required for enhancement. A-only enhancement, on 

the other hand, relies solely on auditory signals. While it may 

be less effective in isolating speech from noise compared to AV 

methods, its simpler processing demands make it faster and 

more energy-efficient. This trade-off between enhancement 

quality and resource efficiency is crucial in applications where 
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processing power or battery life is limited [9]. The choice 

between AV and A-only enhancement methods thus depends 

on the specific requirements of the target application, including 

the need for speed, energy conservation, and the level of speech 

clarity desired.  

Adaptive SE strategies in speech and hearing technologies 

are essential due to the diverse needs of users and the dynamic 

environments in which they communicate [10]. Traditional 

approaches often prove inadequate as they fail to consider 

individual listener preferences and specific contextual 

challenges. By incorporating user preferences and 

environmental context, adaptive strategies can customise SE to 

the specific situation and individual: thereby optimising battery 

life and overall sound quality while improving clarity and 

comprehension. This personalization ensures a more effective 

communication experience, overcoming the limitations of 

standard methods that may not suit all scenarios or meet the 

needs of individual users [11].  

Fuzzy inference systems (FIS) offer a robust framework 

for decision-making in environments characterised by 

uncertainty and imprecision, which are inherent in ecologically 

valid SE scenarios [12]. Historically, FIS has been applied to 

SE tasks to effectively manage the variability and ambiguity 

inherent in real-world audio signals [13][14]. The advantage of 

employing FIS lies in its inherent flexibility and ability to 
dynamically adapt to complex, uncertain inputs [15]. In this 

first of its kind study, we explore the significance of 

considering user preferences and environmental context within 

our proposed FIS based AV SE framework for future hearing 

assistive technologies. 

 

A. Objectives of the study 

By understanding factors such as sound power, noise levels, 

and video quality, adaptive systems can be tailored to 

personalise the user experience. These elements are crucial for 

developing a system that not only enhances speech but also 

aligns with the user's environment and personal preferences. 

This paper introduces an adaptive neuro-fuzzy model for AV 

SE that integrates user preference learning for improving 

speech intelligibility and quality for hearing-impaired users. 

This entails creating a system capable of adjusting its 

behaviour based on the specific needs and conditions of its 

user, such as adjusting for background noise or focusing on 

visual cues when audio quality is poor. Through these 

adaptations, the proposed model aims to deliver a more 

effective and personalised communication experience across 

diverse scenarios. This paper makes the following key 

contributions: 

● Develop a cutting-edge neuro-fuzzy model integrating 

AV SE with user preference learning for personalised, 

context-aware communication improvements. 

● Implement fuzzy logic to dynamically adapt SE 

strategies based on user-specific contexts, including 

sound power and environmental noise, marking a 

significant advancement in adaptable communication 

technologies. 

● Utilise an initial predefined set of user preferences in 

order to respond to individual needs, enhancing user 

experience in diverse auditory environments. The 

preference informed rules can be further substantiated 

using cognitive load (or listening effort) data from 

clinical speech-in-noise tests, using e.g. pupillometry 

sensing [16].  

● Simulations and results clearly represent the 

effectiveness of the proposed model in contrast to 

relevant traditional models. Tests comparing different 

fuzzy models show that the Sugeno fuzzy model, when 

trained with our adaptive fuzzy neural network, provides 

the best balance between SE quality and system 

efficiency. It fine-tunes the enhancement based on real- 

world conditions like noise level and video quality. The 

results also highlight the system’s ability to reduce noise 

effectively while conserving energy. This means our 

model not only makes conversations clearer but also 

works well on devices with limited battery life, like 

portable hearing aids or smartphones. 

● By analysing performance evaluation metrics such as  

STOI, PESQ, MOS and power consumption (W), we 

demonstrate that our proposed fuzzy system based 

approach leads to more adaptive and efficient SE across 

a variety of noisy recordings. This confirms our model’s 

potential to improve communication, especially for those 

with hearing challenges.  

   The rest of this paper is structured as follows. Section II 

provides a comprehensive literature review of recent 

developments in AV SE focusing on the application of state-
of-the-art DL techniques. In section III we introduce the novel 

neuro-fuzzy modelling approach that combines AV SE with 

an initial user preference framework for hearing assistive 

devices. Section IV details the simulation setup and hardware 

design of the proposed AV SE system where its performance 

is evaluated using benchmark multitalker data from an 

international Challenge dataset. This evaluation utilises both 

subjective and objective metrics and includes comparison 

with state of the art approaches. Finally, section V provides 

conclusions and future work. 

II. LITERATURE REVIEW 

The emerging field of AV SE has witnessed significant 

advancements, driven by the integration of multimodal 

representation learning, self-supervised machine learning, and 

innovative feature extraction techniques. A notable 

contribution in this domain is from the recent work reported in 

[17], which developed an AV canonical-correlated Graph 

Neural Network model. This model distinguishes itself 

through its capacity to optimise the canonical association 

between audio and visual data, presenting a more context-

aware approach to SE. Self-supervised machine learning has 

emerged as a promising approach in speech processing, 

leveraging temporal data tracking and multimodal information 

fusion [18]. This approach facilitates the learning of temporal 

speech dynamics and fusion of AV cues without relying on 

manually annotated labelled datasets. These methods have 

demonstrated effectiveness in identifying and isolating speech 

signals from noisy backgrounds. By deriving Ideal Binary 

Masks, these approaches can selectively enhance the speech 

component of an audio signal, significantly improving clarity 

and intelligibility [19].  

Through the integration of AV data, machine learning, 

and advanced signal processing, researchers are advancing the 

development of sophisticated and user-friendly hearing and 

communication aids. These innovations promise to enhance 



 

the listening experience of users in diverse settings, ranging 

from private to public spaces, thereby increasing accessibility 

to clear and intelligible speech for all individuals, particularly 

those with hearing loss.  

Recent advancements in deep neural networks (DNNs) 

have led to the development of more sophisticated A-only and 

AV based SE algorithms that can further improve the speech 

clarity and intelligibility. In the context of A-only based SE 

advancements, techniques such as sparse low-rank 

decomposition combined with multi-objective DNNs trained 

on acoustic features have been pivotal in achieving accurate 

phase and magnitude approximation [20]. These methods 

refine speech signals, ensuring that the enhanced speech is 

clearer and more intelligible. Additionally, the integration of 

band-pass and Wiener filters has been explored to further 

enhance noise reduction capabilities, offering more 

comprehensive approaches to improve speech quality [21]. 

More recently, an efficient recurrent DNN based architecture 

has been reported that can enhance both speech enhancement 

and recognition [22].  

       Despite the notable advancements above, a gap exists in 

the adaptability of SE systems to dynamically accommodate 

user preferences across varying   environmental conditions. 

Furthermore, traditional SE algorithms often exhibit limited 

flexibility to contextually adjust their noise reduction 
strategies in real-time, which can compromise their 

effectiveness in dynamic settings. To address these challenges, 

some researchers have explored the application of fuzzy logic, 

inspired by cognitive models, to create more adaptable and 

context-aware SE systems [12].   

Our preliminary approach [23] and others too have 

explored the integration of fuzzy logic in multimodal SE 

applications, which represented a significant step towards 

creation of AV SE devices that are not only more intelligent in 

their processing capabilities but also more attuned to the 

complexities of human communication and environmental 

variability. In our other related pilot work, we demonstrated 

the potential of SE technologies to offer a personalised 

listening experience [6]. This proof of concept study 

underscored the importance of user-centred design in the 

development of future SE technologies that cater to the diverse 

needs of their users in a highly personalised manner [10]. 

In this paper, we explore the novel integration of fuzzy 

neural network based user preference learning within SE 

systems to deliver more personalised technologies. A classical 

approach in fuzzy systems research involves the use of 

geometric functions to define fuzzy membership for inputs, 

allowing for a more responsive adaptation to gradual changes 

in the environment. This method can enhance the precision of 

SE by ensuring the system output becomes more sensitive to 

subtle variations in input values. Here, we propose the 

application of genetic optimization libraries and density-based 

fuzzy rule interpolation methods [24][25] that can allow for 

customization of SE systems to individual user profiles, 

considering their unique preferences and environmental 

contexts [10][11].  

Recent research on neuro-fuzzy models has explored the 

extraction of fuzzy rule-based systems from trained artificial 

neural networks for classification purposes [26]. These 

methods offer a way to leverage the power of neural networks 

while maintaining the interpretability and adaptability of fuzzy 

rule-based systems [27][28]. Such approaches have been 

optimised for pattern classification, enhancing system 

capability to differentiate speech and noise under varying 

conditions [13][14]. However, the customization of fuzzy 

neural network-based approaches to meet individual comfort 

levels remains an ongoing challenge [7], requiring careful 

consideration of a wide range of contextual input data. This 

often involves the acquisition of extensive, carefully labelled 

datasets in order to train systems effectively. 

     We hypothesis that the integration of neuro-fuzzy and DNN 

based AV SE techniques with clinical user data, such as 

cognitive load or listening effort, which refers to the mental 

effort required to process information, could lead to a 

significant step forward in creating SE systems that are not 

only more effective but also more aligned with the needs and 

preferences of individual users [10].  

In summary, this paper proposes a novel framework that 

optimises a neuro-fuzzy based AV SE model towards an initial 

set of linguistically defined user preferences that are intuitively 

informed by cognitive load or listening effort that is typically 

experienced by users in noisy environments. This model then 

acts as a personalisation scheme for an individual with the 

capability of further generalising towards fully personalizable 

multimodal hearing-aids and communication systems of 

tomorrow. 

III. PROPOSED MODEL 

Although there are several SE methods that have demonstrated 

good results in noisy scenarios, current state-of-the-art 

approaches have not effectively addressed the challenge of 

personalisation and adaptability of SE systems across diverse 

real-world environments. This entails multi-objective multi-

constraint optimisation of SE systems to minimise power 

efficiency, enhance user comfort through personalising noise 

reduction settings and managing associated trade-offs (e.g. 

between intelligibility, power consumption and system 

latency) to meet individual user preferences. Here, we attempt 

to address this formidable challenge and additionally consider 

the smoothness of switching between multiple SE models for 

optimised functioning in challenging noisy environments.  

Specifically, we propose a novel application of neuro-

fuzzy modelling for personalised AV speech processing. Our 

proposed AV SE model aims to significantly improve speech 

clarity and intelligibility by contextually leveraging audio and 

visual information in a context aware manner. This involves 

dynamic adaptation to the listener’s environment and 

preferences and utilisation of neuro-fuzzy modelling to 

optimise SE processing. The proposed system is designed to be 

adaptable and capable of learning from user feedback to 

enhance the listening experience.  

This section presents the fundamental principles of the 

fuzzy inference model for our proposed context-aware AV SE 

system. This includes a description of fuzzy neural network 

integration and the training and optimization stages. 

 

A. Fuzzy Inference Model Foundations 

    1) Sugeno Fuzzy Model Characteristics: The Sugeno fuzzy 

model, known for its efficiency in computational applications, 

differs notably from its counterparts by defining the output 

membership function as either ‘constant’ or ‘linear’ in 



 

Equation (1). This distinction facilitates precise quantity 

outputs, making the model especially well suited for 

applications in engineering and control systems. 

                                   𝑓(𝑥) = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑓𝑖(𝑥)                            (1) 

where 𝑤𝑖 are the weights, and 𝑓
𝑖
(𝑥) are the output 

membership functions. 

    2) Gaussian Function Application: The Gaussian 

membership function is utilised within the model to handle the 

fuzziness of input variables. It is defined in Equation (2) as: 

                                    𝐺(𝑥) = 𝑎𝑒 −
(𝑥−𝑏)2

2𝑐2                                  (2) 

where 𝑥 denotes the input variable, 𝑎𝑒 represents the peak of 

the Gaussian function. 𝑏  signifies the peak position of the 

function, and 𝑐 denotes the standard deviation that controls the 

width of the Gaussian bell curve.  

B. Principles of Fuzzy Inference Systems 

1) Completeness: Completeness ensures that for any 

input value, there exists at least one fuzzy rule that can be 

applied, forming the basis for a functional fuzzy inference 

system. 

2) Intersectionality: To maintain continuity and 

smoothness in the input-output relationship of the system, 

adjacent fuzzy rules exhibit intersectionality. This overlap 

signifies the conceptual ambiguity and enhances the system’s 

robustness through Equation (3): 

                          𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = 𝜇𝐴∩𝐵(𝑥)        (3) 

where 𝜇𝐴∩𝐵(𝑥) represents the degree of membership of 

element x in the intersection of fuzzy sets 𝐴 and 𝐵. 

3) Barycentric Method: The barycentric method, a 

common defuzzification strategy and computes a crisp value 

from a fuzzy set as shown in Equation (4): 

                                𝑦∗ =
∑ 𝑢𝑖𝑦𝑖

𝑛
𝑖=1

∑ 𝑢𝑖
𝑛
𝑖=1

              (4) 

where 𝑦∗is the crisp value, and 𝑢𝑖  is the membership function 

of the fuzzy set. 

C. Input and Output Variables 

The input and output variables used by the fuzzy inference 

process are summarised in Table I. The fuzzy input variables 

are defined as sound power, SNR, and visual quality, which 

are derived from real-world observations or recorded audio 

and video data. Sound power is quantified as the ratio of the 

sound energy to the maximum volume scaled by 10 (ranging 

from 0 to 10) and categorised into linguistic fuzzy sets of high, 

medium and low. SNR is the ratio of signal power to noise 

power. SNR levels are objectively assessed and based within 

a range from -20 to 20 dB, and partitioned into High, Medium 

and Very Low linguistic terms. Finally, the Visual quality is 

evaluated based on image sharpness and clarity under various 

lighting conditions measured in the range (0 to 800). This is 

partitioned into ‘Good’, ‘Poor’ and ‘Very Poor’ fuzzy sets. 

Note that centre values of ‘High’, ‘Medium’ and ‘Low’ 

ranges are shown for the input variables in Table I. Specifically, 

these High, Medium and Low are initially set to a vague 

interval, and after training, a definite intermediate value can be 

obtained that define centres of the gaussian fuzzy membership 

functions representing these linguistic quantifiers. The range 

determined by the Gaussian function is infinite however, 

defined by their standard deviation parameters where the 

support of each fuzzy set can be approximated to 3 × standard 

deviation parameter. Only intermediate values are fixed. The 

fuzzy neural network is obtained from the training approach as 

described in Section 3E. 

The output variable from the fuzzy inference process 

represents SE processing decisions as the following three 

constants: AV, A-only and No Enhancement. Both input and 

output variables are shown in the user preference-informed 

rule base in Table I, which aim to maximise the speech quality 

and intelligibility for users. For example, for the case of 

‘good’ quality visual inputs, ‘low’ sound power and ‘high’ 

environmental SNR detection, the input speech signal is 

passed through the fuzzy inference based AV SE system with 

‘no enhancement’ to avoid distorting the naturalness of speech 

for the listener. Conversely, for the case of a ‘very low’ SNR, 

‘high’ input sound power and ‘good’ quality visual input, the 

energy-consuming AV SE mode is selected to maximise 

intelligibility gain and reduce user cognitive load. 

The total sound power (Equation 5), environmental SNR 

(Equations 6,7,8), and visual image quality/sharpness Equation 

(9) are calculated from the input signals. 

                            𝑒𝑛𝑒𝑟𝑔𝑦
𝑚𝑖𝑥

=
√∑ 𝑚𝑖𝑥𝑖

2𝑛
𝑖=1

𝑒𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑥

 × 10                    (5)

  

                 

                            𝑒𝑛𝑒𝑟𝑔𝑦
𝑆

= √∑ 𝑆𝑖𝑔𝑛𝑎𝑙
𝑖
2𝑛

𝑖=1                         (6)

  

                   

                            𝑒𝑛𝑒𝑟𝑔𝑦
𝑛

= √∑ 𝑁𝑜𝑖𝑠𝑒𝑖
2𝑛

𝑖=1                          (7)

  

                 
                              𝑆𝑁𝑅 = 10 ∗ log

10
(

𝑒𝑛𝑒𝑟𝑔𝑦𝑆

𝑒𝑛𝑒𝑟𝑔𝑦𝑛
)                      (8) 

During test-time for SE processing in hearing assistive 

devices, we do not have access to the speech signal, therefore a 

non-intrusive SNR method via Deep Learning such as in [6] can 

be integrated into a full SE system for ecologically valid 

inference. 

When processing images in video, the horizontal and 

vertical gradient values are used to obtain the edge strength, 

which is expressed in Equation (9) as follows: 

                         𝐺(𝑥, 𝑦) = √𝐺𝑥
2(𝑥, 𝑦) + 𝐺𝑦

2(𝑥, 𝑦)                (9) 

Table I categorises SE strategies based on the dynamic 

interaction between sound power, SNR, and visual quality and 

the initial median values are given. With higher sound and 

noise levels, and good quality visual inputs (where the camera 

can capture the speaker's lips) the system tends to use AV 

enhancement. On the other hand, for the case of low sound and 

noise levels, and poor quality visuals, the system tends not to 

perform SE. Lighting conditions and camera obstacles 

determine visual quality. The input fuzzy sets are initialised 

with a set of prior parameters which following training, are 

optimised.  



 

These decisions were substantiated through our new 

benchmark ‘in-the-wild’ AV SE Challenge (AVSEC) dataset 

[29]. This showcases highly challenging real-world application 

scenarios across over 3000 multi-talker TED and TEDx talk 

videos, and underlines our proposed system’s adaptability to 

varied AV contexts to improve speech intelligibility. Each 

video lasts 3-30 seconds, with 40% female and 60% male 

speakers. The SNR is varied between -20 to 20 dB. 
TABLE I 

INPUT VARIABLES (WITH MEDIAN VALUES) AND OUTPUT VARIABLES 
Input Output 

Sound Power     
（0~10） 

SNR 
（-20~20dB） 

Visual Quality 
（0~800） 

SE Output 

High (8) Low (-10 dB) Good (562) AV 
Medium (5) Medium (0 dB) Poor (360) A-only 

Low (2) High (10 dB) Very Poor 
(157) 

No 
Enhancement 

 

Our innovative neuro-fuzzy modeling based approach ensures 

that the SE is both flexible and responsive to varying 

environmental conditions and user needs. The SE system’s 

input management is determined by the fuzzy inference 

module’s output, categorising it into three distinct modes: no 

enhancement, A-only input, and combined AV input, in Figure 

1. Inputs x, y and z representing sound power, noise level (or 

SNR), and image quality respectively are analysed through the 

fuzzy inference system to decide the appropriate SE strategy 

based on the initial linguistically informed rules described in 

Table I. Following this selection, we assess the system’s 

effectiveness by calculating perceptual evaluation metrics like 

PESQ (Perceptual Evaluation of Speech Quality) and STOI 

(Short-Time Objective Intelligibility), ensuring the chosen 

mode optimally enhances speech intelligibility and quality. 

This is illustrated in our proposed fuzzy-inference based 

context-aware AV SE framework in Figure 2, which utilises our 

baseline, STOI-loss optimised AV SE model [30]. 

 
Fig. 1. Proposed Fuzzy-inference based AV SE model structure 

 

 
Fig. 2. Proposed fuzzy-inference based context-aware AV SE 

framework 

D. Proposed Speech Enhancement Algorithm   

1) Audio-Visual Speech Enhancement (AV SE) Model: The 

proposed model is built upon our widely used baseline AV SE 

methods reported in [30][9] that integrate AV cues, to 

complement conventionally used audio-only cues, in order to 

further enhance speech intelligibility. The AV SE model utilises 

audio features and a lip-embedding network alongside feature 

fusion techniques to improve the quality of speech signals. The 

model is pre-trained on over 34,000 AVSEC Challenge videos, 

totalling over 113 hours, with 605 target speakers (see [29] for 

details). It processes audio and visual data through a series of 

convolutional and temporal layers to extract meaningful 

features for SE, as shown in the right half of Figure 1. The 

number and size of filters for the first four convolutional layers 

are 64 and 5×5, and the number and size of filters for the fifth 

convolutional layer are 4 and 1×1. More details can be found in 

[30]. 

    2) Lip-Embedding Network and Feature Fusion: The lip- 

embedding network employs a 3D-convolutional approach, 

utilising RESNET-18 and temporal CNN layers to capture 

dynamic visual cues from lip movements. These visual features 

are sampled at 25 frames per second, while audio features are 

processed at a rate of 75 vectors per second. The fusion of 

acoustic and visual features is achieved through an LSTM 

layer, optimising the SE process. 
3) Voice Synthesis: The AV SE model predicts noise spectra 

and time-frequency binary masks after the lip is embedded in 

the input network. The output enhanced speech is obtained by 

multiplying the predicted amplitude mask with the noise 

amplitude spectrum. 

 

E. Fuzzy Neural Network Integration for AV SE 

We propose the integration of fuzzy logic with neural 

networks, termed an Adaptive Neuro-Fuzzy Inference System 

(ANFIS), illustrated in the left half of Figure 1. This leverages 

the learning capabilities of neural networks and the reasoning 

capabilities of fuzzy logic to handle complex and uncertain 

environments in the context of AV SE. The system aims to 

learn optimal parameters for the Gaussian membership 

functions (median and standard deviation of the Gaussian fuzzy 

sets) and Sugeno fuzzy inference model rules. This enables 

accurate mapping of various input conditions to output SE 

modes to be efficiently utilised. These learnt relationships can 

be based on data collected or labelled by real users such that 

the learnt fuzzy model can then adaptively enhance speech 

intelligibility in various noise conditions, improving the 

effectiveness of the fuzzy inference model in dynamically 

adjusting to user preferences and environmental contexts.  

     1) ANFIS Structure: The structure of ANFIS includes 

several layers, each responsible for specific operations such as 

fuzzification, rules, normalisation, defuzzification, and output. 

The generated rules adhere to user specified definitions such as 

those given in Table I. 

        2) ANFIS Layer Functions: 

Layer 1: Fuzzification of input variables using membership 

functions. 

Layer 2: Application of fuzzy rules. 

Layer 3: Normalisation of the rule strengths. 

Layer 4: Generation of output functions. 

Layer 5: Summation of all incoming signals to produce the 

final output. 



 

   Given the input variables x, y, and z, the ANFIS model 

applies the following functions across its layers.  The fuzzy sets 

for the input sound power and visual quality (see Table I) are 

defined by their respective Gaussian membership functions 

where each member is initialised with reasonable prior 

parameters based on Equation 2 as the following. For Sound 

Power, 𝑎 = 1, 𝑏1 = 2, 𝑏2 = 5, 𝑏3 = 8 and 𝑐1 = 𝑐2 = 𝑐3 = 2.3. 

For Visual Quality, 𝑎 = 1, 𝑏1 = 157.7, 𝑏2 = 360, 𝑏3 = 562.2 

and 𝑐1 = 𝑐2 = 𝑐3 = 112.03. For SNR, 𝑎 = 1, 𝑐1 = 𝑐2 = 𝑐3 =
12.5. 

   We assume, as depicted in Figure 2, that user preferences 

elicited in terms of their clinically assessed listening effort or 

Cognitive Load (CL) can effectively influence the input SNR 

parameters of the FIS, and the output MOS during the training 

process. Specifically, we use a Sigmoid function (Equation 10) 

to represent the individual’s CL for varying input SNR.  

  In this paper, since all participants had normal hearing, 

utilising the same prior sigmoid function for all was deemed to 

be acceptable as a proof of concept. We take the mean values 

bi for the SNR Gaussian membership functions from the CL 

Sigmoid (Equation 10) at suitable intervals, in order to 

represent Low, Medium and High CL categories respectively.  

                                     𝜎(𝑥) =
10

1+𝑒𝑘𝑥                                  (10) 

Where 𝑥  is the listening SNR, and 𝑘 is an individual hyper-

parameter (empirically set to 𝑘 = −0.22 ) that depends on the 

user’s functional hearing capability, representing their 

Cognitive Load or listening effort. The analytical hyper-

parameter k allows our approach to generalise to different users. 

Equation (11) defines the Gaussian membership functions for 

the input SNR. 

𝜇𝐴𝑖
(𝑥) = 𝑎 × 𝑒

−
(𝑥−𝑏𝑖)

2

2𝑐𝑖
2

                         (11) 

Where 𝑏i represents the initialisation values for the input SNR 

means, with 𝑏1 =  σ−1(1)   representing ‘Low’ CL, 𝑏2 =
 σ−1(5)  representing ‘Medium’ CL, 𝑏3 =  σ−1(9)  represents 

‘High’ CL. 

 

Equations (12) and (13) define Gaussian membership functions 

for the input sound power and visual quality, respectively.  

𝜇𝐵𝑖
(𝑦) = 𝑎 × 𝑒

−
(𝑦−𝑏𝑖)

2

2𝑐𝑖
2

                          (12) 

      𝜇𝐶𝑖
(𝑧) = 𝑎 × 𝑒

−
(𝑧−𝑏𝑖)

2

2𝑐𝑖
2

                          (13) 

                                                

Rule Firing Strengths: Equation (14) calculates the firing 

strength of the applied rules as: 

                               𝑤𝑖 = 𝜇𝐴𝑖
(𝑥)𝜇𝐵𝑖

(𝑦)𝜇𝐶𝑖
(𝑧)                    (14) 

 

Normalisation: Equation (15) normalises the firing strengths:    

                                      𝑤𝑖 =
𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

                                     (15) 

Consequent Calculation: Equation (16) calculates the output 

generated for each rule: 

                        𝑤𝑖𝑓𝑖 = 𝑤𝑖(𝑚𝑖𝑥 + 𝑝𝑖𝑦 + 𝑞𝑖𝑧 + 𝑟𝑖)               (16)  

Overall Output: The final output is the summation of all 

rule outputs, as shown in Equation (17): 

                                𝑂 = ∑ 𝑤𝑖𝑓𝑖
𝑛
𝑖=1                                (17) 

    3) Training process: ANFIS employs a hybrid learning 

algorithm to fine-tune the system parameters that combines a 

backpropagation gradient descent and least-squares approach 

for modelling the training data. Backpropagation is used to 

learn the rule input membership function parameters while 

least square estimation is used to determine the rule consequent 

parameters of the modelled FIS. The parameter optimization 

during training aims to minimise the error between the target 

(mode type output from the user’s preferences) and the actual 

mode type output of the FIS to determine the model’s training 

accuracy.     

       4) Optimization: The training process involves optimising 

the membership function parameters to minimise a predefined 

error function. This can be represented mathematically as in 

Equation (18): 

                                min 𝐸 =
1

2
∑ (𝑦𝑗 − 𝑦̂𝑗 )

2𝑁
𝑗=1                        (18) 

where 𝐸  is the error, 𝑦
𝑗
 is the actual output, and 𝑦̂

𝑗
  is the 

predicted output by the ANFIS for the j-th data point. 

 We optimise ANFIS using a genetic algorithm (GA), where 

the fitness value is calculated as the absolute error. The 

selection operation chooses the strategy according to the fitness 

ratio and obtains the reciprocal of the fitness value. The 

crossover operation uses real number encoding to the individual 

[24]. The mutation operation selects genes in the code for 

mutation. We also utilise and compare an alternative 

benchmark approach to optimise ANFIS using particle swarm 

(PSO) [31] Here, the velocity and position of the particle are 

initialised, and fitness function values of particles are calculated 

and used to update the speed and position of each particle. The 

iterations stop when reaching a maximum specified number. 

IV. SIMULATION EXPERIMENTS AND COMPARATIVE 

RESULTS 

This section discusses the performance evaluation metrics, 

simulation setup, the training and test process and comparative 

results. The evaluation of our proposed AV SE system’s 

performance with state-of-the-art approaches utilises various 

metrics to assess the quality of SE, with a particular focus on 

the PESQ and STOI score analysis and Curve smoothness of 

the fuzzy model. 

 

A. Performance Evaluation Metrics 

The system’s performance is quantitatively evaluated using 

several metrics, detailed as follows: 

    1) Speech Enhancement Quality Assessment: The quality of 

SE is assessed by measuring the clarity and intelligibility of 

speech in noisy environments. This involves a comparative 

analysis of the enhanced speech signals against the clean, 

original speech recordings to identify any distortions or 

improvements in the sound quality. 

    2)  PESQ and STOI Score Analysis:  The PESQ score 

provides an objective measurement of the speech quality as 

perceived by human ears, with scores ranging from -0.5 to 4.5. 

Higher scores indicate better speech quality. Conversely, the 

STOI score, ranging from 0 to 1, evaluates the intelligibility of 

speech. Higher STOI scores signify better speech intelligibility, 

showcasing the effectiveness of SE in adverse conditions. 

These metrics offer a comprehensive evaluation of the system’s 



 

ability to enhance speech quality and intelligibility, which is 

crucial for effective communication in noisy environments. 

3)  Curve smoothness: By observing the function curve 

between the input and output of the fuzzy system, and 

calculating the slope between adjacent points, we obtain the 

smoothness of the curve. 

4 ） Hardware power consumption and latency: The 

average current is used to evaluate Hardware power 

consumption. The latency is the time difference between 

program initialization and output of enhanced speech. 

5）Mean Opinion Score: Mean opinion score (MOS) is a 

commonly used subjective method for evaluating speech 

quality. We gather a diverse group of people, ask them to 

listen to recordings, and rate the quality on a scale of 1 to 5. 
 

B. Simulation Setup 

This subsection describes the setup used for the simulations to 

evaluate the performance of the proposed AV SE system. 

    1) Computational Environment and Dataset for Training 

and Testing: The simulations were conducted within a 

controlled computational environment equipped with high-

performance GPUs (NVIDIA A10) to facilitate the processing 

of complex neural network models. The dataset comprises AV 

recordings collected under various noisy conditions, ensuring 

a comprehensive evaluation across different scenarios. 

For generating the training and test data, we selected 216 

sets of video and audio files from our benchmark ‘in-the-wild’ 

multi-talker AVSEC Challenge (TED talks) dataset [29] 

ensuring representation across a spectrum of sound power, 

SNRs or noise levels, and image clarity rated by users. 

Specifically, five young individuals including 2 males and 3 

females, with normal hearing assessed each of the three 

enhancement modes on a 1-5 scale, while viewing and 

listening to the video samples. Based on the score, the optimal 

SE approach was selected and integrated into the initial rule 

table (Table I). Through a trial and error approach, we 

allocated 120 randomly selected sets for training purposes and 

the remaining 96 sets for testing the proposed algorithms. The 

fuzzy rules of the ANFIS model were initially defined based 

on the existing rule base (Table I) and membership functions 

informed by the cluster-based learning (Equations. 11-13) 

during the training phase of the ANFIS model (see Section 

III.E for details). After ANFIS training, the final Gaussian 

membership functions and parameters are obtained. The 

accuracy rate of the model positively correlated with the 

degree of resemblance between the output mode generated by 

the ANFIS model and derived from the user-defined rule 

table.     

    2) Preprocessing and Input Normalisation: Prior to inputting 

the data into the enhancement model, preprocessing steps such 

as noise reduction, signal amplification, and synchronisation 

between audio and visual components are executed.  

Additionally, input normalisation is applied   to standardise the 

data, thereby enhancing the model’s learning efficiency and 

prediction accuracy. 

    3) Hardware: The AV SE system operates on a Raspberry 

PI using a Linux operating system. It utilises   a USB interface 

to connect a microphone and camera to receive voice and 

video input, and output enhanced audio from the SE system. 

The system includes an LCD screen for user-friendly 

operation. Compared to conventional desktop computers, the 

Raspberry Pi-based system offers portability and low power 

consumption. 

The hardware structure diagram of the SE system is shown 

in Figure 3. The hardware connection is shown in Figure 4. 

 
Fig. 3. Hardware structure diagram 

 

C. Fuzzy Inference System Performance 

This subsection explores the performance of the fuzzy 

inference system implemented in the AV SE framework, 

focusing on the system’s output and the visualisation of 

inference patterns. 

    1) Output Analysis and Mode Impact: The performance is 

evaluated based on the system’s ability to adaptively enhance 

speech intelligibility in various noise conditions, highlighting 

the effectiveness of the FIS in dynamically adjusting to user 

preferences and environmental contexts. 

 

 
Fig. 4. Hardware diagram of Raspberry Pi implementing the 

AV SE model 

 

    2) Surface diagram: Visualisation techniques are employed 

to illustrate the inference patterns generated by the fuzzy 

system. These visualisations provide insight into how the 

system processes input data and makes decisions, offering a 

clear view of the relationship between different input variables 

and the enhancement process. This analysis aids in 

understanding the system’s behaviour and optimising its 

performance for improved SE outcomes. 

     
         (a) ANFIS                            (b) other model  

                           Fig. 5. The process of switching modes 

 

The user's interaction with the system, particularly in terms 

of mode transitions, is crucial for a positive user experience. 

When a variable gradually changes in one direction, the ANFIS 

model can be used for stable transition to another speech mode, 



 

unlike other models that may produce unstable jumps, as 

depicted in Figure 5. It is essential to maintain consistency in 

speech enhancement especially during minor environmental 

changes to avoid unnecessary fluctuations that could disrupt 

user engagement.  

Therefore, a detailed examination of the relationship between 

the input variables and the system's output—the function 

curve—is necessary to ensure smooth transitions and an 

optimised user experience. Gaussian membership functions are 

used for input variables and 3D surface plots of input variables 

(x, z axes) against the output decision (y axis) for both Mamdani 

and Sugeno generated rules are shown in Figures 6 and 7 

respectively. 

 

     
Fig. 6. 3D graph of variables using Mamdani rules 

 

     
Fig. 7. 3D graph of variables using Sugeno rules 

 

In the PSO-ANFIS model, we use the Sugeno model and 

again Gaussian membership functions are used for the input 

parameters. The 3D graphs of variables using Sugeno rules are 

shown in Figure 8. 

 

     
Fig. 8. 3D graph of variables using PSO-ANFIS 

 

As can be seen from Figure 6-8, with the improvement of 

sound power, SNR and visual quality, the value of output mode 

gradually increases, and it tends to use audio-video SE mode. 

 

  
(a)  

 
(b) 

 
(c) 

Fig. 9. The relationship between output values (as gradient on y 

axis) and constant sound power (x axis) for (a) Mamdani model, (b) 

Sugeno model and (c) PSO-ANFIS 

 

In the context of maintaining a constant noise level, we 

examine the relationship between the output value and sound 

power to analyse the changes in slope, as illustrated in Figure 

9. Each line in the graph represents the change in the slope of a 

curve in the 3D surface plot figure. A smaller change in slope 

correlates with a flatter curve, whereas greater variations in 

slope lead to more pronounced curvature. The ideal output 

pattern should exhibit gradual changes, favouring models 

characterised by minimal slope alteration to reduce fluctuations 

in SE modes. Conversely, rapid changes in output modes can 

induce oscillations between different modes, leading to a 

suboptimal user experience. 

Here, we observe that Sugeno model performs slightly better 

than the Mamdani model in terms of output fluctuations of 

sound power changes. The fluctuations in PSO-ANFIS model 

are too small to be observed on a line chart; therefore, we can 

consider the input-output functions to be linear. 

 

 
(a) 



 

 
              (b) 

 
(c) 

Fig. 10. The relationship between output values and noise value 

for (a) Mamdani model, (b) Sugeno model and (c) PSO-ANFIS 

                   

Keeping the video quality value constant, the relationship 

between the output value and the noise value is observed to 

determine the change in slope, as shown in Figure 10. In Figure 

11, we further illustrate the slope of curve plots where the noise 

value is kept constant, and the relationship between the output 

value and the video quality is observed. 

 

 
(a)    

 
                                                  (b) 

 
(c) 

Fig. 11. The relationship between output values and constant 

visual quality value for (a) Mamdani model, (b) Sugeno model and 

(c) PSO-ANFIS 

 

The standard deviation of the slope of the FIS output is 

shown in Table II for the various inputs and fuzzy models. It 

can be seen from the data that when using PSO-ANFIS model, 

the standard deviation of the slope is much smaller, and the 

slope changes are reduced resulting in a smoother transition 

between SE modes. 

Theoretically, due to the insignificance of the changes 

observed in Figure 11c, they can be considered negligible, 

suggesting that the relationship between inputs and outputs can 

be approximated linearly. Therefore, a simpler linear predictive 

model could be constructed in future to fulfil the requirements 

of smoothness and model accuracy, while incorporating fuzzy 

membership input functions and effectively de-fuzzifying the 

output. A user’s individual model parameterisation may benefit 

from simple interpretability; this is scope for future work. 
 

TABLE II 

STANDARD DEVIATION (SD) OF SLOPE OF FUZZY INFERENCE SYSTEM 

(FIS) OUTPUT FOR VARIOUS FUZZY MODELS 

  Mamdani  Sugeno PSO-ANFIS 

FIS output slope SD for 
input noise 

0.00269  0.00103  1.36481E-15 

FIS output slope SD for 
input sound power  

0.07060  0.01525  1.16358E-15 

FIS output slope SD for 
input visual quality 

0.00735  0.00294  9.7652E-16 

 

D. Noise Reduction Effect 

Performance evaluation was carried out on over 1000 videos 

comprising clean sounds, multi-speaker noises, speaker images, 

and denoised sounds sourced from the benchmark AVSEC 

Challenge dataset [29]. Objective evaluation metrics were 



 

calculated both for A-only noise reduction and after AV SE 

noise reduction. The system operated based on output values: if 

the value ranged from 0 to 0.3, SE was not applied; for values 

between 0.3 and 0.6, A-only SE was used; and for values 

between 0.6 and 1, AV SE was applied. The average STOI and 

PESQ values are presented in Table III. The noise reduction 

effects of GA ANFIS and PSO ANFIS models demonstrate 

improved performance compared to the standard non-optimized 

ANFIS model. Comparatively the proposed fuzzy based AV SE 

model gives enhanced or similar results to state-of-the-art AV 

SE methods. This is reflected in high STOI and PESQ scores 

which are also attributable to the overall high quality of videos 

in the benchmark Challenge dataset. However, in a real-life 

situation where visual input quality may be poor due to camera 

obstructions, poor points of view or low lighting conditions, our 

proposed approach has the advantage of determining the 

optimal SE mode to utilise, instead of providing suboptimal 

enhancement due to the poor quality (or absence of) visual 

features. 

 

E. System Efficiency Analysis 

  Computational Load and Energy Consumption: This section 

undertakes an evaluation of the system’s efficiency through an 

in-depth analysis of its computational load and energy or power 

consumption. The goal is to ensure not only the effectiveness 
but also resource efficiency of the SE system, thereby 

rendering it suitable for deployment in portable devices and 

platforms. The power measurement of the hardware in each of 

the three noise reduction modes is acquired by a power sensor 

yielding values of: 2.875W, 3.965W, and 4.315W respectively. 

The fuzzy rules are used to select the noise reduction mode and 

calculate the average power. However, the system needs to 

consider the noise reduction effect and energy consumption. 

Compared with the AV SE model, the three fuzzy inference 

models can reduce the energy consumption under the premise 

of better noise reduction effect. The latency of the hardware in 

three noise reduction modes is measured as: 0s, 6s, and 18s 

respectively. Compared with the standalone benchmark AV SE 

method (without fuzzy inferencing), our proposed use of fuzzy-

inference based AV SE can greatly shorten the delay while 

obtaining a sufficient enhancement effect as seen in Table III. 

In addition, the accuracy rates of Sugeno, ANFIS, GA-ANFIS 

and PSO-ANFIS were found to be 73.9%, 77.1%, 80.2% and 

84.4%, respectively 

 
F. Mean Opinion Score (MOS) 

We recruited a cohort of five young volunteers (2 males and 3 

females with normal hearing), to assess the quality of 

recordings using a 1 to 5 rating scale for subjective evaluations. 

The box plot diagram in Figure 12 reveals that the MOS of the 

PSO-ANFIS model outperforms other fuzzy models. This 

suggests that participants assigned higher subjective ratings to 

this model during testing. Moreover, PSO-ANFIS provides 

enhancement that is comparable to conventional AV 

enhancement, and certainly improves over A-only, whilst 

providing the flexibility to select the most effective SE modes 

in response to uncertain real-life conditions, user preferences 

and energy constraints of HA devices. 

 

 
Fig. 12. Comparative MOS evaluation of state-of-the-art vs our 

proposed model 

 
G. Comparative Analysis 

This section conducts a comparative analysis aimed to evaluate 

the proposed system in relation to existing methods. Through 

the examination of various performance metrics, user 

satisfaction rates, and system efficiency, this analysis provides 

a comprehensive understanding of the advantages and potential 

limitations of our approach. It highlights the enhancements in 

SE quality and intelligibility achieved by our system, 

positioning it as a notable advancement in the field of AV 

speech processing. 

Compared to the AV SE model, the three fuzzy inference 

models demonstrate the capability to reduce energy 

consumption and latency while achieving superior noise 

reduction effect. The comparison of these models alongside the 

proposed approach across various factors is detailed in Table 

III. Specifically, the Mamdani model exhibits lower accuracy 

and limited noise reduction effectiveness. Conversely, the 

PSO-ANFIS model showcases smooth performance, minimal 

recognition error, and high objective and subjective evaluation 

scores for SE. 

Additionally, we explore the Back-Propagation (BP) neural 

network approach, which is characterised by a single fully-

connected perceptron layer linking input features to the output 

value thus determining the nature of   the enhancement 

processing. 

In terms of speech quality measures such as STOI, PESQ 

and MOS, the AV SE system exhibits superior performance 

compared to our proposed model. However, in the context of 

delay and power metrics, our model demonstrates significant 

improvement over AV SE. Additionally, it’s important to note 

that MOS scores do not consider the real-time implementation 

of the model, thereby overlooking the impact of delay on the 

user’s ratings. 

To this end, we believe that our PSO-ANFIS model 

represents a compelling balance between enhancement 

performance and computational efficiency.   

Future endeavours will focus on conducting   robust real-

time evaluations and ecologically valid user testing to 

substantiate these assertions. 
 

 
 

 

 

 

 
 



 

TABLE III 

PERFORMANCE COMPARISON OF STATE-OF-THE-ART MODELS VS OUR 

PROPOSED MODEL 

Algorithm 
Accuracy 
rate 

Gradient 
Delay 
(s) 

Power 
(W) 

STOI PESQ MOS 

ASE[30] - - 6 3.965 0.744 1.266 2.5 

AV SE[30] - - 18 4.315 0.892 2.2 3.8 

BP 83.3% - 9.054 3.93 0.786 1.513 2.9 

Mamdani 
[23] 

68% 0.00269 9.28 3.98 0.781 1.503 2.8 

Sugeno 
[23] 

73.9% 0.00103 9.72 4.02 0.786 1.510 3.05 

ANFIS 
[24] 

77.1% 1.36E-15 9.606 3.995 0.786 1.513 3.05 

GA-ANFIS 
[24] 

80.2% 1.36E-15 9.288 3.985 0.788 1.522 3.17 

PSO-ANFIS 
[31] 

84.4% 1.36E-15 9.54 3.945 0.792 1.541 3.2 

V.  CONCLUSIONS AND FUTURE WORK 

This work centred around the novel application of an adaptive 

neuro-fuzzy model by integrating AV SE with personalised 

learning to enhance the intelligibility and quality of speech in 

challenging noisy environments. By exploiting fuzzy logic and 

user cognitive load based preference rules, we successfully 

developed a context-aware system that adapts SE by 

considering the surrounding noise and visual conditions, 

pushing the boundaries of future adaptable assistive hearing and 

communication technologies. The inclusion of a genetic 

algorithm and particle swarm optimization methods proved 

very effective, fine-tuning our system to recognize 

environmental nuances. The proposed ANFIS based AV SE 

system was shown to result in less energy consumption and 

delay than conventional non-fuzzy based AV SE methods, 

whilst improving performance compared to A-only methods. 

This balance is particularly important in portable devices where 

energy efficiency is crucial. Moreover, the introduction of 

smoothness analysis emerged as a vital component, ensuring 

the enhanced audio remains stable over prolonged use, thereby 

prioritising user comfort alongside clarity. Finally, by 

implementing our model into a Raspberry PI, we bridged the 

gap between theory and practice, demonstrating the model's 

real-world viability. This confirms the potential of our neuro-

fuzzy based AV SE system to be implemented in existing 

custom hardware technology. 

A simpler linear predictive model for the SE type preference 

as mentioned in Section IV C presents an interesting avenue for 

future work, whereby a user’s individual AV SE system 

parameterisation tailored to their preferences may benefit from 

enhanced interpretability and facilitate statistical comparisons 

of intelligibility and quality gains. Additionally, the streamlined 

system would be simpler to implement and optimise. 

Further, as part of our future work, we are exploring the use 

of clinical cognitive load data to comprehensively evaluate 

personalised fuzzy based AV SE systems. Additionally, we will 

investigate ways to reduce the system running time, including 

through integration of our baseline lightweight and real-time 

AV SE models [9][32] for real-time SE whilst assessing and 

optimising system energy and computational cost. Joint 

optimization of both user-defined preferences and objective 

metrics such as latency/power consumption and PESQ/STOI 

would further make the system highly adaptable in different real 

world operating conditions Ideally, the system would learn 

from user feedback to continuously enhance the listening 

experience for various environments in real-time. The 

assumption is that a smooth model with the lowest ‘switching 

frequency’ whilst maintaining high accuracy of user preferred 

SE processing is logical. However, more tests are required to be 

conducted under a range of realistic situations.  

Given the dataset is generated from the benchmark AVSEC 

[29] (derived from the LRS3 dataset based on TED talks), AV 

SE delivers consistently good subjective and objective 

performance due to the overall high visual quality of the dataset. 

In a real-life situation where, visual quality may be poor, for 

example, due to camera obstructions, unclear points of view or 

low lighting conditions, our proposed approach has the 

advantages of providing 1) improved power efficiency and 2) 

optimal enhancement due to the poor quality (including 

potential absence of) visual features. Future work will 

endeavour to prove our fuzzy AV SE system’s efficacy in more 

ecologically valid situations and also compare its performance 

more comprehensively with a range of state-of-the-art A-only 

and AV based approaches. 

The simplicity of crisp fuzzy based AV SE system outputs 

here is useful for this initial work to progress towards our final 

goal of having an efficient and personalised SE system for 

hearing-aid users. However, it may be of interest to incorporate 
more sophistication by modulating the set of DNN parameters 

at a more granular level, for example, through a modular DNN 

architecture replacing the current multiple SE models, to enable 

smooth switching between various SE processing modes. This 

could further decrease power consumption according to the 

combination of environmental conditions and user preferences. 

Additionally, by systematically considering different types of 

noises, acoustic environments, and SNRs [33], we could gain a 

further degree of personalisation. Another required 

investigation would be the clinical validation of our ongoing 

user Cognitive Load integration, and assessment of related AV 

SE system performance enhancement and potential training 

time reduction for individuals with hearing loss. 
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