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Summary 
 Elevated blood lipid levels are heritable risk factors of cardiovascular disease with 

varying prevalence worldwide due to differing dietary patterns and medication use1. Despite 

advances in prevention and treatment, particularly through the lowering of low-density 

lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. 

Genome-wide association studies (GWAS) of blood lipid levels have led to important biological 

and clinical insights, as well as new drug targets, for cardiovascular disease. However, most 

previous GWAS4-23 have been conducted in European ancestry populations and may have 

missed genetic variants contributing to lipid level variation in other ancestry groups due to 

differences in allele frequencies, effect sizes, and linkage-disequilibrium (LD) patterns24. Here 

we conduct a multi-ancestry genome-wide genetic discovery meta-analysis of lipid levels in 

~1.65 million individuals, including 350,000 of non-European ancestry. We quantify the gain in 

studying non-European ancestries and provide evidence to support expanding recruitment into 

new ancestries even with relatively smaller sample sizes. We find that increasing diversity rather 

than studying additional European-ancestry individuals results in substantial improvements in 

fine-mapping functional variants and portability of polygenic prediction, with modest gains in the 

number of discovered loci and ancestry-specific variants. As GWAS expands its emphasis 

beyond identifying genes and fundamental biology towards using genetic variants for preventive 

and precision medicine25, we anticipate that increased participant diversity will lead to more 

accurate and equitable26 application of polygenic scores in clinical practice. 

 
Main Text 

The Global Lipids Genetics Consortium aggregated GWAS results from 1,654,960 

individuals from 164 primary studies representing five genetic ancestry groups: Admixed African 

or African (AdmAFR, N=99.4k, 6.0% of sample), East Asian (EAS, N=146.5k, 8.9%), European 

(EUR, N=1.32m, 79.8%), Hispanic (HIS, N=48.1k, 2.9%), and South Asian (SAS, N=41.0k, 

2.5%) (Table 1, Supplementary Table 1, Supplementary Figure 1). We performed GWAS for 

five blood lipid traits: low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 

cholesterol (HDL-C), triglycerides (TG), total cholesterol (TC), and non-high-density lipoprotein 

cholesterol (nonHDL-C). These analyses included 91 million variants imputed primarily from the 

Haplotype Reference Consortium or 1000 Genomes Phase 3.  

 
Ancestry-specific genetic discovery 
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We first quantified the number of genome-wide significant loci identified in at least one of 

the five ancestry-specific meta-analyses. We found 773 lipid-associated genomic regions 

containing 1,765 distinct index variants that reached genome-wide significance (p-value < 5x10-

8, ±500 kb, Supplementary Tables 2-3, Supplementary Figures 2-3) for at least one ancestry 

group and lipid trait. Of these regions, 237 were novel based on the most-significant index 

variant in each region being >500 kb from variants previously reported as associated with any of 

the five lipid traits4-23,27. Of these loci, 76% were identified only in the European ancestry-specific 

analyses (N~1.3m, 80% of sample). Of the non-European ancestry groups, the African-ancestry 

GWAS (N~99k, primarily African American) identified more ancestry-specific loci (15 unique to 

AdmAFR) than any other non-European ancestry group (six loci unique to EAS, six to HIS, one 

to SAS). The difference is likely attributable to allele frequencies being most different between 

African and European ancestry populations (Figure 1A-D) and to African populations having 

greater genetic diversity28.  

 

Trans-ancestry genetic discovery 
We next performed trans-ancestry meta-analyses using the meta-regression approach 

implemented in MR-MEGA30 to account for heterogeneity in variant effect sizes on lipids 

between ancestry groups. A total of 1,750 index variants at 923 loci (±500 kb regions) reached 

genome-wide significance for at least one lipid trait. These included 168 regions not identified by 

ancestry-specific analysis, 120 (71%) of which were novel (Supplementary Tables 4-5, 
Supplementary Figures 4-5). Almost all (98%) of index variants from the ancestry-specific 

analysis remained significant (p-value<5x10-8) after meta-analysis across all ancestry groups, 

although fifteen AdmAFR, nine EAS, three HIS, and one SAS index variants from ancestry-

specific analysis did not (trans-ancestry p-value 7.7x10-6 to 5.9x10-8, Supplementary Figure 6, 

Supplementary Note). In total, we identified 355 novel loci from either single- or trans-ancestry 

analyses.  

Next, we compared the number of loci identified per 100,000 participants in each 

ancestry group and the combined dataset (Figure 1E). African and Hispanic ancestry-specific 

analyses identified the most loci per genotyped individual, perhaps due to greater recent 

admixture; European and trans-ancestry analyses identified the fewest, likely reflecting a slight 

reduction in the benefit from new samples added to very large sample sizes (>1m). For the 

genome-wide significant variants discovered in each ancestry, we estimated the proportion of 

ancestry-enriched variants by enumerating the number of other ancestries with sufficient power 

to detect association (range 0 to 4). We estimated the power for discovery of each variant by 
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assuming an equivalent discovery sample size in the other ancestries, fixed effect size, and 

observed allele frequencies from the other ancestries (Figure 1F). To allow for comparison at 

similar sample sizes across ancestry groups, we selected European index variants identified 

from a meta-analysis of ~100,000 individuals subsampled from the present study. African-

ancestry index-variants were most ancestry-enriched, with only 61% of index variants 

demonstrating sufficient power in at least one other ancestry group (equal N, power>80% to 

reach alpha=5x10-8), likely due to population-enriched allele frequencies. In comparison, 88% of 

South Asian index variants had estimated power >80% in at least one other ancestry. 

Finally, we found that both the number of identified variants and the mean observed chi-

squared values from genome-wide lipid association tests were approximately linearly related to 

meta-analysis sample size across ancestries (Supplementary Table 6, Supplementary Figure 
7). However, in Europeans the incremental increase in either the number of loci or chi-squared 

value was slightly attenuated at the largest sample sizes. Taken together, these results suggest 

that once sufficiently well-powered GWAS sample sizes are reached within a given ancestry 

group, assembling large sample sizes of other under-represented groups will modestly enhance 

variant discovery relative to increasing the sample size of the dominant ancestry. 

 

Comparison of effect sizes across ancestries 
Differences in association signals across ancestries despite similar sample sizes could 

be due to variation in allele frequencies and/or effect sizes. This could reflect differing patterns 

of LD with the underlying causal variant or an interaction with an environmental risk factor 

whose prevalence varies by ancestry and/or geography. We found that effect size estimates of 

individual variants were largely similar based on pairwise comparison between ancestries 

(r2=0.93 for variants with p-value<5x10-8) (Supplementary Table 7, Supplementary Figure 8). 

We additionally tested for genome-level differences in effect size correlation between East 

Asian, European, and South Asian ancestry groups using Popcorn29, which were not 

significantly different from 1 (p-value>0.05, Supplementary Figures 9 and 10). We tested for 

differences in genetic correlation between Admixed Africans and Europeans in the UK Biobank 

and Million Veteran Program (MVP) using bivariate GREML30,31 as the Popcorn method does 

not account for long-range LD in admixed populations. Genetic correlation between AdmAFR 

and EUR for HDL-C (r=0.84) was not significantly different from 1 in the UK Biobank (possibly 

due to relatively small numbers of African ancestry individuals), while correlations for the other 

traits ranged from 0.52-0.60 in UK Biobank and 0.47-0.69 in MVP (Supplementary Table 8).  
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Of the 2,286 variants that reached genome-wide significance in the trans-ancestry meta-

analysis across all five lipid traits, 159 (7%) showed significant heterogeneity of effect size due 

to ancestry (p-value<2.2x10-5; Bonferroni correction for 2,286 variants, Supplementary Table 
5). Of these 159, 31 showed the largest effect in African ancestry analyses, 24 in East Asian, 67 

in European, 20 in Hispanic, and 17 in South Asian. Only 49 (2%) of these variants from trans-

ancestry meta-analysis showed significant residual heterogeneity not due to ancestry, which 

may be attributable to differences in ascertainment or analysis strategy between cohorts 

(Supplementary Table 5), suggesting cohort-related factors are a less important driver of 

heterogeneity than genetic ancestry. 

 

Trans-ancestry fine-mapping reduces the number of potential causal variants 
 We next assessed whether trans-ancestry fine-mapping narrowed the set of likely causal 

variants at each of the independent trans-ancestry association signals (LD r2<0.7), assuming 

one shared causal variant per ±500 kb region (Supplementary Table 9). 19% of the 

association signals had only one variant in the 99% credible set and 55% (816/1,486) had ≤10. 

In contrast, 5% (73/1486) had >100. Of the 407 variants with >90% posterior probability of being 

the causal variant at a locus in the trans-ancestry meta-analysis, 56 (14%) were missense 

variants, 7 (2%) were splice-region variants, and 4 (1%) were stop-gain variants (CD36, HBB, 

ANGPTL8, PDE3B). (Supplementary Tables 10-12).  

The median number of variants in 99% credible sets from Europeans was 13; this was 

reduced to 8 in the trans-ancestry analysis. Of 1,486 association signals, 825 (56%) had 

reduced credible set size in the trans-ancestry analysis. At these 825 loci, the number of 

variants in the trans-ancestry credible sets were reduced by 40% relative to the minimum 

credible set size in either African (the most genetically diverse group) or European analyses 

(Supplementary Figure 11). We estimate that increasing the sample size of European samples 

to that of the trans-ancestry analysis would yield a 20% reduction in credible set size, 

approximately half of the 40% reduction observed in trans-ancestry analysis. This suggests that 

sample size differences alone do not explain the reduction, rather differences in LD patterns and 

effect sizes across ancestries likely contribute to the improved fine-mapping (Supplementary 
Note). For example, rs900776, an intronic variant in the DMTN region with many high LD 

variants in Europeans, has a posterior probability of being causal of 0.86 in the African-ancestry 

derived credible sets, >0.99 in the trans-ancestry analysis, but only 0.51 in the European 

specific analysis (Figure 2).  
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Polygenic scores of LDL-C are most predictive when derived from multi-ancestry GWAS 
 We evaluated the potential of polygenic scores to predict elevated LDL-C, a major 

causal risk factor of CAD, in diverse ancestry groups. We created three non-overlapping 

datasets to separately: i) perform ancestry-specific or trans-ancestry GWAS to estimate variant 

effect sizes, ii) optimize risk score parameters, and iii) evaluate the utility of the resulting scores. 

For each ancestry-specific or trans-ancestry GWAS we created multiple polygenic score 

weights -- either genome-wide with PRS-CS32 or using pruning and thresholding to select 

independent variants. We tested each score in the optimizing dataset, which was matched for 

ancestry to the GWAS (AdmAFR, EAS, EUR, SAS, ALL from UK biobank or HIS from Michigan 

Genomics Initiative (MGI), Supplementary Figures 12-14, Supplementary Tables 13-15). The 

top-performing score from each GWAS was selected: PRS-CS for East Asian, European, and 

European 2010 scores from a previous GLGC GWAS4, and an optimized pruning and threshold-

based score for all others. We then evaluated the polygenic scores in 8 cohorts of individuals 

(N=295,577, Supplementary Table 16), not included in the discovery GWAS, from 6 ancestral 

groups: East Asian (146,477), European American (85,571), African American (21,730), African 

(2,452 East Africa, 4,972 South Africa, 7,309 West Africa), South Asian (15,242), Hispanic 

American (7,669), and Asian American (4,155).  

The polygenic score developed from trans-ancestry meta-analysis consistently showed 

the best or near-best performance in each group tested, with improved or comparable prediction 

relative to ancestry-matched scores (adjusted R2 ~ 0.10-0.16, Figure 3, Supplementary Table 
17). This observation was especially evident for ancestries with smaller GWAS sample sizes, as 

was the case for HIS and SAS. For African Americans in MGI and MVP, polygenic prediction 

was similar for individuals with different levels of recent African-ancestry admixture 

(Supplementary Figure 14) and reached the level of prediction observed for European-

ancestry individuals from the same dataset. The variance explained by each standard deviation 

increase in the polygenic score was also similar between ancestry groups in MVP: 13.2 mg/dL 

for African Americans, 8.9 mg/dL for Asians (EAS/SAS), 10.5 mg/dL for Europeans, and 10.6 

mg/dL for Hispanics. We repeated the evaluation of trans-ancestry vs single-ancestry polygenic 

scores with a set GWAS with sample size of ~100k individuals and with fixed methodology; 

results were consistent with those from the full dataset (Figure 3b). Thus, polygenic prediction 

for LDL-C in all ancestries appears to benefit the most from adding samples of diverse 

ancestries once relatively large numbers of Europeans have already been included. Additional 
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studies are needed to determine if this applies to other phenotypes with different genetic 

architectures and heritabilities. 
 

 

Discussion 

Genome-wide discovery for blood lipid traits based on ~1.65 million individuals from five 

ancestry groups confirmed that the contributions of common genetic variation to blood lipids are 

largely similar across diverse populations. First, we found that the number of significant loci 

relative to sample size was similar within each ancestry group, and approximately linearly 

related to sample size, with a small increase in ancestry-specific variants observed in African-

ancestry cohorts relative to the others. Second, we demonstrated that inclusion of additional 

ancestries through trans-ancestry fine-mapping reduces the set of candidate causal variants in 

credible sets and does so more rapidly than in single-ancestry analysis. Trans-ancestry GWAS 

should therefore facilitate identification of effector genes at GWAS loci and allow for accelerated 

biological insight and identification of potential drug targets. Third, we found that a polygenic 

score derived from ~88k African-ancestry and ~830k European-ancestry individuals was 

correlated with observed lipid levels among individuals with admixed African-ancestry as well as 

among individuals with European-ancestry. We hypothesize that the inclusion of African-

ancestry individuals in the GWAS yields improvement in polygenic prediction performance 

through the general fine-mapping of loci and the improved prioritization of trans-ancestry causal 

variants. Fourth, and perhaps most important, the trans-ancestry score was generally most 

informative across all major population groups examined. This provides useful information for 

other genetic discovery efforts and investigations of the utility of the polygenic scores in diverse 

populations.  

 

Generalizability of these findings regarding portability of polygenic scores from the trans-

ancestry meta-analysis to other traits may depend on the heritability, degree of polygenicity, 

level of genetic correlation, allele frequencies of causal variants across ancestry groups, gene-

environment interactions, and representation of diverse populations in the GWAS33,34. While 

many traits show a high degree of shared genetic correlation across ancestries31,35,36 others 

have distinct genetic variants with large effects that are more common in specific ancestry 

groups33 which may limit the utility of trans-ancestry polygenic scores for particular phenotypes 

in some ancestries. 
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The benefits from genetic discovery efforts as GWAS sample sizes increase will likely 

not be measured just by the number of loci discovered. Rather, the focus will increasingly turn to 

improving our understanding of the biology at established loci, identifying potential therapeutic 

targets, and efficiently identifying individuals at high-risk of adverse health outcomes across 

population groups without exacerbating existing health disparities. Considering the results 

presented here, and those of related studies37-39, we believe future genetic studies will benefit 

substantially from meta-analysis across participants of diverse ancestries. Further gains in the 

depth and number of sequenced individuals of diverse ancestries40,41 may additionally improve 

discovery of novel variants and loci in diverse cohorts, particularly variants absent from arrays 

and imputation reference panels. Our results suggest that diversifying the populations under 

study, rather than simply increasing the sample size, is now the single most efficient approach 

to achieving these goals, at least for blood lipids and likely for tightly related downstream 

adverse health outcomes such as cardiovascular disease. However, if costs for recruitment of 

diverse populations are higher than recruitment of individuals from previously studied ancestry 

groups, and total number of genome-wide significant index variants is the goal, then continued 

low-cost recruitment of majority ancestry groups is expected to still provide some benefit. Taken 

together, our results also strongly support ongoing and future large-scale recruitment efforts 

targeted at the enrollment and DNA collection of non-European ancestry participants. 

Geneticists and those responsible for cohort development must continue diversifying genetic 

discovery datasets, while increasing sample size in a cost-effective manner, to ensure genetic 

studies reduce rather than exacerbate existing health inequities across race, ancestry, 

geographic region, and nationality.  
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Table 1: Meta-analysis sample size by ancestry group 

 
The present meta-analysis represents a 6-fold overall increase in sample size relative to the most recent 2018 Million Veteran 
Program blood lipid meta-analysis1, with a 2-fold increase in sample size of Admixed African and Hispanic individuals. 
 

  

Ancestry Group Sample Size Number of 
Cohorts 

Mean Sample Size  
per Cohort (range) 

Number of 
Variants 

European 1,320,016 123 10,928 (173-389,344) 75 M 
East Asian 146,492 30 7,448 (150-131,050) 27 M 

Admixed African/ 
African 99,432 19 5,330 (473-62,022) 48 M 

Hispanic 48,057 8 6,032 (1,496-22,302) 37 M 
South Asian 40,963 6 6,413 (1,796-16,110) 37 M 

Total 1,654,960 164  91 M 
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Figure Legends 

Figure 1: Comparison of identified loci across ancestry groups 
A) Allele frequency distribution and B) effect sizes of African-ancestry index variants in non-
African populations. C) Allele frequency distribution and D) effect sizes of European-ancestry 
index variants in non-European populations. The mean effect size of African-ancestry identified 
index variants is larger than from European-ancestry analysis, reflecting the difference in power 
to detect an association within each group as a result of the >10-fold difference in sample size. 
E) Number of loci identified within each ancestry group, normalized to a constant sample size of 
100,000 individuals and averaged across lipid traits. At currently available sample sizes, trans-
ancestry and European-ancestry analyses identify a lower proportion of loci relative to the 
number of individuals than analyses of other ancestry groups. However, the larger sample size 
of European or trans-ancestry analyses leads to a greater relative proportion of novel loci and a 
higher proportion of loci significant only in European-ancestry analyses. F) Proportion of index 
variants identified from each ancestry-specific meta-analysis that would be well-powered to 
detect an association of the same effect size but with ancestry-specific frequencies in the other 
ancestry groups. Dark blue regions indicate variants likely to be detected at an equivalent 
sample size only in the original ancestry group (i.e. ancestry-specific). Additional comparisons of 
allele frequencies and effect sizes across ancestries are provided in Supplementary Figure 3. 
 
 

Figure 2: Inclusion of multiple ancestries drives improved fine-mapping 
A) Association of the DMTN intron variant rs900776 with LDL-C or B) DMTN expression. The 
region spanned by the 99% credible sets are shown in the center box. The LDL-C association 
signal significantly colocalizes with the GTEx eQTL signal of DMTN in liver. C) The LD patterns 
for variants in the EUR 99% credible set differ greatly between Africans and Europeans in 1000 
Genomes. The lead variant has a posterior probability of 0.86 in AdmAFR, 0.51 in EUR, and 
>0.99 in the trans-ancestry analysis.  

 

Figure 3: Trans-ancestry LDL-C PRS show similar performance across ancestry groups 
A) Polygenic scores generated from trans-ancestry meta-analysis show equivalent or better 
performance across most ancestry groups relative to ancestry-specific PRS within each cohort, 
whereas European-specific scores show less transferability. Adjusted R2 is calculated with the 
risk score as a predictor of LDL-C in a linear model with covariates. AFR: African, AFRAMR: 
African American, ASN: Asian American B) Trans-ancestry scores derived from equal 
proportions of each ancestry group predict LDL-C better for African Americans in MGI than 
predominantly European scores at constant sample size. 
 

  



29 
 

 

Data Availability and Code Availability 

The GWAS meta-analysis results (including both ancestry-specific and trans-ancestry analyses) 

and risk score weights are available at: http://csg.sph.umich.edu/willer/public/glgc-lipids2021. All 

custom scripts used for analysis and summary of results are available upon request. The 

optimized trans-ancestry and single-ancestry polygenic score weights will be deposited within 

the PGS Catalog (https://www.pgscatalog.org/). 

 

Acknowledgments 

Funding for the Global Lipids Genetics Consortium was provided by the NIH (R01-HL127564). 

This research has been conducted using the UK Biobank Resource under application number 

24460. Computing support and file management for central meta-analysis by Sean Caron is 

gratefully acknowledged. This research is based on data from the Million Veteran Program, 

Office of Research and Development, Veterans Health Administration, and was supported by 

awards #2I01BX003362-03A1 and 1I01BX004821-01A1#. This publication does not represent 

the views of the Department of Veteran Affairs or the United States Government. Study-specific 

acknowledgements are provided in the supplemental material.  

http://csg.sph.umich.edu/willer/public/glgc-lipids2021


30 
 

 

Methods: 
Cohort level analysis 

 Each cohort contributed GWAS summary statistics for HDL-C, LDL-C, nonHDL-C, TC 

and TG, imputation quality statistics, and analysis metrics for quality control (QC), following a 

detailed analysis plan (Supplementary File 1). Briefly, we requested that each cohort perform 

imputation to 1000 Genomes Phase 3 (1KGP3), with European ancestry cohorts additionally 

imputing with the Haplotype Reference Consortium (HRC) panel using the Michigan Imputation 

Server (https://imputationserver.sph.umich.edu/index.html#!) which uses Minimac software2. 

Detailed pre-imputation QC guidelines were provided; these included removing samples with 

call rate < 95%, samples with heterozygosity > median + 3(interquartile range), ancestry outliers 

from principal component analysis within each ancestry group, and variants deviating from 

Hardy-Weinberg equilibrium (p-value < 10-6) or with variant call rate < 98%. Analyses were 

carried out separately by ancestry group and were additionally stratified by cases and controls 

where appropriate (i.e. for a disease-focused cohort such as CAD). Residuals were generated 

separately in males and females adjusting for age, age2, principal components of ancestry, and 

any necessary study-specific covariates. Triglyceride levels were natural-log transformed before 

generating residuals. Inverse normalization was then done on the residual values. Individuals on 

cholesterol lowering medication had their pre-medication levels3 approximated by dividing the 

LDL-C value by 0.7 and the TC value by 0.8. Association analysis of the residuals for the 

majority of cohorts was carried out using a linear mixed-model approach in rvtests or with other 

similar software including BOLT-LMM4, SAIGE5, or deCode association software.  

 

Quality Control 

 Each input file was assessed for quality control using the EasyQC software6. We 

generated QQ plots by minor allele frequency (MAF) bins, assessed trends in standard errors 

relative to sample size for each cohort, and checked MAF of submitted variants relative to their 

expected value based on the imputation reference panel. In addition, we checked that each 

cohort reproduced the expected direction of effect at most known loci relative to the cohort 

sample size. Cohorts identified to have issues with the submitted files were contacted and 

corrected files were submitted or the cohort was excluded from meta-analysis. Results from 

either sex-stratified analysis or sex-combined analysis with sex as a covariate were used. 

During the QC process, within each cohort we removed poorly imputed variants (info score or r2 

< 0.3), variants deviating from Hardy-Weinberg Equilibrium (HWE p-value < 10-8, except for 

https://imputationserver.sph.umich.edu/index.html#!
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MVP which used HWE p-value < 10-20), and variants with minor allele count < 3. An imputation 

info score threshold of 0.3 was selected to balance the inclusion of variants across diverse 

studies while removing poorly imputed variants. Summary statistics were then genomic-control 

(GC) corrected using the λGC value calculated from the median p-value of variants with MAF > 

0.5%. To capture as many variants as possible, summary statistics from cohorts that had 

submitted both HRC and 1KGP3 imputed files were joined, selecting variants imputed from 

HRC where both imputed versions of a variant existed. For variants imputed by both panels, we 

observed that variants imputed from the HRC panel resulted in a higher imputation info score for 

94% of variants when compared to the imputation info score from 1KGP3. 

 

Meta-analysis 

 Ancestry-specific meta-analysis was performed using RAREMETAL7. Trans-ancestry 

meta-analysis was performed using MR-MEGA8 with 5 principal components of ancestry. The 

choice of 5 principal components was made after comparing the λGC values across minor allele 

frequency bins from meta-analysis of HDL-C with MR-MEGA using from 2 up to 10 principal 

components. In addition, fixed-effects meta-analysis was carried out with METAL9 to calculate 

effect sizes for use in the creation of polygenic scores. Study-level principal components were 

plotted for each cohort by ancestry group to verify that the reported ancestry for each cohort 

was as expected. Following meta-analysis, we identified loci based on a genome-wide 

significance threshold of 5x10-8 after GC correction using the λGC value calculated from the 

median p-value of variants with MAF > 0.5%. The choice of double-GC correction was made to 

be most conservative and to minimize potential false-positive findings. Observed λGC values 

were within the expected range for similarly sized studies and are included in Supplementary 
Tables 2 and 4. Index variants were identified following an iterative procedure starting with the 

most significant variant and grouping the surrounding region into a locus based on the larger of 

either ± 500 kb or ± 0.25 cM. cM positions were interpolated using the genetic map distributed 

with Eagle v2.3.2 (genetic_map_hg19_withX.txt)10. Variants were annotated using WGSA11 

including the summary of each variant from SnpEff12 and the closest genes for intergenic 

variants from ANNOVAR13. Annotation of variants as known or novel was done based on 

manual review of previously published variants and with variants reported in the GWAS 

catalog14 for any of the studied lipid traits (accessed May 2020, provided as Supplementary 
Table 18). For comparison between ancestries and lipid traits, index variants were grouped into 

genomic regions starting with the most significantly associated variant and grouping all 

surrounding index variants within ± 500 kb into a single region.  
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Power to detect association within each ancestry was determined using the effect size 

and sample size of the variant within the original discovery ancestry group and the observed 

allele frequency from the other ancestry groups with alpha set to 5x10-8. We excluded variants 

that were only successfully imputed in a single ancestry group to account for imputation panel 

differences between groups (ie. Haplotype Reference Consortium for Europeans and 1000 

Genomes for other ancestries). Variants that were successfully imputed in 2 or more ancestries 

were assumed to have zero power in any other ancestry where the variant was not successfully 

imputed. The proportion of variance explained by each variant was estimated as 2β2(1-f)f where 

β is the effect size from METAL and f is the effect allele frequency. The proportion of variance 

explained within each ancestry was estimated using the trans-ancestry effect size from METAL 

with the ancestry-specific allele frequency. Coverage of the genome by associated genetic 

regions was calculated using BEDTools15 for the regions defined by the minimum and maximum 

position within each locus having p-value < 5x10-8.  

 

Conditional analysis to flag non-independent index variants 

 Approximate conditional analysis was performed using rareGWAMA16 to identify index 

variants that were shadows of nearby, more significant associations. LD reference populations 

were taken from UK Biobank specific to AdmAFR, EUR (subset of 40,000), or SAS individuals 

or from the 1000 Genomes project (1KGP3) for EAS or HIS individuals. Conditional analysis 

was carried out using the individual cohort level summary statistics as was done for meta-

analysis with RAREMETAL. rareGWAMA requires imputation quality scores which were set to 1 

for all variants that had previously passed quality control (pre-filtered at imputation info/r2 > 0.3). 

The EUR subset of UK Biobank was used as the reference population for the conditional 

analysis of the trans-ancestry meta-analysis (~80% European). Stepwise conditional analysis 

was performed sequentially for the index variants within each chromosome ranked by most to 

least significant. Index variants were then flagged as not independent from other more 

significant variants if the absolute value of the ratio of the original effect size to the effect size 

after conditional analysis was greater than the 95th percentile of all values (Supplementary 
Figure 16). This threshold was selected to remove variants whose effects were driven by 

nearby, more strongly associated variants in LD. This corresponded to a ratio of original to 

conditional effect size of 1.6 for ancestry-specific conditional analysis and a ratio of 1.7 for the 

trans-ancestry conditional analysis. The effect sizes from meta-analysis with METAL were used 

for comparison with the trans-ancestry conditional analysis results. Variants flagged as non-
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independent were excluded from the summary results in the manuscript and are flagged as non-

independent in Supplementary Tables 3 and 5.  

  

Genetic correlation 

 Popcorn17 was used to assess the degree of correlation in effect sizes between ancestry 

groups for each of the lipid traits with 1000 Genomes phase 3 as the reference LD panel. Only 

variants with MAF > 0.01 in each ancestry individually were included in the comparison. Both 

the genetic effect and genetic impact models were tested. Bivariate GREML from GCTA was 

used to calculate the genetic correlation between unrelated Admixed Africans and a subset of 

white British individuals in the UK Biobank following the method of Guo et al18,19. HapMap3 

variants with MAF > 0.01 in each ancestry were used to construct the genetic relationship matrix 

(GRM) with the allele frequencies standardized in each population. Individuals with genetic 

relatedness > 0.05 were removed. A total of up to 5,575 AdmAfr and 38,668 white British 

individuals from UK Biobank were included in the analysis of each trait after removal of related 

individuals. The measured lipid traits were corrected for medication use and were inverse-

normalized after correction for age, sex, and batch. Principal components 1-20 constructed from 

the GRM were included as covariates in the calculation of genetic correlation. Analysis within 

the Million Veteran Program included 24,502 European and 21,950 African American unrelated 

individuals. Maximum measured values were used for LDL-C, TC, and triglycerides and 

minimum values for HDL-C. Lipid traits were inverse-normalized after correction for age and sex 

with principal components 1-20 included as covariates in the calculation of genetic correlation. 

 

Credible sets 

 Credible sets of potentially causal variants were generated for each of the loci identified 

in the trans-ancestry meta-analysis. We determined 99% credible sets of variants that 

encompassed the causal variant with 99% posterior probability. Regions for construction of 

credible sets were defined as the ± 500 kb region around each index variant. Bayes factors20,21 

(BF) for each variant in the ancestry-specific meta-analysis were approximated by: 

 

𝐵𝐵𝐵𝐵 ≈ exp �0.5�
𝛽𝛽2

𝑆𝑆𝑆𝑆2
− log(𝑁𝑁𝐴𝐴𝐴𝐴)�� 

 

where 𝛽𝛽 and SE are the effect sizes and standard errors from the RAREMETAL meta-analysis, 

and 𝑁𝑁𝐴𝐴𝐴𝐴 is the ancestry-specific sample size. A full derivation is included in the Supplementary 
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Methods. To account for the difference in sample sizes between ancestry groups, we 

additionally approximated the Bayes factors after adjustment for the total trans-ancestry sample 

size for each trait (NTE) relative to the ancestry-specific sample size for that trait using the 

following equation: 

 

 𝐵𝐵𝐵𝐵 ≈ exp �0.5�
𝛽𝛽2𝑁𝑁𝑇𝑇𝑇𝑇
𝑆𝑆𝑆𝑆2𝑁𝑁𝐴𝐴𝐴𝐴

− log(𝑁𝑁𝑇𝑇𝑇𝑇)�� 

 

 Credible sets for the trans-ancestry meta-analysis were generated using the Bayes factors as 

output by MR-MEGA. The credible sets within each region were generated by ranking all 

variants by Bayes factor and calculating the number of variants required to reach a cumulative 

probability of 99%. In addition, we calculated credible sets in the same manner using the 

European and trans-ancestry meta-analysis results but including only the set of variants present 

in the AdmAFR meta-analysis. To summarize the size of the credible sets across the 5 lipid 

traits examined, we identified the set of independent index variants from the trans-ancestry 

meta-analysis after grouping variants based on LD. For each ± 500kb region centered around 

the most-significantly associated index variant for any trait, we determined the pairwise LD 

between all index variants in this region using LDpair22 with all reference populations (1000 

Genomes AFR, AMR, EAS, EUR, and SAS) included. We considered variants to be 

independent if they were outside of this region, had LD r2 < 0.7, or were not available in the 

LDpair reference populations. Variants within the credible sets were annotated with SnpEff12 

using WGSA11 and with VEP23. Protein numbering was taken from dbSNP24.  

eQTL colocalization was performed using coloc25 version 3.2.1 with R version 3.4.3 using the 

default parameters. Results from GTEx V826 were compared with the GWAS signals in the 

region defined by the larger of ±0.25cM or ±500kb surrounding each index variant. The eQTL 

and GWAS signals (based on p-values from MR-MEGA) were considered to be colocalized if 

PP3 + PP4 ≥ 0.8 and if PP4/(PP3+PP4) > 0.9, where PP3 is the probability of two independent 

causal variants while PP4 is the probability of a single, shared causal variant. 

 

LDL-C polygenic scores 

 Weights for the LDL-C polygenic scores were derived from beta estimates generated 

from each of the ancestry-specific meta-analyses and from the trans-ancestry results using 

METAL. Additional meta-analyses were carried out using the 2010 Global Lipids Genetics 

Consortium LDL-C meta-analysis results27 in combination with the i) AdmAFR or ii) AdmAFR, 
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EAS, HIS, and SAS results from the present meta-analysis for comparison. Furthermore, we 

performed a meta-analysis of European cohorts randomly selected to reach a total sample size 

near 100K, 200K, or 400K to understand the role of increasing European sample size and the 

influence of imputation panel. In addition, we tested possible methods for improving 

performance of European-derived scores in African-ancestry individuals by separately fitting the 

EUR polygenic scores in the UK Biobank AdmAFR subset to determine the best set of risk 

score parameters (various pruning and thresholding parameters or PRS-CS, Supplementary 
Note).  

We generated polygenic score weights using both: i) significant variants only (at a 

variety of p-value thresholds) and ii) using genome-wide methods. Meta-analysis results were 

first filtered to variants present in UK Biobank, MGI, and MVP with imputation info score > 0.3. 

Pruning and thresholding was performed in PLINK28 with ancestry-matched subsets of UK 

Biobank individuals (AdmAFR N=7,324, EUR N=40,000, SAS N=7,193, trans-ancestry: 

N=10,000 (80% EUR, 15% AdmAFR, 5% SAS)) or 1KGP3 (HIS N=347 , EAS N=504) used for 

LD reference. We additionally tested 1000 Genomes phase 3 with all populations included as 

the LD reference panel for the trans-ancestry score (results not shown), which gave very similar 

results to those of the UK Biobank trans-ancestry reference set originally selected for its larger 

sample size. P-value thresholds (after GC correction) of 5x10-10, 5x10-9, 5x10-8, 5x10-7, 5x10-6, 

5x10-5, 5x10-4, 5x10-3, and 5x10-2 were tested with distance thresholds of 250 and 500 kb and 

LD r2 thresholds of 0.1 and 0.2. Polygenic score weights were also generated using PRS-CS29 

with the LD reference panels for AFR, EAS, and EUR populations from 1000 Genomes provided 

by the developers. PRS-CS LD reference panels for the other ancestries were generated using 

1000 Genomes following the same protocol as provided by the PRS-CS authors29. This included 

removing variants with MAF ≤ 0.01, ambiguous A/T or G/C variants, and restricting to variants 

included in HapMap3. Pairwise LD matrices within pre-defined LD blocks30 (using EUR LDetect 

blocks for HIS and trans-ancestry LD calculations and ASN blocks for SAS) were then 

calculated using PLINK and converted to HDF5 format. 

For each individual in the testing cohorts, polygenic scores were calculated as the sum 

of the dosages multiplied by the given weight at each variant. UK Biobank individuals not 

present in datasets used to generate the summary statistics (either AdmAFR, white British, both 

AdmAFR and white British, EAS, SAS, or all individuals excluding SAS) were used to select the 

best performing AdmAFR, EUR, AdmAFR+EUR, EAS, SAS, and trans-ancestry polygenic 

scores, respectively. UK Biobank SAS individuals were included in the trans-ancestry risk score 

weights but excluded from the UK Biobank trans-ancestry testing set due to an initial focus on 
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comparing predictions among European- and African-ancestry individuals. Sample sizes of the 

ancestry groups in UK Biobank used to test PRS performance included: AdmAFR N=6,863; 

EAS N=1,441; EUR N=389,158; SAS N=6,814; ALL=461,918. The best performing HIS 

polygenic score weights were selected based on performance in Hispanic individuals in the 

Michigan Genomics Initiative dataset. Model fit was assessed by the adjusted R2 of a linear 

model for LDL-C value at initial assessment adjusted for cholesterol medication (divided by 0.7 

to estimate pre-medication levels) with sex, batch, age at initial assessment, and PCs1-4 as 

covariates.  

The best performing polygenic score in each ancestry group was then tested in the 

validation cohorts: the Michigan Genomics Initiative (EUR N=17,190; AFRAMR N=1,341), East 

London Genes and Health31 (ELGH; SAS N=15,242), Tohoku Medical Megabank Community 

Cohort Study (ToMMo; EAS N=28,217), Korean Genome and Epidemiology Study32 (KoGES; 

EAS N=118,260), Penn Medicine BioBank (PMBB; AFRAMR=2,138), Africa America Diabetes 

Mellitus (AADM; 3,566 West AFR; 707 East AFR), Africa Wits-INDEPTH partnership for 

Genomic Studies (AWI-Gen; 1,744 East AFR; 4,972 South AFR; 3,744 West AFR) and Million 

Veteran Program participants not included in the discovery meta-analysis (MVP; EUR 

N=68,381; AFRAMR N=18,251; EAS/SAS N=4,155; HIS N=7,669). Adjusted R2 values were 

reported for each cohort and ancestry group, with 95% confidence intervals for the adjusted R2 

values calculated using bootstrapping. Within each cohort, covariates used were: MGI- sex, 

batch, PC1-4, and birth year; PMBB- birth year, sex, and PC1-4; ELGH- age, sex, and PC1-10; 

MVP- sex, PC1-4, birth year, and mean age; ToMMo-sex, age, recruitment method, and PC1-20 

(only participants from Miyagi Prefecture were included); KoGES-age, sex, and recruitment 

area, AADM-age, sex, PC1-3, AWI-Gen East Africa- age, sex, PC1-6, AWI-Gen South Africa- 

age, sex, PC1-6, and AWI-Gen West Africa- age, sex, and PC1-4. The type of LDL-C value 

used in the model varied depending on the measurements selected by each cohort. Mean LDL-

C values were used for MGI, MVP and PMBB, maximum LDL-C values for ELGH, and baseline 

measurements for AADM, AWI-Gen, ToMMo and KoGES. A descriptive summary of each 

validation cohort is included in Supplementary Table 16. African admixture for MGI was 

calculated using all African-ancestry individuals in 1000 Genomes with ADMIXTURE v1.333. 

African admixture for MVP was calculated using the YRI and LWK African-ancestry individuals 

in 1000 Genomes.  
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