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Abstract: Objects in cluttered environments may have similar sizes and shapes, which remains a
huge challenge for robot grasping manipulation. The existing segmentation methods, such as Mask
R-CNN and Yolo-v8, tend to lose the shape details of objects when dealing with messy scenes, and this
loss of detail limits the grasp performance of robots in complex environments. This paper proposes
a high-performance grasp detection algorithm with a multi-target semantic segmentation model,
which can effectively improve a robot’s grasp success rate in cluttered environments. The algorithm
consists of two cascades: Semantic Segmentation and Grasp Detection modules (SS-GD), in which the
backbone network of the semantic segmentation module is developed by using the state-of-the-art
Swin Transformer structure. It can extract the detailed features of objects in cluttered environments
and enable a robot to understand the position and shape of the candidate object. To construct the
grasp schema SS-GD focused on important vision features, a grasp detection module is designed
based on the Squeeze-and-Excitation (SE) attention mechanism, to predict the corresponding grasp
configuration accurately. The grasp detection experiments were conducted on an actual UR5 robot
platform to verify the robustness and generalization of the proposed SS-GD method in cluttered
environments. A best grasp success rate of 91.7% was achieved for cluttered multi-target workspaces.

Keywords: robot manipulation; grasp detection; semantic segmentation; cluttered objects

1. Introduction

Robot grasp manipulation has been widely used in industrial assembly, sorting, and
human-machine interaction [1–5]. However, robots face a challenge when they conduct
grasp manipulations in cluttered environments where the objects are close to each other
and have similar shapes and sizes. Therefore, how to improve the success rate of robotic
grasping in cluttered environments needs to be solved urgently, and reliable grasp detection
algorithms are needed. In general, grasp detection can be divided into the analytical
method and the empirical method [6]. The analytical method is to calculate the grasp pose
according to the object’s 3D geometric model, and the established kinematics model of the
manipulator. This method can realize the migration of grasping to a certain extent, but its
generalization ability is limited at the modeling levels. As a 3D object model cannot be
obtained beforehand, it is difficult to model the physical interaction between the robotic
arm and the object [7].

On the other hand, the empirical method does not require a 3D model of the object.
It trains a grasping network using data-driven techniques, and then uses the off-line
learned model to reason the grasp configuration for novel objects. Yu et al. [8] used a
five-dimensional rectangle to represent the grasp detection, Mahler [9] used a point and an
angle to represent the structure of the gripper, and Li et al. used a 6D gripper model [10].
However, these methods cannot effectively manage cluttered objects as the robot’s vision
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systems are unable to accurately identify the contours and positions of individual objects.
Besides, the occlusion reduces the effective features available for grasp reasoning and
increasing the complexity of the grasping task.

In this paper, we focus on improving robotic grasping performance in cluttered envi-
ronments. An improved adaptive grasp representation is first proposed based on width
prediction. Then, we incorporate a state-of-the-art feature extraction network to contribute
to target segmentation in complex cluttered environments. Innovatively, we further en-
hance the performance of the grasp detection network by incorporating residual and
attention modules. The grasp network predicts a distinct grasp configuration for each
object, then eliminates the prediction redundancy and improves the precision and efficiency
of the grasping tasks. In general, the paper makes the following contributions:

• A high-performance grasp schema SS-GD is proposed by combining a semantic seg-
mentation module with a grasp detection module to effectively reduce prediction
redundancy in multi-target grasp pose detection and improve the probability of robots
performing robust grasping operations.

• A grasp detection network is proposed based on Mask-D multi-channel synthetic
data, aiming to enhance the perception of shape information for candidate objects.
The SE attention mechanism is introduced to further strengthen the network’s feature
extraction capability.

• By leveraging various advanced visual algorithms, we explore the optimal segmentation-
grasping cascade combination in diverse cluttered grasping scenarios.

• Experimental results in real-world environments demonstrate that our cascade SS-
GD algorithm exhibits superior performance in cluttered scenarios, particularly in
environments characterized by severe stacking and background interference.

The rest of the paper is organized as follows. Section 2 briefly overviews some related
work. A grasp representation is presented in Section 3. Section 4 proposes a new grasp
schema SS-GD based on a cascaded deep network with the combination of a semantic
segmentation module and a grasp detection module. The method aims to improve the
success rate in robotic grasping tasks. The results and analysis are presented in Section 5 to
show the feasibility and performance of the proposed method. Finally, a brief conclusion is
given in Section 6.

2. Related Works

In this section, the relevant works in the field of grasping detection are reviewed and
the object segmentation algorithms in robot grasping are introduced.

2.1. Grasp Detection

To perform the grasp tasks, a dataset with rich grasp configuration information is
needed to improve the neural network training and evaluation. The Cornell [11] dataset
and Jacquard [12] dataset are widely used for training grasp networks and their working
principles are similar, i.e., by annotating rectangular boxes, the network predicts plane
grasp attributes on RGB or RGB-D images. Morrison et al. [13] introduced the Grasp
Generative Convolutional Neural Network (GGCNN) to overcome limitations of current
deep learning grasping techniques by avoiding discrete sampling of grasp candidates and
long computation times, achieving an 83% grasp success rate on a set of previously unseen
objects. In 2022, they further proposed GGCNN2, a multi-view approach which improves
overall grasp success rate in clutter by 10%. Kumra et al. [14] used generative residual
convolutional neural network (GR-ConvNet) to generate antipodal robotic grasping poses
for novel objects from n-channel images. They optimized the gradient vanishing problem
when training the network through five residual layers, enabling the network to achieve
higher accuracy in Cornell and Jacquard dataset validation. Yu et al. [15] developed a
grasp network called Squeeze-and-Excitation ResUNet and proved that the Squeeze-and-
Excitation module can effectively improve generalization ability on different datasets.
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Our objective is to train the network by inputting multimodally fused shape informa-
tion, enabling the network to predict the grasp poses of unseen objects. This poses more
challenges to the network’s feature extraction capabilities compared to previous works.
Inspired by the above works, we innovatively integrated residual modules with bottleneck
layers with SE attention mechanisms based on the work of [14], and validated RGB-D
inputs on the Cornell dataset and the Jacquard dataset.

2.2. Semantic Segmentation in Robots’ Grasp

The single target grasping algorithm cannot grasp messy, cluttered targets in messy
environments in which the objects are blocking each other, which increases the difficulty of
grasping detection [16,17]. Araki et al. [18] proposed a multi-task model that can simulta-
neously conduct object detection, semantic segmentation, and sucker grasping detection.
This model can perform accurate object detection and segmentation but cannot deal with
scenarios that require the use of an antipodal gripper. Xu et al. [19] proposed a multi-task
convolutional network to represent the grasping detection of a manipulator, which was
based on semantic segmentation and usable to extend to scenarios with unknown cate-
gories. Xie et al. [20] proposed a two-stage object instance-level segmentation network
(UOIS-Net), separately leveraging synthetic RGB and synthetic depth for unseen object in-
stance segmentation. The method generated preliminary masks by employing depth maps
and regressing center votes in either 2D or 3D. Subsequently, these initial masks undergo
refinement using RGB information, and finally, cascade with the 6D grasping network to
complete the grasping task. Ainetter et al. [21] proposed a depth-aware Coordinate Convo-
lution algorithm to improve the accuracy of grasping detection and object segmentation.
However, they evaluated on a training dataset, but not in actual grasping scenarios. Wang
et al. [16] used a vision transformer [22] as the backbone for target detection and applied it
to robot grasping tasks. Its global self-attention mechanism was time-consuming, and its
vision transformer produced a low-resolution feature map.

To execute high-performance grasping operations within cluttered scenes featuring
unknown categories, we have employed Swin Transformer [23] as the backbone in the
semantic segmentation network. The aim is to deliver precise target localization and shape
information for the subsequent grasping detection network. The integration of shifted win-
dows and multi-head self-attention is instrumental in facilitating global interaction, thereby
augmenting the overall performance and generalization capabilities of our approach in the
context of multi-object grasping within cluttered environments.

3. Grasp Representation

The grasp configuration in this paper is improved according to the definition of the
grasp rectangle [24]. The adaptive grasp width is introduced based on five-dimensional
grasping, and redefined below:

Gr = (Pr, ϕr, wr−o, wr−c, Qr) (1)

where Pr = (xr, yr, zr) is the grasp position in the robot coordinate system, ϕr is the angle
of rotation around the z-axis, and wr−o and wr−c are the open and closed width of two-
finger gripper approaching and grasping the object, respectively. Qr stands for grasping
confidence, its scalar value range is [0,1]; the closer to 1, the higher the grasping confidence.

The current robot grasp detection algorithm completely closes the robot gripper when
picking up thin or fragile objects, which may damage the objects. Therefore, we introduce
the grasping closed width wr−c, which is set according to wr−o; here we have employed
wr−c = λwr−o. Through the experimental testing, when λ < 0.4 is used, due to the large
closure of the gripper, it may damage the object when picking up thin plastic, paper cups,
and other objects. When λ > 0.4 is used, when picking up heavier objects, it may make the
grasping unstable, and the object may fall off. When λ = 0.4, the gripper is closed to the
appropriate width.
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Introducing an adaptive grasping width can improve the grasping performance com-
pared to grasping configurations with only the position and rotation angle of the grasping
point alone. We detect a pixel-level grasp configuration from RGB image I = R3×h×w and
depth D = Rh×w with height h and width w, which can be defined as follows:

Gi = (Pi, ϕi, wi−o, wi−c, Qi) (2)

where Pi = (xi, yi) is the grasp position in the image coordinates, and fi is the rotation angle
in the camera coordinate, which represents the rotation scalar of each point required to
grasp the object of interest; the range is in [0, π]. wi−o and wi−c are the opening width and
closing width, respectively, of the gripper predicted by the network in the image coordinate
system. Qi is the grasp confidence, which is of each point in the image, and its scalar value
is between 0 and 1.

The closer the value to 1, the greater the success rate of grasping. The goal is to infer a
set of grasp G = (G1, G2, ..., Gk) that maximizes the grasping success rate given k groups of
the candidate grasp:

{G∗
i } = argmax prob(Qi|I, D, Gi) (3)

To execute grasping tasks, the pixel-level grasp detection should be transformed into
a gripper configuration. It involves system calibration and a robot moving model:

Gr = Trc(Tci(G∗
i )) (4)

where Tci represents the conversion function from 2D image coordinates to camera coordi-
nates, and Trc is the conversion from camera coordinates to robot workspace.

4. Principle and Method

Considering the grasp tasks are conducted by using single vision perception, the robot
should accurately detect the candidate target and realize an appropriate grasp configuration,
especially in grasping similar objects in cluttered environments and improving the success
rate of the grasping. Thus, this section presents a grasp method SS-GD for cluttered
environments, which is based on the cascaded deep network.

As shown in Figure 1, the semantic segmentation module with Swin Transformer is
used for multi-target semantic segmentation. This module consists of a series of hierarchical
Transformer blocks to extract multi-scale features from the input image. Then, an accurate
segmentation mask of the candidate target is predicted for subsequent grasp detection.
The grasp detection module is designed with a Squeeze-and-Excitation Bottleneck and an
encoder-decoder network architecture. The SE-Bottleneck module enhances feature repre-
sentation by adaptively recalibrating channel-wise features based on a global intra-feature
relationship. This is achieved through a squeeze operation that generates channel-wise
statistics, followed by an excitation operation that rescales the original features accordingly.

The encoder-decoder structure of the grasp detection module is tailored to handle
the spatial dimensions of the grasping area. The SE-Bottleneck module’s decay rate is set
to 16. The encoder compresses the spatial dimensions and extracts high-level semantic
information, while the decoder up-samples and expands these dimensions to restore the
precise grasping area. The mask of each object, combined with depth information to
form an RGB-D input, is fed into the grasp detection module. This module outputs the
corresponding grasp configuration for each object, including the grasp quality, grasp angle,
and grasp width for each pixel within the mask region. The grasp configuration with
maximal quality, as detected by the network, is identified as the optimal grasp position.
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4.1. Semantic Segmentation Module

Previous methodologies furnish instance masks alongside category-level semantic
labels, which often face challenges in generalizing to novel categories [18,21]. In our
approach, we introduce an object proposal algorithm to yield masks relevant to the grasp
detection network. The pixel-level accurate segmentation enables a robot to understand the
shape and location information of the object to be grasped. In the Swin Transformer [24]
architecture, images are divided into a series of hierarchical blocks instead of treating
the entire image as a continuous grid. Each block consists of a set of pixels, and these
blocks are processed into multi-level feature representations. In each block, instead of fully
connecting every pixel, the pixels are divided into multiple windows, and local operations
are performed on these windows, thus reducing computational costs.

The information from different blocks is integrated by performing feature fusion at
various layers. This hierarchical structure helps the model capture image information
at different scales. Specifically, feature maps with different scales are extracted from the
collected RGB image by Swin Transformer. These feature maps are fed into the Regional
Recommendation Network to generate regional proposals, which are subsequently pooled
through region of interest proposals. Finally, the binary mask is output through two layers
of convolution. The details of the segmentation network are analyzed below:

(1) Training strategy

In this work, the Swin Transformer is adopted as the semantic segmentation backbone
network, and the loss function also follows the Transformer settings. Thus, the loss of the
mask is a binary cross-entropy function as follows:

Lmask =
1
n∑n

i=1[−yi · log(p(xi))− (1 − yi) · log(1 − p(xi)] (5)

where yi is the ground truth and p(xi) is the predicted unit pixel value. n represents the
total number of pixels.

The GraspNet-1Billion dataset [25] provides a simulation of object positional informa-
tion within cluttered scenes, including 88 distinct object types. However, the substantial
scale of the 3D dataset imposes a computational resource burden during network train-
ing. To address this issue, the dataset is annotated in the COCO label format, facilitating
network training, and partitioned into a training set and a test set in a 4:1 ratio. Training
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comprised 100 epochs, employing the Adam optimizer with a momentum parameter set
to 0.9, and an initial learning rate established at 0.001. This configuration was chosen to
balance computational efficiency with effective model convergence.

(2) Evaluation metric

We utilized the mean Intersection over Union (mIoU) to calculate the mean average
precision in the GraspNet-1Billion dataset, which serves as the primary evaluation metric.
Mask R-CNN [26] and Yolo-v8 were trained with identical parameter configurations, which
should ensure a consistent experimental setup, and enable a fair comparison in terms of
segmentation performance. After 100 training epochs, we obtained validation results for
three segmentation networks, as depicted in Figure 2.
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Figure 2. The segmentation results of cluttered targets with different semantic segmentation networks.

The results reveal a notable lack of shape details in the validation outcomes of the
Mask R-CNN and Yolo-v8 frameworks. Mask R-CNN provides less accurate descriptions
of occluded regions, while the results generated by Yolo-v8 exhibit partial omissions
and face challenges in generating a smooth edge. In contrast, our segmentation module
demonstrates superior performance in preserving a more comprehensive set of shape
information by leveraging the Swin Transformer architecture.

In real-world scenes, as shown in Figure 3, we conducted experiments to further
validate the robustness of the segmentation network, involving scenarios with novel
objects. For textureless background segmentation tasks, Mask R-CNN segments all targets
but introduces some segmentation errors outside the boundaries of the objects. In more
complex background scenarios, such as experimental scenes with wrinkled and textured
surfaces shown in the last two columns of Figure 3, these disturbances often propagate into
the target regions. YOLO-v8 tends to accurately reconstruct object shape information across
different experimental scenarios. However, this result does not generalize well to novel
objects. In contrast, the Swin Transformer network consistently generates high-quality
object segmentation in both scenarios, demonstrating robust performance in real-world
environments with diverse scenes and object categories. These highlight the reliable
segmentation robustness of our module in complex scenarios.
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4.2. Grasp Detection Module

As shown in Figure 1, the designed grasp detection schema consists of an encoder
module, SE-Bottleneck attention mechanism module, and a decoder module. We separate a
single target from the RGB mask, and the depth map is based on the binary mask output
of the instance segmentation. The segmented mask is combined with a depth map as the
input of the grasping detection module to predict the grasp configuration of the candidate
object. They are composed of four channels of input information we called Mask-D.

Input = concat(mask, depth) (6)

Following, the details of the grasp detection network will be analyzed.
Encoder model: The encoder is constructed by four down-sampling convolution

modules and used to extract high-level features representations from the processed data. It
can also extract the gripper configuration information and map it into the low-dimensional
distribution.

SE-Bottleneck: Five SE-Bottleneck modules are employed to dynamically learn inter-
channel dependencies. Figure 4 shows the SE-Bottleneck architecture that involves a
squeezing operation to reduce dimensionality and an excitation operation for channel-wise
dependency modulation. Firstly, the dimension of the input feature map is reduced by
a 1 × 1 convolution layer, and the number of channels is reduced simultaneously, thus
reducing the calculation cost of the subsequent convolution layer. Then, the convolution
layer uses a 3 × 3 convolution kernel for feature extraction to cover a larger receptive field,
and the number of channels is increased back to the present value through another 1 × 1
convolution layer to match the output feature map in the identity mapping path, as shown
in Equation (7).
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Figure 4. The structure of the SE-Bottleneck attention mechanism module.

Next, we introduce the Squeeze-and-Excitation (SE) module [27] to improve the feature
extraction ability of the grasping network. This module first performs the squeeze operation
on the feature map to obtain the channel-level global feature information, that is, uses the
global average pooling layer to compress the feature parameters, as shown in Equation (8).
Finally, the excitation operation is performed on the global features to learn the relationship
between different channels, and to multiply the original feature map to obtain the final
grasping feature information, as shown in Equations (9) and (10). The feature extraction
process is as follows:

uc = vc ∗ X = ∑C,

s=1 vs
c ∗ xs (7)

zc = Fsq(uc) =
1

H × W ∑H
i=1 ∑W

j=1 uc(i, j) (8)

s = sigmoid(W2 ∗ ReLU(W1zc)) (9)
∼
xc == suc (10)

where vc represents the c-th convolutional kernel, X ∈ RH,×W,×C,
represents the input,

xs represents the s-th input covered by the current convolutional kernel, uc ∈ RH×W

represents the output, zc is the result of performing global average pooling on the feature
U = [u1, u2, ...uc] over spatial dimensions H × W, and W1 and W2 represent linear layers.
The calculated s here is the core of this module, representing the weights for each channel.
∼
xc denotes the output after processing through the SE-Bottleneck.

Decoder module: The decoder consists of four up-sampling convolution modules
to accurately restore the grasping area due to the grasping area being smaller than the
object masks. The decoder is configured with three parallel-configured grasping heads at
its summit, and can separately generate the grasp quality, grasp angle, and grasp width of
each pixel in each mask region, as well as a feature map encapsulating attributes related
to grasping. The network identifies the area with maximal quality as the optimal grasp
position.

In contrast to traditional multi-target grasping pose prediction, our network focuses
on generating a unique and reliable grasping pose for each object. Masks output by the
semantic segmentation network will result in n inputs for the grasping detection module,
and each input will generate a unique prediction based on the maximum confidence
through the Encoder model, SE-Bottlenecks and Decoder module, which are finally stored
in the list. When (n − 1) cycles are completed, all these predictions will be read out
and a unique visual grasping rectangle will be generated. Subsequently, these grasping
rectangular boxes are converted by Equation (4) and participate in the sequencing, and the
positions and postures at the highest places will be preferentially sent to the actuator.

(1) Training strategy

In the grasp detection module, we use the Smooth L1 loss function because of its
robustness. As shown in Equation (11), Smooth L1 can limit the gradient in two ways,
where x is the difference between the predicted value and the ground truth. When the
difference between the prediction value and the ground truth is large, the gradient value
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will be not be excessively suppressed. When the difference between the predicted value
and the ground truth is small, the gradient values will remain sufficiently small without
vanishing:

SmoothL1(x) =
{

0.5x2, i f |x|< 1∣∣x∣∣−0.5, otherwise
(11)

In the prediction task, the loss function configured for grasp training can be defined as
follows:

Loss =
1
m

m

∑
i=1

smoothL1(wi − w∗
i ) (12)

where wi is the predicted value and w∗
i is the ground truth, and m refers to the index of all

predicted objects.

(2) Evaluation metric

The Cornell and Jacquard datasets contain rich grasping configuration information,
which were used to train our grasping network. The Adam optimizer was employed to
optimize and train the network with an initial learning rate set to 0.001, and the ratio of
training and test set to 4:1. The network was trained end-to-end for 100 epochs. When the
following conditions are satisfied, the network’s predicted grasp result is dependable:{

∆ϕ =
∣∣degrees(ϕp − ϕl)

∣∣< 30◦

IoU =
∣∣∣ P∩GT

P∪GT

∣∣∣ > 0.25
(13)

where ∆ϕ is the rotation angle difference between the predicted grasping rectangle ϕp and
the ground truth rectangle ϕl . The Intersection over Union (IoU) score is a measure of the
overlap between the predicted grasping rectangle P and the ground truth rectangle GT.

5. Results and Analysis
5.1. Evaluation on Cornell and Jacquard Datasets

To verify the performance of the proposed grasp detection module SS-GD, the RGB-D
images in Cornell and Jacquard are used to evaluate the designed network and to compare
between the state-of-the-art methods. The results of IoU are used to score the predicted
grasping rectangle and the ground truth rectangle.

As shown in Table 1, the baseline designed without the SE-Bottleneck exhibited a
grasping accuracy of 94.3% in Cornell and 93.6% in Jacquard. In contrast, our proposed
method, leveraging SE-Bottleneck attention mechanisms, achieved superior grasping detec-
tion accuracy, exhibiting a grasping accuracy of 97.8% in Cornell and 94.9% in Jacquard. The
significant improvement in grasping detection accuracy highlights the substantial impact
of the introduced SE bottleneck attention module. In addition, our proposed network
crawling inference time is about 40ms, which meets most scenarios that require real-time
detection.

Table 1. Comparison results on Cornell and Jacquard data.

Author Methods Cornell Jaquard

Morrison [24] GGCNN2 65.0% 84.0%
Depierre [28] Grasping Regression 95.2% 85.7%

Wang [16] TF-GRASP 96.7% 94.6%
Kumra [14] GR-ConvNet 96.6% 94.6%
Song [29] RPN 95.6% 91.5%
Liu [30] Q-Net 95.2% 92.1%

Ours baseline 94.3% 93.6%
Ours SS-GD 97.8% 94.9%

The visualization verification and evaluation results of grasping pose are shown in
Figure 5. The grasp configuration is generated at the location where the grasping quality is
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enhanced, effectively verifying the accuracy of the proposed grasping detection method in
different object categories.
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Discussion: Although the self-attention mechanism used for robotic grasping detec-
tion tasks exhibits commendable global interaction capabilities, its global self-attention
mechanism introduces a considerable time overhead and yields a low-resolution feature
map. This, in turn, can result in performance degradation, making grasping of objects
in cluttered environments difficult. Our proposed SE-Bottleneck attention mechanism
introduced in the grasping detection module can help the robot pay attention to important
grasping configuration information, which improves the performance of real grasping
tasks.

5.2. Ablation Experiments

The inputs for grasp framework with segmentation network consist of masks and
depth maps, namely Mask-D. As depicted in Figure 6, the grasp framework without
the involvement of a segmentation network utilizes the conventional RGB-D as inputs.
The segmentation-independent grasp framework is distinguished from the segmentation-
cascaded grasping framework by different visualization bounding boxes.
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In the context of visualization bounding boxes, the predicted grasp angles by our
segmentation-cascaded framework are superior to that of the segmentation-independent
framework. This is reflected in the quality maps of the grasping, which illustrates that mask-
based input can contribute more uniform quality distribution and facilitate reasonable angle
predictions. It is also worth noting that multi-object detection based on global confidence
often generates multiple bounding boxes for the same target. These predicted boxes are
frequently chaotic, located far from the object’s centroid, making it hard for the robot to
grasp an object stably. On the contrary, the mask-based input for the cascaded framework
can generate unique and reliable predictions for each object and demonstrates the auxiliary
role of the two-stage structure in grasp detection.

In the semantic segmentation network, to verify the contribution of Swin Transformer
in the network, resnet101 is used as the backbone to conduct ablation experiments. We
conducted a training evaluation on the GraspNet-1Billion dataset. Based on the network
framework proposed in this experiment, we used two backbone feature networks for
comparison and verification. The experimental data are shown in Table 2. When resnet101
is used as backbone, the grasp detection accuracy is 89.8% and the segmentation accuracy
is 74.2; when Swin Transformer is used as backbone, the grasp detection accuracy is 92.6%
and the segmentation accuracy 78.6%. The experimental results show the necessity and
rationality of using Swin Transformer as backbone.

Table 2. The precision of algorithms proposed by different backbone.

Backbone Grasp Detection Accuracy
(IoU%)

Segmentation Accuracy
(IoU%)

Resnet101 89.8 74.2
Swin-transformer 92.6 78.6

To verify the necessity of the SE modules, we conducted corresponding ablation
experiments, and we took the network without SE modules as the baseline. We trained
and evaluated on the Jacquard dataset. As can be seen from Table 3, baseline achieved
an accuracy of 86.5%, and the complete grasp detection module achieved an accuracy of
89.4%. The experimental results show that the SE module can improve the accuracy of the
network.
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Table 3. Comparison results based on the Jacquard dataset.

Method Grasp Detection Accuracy
(IoU%)

Baseline 86.5
SS-GD 89.4

5.3. Comparison Study on Real-World Tasks

To verify the excellence and rationality of the proposed algorithm, SS-GD is compared
with the most advanced grasp detection algorithm GR-ConvNet [14] in practical scenarios.

Case 1: grasp detection test in a textureless workspace. As shown in Figure 7, we
compared four scenarios in which the number of objects gradually increases to structure a
multi-target cluttered environment. It is evident that the grasp configurations predicted
by the GR-ConvNet algorithm exhibit certain prediction errors. These errors are also
reflected in the predicted quality maps. The primary reason for that is the accuracy issue in
multi-object generation; based on the network’s multi-object prediction mechanism, the
regions with high scores throughout the entire scene are visualized, and these regions may
represent the edges of certain objects. In real robot grasping tasks, only poses with the
highest confidence are assigned to the executing robot.
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However, in a global scene, the point with the highest confidence may not necessarily
be the most suitable grasping point for a particular object. This could potentially lead to



Machines 2024, 12, 506 13 of 18

unstable grasping operations, even though sometimes these operations may be successful.
Our SS-GD algorithm utilizes segmentation masks to generate reliable grasp configurations,
instilling the maximum confidence for each target. It is worth noting that the predicted
grasping configurations almost fall within the geometric center of each object. This enhances
the robustness and accuracy of the robot’s grasping operations.

Case 2: As depicted in Figure 8, the grasp detection is performed in a novel workspace,
which differs from the training dataset. It is evident that the GR-ConvNet algorithm [14]
is adversely affected by the cluttered background, as the textures and wrinkles in the
background are mistakenly identified as graspable objects. The cause of this phenomenon
is that the grasp reasoning network, during training, extracts texture features of grasping
objects, while the shape information of objects is neglected. This results in a well-performing
network during training validation but a suboptimal performance in predicting in novel
environments. In contrast, our SS-GD algorithm demonstrates robust performance by
extracting explicit shape features provided by the segmentation network, offering accurate
predictions for reasonable grasp configurations, especially in compact targets and novel
multi-target cluttered environments.
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Discussion: According to the above test results, the proposed SS-GD can accurately
predict the grasp position and generate the corresponding grasp configuration at the local
maximum. The accuracy of the semantic segmentation module at pixel level can better
help the robot understand the position and shape information of objects. In the grasping



Machines 2024, 12, 506 14 of 18

detection module, the attention mechanism is introduced to improve the feature extraction
ability of the network model and then improve the accuracy of grasp detection.

5.4. Grasping Test on Robotic Manipulator

In this section, we define a grasp task with about 10 objects as light stacking, and
a task with about 20 objects as heavy stacking. As shown in Figure 9, we use the UR5
6-DoF manipulator, Robotiq 2f-85 gripper, and Realsense D435i binocular depth camera to
conduct the grasping experiment. The network model is constructed in the popular PyTorch
platform, and trained using an RTX 3090 GPU with 24G memory. In addition, the test
objects comprised 30 categories, including outdoor sports equipment, fruits, and industrial
products. The proposed method was practically evaluated in stacked scenarios, where the
robot engaged in a loop of grasping and picking until the objects were successfully cleared
from the stack. In the robot grasping test, the calculation of grasp success rate SR is as
follows:

SR =
SG

SG + FG
(14)

where SG is the number of successful grasps, and FG is the number of failed grasps.
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Figure 9. The UR5 robotic experimental platform and the test objects.

Figure 10 shows the experimental results as a showcase to demonstrate the effec-
tiveness of our proposed approach. The first line illustrates the final predicted grasping
configurations generated by the grasping detection module. These configurations are
carefully sorted and filtered to eliminate redundancies resulting from multiple predictions.
The second line displays the output of the masks by the semantic segmentation module,
providing rich shape information and capturing stacked hierarchical relationships for
the robot. The third line depicts the real robot executing grasping and picking-up tasks,
meticulously adhering to the predicted grasping pose and closure degree through matrix
transformations.

Our experiments were conducted in 10 stacked environments, comprising 100 grasping
tasks. To clear the workspaces, the system attempted 109 grasps, in which the number of
successful grasps was 100 and the number of failed grasps was 9; thus, the grasp success
rate was 91.7%. From information acquisition to the robot’s response, the entire system’s
response time does not exceed 1 s.

As summarized in Table 4, in contrast to multi-object cluttered scenarios, our proposed
algorithm was evaluated on stacked scenarios and demonstrated outstanding performance
in terms of grasp success rate. SS-DG significantly improves the performance of grasp
accuracy compared with the existing methods. Although the objects were stacked, the
proposed SS-DG effectively deal with those challenges. Thus, the RIGNet algorithm
displayed the highest grasp success rate among the state-of-the-art methods.
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Table 4. Comparison results with other algorithms.

Methods Schema Input Grasp Success Rate (%)

Morrison [24] GGCNN2 D 87.0
Liu [30] Q-Net RGB-D 90.2
Asif [17] GraspNet RGB-D 86.4

Zhang [31] ROI-GD RGB 83.7
Zhang [32] MECNN RGB 90.6
Park [33] SMTNet RGB-D 86.1

Ours SS-GD RGB-D 91.7

To assess the algorithm’s robustness in handling complex grasping scenarios, we
conducted more tests in scenarios containing 19 heavily stacked objects. As shown in
Figure 11, after five rounds of testing, the algorithm achieved a grasp success rate of 79.8%.
In these tests, the system made a total of 119 grasp attempts, resulting in 95 successful
grasps and 24 failures. The results indicate that, despite the increased number of objects
and corresponding growth in mask complexity, the robot’s grasping effectiveness remains
unaffected. Notably, in heavily stacked scenes, performance degradation is primarily
attributed to a decrease in mask quality output by the segmentation network when dealing
with adjacent objects. Additionally, as the robot approaches the target object for grasping,
limitations arise when the gripper encounters obstruction from other objects, leading to
insufficient space for parallel gripper maneuvering.
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6. Conclusions

This paper proposes a novel deep network schema called SS-DG, which integrates
semantic segmentation and grasp detection modules to enhance the success rate of robotic
grasping in cluttered environments. Key innovations include the following:

(1) Incorporation of Swin Transformer: This component significantly improves object
detection in scenarios with occlusion or stacking. By enabling the robot to disregard
protrusions formed by stacked objects, Swin Transformer helps avoid unstable grasps
that might otherwise occur from focusing on convex shapes created by the stacking of
items.

(2) Introduction of the SE Attention Mechanism: This mechanism enhances the grasp
detection network by predicting precise grasp poses for each object. It achieves this
by combining object masks and depth maps, which helps prevent the generation of
multiple detection boxes for a single object.

Extensive experiments were conducted, including grasping tests under light and
heavy stacking conditions using the UR5 robot platform. The best grasping success rate
achieved was 91.7%. Future work will involve using a dual-arm robot to grasp objects that
exceed the range of a single gripper, thus extending the applicability of the SS-DG schema
to tasks requiring fine manipulation.

Our research has a certain value in scenarios where robots are required to grasp
stacked objects, and can significantly improve the grasp accuracy, but there are still some
limitations that need to be overcome by further research. First, the current algorithm still
faces some challenges in grasping objects with extreme overlap or occlusion. Secondly,
the performance of the algorithm in processing objects with high reflection or low texture
needs to be improved. In addition, the real-time performance of the algorithm also needs
to be further optimized in more complex practical applications.
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