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Abstract—Pupil dilation is a fundamental marker of emo-
tional response, and indicates emotional arousal independently
of stimulus valence. As such, pupil dilation provides invaluable
insight into emotional engagement and arousal levels. One of the
challenges faced when studying emotion response through pupil
diameter is distinguishing between dilation caused by light and
dilation caused by emotion. This is particularly challenging when
examining emotional responses in individuals viewing videos,
where luminosity changes constantly occur.

To solve this problem, we propose a model that accurately
predicts how pupil size changes with brightness, taking into
account the nonlinearity of the relationship. Since effects of
luminosity and emotion are additive without interacting [1], pure
emotional effects on pupil size may be isolated by subtracting the
model estimate from the total pupil size recorded in response
to the visual stimuli. The general structure of the model was
developed from findings in the literature and by analysing data
collected from seven participants. The model was then tested on
10 subjects and different monitor models. We obtained an average
error of 6.69% (SD:1.05%) and a maximum error of 23.29% (SD:
3.66%) between the actual pupil size and the pupil size predicted
by the model. To the best of our knowledge, this is the only
nonlinear model that has been validated on a sample of subjects.
This research lays the groundwork for the accurate capture of
emotional responses from pupil diameter under varying lighting
conditions.
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I. INTRODUCTION

Emotions are fundamental elements of human life, pro-
foundly impacting cognition and behaviour [2]. They affect
memory [3], attention [3], perception, and learning [3], in-
fluence decision-making and regulate social behaviour [4].
Recognising emotions, whether one’s own or others’, is crucial
in various domains such as social interaction, mental health
and education [5]. Emotional changes are associated with

physiological responses, facial expressions, body language,
eye movements and pupil dilation [6].

In recent years there has been a growing interest in automat-
ing the recognition of people’s emotions by monitoring and
detecting changes in those indicators. Pupil diameter changes
in response to emotionally charged or engaging visual stimuli
[7] [8] has emerged as a reliable measure of emotional states,
and particularly emotional arousal [9]. However, changes in
pupil diameter are not solely elicited by emotional arousal;
they are also influenced by fluctuations in ambient luminosity
[10] and monitor screen brightness/contrast settings [11].
Robert H. Spector et al. (1990) [10], mentioned in his study
that the pupil size variation has a difference of about 50%
in bright light and dark light environments. Therefore, the
influence of luminosity on pupil size dramatically complicates
the interpretation of pupil behaviour, potentially leading to
errors if solely attributed to emotional states [9] [12]. For
example, the pupil shrinks in high light and dilates with
increased mental activity and the two effects may neutralise
each other, giving the impression that there is no emotional
activation [13]. Therefore, it is crucial to account for and
remove the influence of luminosity when assessing emotional
responses using pupil size. This ensures accurate evaluation of
pupil changes due to emotion. The two effects, luminosity and
arousal, are additive [1], suggesting that a subtractive solution
can isolate emotional effects on pupil size.

Researchers commonly mitigate the influence of luminosity
on pupil size by using baseline data or controlling lighting
conditions [14] [15]. For instance, in a study on emotional
arousal [15], baseline pupil data from grey-scale stimuli were
subtracted from data recorded during emotional stimuli to
reduce luminosity impact. However, even when it is possible
to keep ambient lighting constant and perform a baseline



correction, the frames of a video can often have very different
luminosity with respect to the baseline.

In [12], Tarnowski and colleagues proposed to calculate
the pupil size from the luminosity of the screen and then
subtract it from the recorded pupil size in order to get the
effect of emotional arousal on pupil size alone. However, there
are three important limitations in their work. First, a linear
model was applied, whereas it is known that the relationship
between pupil size and luminosity is non-linear [16]. Secondly,
the accuracy of the linear model was not tested, e.g., as the
difference between the pupil diameter value predicted by the
model and the actual recorded diameter. Finally, the variation
in luminosity due to different frames of the videos presented
on the screen was taken into account without also taking into
account possible variations in ambient luminosity.

To address those limitations, in the present study we have
developed a non-linear model which then we validated by
calculating its accuracy from a sample of ten participants. To
the best of our knowledge, this is the first time that a robust
model to accurately separate luminosity-induced changes in
pupil size is proposed and validated, thus enhancing the
reliability of pupil-based assessments of emotional responses
to complex stimuli like videos.

In our model, two parameters were considered: luminosity
and pupil size. First, a method was developed to determine
the luminosity of given images or video frames by using a
sample of 1330 uni-colour images. Subsequently, a mathe-
matical model was designed and fitted to predict pupil size
based on various luminosity levels, using pupil size data
from seven participants who were presented with uni-colour
videos created at different luminosity levels. The final model
was established to take three-dimensional data of the average
contribution of RGB values for each image or video frame as
input. Based on this input, the model predicts the luminosity
and, in turn, predicts the pupil size due to luminosity. This
predicted pupil size may then be subtracted from the pupil
size measured while presenting emotional images or video
frames, allowing for the isolation of the pupil size change due
to emotional arousal. This model will be useful in accurately
accounting for and removing the confounding effects of light,
providing a clearer picture of the pupil’s response to emotional
stimuli. By refining this approach, the aim is to improve
the fidelity of pupil-based metrics for measuring emotional
responses. This advance contributes to the field of emotion
research by enhancing the accuracy of tools available for
studying emotion recognition from a wide variety of sources.
In the remainder of this article, we refer to pupil size as the
average of the sizes of the two pupils.

II. METHOD

The prediction of pupil size as a function of screen lumi-
nosity occurs in three phases:

1) The first phase is to predict the intensity of the light
stimulus reaching the eye as a function of screen lumi-
nosity, such as when someone is watching a video.

2) The second phase consists of determining the size of the
pupil as a function of the intensity of the light stimulus.

3) The third phase consists of combining the models devel-
oped in the first two steps to obtain a single model that
can predict pupil size as a function of screen luminosity.

Below we describe the three phases in more detail.
1) Prediction of light intensity: Each pixel of an image

consists of three pixels, one red, one green and one blue (RGB
system) and is characterised by three RGB intensity values,
one per colour, expressed as a percentage of the maximum
possible value. In order to predict the intensity of the light
stimulus (luminosity) as a function of the luminosity of the
screen, the luminosity of a set of 1330 uni-colour images
of different colours and luminosities was measured with a
professional lux meter. The set of images was composed as
follows: the first image of the set was completely black and
each pixel had an RGB value of 0%, 0%, 0% (all colours
off); the last image was white with maximum luminosity
and each pixel had an RGB value of 100%, 100%, 100%
(all colours at maximum intensity); all the other images had
intermediate values uniformly distributed in the range [0%,
100%]. In a commercial monitor, the relationship between
RGB intensity values and the luminosity values of the screen
is non-linear. For example, considering a single colour, e.g.
red, the luminosity corresponding to an RGB intensity value
of 80% is not twice as high as that corresponding to a value
of 40%. Instead the increase in luminosity as a function of
RGB intensity is slower at lower intensity values and faster
as the intensity approaches maximum. Furthermore, this non-
linear relationship changes as more colours are used. We
modeled this relationship by means of the following non-linear
function:

L = k · f(r, g, b) (1)

where L is the luminosity value, k is a constant (scaling factor)
depending on the brightness/contrast settings of the monitor,
and (r, g, b) ∈ [0%, 100%] are the RGB intensity values of a
uni-colour image shown on the screen.

Given that it was impossible to determine the analytical
expression for Equation 1, we described it by means of a
lookup table with 1330 entries corresponding to the RGB
intensities values of the uni-colour images that we used to
explore the entire RGB space. When changing the brightness
and contrast settings of the monitor, Equation 1 changes only
for a scaling factor k. We calculated the values in the lookup
table using a Dell Precision M6500 (1920x1080) monitor set
to 100% brightness and 100% contrast, which we will refer
to as the ”reference monitor”. When the value of contrast and
brightness were changed, Equation 1 remained valid, except
for the scaling factor k, which must be recalculated each
time. Different models of monitors have different brightness
capabilities. However, when testing four monitors of different
sizes and brands, we consistently observed the same non-linear
relationship in Equation 1, which therefore remained valid,
while for each monitor we had to recalculate the scaling factor



k only, with a maximum error of 3 lux. This suggests that
the non-linearity in the relationship between luminosity and
RGB intensity values is a common characteristic of different
monitors, regardless of their manufacturer and model. For the
reference monitor, the value of k was 1, as re-scaling was not
needed.

Fig. 1. Example of original multi-colour image (A) and its corresponding
uni-colour image (B).

As mentioned before, we filled a look-up table using lumi-
nosity data from 1330 uni-colour images with different RGB
intensities. We measured these luminosity values with a digital
lux meter - LX1010BS (Dr.meter; [https://drmeter.com/]) in
an unlit laboratory, maintaining a distance of 65 cm between
the screen and the lux meter, in accordance with the typical
requirements of standard eye-tracking technology. To predict
the luminosity of an image, we provided the model with
the RGB values of the image as input. Since the image is
uni-colour, the model received three integers from 0 to 100,
representing a point in three-dimensional space. If the given
input 3D-point was found in the look-up table, the model
returned the corresponding luminosity value. Otherwise, it
calculated the weighted average of the values of the eight
nearest RGB 3D-points in the look-up table, with weights
inversely proportional to the distance of each of the eight 3D-
points from the input 3D-point.

At this stage, we did not recalculate the scaling factor, so the
predicted luminosity value was that of our reference monitor.
We address the computation of the scaling factor and the
discrepancy due to the use of different monitors with different
settings in the next step.

So far, we have only discussed uni-colour images. In real
applications, however, each pixel of an image has a different
RGB value. In principle, one could calculate the luminosity
of each pixel and average the values obtained. However, we
observed that the luminosity of an image is similar to that of a
uni-colour image with the average RGB value of the original
image, calculated by averaging the RGB values of all its pixels.
To verify this, we selected 100 images: 50 taken from the
internet and 50 generated by assigning a random RGB value
to each pixel. We then generated the corresponding uni-colour
images using the average RGB value of each original image
(see Figure 1). The luminosity of the original images differed
from the luminosity of the corresponding uni-colour images
by 1.5 lux on average, with a maximum difference of 3 lux,
which is tolerable for our purpose. For computational reasons,
using uni-colour images is preferred as it is much faster than
calculating the luminosity for each pixel and then averaging.

The predicted luminosity value was then used to predict
pupil size, as described in the next phase below.

2) Determining the pupil size: In order to determine the
pupil size for different luminosities, we recorded the pupil
size of seven participants (4 males, 3 females), ages 20-45
while they were watching four uni-colour videos, with each
video only showing one fundamental colour (red, green, blue)
and grey. Keeping the colour constant in each video, only
luminosity could change from frame to frame. Our goal was
to assess the pupil response either to one of the fundamental
wavelengths (red, green, blue) or to the uniform combina-
tion of them (grey). Each video was presented full-screen
(1920x1080) and lasted 102 seconds. The RGB intensity of
each uni-colour frame changed every second, increasing from
0% to 100%. For example, the red colour video started from
the darkest red (minimum red intensity) and progressed to the
brightest red (maximum red intensity). The grey-scale video
was composed of pixels with identical values across all three
colours (RGB). We measured pupil size for each frame using a
Tobii Nano Pro eye tracker in an unlit laboratory, maintaining
a distance of 65 cm between the screen and the participant.
Simultaneously, we measured luminosity during each video
using a lux meter. Therefore, using this method, we recorded
pupil size for each luminosity level and colour.

Fig. 2. Pupil size as a function of luminosity for red, green, blue, and grey
(dotted line for experimental data and continuous line for the fitted curve).

In frames where there was an eye blink pupil size was
replaced with the median value of the pupil size for the
respective frame. We then averaged the pupil size data across
participants for each luminosity level for all the different
colours. Figure 2 illustrates the average (across participants)
of pupil size against luminosity for each colour, and, as it
can be seen, pupil size decreased exponentially as luminosity
increased. This is consistent with what is widely accepted, i.e.,
that the relationship between luminosity and pupil size follows
an exponential decay, as also demonstrated in [16].

To model the relationship between pupil size and luminosity
for each color, we utilized the Python open-source platform



with the SciPy library for curve fitting, employing the follow-
ing equation:

PS = ai ·e−bi·L+ ci ·L+di, i ∈ red, green, blue, grey (2)

where PS is the pupil size, L is the luminosity value, and
a, b, c, and d are coefficients to be determined by fitting the
model to the recorded data. The four coefficients are shown
in Table I and are different for each colour.

TABLE I
Values of the four coefficients in Equation 2, for each colour.

Colour ai bi ci di
Red 2.631718881 1.337185719 -0.015263019 3.150067507

Green 3.125971983 1.232499771 -0.007369488 2.503629301
Blue 3.443025449 1.616759396 -0.019305937 2.62718504
Grey 2.446582212 0.563893338 -0.018479723 3.414006057

3) Determining pupil size from RGB values: Finally, to
compute pupil size from RGB values the two models, lumi-
nosity prediction and pupil size prediction, were combined,
according to the following Equation:

PS = a · e−b·k·f(r,g,b)+c · k · f(r, g, b)+d

PS = a · e−g·f(r,g,b)+h · f(r, g, b)+d
(3)

where the pupil size is expressed as a function of the RGB
intensity value k, and g = b · k and h = c · k.

To fit the model, we need to compute four coefficients, a,
d, g, and h, for each participant and for each experiment. 1

We devised a calibration procedure to compute the four
coefficients, taking into account all these sources of variability
simultaneously. An experimenter using our method will have
to precede the experiments with a calibration procedure,
which consists of having the participant watch a uni-colour
video. To keep the calibration procedure short, we designed
a calibration video consisting of only 27 uni-colour images,
each presented for 4 seconds, for a total of 108 seconds. Only
three RGB values were used: 0%, 50%, and 100%. All possible
combinations of these three values generate 27 possible images
ranging from the darkest (0, 0, 0) to the brightest (100, 100,
100). The pupil size of a participant watching the video is
then measured. The calibration procedure was used during the
validation phase of our model, which we will now explain.

A calibration procedure was used to compute the four coef-
ficients, considering all sources of variability simultaneously.
Experimenters must precede experiments with this calibration,
which involves having participants watch a uni-color video.

To validate our method (our models and our calibration
procedure), we conducted a validation experiment, in an
unlit laboratory with 10 new participants. Ethical approval
was obtained by the University of Essex Ethics Committee
(approval ETH2223-0795). They were seated 65 cm away
from the computer screen (described above). Five participants
sat in front of a Dell OptiPlex 5070 monitor (1920 x 1080), and

1Given that each participant has a different response to light, each monitor
is different, and each experimental setting is different (e.g. distance of the
participant from the screen, monitor’s settings, etc.).

the other five were seated in front of a Dell G15 laptop (1920
x 1080). Both monitors were different from the reference
monitor.

Before the experiment, there was a calibration procedure
consisting of the calibration of the eye-tracker (Tobii Nano
Pro) used for measuring the pupil diameter, followed by
our previously mentioned luminosity calibration video. The
experiment consisted of watching 40 uni-colour test images
each of them presented for 4 seconds, without any emotional
content. The 40 test images were generated to cover RGB
intensity values equally distributed from the minimum to the
maximum luminosity of the screen and across all the colours.
An example is an image with values (64, 86, 45), where
the green colour is slightly more intense than the red and
the blue colours. We asked the participants to remain relaxed
throughout all phases of the experiment to maintain constant
arousal activation. We measured the participants’ pupil size
using the eye-tracker with the procedure mentioned above.

We fitted the model represented by the Equation 3 indepen-
dently for each colour in order to obtain the contribution to
the pupil size given by the luminosity at each colour:

PSred = ared · e−gred·f(r,0,0) + hred · f(r, 0, 0) + dred

PSgreen = agreen · e−ggreen·f(0,g,0) + hgreen · f(0, g, 0) + dgreen

PSblue = ablue · e−gblue·f(0,0,b) + hblue · f(0, 0, b) + dblue
(4)

where PS is the pupil size, ared, gred, hred, dred are the
coefficients for the red colour, agreen, ggreen, hgreen, dgreen are
the coefficients for the green colour, ablue, gblue, hblue, dblue are
the coefficients for the blue colour.

To find all the coefficients we fitted the three independent
models described by Equations 4 using the pupil sizes recorded
during calibration, and corresponding RGB intensity values
of the following images: one black image (0, 0, 0), two red
images (50, 0, 0), (100, 0, 0), two green images (0, 50, 0),
(0, 100, 0), two blue images (0, 0, 50), (0, 0, 100). We
considered only nine images of the calibration video and we
will use the other 18 images to try alternative methods in the
future. However, to fit the model represented by Equation 4 we
needed more data points and we computed additional points
as described below.

To fit the three independent models, we used eight 3D-points
for each colour (model), with RGB intensity values ranging
from 0% to 100%. The points were not equidistant because
the curve described by Equation 2 and shown in Figure 2 has a
larger variability for smaller luminosity values. For example,
for the red colour, we used (0, 0, 0), (10, 0, 0), (25,0, 0),
(50,0,0), (65, 0, 0), (75, 0, 0), (86, 0, 0), (100, 0, 0), and
similarly for the other two fundamental colours. The strategy
of using non-equidistant points led to a good fit (on average
R2 = 0.995 ± 0.00935 across our 10 participants and the
three Equations to be fit per each fundamental colour). For
each fundamental colour, out of these eight points, the pupil
size was recorded only for three points during the calibration
video, as mentioned above. However, as we know the shape
of the relationship between pupil size and luminosity for each



colour (Equation 2 and coefficients in Table I), we used that
information to calculate the remaining five points. 2

We performed all experiments in the unlit laboratory, and
the maximum luminosity reaching the eyes of our participants
was 60 lux, which is the maximum luminosity of the screens
that we used to validate the model. As we did not have
measurements taken in daylight 3, we made an assumption to
better fit the curves: per each colour we assumed that the pupil
size value at 100 lux, which is typical of daylight conditions,
was 80% of the pupil size at the maximum screen luminosity
recorded by the calibration video [16].

After fitting the three models for each participant and related
monitor, we predicted the pupil size for each test image as
if presenting one colour per time: given a uni-colour test
image with RGB intensity values (r, g, b), we considered three
different uni-colour images, with RGB intensities (r, 0, 0), (0,
g, 0), (0, 0, b), in three different moments. The idea was to
disentangle the effect of each wavelength (colour) on the pupil
size. For example, for the test picture with RGB intensity
(64, 86, 45), we pretended to have only the red component
(64, 0, 0), then the green one (0, 86, 0), and then the blue
one (0, 0, 45). Using the Equations 4 we obtained three
different predicted pupil sizes PSred, PSgreen, and PSblue.
We computed the final pupil size as a weighted average of
these three contributions:

PS = (
r

Tot
) · PSred + (

g
Tot

) · PSgreen + (
b

Tot
) · PSblue

(5)
where PS is predicted pupil size and Tot = r + g + b.

It is important to note that our method allows the coefficient
k of Equation 1 relating to phase one and the coefficients
a,b,c,d of Equation 2 to phase two to be computed in one go,
using the calibration procedure. In the next section we present
the results from our model validation experiment.

III. RESULTS

As discussed above, our model predicts the pupil size from
the RGB intensity of an image, provided this is preceded by
a calibration procedure. Our method is applicable in any dark
environment and for any screen. It has been validated on a
sample of 10 subjects, who were shown a video of 40 uni-
colour images varying in luminosity and colour, while the
pupil size was measured using an eye-tracker. Each image was
shown for 4 seconds resulting in a 160-second video.

Figure 3 shows the pupil size recorded from one of our
participants throughout the video, the average pupil size mea-
sured for each of the 40 frames, and the pupil size predicted by
our models. The average difference between the predicted and
recorded pupil size was, for this participant, 5.05% ± 4.47%.
The maximum difference was 16.80%.

Figure 4 shows the average pupil sizes for each frame
recorded for all 10 subjects and for all 40 images (400 points

2An alternative would be to use a longer calibration video.
3In a future development of our method, we will perform the experiment

in daylight too.

Fig. 3. Actual and predicted pupil size for one participant.

Fig. 4. Correlation between measured and predicted pupil size with the
colour-based approach.

in total) in relation to our model’s predictions. The Pearson
correlation coefficient is r = 0.89 and indicates a substantial
alignment between model predictions and real-world pupil
size measurements. Further supporting this, the determination
coefficient R2 value of 0.80 ± 0.12 suggests that nearly 80%
of the variance in the measured pupil size can be explained
by our model. The average difference between measured and
predicted pupil size across all participants was 6.69% ±
1.05%, and the maximum difference was 23.29% ± 5.66%.

IV. DISCUSSION

The primary goal of this study was to systematically mea-
sure the effect of luminosity on pupil size. This is very
important, as changes in pupil size caused by luminosity are
a confounding variable when assessing emotional responses
from pupil size. Since the effects of luminosity and emotion
are additive without interacting [1], emotional effects on pupil
size may be isolated by subtracting the model estimate from
the pupil size recorded in response to the visual stimuli. We
developed a robust model that accurately predicts pupil size at



different luminosity levels in an unlit laboratory. The model
was validated and achieved an average difference between
actual and predicted pupil size of ±6.69%. This is the first
time, to our knowledge, that such a model has been proposed
and validated.

One limitation of our model is that it is currently applicable
only in unlit settings. The next stage will involve applying
our model to different lighting conditions. Previous research,
such as Aracena et al. (2015) [14] and Bradley et al. (2008)
[15], normalised pupil size using a fixed grey colour under
controlled lighting to account for luminosity effects. This
method is inadequate as pupil size varies significantly with
different lighting conditions, as we have demonstrated (see
Figure 2).

In future developments, we will also not consider the
average brightness of the whole screen uniformly but give
more weight to the brightness of the portion of the screen
the eyes are looking at, utilizing the information recorded by
the eye-tracker. We will also make better use of the 27 frames
of the calibration video to improve accuracy.

Tarnowski et al. (2020) [12] proposed a linear regression
model to correct the pupil size data for luminosity. This ap-
proach has two problems: the relationship between luminosity
and pupil size is known to be non-linear [16] and the accuracy
of their model was not calculated by comparing recorded data
with predicted data. Our model overcomes these limitations
by taking into account the non-linear relationship of pupil
size to luminosity, and the different effect that fundamental
colours and grey have on pupil size. Furthermore, our method
takes individual differences and different monitor models into
account through the use of a calibration video. Considering
that the variation of pupil size with light can be as much
as 50%, and that the variation of pupil size with emotional
activation can have values much smaller than 50% (typically
10% - 20%), the average error of about 6.6% of our model
must be considered satisfactory, although there is still room
for improvement, especially in reducing the maximum error
of the model (about 23.3%). By subtracting the predicted
luminosity-influenced pupil size from the measured pupil
size during emotional stimuli, arousal information induced by
emotion can be obtained without external artifacts, leading to a
more accurate understanding of how emotions influence pupil
dilation, and enhancing the reliability of emotion research.
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“Neural networks for emotion recognition based on
eye tracking data,” in 2015 IEEE International Confer-
ence on Systems, Man, and Cybernetics, IEEE, 2015,
pp. 2632–2637.

[15] M. M. Bradley, L. Miccoli, M. A. Escrig, and P. J.
Lang, “The pupil as a measure of emotional arousal
and autonomic activation,” Psychophysiology, vol. 45,
no. 4, pp. 602–607, 2008.

[16] Y. Zhang, S. Li, J. Wang, et al., “Pupil size estimation
based on spatially weighted corneal flux density,” IEEE
Photonics Journal, vol. 11, no. 6, pp. 1–9, 2019.


