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ABSTRACT
Software fault prediction is crucial to compute the potential occurrence of faults
within the software components, before code testing or execution. Machine learning,
especially deep learning, has been applied to predict faults, but both encounter
challenges such as insufficient accuracy, imbalanced data, overfitting, and complex
structure. Moreover, deep learning yields superior predictions when working with
large datasets. The most common fault dataset is NASA MDP from the PROMISE
repository. The BugHunter dataset, however, offers a larger number of instances
compare to other fault datasets, leaving a gap in the literature for exploring the
application of machine learning and deep learning. In this study, we present a novel
structure of deep neural network (DNN), which utilizes the convolutional layers to
extract valuable knowledge from the BugHunter data projects. Our proposed model
addresses class imbalance and overfitting issues while accurately predicting fault-
prone methods. To evaluate the effectiveness of our predictive model, we conduct
extensive empirical studies comparing it with seven traditional machine learning,
three ensemble learning, and three state-of-the-art deep learning baseline models.
Our findings revealed that the proposed DNN structure significantly improved the
average F1-score in 15 projects of the BugHunter datasets by 20.01%, indicating that
DNN is a practical approach for predicting faulty methods. Leveraging these results
could lead to the preservation of software development resources and the production
of more reliable software.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Software Engineering, Neural
Networks
Keywords Deep neural network, Software fault prediction, BugHunter dataset, Machine learning

INTRODUCTION
The development of software entails intricate planning and substantial investments of time
and resources. In software systems, the presence of latent and unforeseen faults represents
an inevitable challenge (Khan & Nadeem, 2023). A software fault refers to a mismatch
between the expected and actual output, which ultimately fails the final product (Akimova
et al., 2021). Testing is a vital activity that ensures the production of fault-free and
high-quality software. However, it is a challenging, near-impossible, and costly
undertaking for testers to uncover all faults within a software system (Khan & Nadeem,
2023; Aziz, Khan &Nadeem, 2021). Identifying more fault-prone modules can facilitate the
process of testing, since 80% of faults are typically found in only 20% of the modules
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(Muhammad, Nadeem & Sindhu, 2021). Software fault prediction (SFP) emerges as a
valuable approach to detect fault-prone modules, prior to code testing or execution. SFP
enables targeted resource allocation, maintenance cost reduction, and assuring the quality
of the software upon deployment (Zhu et al., 2021).

Artificial intelligence (AI) empowers machines to mimic human behaviors, while
machine learning (ML), a subset of AI, enables machines to learn from experience (Ertel,
2018). Numerous studies have extensively explored and applied diverse MLmodels such as
multi-layer perceptron (MLP) (Rathore & Kumar, 2017), K-nearest neighbors (KNN)
(Pandey, Mishra & Tripathi, 2021), naive Bayes (NB) (Arar & Ayan, 2017), Decision Tree
(DT) (Khan et al., 2020), logistic regression (LR) (Chen et al., 2018), Random Forest (RF)
(Matloob et al., 2021), and support vector machine (SVM) (Wang et al., 2021) to predict
faults. However, these models can exhibit variation results in SFP. Deep learning (DL) is a
subset of ML that has demonstrated effectiveness in various domains. Through DL, DNNs
can leverage deep architectures that consist of multiple layers of artificial neurons. This
characteristic enables DNNs to acquire intricate patterns and representations from raw
input data by employing various complex functions and non-linear transformations (Jia
et al., 2016). Two prominent types of DNNs are convolutional neural networks (CNNs)
and long short-term memory networks (LSTMs). These networks are widely employed in
complex problems, including object detection, pattern recognition, speech recognition,
and natural language processing (Voulodimos et al., 2018; Qiao et al., 2020). The most
commonly used dataset for SFP is the NASA MDP from PROMISE repository (Malhotra,
2015). To the best of our knowledge, the BugHunter dataset (Ferenc et al., 2020) contains a
larger number of data instances compared to other existing fault datasets, making it a
potential candidate to achieve higher performance with DNNs.

The BugHunter dataset introduces the challenge of class imbalance, which researchers
have attempted to address using the under-sampling technique (Ferenc et al., 2020).
However, this technique may discard valuable instances from the majority class (Feng
et al., 2021). To overcome this, we explore the application of the over-sampling technique
to preserve the data instances and handle the class imbalance. Additionally, the state-of-
the-art models exhibit challenges related to overfitting and inaccurate prediction
performance when applied to the BugHunter dataset. This study focuses on addressing the
aforementioned gaps by examining the performance and efficiency of a range of ML and
DL models on 15 projects of the BugHunter dataset with the purpose of mitigating
overfitting and improve fault prediction performance. In summary, this research provides
the following contributions:

. Addressing class imbalance: To handle the class imbalance in the BugHunter dataset, we
use the oversampling method to enhance the accuracy of SFP for both fault classes.

. Reducing overfitting and increasing accuracy: We propose a novel DNN structure
utilizing CNNs, a DL architecture to extract and learn valuable knowledge from the
BugHunter data projects, reduce overfitting, and accurately predict which software
methods are faulty or non-faulty.
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. Transforming the dataset into three-dimensional representation: In order to utilize the
windowing technique of two-dimensional convolutional layers, we converted the dataset
into a fresh three-dimensional representation. This adjustment enables a greater volume
of data to be accessible for each window, enhancing the model’s ability to extract
information from the dataset.

. Building and evaluating different DNN structures: We investigate the influence of
various DNN architectures with unique structures and conditions. This is to improve the
model’s ability to detect faulty methods. We thoroughly study the effects of
modifications such as altering filter sizes, incorporating max pooling layer, employing
two-dimensional CNNs, etc.

. Improving the DNN performance: We introduce the optimal DNN model by adjusting
four hyper-parameters (dropout rate, number of epochs, batch size, and learning rate)
for each of the 15 Java projects. We also explore the influence of various kernel sizes on
the performance and efficiency of the proposed model.

. Assessing our DNN model performance against various SFP baseline methods: Our
comprehensive empirical investigations involve evaluating the efficacy of our proposed
model against seven conventional ML baseline models, three renowned ensemble
learning baseline models, three cutting-edge DL baseline models, and the current
performance metrics on BugHunter datasets achieved by 11 traditional models.

. Comparing the efficiency of different SFP classifiers: We present the efficiency of various
SFP models employed in this study, considering their training and testing times, and
identify the most optimal model among them.

RELATED WORKS
SFP has attracted considerable interest from researchers seeking to enhance the reliability
and quality of software systems over time. A common approach to accomplish SFP
involves categorizing software modules/classes into faulty and non-faulty groups (Batool &
Khan, 2022;Malhotra, 2015). Numerous studies have delved into a wide range of ML and,
especially, DL classifiers for efficient SFP, utilizing various datasets and performance
measures. This section provides a review of these models and a discussion of existing
challenges regarding SFP.

1) Traditional ML techniques:

ML techniques have gained significant attention in SFP for their ability to analyze
various software metrics and predict the occurrence of software faults. Rathore & Kumar
(2019) observed that a majority of recent studies employed supervised learning techniques
including DT, SVM, MLP and ensemble methods like RF. These were followed by
statistical techniques encompassing LR, KNN, and NB for building the SFP model. The
simplicity of these techniques and the absence of the need for complex parameter
optimization made them particularly appealing. In a systematic literature review
conducted by Malhotra (2015), the performance of ML techniques in SFP was thoroughly

Modanlou Jouybari et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2270 3/26

http://dx.doi.org/10.7717/peerj-cs.2270
https://peerj.com/computer-science/


analyzed and assessed. The results prove the predictive capabilities of ML techniques in
classifying modules/classes as either fault-prone or non-fault-prone. The review identified
C4.5, NB, MLP, SVM, and RF as the most frequently employed ML techniques for SFP.
Ferenc et al. (2020) utilized the Weka library to construct 11 traditional ML models,
including NB, Naive Bayes Multinomial, Logistic, SGD, Simple Logistic, Voted Perceptron,
Decision Table, OneR, J48 (C4.5), RF, and Random Tree. Their objective was to evaluate
the efficacy of their novel dataset, BugHunter, in predicting software faults, and they
achieved F-measure values up to 0.75. Pandey, Mishra & Tripathi (2021) investigated the
competence of ML techniques in SFP. They identified seven prominent categories of ML
techniques widely employed in SFP, including Bayesian learners, DTs, Evolutionary
Algorithms, Ensemble Learners, Neural Networks, SVMs, Rule-Based Learning, and
Miscellaneous approaches. Among these categories, RF, SVM, NB, C4.5, LR, and MLP
were the most commonly used techniques for SFP. Cynthia, Roy & Mondal (2022)
introduced a feature transformation technique for feature extraction. This technique
involved identifying a weighted transformation of these features through a genetic
algorithm to optimally distinguish faults from non-faults in a reduced-dimensional space,
and subsequently employing the transformed dataset for training ML models. The
effectiveness of this approach was assessed by training RF, KNN, LR, and NB models on
both the original and transformed datasets across seven BugHunter data projects at the
class level.

2) DL-based techniques:

Deep learning is a subfield of ML that is preferable in SFP when dealing with large
datasets (over 10k instances) and yields superior predictions (Pandey, Mishra & Tripathi,
2021). Farid et al. (2021) utilized two main DL models, CNN and bidirectional long short-
term memory (Bi-LSTM), to introduce the CBIL framework. The experimental results
show that CBIL is successfully predicts software faults, leading to a 30% improvement over
baseline models and a 25% enhancement over CNN in terms of average F-measure. In
another work, Zain et al. (2022) proposed a one-dimensional convolutional neural
network (1D-CNN), a DL architecture based on the NASA datasets, for predicting the
fault-proneness of code units. The results revealed that the proposed 1D-CNN
classification model outperformed other CNN and traditional ML models regarding
accuracy and f-measure. Based on the findings, the 1D-CNN is an effective SFP model.
Qiao et al. (2020) presented a DL-based model to predict the number of faults in software
modules. The model utilized software metrics derived from two real-world datasets: the
Medical Imaging System dataset and the KC2 dataset from NASA PROMISE. The
evaluation results reveal that the DL-based model is accurate and significantly outperforms
the state-of-the-art models.

3) Discussion:

Study of the relevant literature reveals that traditional ML techniques cannot effectively
capture both the syntax and various levels of semantics present within the source code,
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which are essential for constructing accurate prediction models. On the contrary, DL
algorithms demonstrate the capability to extract semantic information from software
metrics, enabling them to make accurate predictions (Omri & Sinz, 2020). In particular,
DL is effective when researchers consider larger datasets (Batool & Khan, 2022).

Most of the SFP datasets exhibit imbalanced characteristics (Pandey & Kumar, 2023;
Japkowicz & Stephen, 2002; Tantithamthavorn, Hassan & Matsumoto, 2018), with a
majority number of non-faulty instances and a minority number of faulty instances,
resulting in a skewed class distribution and biased outcomes (Giray et al., 2023). To tackle
this problem, commonly employed techniques involve utilizing over-sampling and under-
sampling methods (Song, Guo & Shepperd, 2018; Tantithamthavorn, Hassan &
Matsumoto, 2018). Overfitting is another concern that must be addressed in SFP (Pandey,
Mishra & Tripathi, 2021), as ML models often demonstrate superior performance on the
train set but struggle to generalize effectively on the test set (Santos & Papa, 2022). To
overcome this challenge, it is recommended to employ ensemble learning and k-fold cross-
validation techniques (Huda et al., 2018; Pandey, Mishra & Tripathi, 2021). Furthermore,
regularization methods were utilized in neural networks, providing a means to alleviate
model overfitting, as employed in Stacked Auto-Encoder architectures (Omri & Sinz, 2020;
Tong, Liu & Wang, 2018) and CNNs (Santos & Papa, 2022). Moreover, the current SFP
models’ performance relies on two factors: the specific system and the fine-tuning of the
model hyper-parameters (Pandey, Mishra & Tripathi, 2021). Hyper-parameters tuning is
the crucial determinant of the model’s optimal performance. However, the extent of
research conducted on the tuning of model hyper-parameters is limited.

THE PROPOSED APPROACH
Figure 1 depicts the overall framework of this study which designs and develops various
SFP classifiers. It includes two primary phases: data preprocessing and model construction.
The first phase involves collecting 15 Java projects from the BugHunter dataset and
applying preprocessing techniques on them. The second phase focuses on constructing
and evaluating various predictive models to increase the SFP performance.

PHASE 1) PREPROCESSING
Data preprocessing is crucial for ensuring high-quality data and preventing misleading
outcomes (García, Luengo & Herrera, 2015). In the preprocessing phase, we conducted the
following steps.

The BugHunter dataset consists of both nominal and numerical features. Existence of
nominal features in the dataset can present difficulties, notably when the chosen algorithm
cannot handle them appropriately (García, Luengo & Herrera, 2015). To facilitate the
implementation of our algorithm, we employed Label Encoder (Gupta & Asha, 2020) to
map the nominal features, ‘Hash’ and ‘LongName’, into numerical representations. Given
that eliminating the irrelevant features can enhance the understanding of the extracted
patterns and facilitate a faster learning process (García, Luengo & Herrera, 2015), for each
project, we removed numerical features with no difference between their maximum and
minimum values.
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In machine learning, it is typical to utilize cross-validation for assessing the
generalizability of the predictive models (Salazar et al., 2022). To accomplish this, we
divided the data into training and testing sets using StratifiedKFold cross-validation from
the sikit-learn package, employing ten folds. Traditional ML models exhibit superior
performance on scaled data that does not include significant discrepancies in feature
values. To ensure a fair comparison between different models, we employed the
MinMaxScaler from the scikit-learn package (Pedregosa et al., 2011) to scale the software
metrics into the interval [0,1].

Next, we address the class imbalance. This issue occurs when the frequency of faulty
methods/files/classes is much lower than that of non-faulty methods/files/classes. Such an
imbalance can lead to a biased model, making it impractical for real-world applications
(Feng et al., 2021). To address this issue, two commonly employed techniques are

Figure 1 Overall framework of the proposed approach. Full-size DOI: 10.7717/peerj-cs.2270/fig-1

Table 1 The description of the BugHunter dataset before and after preprocessing.

Name of the project
in the BugHunter

Total # of
instances
before prep.

# of faulty
instances
before prep.

# of non-faulty
instances
before prep.

Faulty
ratio
(%)

Imb.
ratio

# of software
metrics after
prep.

Total # of
instances
after prep.

# of faulty
instances
after prep.

# of non-
faulty
instances after
prep.

ceylon-ide-eclipse 2,087 508 1,579 24.34 3.11 58 2,972 1,393 1,579

BroadleafCommerce 4,709 1,025 3,684 21.77 3.59 61 6,824 3,140 3,684

hazelcast 32,973 12,093 20,880 36.68 1.73 61 39,923 19,043 20,880

elasticsearch 35,862 11,950 23,912 33.32 2 62 45,497 21,585 23,912

MapDB 1,456 480 976 32.97 2.03 59 1,842 866 976

netty 11,171 2,434 8,737 21.79 3.59 59 16,207 7,470 8,737

orientdb 9,445 2,589 6,856 27.41 2.65 61 12,911 6,055 6,856

neo4j 7,030 1,841 5,189 26.19 2.82 59 9,704 4,515 5,189

titan 785 168 617 21.4 3.67 61 1,147 530 617

mcMMO 1,184 411 773 34.71 1.88 55 1,493 720 773

Android-Universal-
Image-Loader

325 103 222 31.69 2.16 51 415 193 222

antlr4 840 102 738 12.14 7.24 56 1,350 612 738

junit 462 87 375 18.83 4.31 57 695 320 375

mct 105 25 80 23.81 3.2 53 143 63 80

oryx 810 77 733 9.51 9.52 55 1,350 617 733
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oversampling and under-sampling. Oversampling involves replicating instances within the
minority class, while under-sampling entails eliminating instances from the majority class
(Farid et al., 2021). In this study, the RandomOverSampler method from the imblearn
library was utilized to apply the oversampling technique to preserve the data instances.
Table 1 presents the dataset description before and after preprocessing, the number of
instances, and the imbalance ratio. Since the imbalance problem has been severe, in
addition to oversampling, we will also employ the class weight method to address this
issue.

PHASE 2) BUILDING THE MODEL
A DL architecture called DNN is proposed to capture intricate patterns between faulty and
non-faulty methods. The proposed DNN comprises convolutional, pooling, and fully
connected layers, which together form the base structure of the network.

Pooling layers (Singh, Raj & Namboodiri, 2020) facilitate dimensionality reduction by
consolidating information from neighboring neurons within a confined spatial area,
thereby decreasing the input size. A prevalent technique, such as max-pooling, selects the
highest value within each pooling region. This method aids in downsampling the feature
maps and retaining crucial features by preserving the maximum values. A fully connected
layer (Qiao et al., 2020) establishes connections between each neuron in one layer and each
neuron in the next layer. This layer plays a critical role in facilitating comprehensive
interactions between neurons across preceding and subsequent layers, enabling the
extraction of high-level features. The structure of the proposed DNN is illustrated in Fig. 2.
In the following section, a brief explanation on each layer is provided.

The first convolutional layer: as the input layer, the initial convolutional layer receives a
set of n software metrics (independent variables/features). The selection of n is determined
based on the count of software metrics for each project, as outlined in Table 1. For
example, considering the ceylon-ide-eclipse project, the network’s input was configured to
include 58 software metrics. This layer processes the input sequence and translates the
outcomes onto 64 feature maps using the rectified linear unit (ReLU) activation function
and the kernel size three. The convolved features generated by this layer contain more
informative knowledge than the original input features.

The second convolutional layer: Building upon the 64 feature maps generated by the
first convolutional layer, the second layer conducts the same task utilizing the ReLU
activation and the kernel size three, aiming to extract more informative features and
complex patterns.

Flatten layer: Following the second convolutional layer, the extracted feature maps are
flattened into a single long vector, which can then be fed into the decoding process.

Fully connected layer: Comprising two dense layers and one dropout layer positioned
between them, utilizing a dropout rate 0.2. This layer plays a crucial role in interpreting
each vector within the output sequence and classifying methods as faulty or non-faulty.
The first dense layer utilizes the ReLU activation function, while the second one employs
the sigmoid. The dropout layer is incorporated to prevent overfitting by temporarily
dropping connections between nodes (Srivastava et al., 2014). The network utilized Adam
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optimization with a 0.01 learning rate and binary cross-entropy loss function, a common
approach when dealing with classification problems.

We constructed 17 different DNN classifiers with distinct architectures to explore the
influence of diverse structures on the DNN-1 performance. These models were denoted as
DNN-2, DNN-3, DNN-4, DNN-5, DNN-6, DNN-7, DNN-8, DNN-9, DNN-10, DNN-11,
DNN-12, DNN-13, DNN-14, DNN-15, DNN-16, and DNN-17. The key differences
among these models are summarized in Tables 2 and 3. Changes such as filters size for each
convolutional, adding/removing max pooling layers and dropout layers are applied. In
particular, DNN-5 includes the imbalanced class weights during the learning process of the
balanced classes to investigate the effect of assigning higher weights to the minority class.

Figure 2 The structure of the proposed DNN model. Full-size DOI: 10.7717/peerj-cs.2270/fig-2

Table 2 The proposed model with different structures.

DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 DNN-6 DNN-7

#Convolutional layer 2 2 2 2 2 3 2

Convolutional layer dim 1D 1D 1D 1D 1D 1D 2D

#Filters 32,32 64,64 32,32 32,32 32,32 32,32,15 32,32

Kernel size 3,3 3,3 3,3 3,3 3,3 3,3,3 (3,3), (3,3)

#Pooling layer Without pooling Without pooling 1 Without pooling Without pooling Without pooling Without pooling

Size of max-pooling – – 2 – – – –

#Dense layers 2 2 2 2 2 2 2

Activation function of
fully-connected

ReLU + sigmoid
(last dense layer)

ReLU + sigmoid
(last dense layer)

ReLU + sigmoid
(last dense layer)

ReLU + sigmoid
(last dense layer)

ReLU + sigmoid
(last dense la.yer)

ReLU + sigmoid
(last dense layer)

ReLU + sigmoid
(last dense layer)

Loss function Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Optimizer, learning rate Adam, Adam, Adam, Adam, Adam, Adam, Adam,

0.01 0.01 0.01 0.01 0.01 0.01 0.01

#Epochs 100 100 100 100 100 100 100

Batch size 256 256 256 256 256 256 256

Dropout rate 0.2 0.2 0.2 Without dropout 0.2 0.2 0.2

Class weight in training? No No No No Yes No No
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This approach enables the model to prioritize these instances during training, reducing
bias towards the majority class and giving them greater importance. To achieve this, we
utilized the class weight technique using the Keras library. For each project, the imbalanced
weights were calculated first using Eqs. (1) and (2), and then applied during the training of
the balanced classes.

non-faulty weight ¼ ð1=#faultyÞ � ðtotal=2:0Þ (1)

faulty weight ¼ ð1=#non-faultyÞ � ðtotal=2:0Þ (2)

In these equations, the term total represents the sum of the instances in the dataset, both
faulty and non-faulty. Also, DNN-7 employs two-dimensional convolutional layers to
assess the influence of two-dimensional convolutional layers on the proposed DNN
performance.

DNN-8 through DNN-17 exhibit a structure akin to DNN-1 through DNN-7, with
three notable alterations:

1) Utilizing two-dimensional CNNs to explore the capability of these layers to
detect software faults from the adjacent software metrics. This is to leverage the

Table 3 The proposed model with different structures.

DNN-8 DNN-9 DNN-10 DNN-11 DNN-12 DNN-13 DNN-14 DNN-15 DNN-16 DNN-17

# of convolutional
layer

2 3 4 2 4 5 5 4 2 2

Convolutional layer
dim

2D 2D 2D 2D 2D 2D 2D 2D 2D 2D

# of filters 64, 64 128, 64, 64 128, 128, 64,
64

64, 64 64, 64, 32,
32

256, 128, 64,
32, 16

64, 64, 32, 32,
16

128, 64, 32,
16

32, 32 64, 64

Kernel size (3,3), (3,3) (3,3), (3,3),
(3,3)

(3,3), (3,3),
(3,3), (3,3)

(3,3), (3,3) (3,3), (3,3),
(3,3), (3,3)

(3,3), (3,3),
(3,3),
(3,3), (3,3)

(3,3), (3,3),
(3,3), (3,3),
(3,3)

(3,3), (3,3),
(3,3), (3,3)

(3,3), (3,3) (3,3), (3,3)

# of Pooling layer 1 1 1 1 1 1 1 1 1 Without
pooling

Size of max-pooling (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) –

# of dense layers 2 2 2 2 2 2 2 2 2 2

Activation function ReLU +
sigmoid
(last dense
layer)

ReLU +
sigmoid
(last dense
layer)

ReLU +
sigmoid
(last dense
layer)

Tanh +
sigmoid
(last dense
layer)

ReLU +
sigmoid
(last dense
layer)

ReLU +
sigmoid
(last dense
layer)

Tanh + (ReLU
& sigmoid:
dense
layers)

ReLU +
sigmoid
(last dense
layer)

ReLU +
sigmoid
(last dense
layer)

ReLU +
sigmoid
(last dense
layer)

Loss function Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Binary cross
entropy

Optimizer, Learning
rate

Adam, Adam, Adam, Adam, Adam, Adam, Adam, SGD, Adam, Adam,

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

# of epochs 100 100 100 100 100 100 100 100 100 100

Batch size 1,024 1,024 1,024 1,024 1,024 1,024 1,024 1,024 1,024 1,024

Dropout rate Without
dropout

Without
dropout

Without
dropout

Without
dropout

Without
dropout

0.2 (before
dense
layers)

Without
dropout

Without
dropout

0.2
(between
dense
layesrs)

0.2
(between
dense
layesrs)
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two-dimensional windowing process of CNN layers and extract more spatial
information from the element-wise multiplications and summations of feature maps
from the adjacent software metrics of the transformed dataset.

2) Transforming the two-dimensional dataset into three-dimensional representation, to
include the two new reordered tensors of software metrics into the third dimension of
the original dataset. This process also provides more data instances to train the deep
learning-based models and potentially enhance the performance of proposed DNN. To
accomplish this, we reordered the sequence of numbers from the one-dimensional
tensor of the original dataset in two different ways:

a) Reversing the original sequence of numbers. For example, if the order of software
metrics/features in the original tensor is 0 to 61, the reversed tensor will include
the software metrics in the order of 61 to 0.

b) Selecting the software metrics with a specific order: it includes placing the first half of
software metrics from the original tensor as the first half of chosen tensor and
placing the first half of software metrics from the reversed tensor as the second half
of the selected tensor. For example, if the number of software metrics in the original
tensor is 61, the chosen tensor takes the first 30 software metrics from the original
tensor as its first 30 features (which is the 0 to 30 metrics of the original tensor) and
takes the first 31 software metrics from the reversed tensor as its second 31 features
(which is the 60 to 31 metrics of the original tensor).

ENVIRONMENT AND EXPERIMENTS
To assess the effectiveness of the proposed DNN model, multiple experiments are carried
out. Then, a comparison is conducted between the results obtained from this study and
those from seven traditional ML models and three state-of-the-art DL classifiers regarding
SFP. These experiments are implemented using TensorFlow2.15.0, Keras2.15.0,
Python3.10.12, Numpy1.23.5, Pandas1.5.3, Scikit-learn1.2.2, Matplotlib3.7.1 and
Imblearn0.10.1. To avoid randomness and providing the reproducibility of the results we
utilize random seed of 42 in our experiments. The simulation configuration employed for
result extraction comprises an Intel� CoreTM i7-6950X CPU operating at 3.0 GHz across
ten processor cores, accompanied by 64 GB of RAM. Furthermore, the system utilizes the
computational capabilities of an NVIDIA GeForce 1080 GPU to enhance the efficiency of
the training phase.

DATASET
The dataset employed in this study is the BugHunter dataset, which is a high-dimensional,
automatically created, and freely available bug dataset. This dataset was collected by Ferenc
et al. (2020) through the selection of 15 Java projects sourced from the GitHub repository
(for full description of the dataset please refer to the Supplemental Materials). It
encompasses various granularities such as methods, files, and classes, and contains a broad
range of bug information and code metrics. The projects included in this dataset cover the
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most common software applications, including elasticsearch, orientdb, and neo4j. To
assess the dataset’s suitability, the authors applied multiple filters on the raw dataset,
employing four methods: GCF, Removal, Subtract, and Single. Among these filtering
techniques, Subtract demonstrated superior performance compared to the other methods
and authors reported their findings using this filter. Following the authors’ methodology,
we present our results utilizing the Subtract filter, intending to compare them with the
previous findings. For our experiments, we have used 15 datasets with 74 independent
variables/features and one dependent variable/label at the method level. The label of the
dataset, ‘Number of Bugs’, contains values starting from 0. A value of 0 signifies that the
commit has no bugs, while any other non-zero integer indicates the presence of bugs in the
commit. To simplify the classification process, we converted all non-zero values to 1,
indicating the presence of bugs in the commit.

PERFORMANCE EVALUATION
To assess the effectiveness of the proposed DNN model within SFP, we employed two
evaluation metrics: Accuracy and the F1-score, and two time-related metrics: training time
(total time required to fit the model using the train data.) and testing time (total time
required to generate predictions using the test data). Accuracy measures the closeness of
observed values to their true counterparts, and F1-score provides the harmonic average
between the precision and recall. Precision quantifies the relevance of the obtained results,
while recall measures the accuracy of identified relevant results. These metrics are defined
as follows:

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

� 100; Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

� 100

where: Precision ¼ TP
TP þ FP

� 100, and Recall ¼ TP
TP þ FN

� 100.

TP (true positive) means the count of predicted faulty methods that are already faulty,
TN (true negative) means the count of predicted non-faulty methods that are clean, FP
(false positive) means the count of predicted faulty methods that are already clean, and FN
(false negative) means the count of predicted clean methods that are faulty.

PERFORMANCE IMPROVEMENT
This phase aimed to enhance our proposed model performance by fine-tuning four key
hyper-parameters: dropout rate, number of epochs, batch size, and learning rate. We
evaluated number of epochs from 32 to 500, batch sizes from 32 to 512 in steps of 32, 64,
128, 256 and 512, learning rates from 0.0001 to 0.1, and dropout rates from 0.1 to 0.5.
Trials were conducted 15 to 50 times on each project using the Optuna framework in the
Python library to tune the hyper-parameters. As the model trained on 15 different projects,
the hyper-parameter tuning was done 15 times in total, and each time we measured the
performance of the proposed model with accuracy, F1-score, training time, and testing
time. Then we compared the performance measures before and after hyper-parameter
tuning to assess its effect.
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BASELINE MODELS
The proposed DNN model is compared with several baseline models. Initially, the
traditional ML and boosting baseline classifiers are introduced. Then, the state-of-the-art
baseline models are presented.

1) Traditional ML models:

The deployment of traditional ML baseline models was achieved by utilizing the default
parameter values provided by the scikit-learn library (Pedregosa et al., 2011). Additional
configuration details are outlined in this section.

MLP: A neural network architecture consisting of multiple layers of artificial neurons,
renowned for its strong learning capability, resilience to noise, nonlinear processing,
parallel processing, fault adaptability, and proficiency in task generalization (Heidari et al.,
2020). To ensure network convergence, a maximum of 1,000 iterations was set for all
BugHunter projects, except for antlr4, junit, mcmmo, oryx, and titan, which we utilized
2,000 iterations. Moreover, Ceylon-ide-eclipse, mapdb, mct, and neo4j were trained with
1,500 iterations, while Android-Universal-Image-Loader used 3,000 iterations. A random
state of one was used for reproducibility of the results. MLP configurations features are the
ReLU activation, the Adam solver, the alpha value of 0.0001, constant learning rate, and
auto batch size adjustment.

KNN: A non-parametric model that classifies a new data point by determining its class
label from the nearest neighbors’ class labels in the training set. This technique is
particularly effective for large datasets and low dimensions (Kramer, 2013). The KNN
configurations include n neighbors of 5, uniform weights, and auto algorithm.

NB: An algorithm that uses Bayes’ theorem and assumes feature independence to make
probabilistic predictions. Naïve Bayes is a frequently used ML model for SFP that yielded
efficient results. Bayesian learners were more robust and computationally efficient, but less
effective when dealing with correlated features (Pandey, Mishra & Tripathi, 2021). The NB
algorithm was trained using the var smoothing of 1e-09.

DT: A tree-based model that recursively splits the data based on feature values to make
predictions or classify instances. DT-based models were observed to be more robust,
simple, and cost-effective, achieving high accuracy (Pandey, Mishra & Tripathi, 2021). To
ensure reproducibility, the random state was set to 42. The DT configurations include gini
criterion, max depth 5, and the best splitter.

LR: A linear model used for binary classification, estimating the likelihood of an
instance belonging to a specific class based on the input features. LR is easy to implement
and very efficient to train (Omri & Sinz, 2020). A maximum iteration of 1,000 and a
random state of 42 were utilized for network convergence and reproducibility. The LR
configurations include the l2 penalty, intercept scaling of 1, and the lbfgs solver.

RF: An ensemble model that combines multiple DTs to make predictions, using a voting
or averaging mechanism to improve the model’s performance. RF classifier is proficient in
effectively managing datasets with high dimensionality and multicollinearity, exhibiting
speed and robustness against overfitting (Belgiu & Drăguţ, 2016). In this study, a random
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state of 42 was considered to ensure reproducibility. The RF configurations include n
estimator of 100, gini criteria, and sqrt max features.

SVM: A supervised learning algorithm that separates data into distinguished classes by
locating a hyperplane that maximizes the margin between the class boundaries. SVM
exhibits its capability to tolerate high-dimensional spaces, present robustness to redundant
features, effectively manage complex functions, and address non-linear problems (Pandey,
Mishra & Tripathi, 2021). The default ‘rbf’ kernel was employed for all of the projects,
except for hazelcast and elasticsearch, which used the sigmoid kernel due to the rbf kernel’s
inability to predict faulty methods. To facilitate the SVM ability on training the large
datasets we utilized batch size of 12,000 for all BugHunter projects, except for hazelcast,
orientdb, ceylon-ide-eclipse, and MapDB, which employed batch size of 13,000.
Additionally, elasticsearch and netty were trained using batch size of 25,000 and 16,000,
respectively. The SVM configurations include the C of 1.0, degree of 3, coef0 of 0.0 and the
scale gamma.

2) Boosting algorithms:

Boosting, a popular ensemble learning approach, sequentially trains classifiers using
weighted sampling from the initial data and concentrates on challenging instances to
improve performance (Song, Guo & Shepperd, 2018). Among the boosting methods,
AdaBoost (Freund & Schapire, 1997) stands out as the most widely adopted and influential
algorithm in data mining (Wu et al., 2008). Gradient boosting machines (GBM) is another
method, which is recognized as a technique to minimize errors and enhance performance
progressively (Ayyadevara, 2018). A prominent instantiation of GBM is Extreme Gradient
Boosting (XGBoost), renowned for its exceptional performance in supervised learning
tasks (Osman et al., 2021).

. The GBM configurations include the n estimator of 100, learning rate of 0.05,max depth
of 3 and the random state of 42.

. The XGBoost configurations include the n estimator of 100, learning rate of 0.05, max
depth of 3 and the random state of 42.

. The AdaBoost configurations include the n estimator of 50, the SAMME algoritm,
learning rate of 1.0, and the random state of 42.

3) State-of-the-art models:

The CBIL (Farid et al., 2021) incorporates an embedding layer, a CNN layer, a max
pooling layer, a BiLSTM layer, and a dense layer. The CNN and BiLSTM layers utilize the
tanh activation, while the dense layer employs the sigmoid activation. CBIL is configured
with a dimension of 30 in the embedding layer, 20 filters with a length of 10 in the CNN
layer, and 32 LSTM units in the BiLSTM layer.

The 1D-CNN model (Zain et al., 2022) is structured with an Input layer, followed by
two one-dimensional convolutional layers, a maxpooling layer, a dropout layer, a Flatten
layer, two dense layers, and an output layer. The 1D-CNN model is configured by
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incorporating 64 filters with a length of 1 in each convolutional layer. Additionally, a pool
size of 1 is applied in the maxpooling layer and a rate of 0.3 has been set for dropout layer.
The first dense layer utilizes the ReLU activation, while the last dense layer utilizes the
sigmoid activation.

The DL-based model (Qiao et al., 2020) comprises an input layer including 20 neurons,
two hidden layers including 10 and six neurons respectively, and an output layer including
one neuron. The network utilizes the Tanh activation function and a uniform kernel
initializer in the first layer. It then continues the learning process with the ReLU activation
function in the two subsequent layers, while employing a normal initializer in the last three
layers.

RESULTS AND DISCUSSION
This section will explore the answers to five key research questions (RQs):

RQ1: The impact of employing diverse structures on the DNN performance
Tables 4 and 5 illustrate the performance of 17 different structures for the proposed

DNN classifier in terms of F1-score. The best average values are highlighted in bold.
Comparing DNN-1 to DNN-7, which utilized the two-dimensional BugHunter data
projects, DNN-2, employing two layers of one-dimensional CNNs without the maxpooling
layer, 64 filters in each layer, ReLU activation function, Adam optimizer, and a dropout
rate of 0.2, demonstrates superior performance in terms of the F1-score. Comparing DNN-
8 to DNN-17, which utilized the three-dimensional BugHunter data projects, DNN-17
employing two layers of two-dimensional CNNs without a MaxPooling layer, 64 filters in
each layer, ReLU activation function, Adam optimizer, and a dropout of 0.2, demonstrates
exceptional performance in terms of the F1-score.

Since DNN-1 to DNN-7 were trained using the batch size of 256 and DNN-8–DNN-17
utilized a batch size of 1,024, in order to have a fair comparison between one-dimensional
and two-dimensional DNNs, we employed a batch size of 1,024 on DNN-2 and present the
results at the last column of the Table 4. Considering DNN-5, which included the weights
of the imbalanced classes into the learning process of the balanced classes, DNN-1
significantly outperforms DNN-5 in terms of accuracy and F1-score. As a result, including
the class weight with the weights of imbalanced classes into training of the DNN using
balanced classes could not increase the model performance. When examining DNN-8 to
DNN-17, the addition of extra convolutional layers with a significantly higher number of
filters, the inclusion of the MaxPooling layer, the absence of the dropout layer, the
application of the SGD optimizer, and the adoption of Tanh activation function, along
with a combination of Tanh and RelU activations in the model’s architecture, do not
significantly influence the prediction of the faulty methods.

Throughout extensive model adjustments, various methods were employed to alleviate
overfitting, including regularization, dropout, and class weighting. It is observed that
integrating a dropout layer with a rate of 0.2 into the architecture of the proposed DNN has
the most significant impact on SFP performance. This outcome can be attributed to the
benefits of the dropout mechanism, which aims to reduce model overfitting. In summary,
the incorporation of a dropout layer into the DNN model can effectively mitigate
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overfitting, resulting in a model that is more adept at predicting software faults. Across all
the proposed structures, DNN-17 shows superior performance based on the average
accuracy and F1-score, suggesting that employing DNN-17 can significantly enhance the

Table 4 The F1-score of the proposed model with different structures.

Name of the project DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 DNN-6 DNN-7 DNN-2 with 1,024 batch

ceylon-ide-eclipse 65.10 70.70 71.80 78.82 65.45 73.04 68.72 75.80

broadleafCommerce 86.09 84.16 84.70 81.43 77.43 81.14 81.54 85.12

hazelcast 57.48 56.21 52.63 59.80 40.81 56.49 53.64 63.77

elasticsearch 66.56 76.53 73.91 75.24 51.58 67.73 70.08 70.35

mapDB 77.20 80.74 81.91 82.99 76.62 84.24 78.90 82.75

netty 69.32 67.06 68.60 75.89 55.46 64.74 64.53 65.94

orientdb 72.97 73.40 70.25 75.09 61.65 66.87 67.55 69.97

neo4j 78.94 80.96 80.57 75.96 62.06 80.28 61.52 77.71

titan 75.71 82.52 79.59 79.97 80.20 73.32 81.15 81.00

mcMMO 69.62 69.96 66.54 68.10 69.11 73.35 68.14 64.34

Android-Universal-Image-Loader 76.10 76.63 78.03 78.89 71.24 79.60 76.39 77.50

antlr4 80.89 86.50 85.15 83.08 78.95 81.29 80.45 81.61

junit 75.21 80.03 78.90 83.73 77.63 78.67 75.49 79.73

mct 96.67 96.67 96.67 74.60 93.33 96.67 96.67 96.67

oryx 90.65 90.68 90.94 93.20 87.37 93.56 89.80 94.00

Average 75.90 78.18 77.34 77.78 69.92 76.73 74.30 77.75

Table 5 The F1-score of the proposed model with different structures.

Name of the project DNN-8 DNN-9 DNN-10 DNN-11 DNN-11 DNN-12 DNN-13 DNN-14 DNN-15 DNN-16 DNN-17

ceylon-ide-eclipse 71.19 81.37 77.09 53.04 77.50 78.60 80.62 56.23 60.82 80.29 78.12

BroadleafCommerce 84.59 82.48 87.05 86.41 83.38 83.24 85.20 81.91 88.45 82.96 85.04

hazelcast 60.68 68.79 64.56 55.41 62.83 66.28 58.11 64.12 65.48 55.91 62.96

elasticsearch 75.55 72.09 73.46 65.36 63.59 71.89 75.70 38.90 76.30 77.36 77.57

MapDB 76.36 76.00 76.20 15.88 78.33 77.42 68.51 76.12 73.69 76.55 81.25

netty 78.10 75.59 77.30 65.29 72.81 82.94 77.52 77.77 73.65 74.91 78.47

orientdb 75.92 75.22 73.31 61.49 73.80 78.74 69.30 78.48 68.33 75.06 67.33

neo4j 76.64 75.20 76.15 66.74 75.40 68.71 72.07 48.20 73.85 78.20 72.44

titan 80.99 76.81 84.80 84.55 79.52 78.03 79.49 81.87 53.43 81.55 81.97

mcMMO 59.58 65.07 58.44 48.54 60.29 67.68 69.39 72.94 78.84 67.04 71.83

Android-Universal-Image-Loader 75.47 61.35 69.60 53.31 69.87 71.01 71.43 43.60 55.59 73.07 70.45

antlr4 81.87 85.64 85.16 62.56 81.87 82.33 82.98 87.98 43.13 82.10 79.77

junit 81.61 83.90 81.42 47.27 75.38 82.51 80.24 76.67 58.54 82.14 82.68

mct 84.21 88.89 89.52 88.89 85.56 74.11 89.52 77.78 66.67 96.67 96.67

oryx 92.79 88.73 93.51 80.62 91.78 95.36 94.93 92.72 81.60 93.20 92.05

Average 77.03 77.14 77.83 62.35 75.46 77.25 77.00 70.35 67.89 78.46 78.57
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accuracy of SFP. In conclusion we consider DNN-17 as the best DNN structure for
predicting software faults.

RQ2: Impact of hyper-parameter tuning on the DNN performance
This section discusses the effect of fine-tuning the hyper-parameters on the DNN

classifier performance for software fault detection. Table 6 presents the optimal parameters
and performance of the DNN classifier after tuning the hyper-parameters. It is observed

Table 6 The best parameters and performance measures after tuning DNN hyper-parameters.

Dataset Performance metrics
before tuning hyper-
parameters

Best parameter Performance metrics after tuning
hyper-parameters

Acc F1 Epochs
(32–500)

Batch size
(32–1,024)

Learning rate
(0.0001–0.1)

Dropout rate
(0.0–0.5)

Acc F1 Pr Rc

ceylon-ide-eclipse 69.86 78.12 496 128 0.002 0.3 72.97 81.86 80.70 83.08

BroadleafCommerce 76.54 85.04 121 32 0.0001 0.5 79.83 87.86 93.22 83.13

hazelcast 61.89 62.96 358 1,024 0.001 0.2 65.19 70.70 66.50 75.72

elasticsearch 68.30 77.57 334 1,024 0.009 0.1 69.45 78.50 83.67 73.93

MapDB 75.34 81.25 381 64 0.0006 0.3 80.82 85.92 87.24 84.65

netty 70.02 78.47 468 1,024 0.008 0.2 76.78 84.71 82.65 86.96

orientdb 61.27 67.33 464 1,024 0.006 0.0 74.50 82.29 81.85 82.95

neo4j 64.44 72.44 343 64 0.0008 0.2 75.39 83.97 87.48 80.83

titan 72.15 81.97 363 1,024 0.008 0.1 77.22 85.37 85.48 85.66

mcMMO 61.76 71.83 390 128 0.006 0.1 66.39 74.67 76.15 73.38

Android-Universal-Image-Loader 60.61 70.45 205 64 0.006 0.4 69.70 77.50 73.91 83.06

antlr4 69.05 79.77 167 512 0.02 0.1 78.57 86.97 83.78 91.05

junit 73.40 82.68 212 1,024 0.007 0.4 80.85 87.86 86.84 89.73

mct 95.45 96.67 76 512 0.0009 0.4 95.45 96.67 93.75 100.00

oryx 85.80 92.05 478 256 0.01 0.3 93.21 96.39 99.32 93.63

Average 71.05 78.57 77.08 84.08 84.16 84.51

Figure 3 Effects of various kernel size on DNN performance: (A) Accuracy and F1-score, (B) training time, and (C) testing time.
Full-size DOI: 10.7717/peerj-cs.2270/fig-3
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that the optimal values for each parameter vary across different datasets. On average,
tuning the hyper-parameters results in an increase of 6.03% in accuracy and 5.51% in F1-
score for the proposed DNN model.

Additionally, we investigated the effect of using various kernel sizes on the performance
and efficiency of the proposed DNN algorithm. To achieve this, we conducted experiments
using kernel sizes ranging from 1 to 5 on 15 datasets. We calculated the average

Figure 4 ROC curve and confusion matrix of DNN-17 on different datasets. (A and B) mct (C and D)
MapDB, and (E and F) junit. Full-size DOI: 10.7717/peerj-cs.2270/fig-4
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performance metrics for each kernel size and depicted the results in bar graphs (as shown
in Fig. 3). Figure 3A indicates that increasing or decreasing the kernel size from three fails
to improve the DNN’s accuracy and F1-score in SFP. Figures 3B and 3C show that the
increase in kernel size from three fails to enhance the effectiveness of the proposed DNN
in SFP.

The receiver operating characteristic (ROC) curve serves as a visual illustration of a
model’s ability to discriminate between classes at various decision thresholds. Figure 4
presents the ROC curve and confusion matrix of DNN-17 for the mct, MapDB, and junit
datasets. Each pair of sub-figures comprises a plot on the left illustrating the ROC curve
and another on the right illustrating the confusion matrix. These figures demonstrate
DNN-17’s effective prediction of the faulty methods in the BugHunter dataset.

RQ3: The effectiveness of the proposed DNN structure compared to traditional
baselines

Table 7 compares the prediction results between the proposed DNN algorithm and
seven baseline ML classifiers (MLP, KNN, NB, DT, LR, RF, and SVM) on 15 projects. The
suggested DNN algorithm outperforms seven baseline models (MLP, KNN, NB, DT, LR,
RF, and SVM) in terms of F1-score, achieving an average value of 84.08%. On average,
among seven established machine learning baseline models, RF achieved the highest F1-
score of 80.98. Table 8 compares the performance of the proposed DNN algorithm with
three boosting-baseline models (GBM, XGBoost, and Adaboost). On average of F1-score,
GBM achieved the highest performance among the boosting-based classifiers and DNN
surpasses these three algorithms.

Additionally, the performance of the proposed DNN, the seven established ML
classifiers, and three boosting based classifiers were compared with the best performance
presented at Ferenc et al. (2020) on the same datasets. The authors reported their findings
using 11 traditional ML classifiers including NB, Naive Bayes Multinomial, OneR, Voted
Perceptron, J48 (C4.5), Logistic, SGD, Simple Logistic, Decision Table, RF, and Random
Tree employing the Weka library. The last column of Table 7 represents their best findings
on 15 projects of the BugHunter dataset. It can be observed that the DNN significantly
improve the performance of the fault prediction model on MapDB project by 29.82%
(from 56.10 to 85.92) and on antlr4 dataset by 11.24% (from 75.73–considered the best
result at the method level, according to the authors findings–to 86.97). Our findings
revealed that the proposed DNN algorithm and RF classifier, both utilizing the TensorFlow
platform, were able to improve the average F1-score of the traditional classifiers used by
Ferenc et al. (2020), which utilized the Weka library, by 20.01% and 16.95%, respectively.
Additionally, GBM model enhance the performance of the traditional classifiers used by
Ferenc et al. (2020), up to 18.96% on average of F1-score.

RQ4: The effectiveness of the proposed DNN structure compared to state-of-the-art
baselines

To address the fourth research question, we conducted a comparison between the
performance and efficiency of the proposed DNN classifier and three state-of-the-art DL
models: CBIL (Farid et al., 2021), 1D-CNN (Zain et al., 2022), and DL-based model
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(Qiao et al., 2020). The results are presented in Table 9. In comparison, our proposed DNN
exhibits superior performance for predicting faults, in terms of F1-score. Based on our
findings, it can be concluded that the proposed DNN model, which incorporates a deep

Table 7 The F1-score of the proposed model compared to traditional models (part 1).

Name of the project DNN MLP KNN NB DT LR RF SVM Ferenc et al. (2020)

ceylon-ide-eclipse 81.86 72.51 72.04 3.69 78.71 71.32 83.81 75.79 53.95

BroadleafCommerce 87.86 85.59 81.13 2.66 77.81 88.85 81.32 88.96 73.66

hazelcast 70.70 64.52 67.80 76.81 53.34 56.96 72.64 4.73 71.70

elasticsearch 78.50 72.73 72.02 78.77 71.67 70.31 76.52 2.14 64.11

MapDB 85.92 76.22 72.56 3.84 75.24 71.20 83.08 70.76 56.10

netty 84.71 72.87 70.72 79.89 62.17 57.13 80.10 56.31 64.12

orientdb 82.29 76.67 75.25 81.60 70.39 72.62 80.47 68.46 62.36

neo4j 83.97 69.30 72.06 81.94 71.93 62.53 83.51 58.45 60.86

titan 85.37 80.83 75.43 3.17 70.95 75.98 84.85 75.24 62.16

mcMMO 74.67 68.80 62.92 3.41 73.24 60.90 72.64 67.72 58.15

Android-Universal-Image-Loader 77.50 74.17 61.55 82.14 87.66 64.91 67.26 71.36 55.69

antlr4 86.97 82.35 76.35 7.65 74.70 72.60 83.86 67.37 75.73

junit 87.86 80.57 68.70 13.80 85.70 71.92 81.16 69.75 66.38

mct 96.67 96.67 83.33 47.97 96.67 65.56 89.52 73.36 68.76

oryx 96.39 92.87 84.29 46.04 90.96 87.33 94.02 87.99 66.78

Average 84.08 77.77 73.07 40.89 76.07 70.00 80.98 62.55 64.03

Table 8 The F1-score of the proposed model compared to traditional models (part 2).

Name of the project DNN GBM XGBoost Adaboost

ceylon-ide-eclipse 81.86 88.76 86.76 78.23

BroadleafCommerce 87.86 82.58 81.15 78.81

hazelcast 70.70 59.79 56.78 55.33

elasticsearch 78.50 77.51 78.24 72.36

MapDB 85.92 85.87 84.83 62.28

netty 84.71 71.64 66.09 57.29

orientdb 82.29 85.21 84.20 83.37

neo4j 83.97 81.71 79.97 67.89

titan 85.37 87.64 87.48 86.11

mcMMO 74.67 80.00 79.12 79.04

Android-Universal-Image-Loader 77.50 84.61 86.25 77.83

antlr4 86.97 78.01 74.76 76.75

junit 87.86 89.28 86.15 86.35

mct 96.67 93.33 96.67 96.67

oryx 96.39 98.98 98.63 94.58

Average 84.08 82.99 81.80 76.85
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network structure and three-dimensional data representation, exhibits significant potential
in detecting the software faults across the 15 BugHunter datasets.

RQ5: The most effective SFP classifier based on training and testing times
Figure 5 depicts the training and testing time of various SFP models utilized in this

study using 15 BugHunter projects. It is evident that among the range of classifiers
analyzed, KNN exhibits the most optimal training time with a value of 0.005, while LR
demonstrates the highest efficiency based on the testing time, yielding a value of 0.000.

Randomness and variability: To address the randomness and account for variability,
the experiments were repeated multiple times with different random seeds. The mean,
standard deviation, and the confidence interval with confidence level of 95% provided in
Table 10.

Validity of the findings: The validity of the findings pertains to the limitations and
potential biases of our results. In this study, we employed experiments using 15 BugHunter
data projects at method level. Various fault datasets with different granularity level (class,
file, package, method), including NASA MDP, Eclipse dataset, iBUGS, Bugcatchers, and
ELFF, are available. As a result, the experimental findings may lack generalizability to
alternative datasets and granularity levels, potentially resulting in superior or inferior
outcomes for each SFP model of this research. The BugHunter dataset also encompasses a
wide range of software metrics. As we mentioned in the Dataset section, the BugHunter
dataset comprises source code metrics and clone metrics. Table 4 displays a subset of
software metrics included in the BugHunter. Different fault datasets encompass other bug
characteristics (static source code metrics, complexity metrics, code smells, and code
duplication metrics). It is worth mentioning that different sets of software metrics could

Table 9 The F1-score of proposed model compared to the state-of-the-art models.

Name of the project DNN CBIL (Farid et al., 2021) 1D-CNN (Zain et al., 2022) DL-based (Qiao et al., 2020)

ceylon-ide-eclipse 81.86 81.81 75.20 80.90

BroadleafCommerce 87.86 87.45 83.00 74.94

hazelcast 70.70 77.52 75.09 77.09

elasticsearch 78.50 79.98 79.13 77.21

MapDB 85.92 79.99 78.34 78.95

netty 84.71 82.36 84.18 83.79

orientdb 82.29 84.03 80.44 82.04

neo4j 83.97 84.71 80.28 83.11

titan 85.37 87.39 77.21 83.18

mcMMO 74.67 78.66 78.98 67.48

Android-Universal-Image-Loader 77.50 81.14 75.84 80.44

antlr4 86.97 74.14 86.74 85.01

junit 87.86 89.22 80.04 86.38

mct 96.67 84.75 81.83 82.95

oryx 96.39 93.97 86.07 92.76

Average 84.08 83.14 80.15 81.08
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Table 10 Randomness and variability of the results.

Dataset Performance metrics with different random seeds

Accuracy F1-score

Mean Std Conf. interval
(Conf. Level 95%)

Mean Std Conf. interval
(Conf. Level 95%)

ceylon-ide-eclipse 68.18 6.47 [64.17–72.19] 76.94 7.01 [72.60–81.29]

BroadleafCommerce 75.57 1.58 [74.60–76.55] 84.45 1.32 [83.63–85.27]

hazelcast 61.36 1.32 [60.54–62.18] 65.17 4.57 [62.34–68.00]

elasticsearch 65.24 1.51 [64.31–66.18] 74.02 3.56 [71.82–76.23]

MapDB 69.21 4.86 [66.20–72.23] 74.44 5.27 [71.17–77.70]

netty 65.03 5.39 [61.69–68.37] 73.38 5.98 [69.67–77.08]

orientdb 66.05 3.59 [63.83–68.28] 73.86 4.45 [71.10–76.62]

neo4j 66.56 4.44 [63.81–69.32] 74.67 5.02 [71.55–77.78]

titan 70.19 2.99 [68.34–72.04] 79.78 2.64 [78.14–81.42]

mcMMO 56.68 4.54 [53.87–59.50] 64.09 6.21 [60.24–67.94]

Android-Universal-Image-Loader 64.70 3.59 [62.47–66.92] 74.23 2.28 [72.81–75.65]

antlr4 71.25 1.25 [70.48–72.02] 81.68 0.97 [81.08–82.28]

junit 70.96 2.90 [69.16–72.75] 80.64 2.35 [79.19–82.10]

mct 93.18 5.47 [89.79–96.57] 94.39 5.79 [90.80–97.98]

oryx 88.77 1.72 [87.70–89.83] 93.80 1.10 [93.12–94.48]

Figure 5 Training time and testing time of ML and DL models. Full-size DOI: 10.7717/peerj-cs.2270/fig-5

Modanlou Jouybari et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2270 21/26

http://dx.doi.org/10.7717/peerj-cs.2270/fig-5
http://dx.doi.org/10.7717/peerj-cs.2270
https://peerj.com/computer-science/


lead to varying results. Moreover, through tuning the DNN-17 model, a set of optimal
hyper-parameters was obtained for each of the 15 BugHunter datasets, as outlined in
Table 7. It is crucial to note that changing the hyper-parameters could lead to differences in
the research findings.

CONCLUSION AND FUTURE WORK
This study employed a research approach to investigate the influence of various
architectures on the DNN performance within SFP. The primary process of the research
method involves constructing DNN classifiers with diverse structures. First, a base
structure for the DNN classifier was proposed. Second, an additional 16 DNNmodels with
distinct structures and conditions were built. This is achieved by changing the number of
filters in each convolutional layer, the inclusion of the MaxPooling layer, the exclusion
of the dropout layer, the inclusion of the weights of the imbalanced classes during training
of the balanced classes, the addition of the extra convolutional layers, utilizing different
activation functions and optimizers, and employing two-dimensional convolutional layers
instead of one-dimensional. We also transformed the dataset into a novel three-
dimensional representation to train the two-dimensional convolutional layers in the
proposed DNN. Third, we tuned four hyper-parameters (dropout rate, number of epochs,
batch size, and learning rate) to enhance the proposed DNN performance. Additionally,
we explored the impact of utilizing different kernel sizes on its performance and efficacy.
Fourth, we developed seven ML algorithms, three boosting-based techniques, and three
state-of-the-art DL models to assess the performance of our proposed model in
comparison with these established baselines. The results of these SFP models were
analyzed and evaluated in terms of accuracy, F1-score, training time, and testing time.

The key findings of this research is that among 17 proposed DNN structures, seven
traditional ML algorithms (MLP, KNN, NB, DT, LR, RF, SVM), three boosting-based
techniques (GBM, XGBoost, AdaBoost), and three state-of-the-art DL models, the
proposed DNN-17 classifier exhibited superior performance, achieving an F1-score of
84.08% in predicting software faults. Furthermore, this study indicates that including a
dropout layer in the structure of the proposed DNN enhances the model performance by
minimizing network fluctuations and mitigating overfitting. This improvement has a
significant impact on effectively distinguishing between faulty and non-faulty methods.
However, making adjustments such as increasing the filter size, considering class weights,
adding much more convolutional layers, utilizing Tanh activation function and SGD
optimizer do not have a significant effect on software fault detection. Our findings
highlight that leveraging two-dimensional convolutional layers with the three-dimensional
data representation can significantly increase the SFP performance regarding the F1-score.
These findings are highly valuable for software practitioners and researchers in the field.

The findings of this study reveal a considerable improvement in the prediction
performance across all 15 projects of the BugHunter dataset. Additionally, we provide
optimized values for four hyper-parameters specific to each data project. The results
confirm that fine-tuning the hyper-parameters enhances the proposed DNN performance
in SFP. In the future, we aim to extend our research by examining the influence of the
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proposed DNN structure, along with other ML and DL baseline models, at the class or file
granularity levels of the BugHunter dataset. Moreover, we can apply additional data
preprocessing techniques to improve the prediction performance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Mehrasa Modanlou Jouybari conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

. Alireza Tajary conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

. Mansoor Fateh analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

. Vahid Abolghasemi analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The BugHunter Dataset is available at Mendeley and the University of Szeged:
Ferenc, Rudolf; Gyimesi, Péter; Gyimesi, Gábor; Tóth, Zoltán; Gyimóthy, Tibor (2020),

“BugHunter Dataset”, Mendeley Data, V2, doi: 10.17632/8tx7kjbkg4.2.
https://www.inf.u-szeged.hu/~ferenc/papers/BugHunterDataSet/.
Code is available at GitHub:
https://github.com/MehrasaModanlou/DNN-for-Software-Fault-Prediction/blob/

main/SFP-DNN.ipynb.
MehrasaModanlou. (2024). MehrasaModanlou/DNN-for-Software-Fault-Prediction:

Initial Release (v1.0). Zenodo. https://doi.org/10.5281/zenodo.10719301.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2270#supplemental-information.

REFERENCES
Akimova N, Bersenev AY, Deikov AA, Kobylkin KS, Konygin AV, Mezentsev IP, Misilov VE.

2021. A survey on software defect prediction using deep learning. Mathematics 9(11):1180
DOI 10.3390/math9111180.

Modanlou Jouybari et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2270 23/26

http://dx.doi.org/10.17632/8tx7kjbkg4.2
https://www.inf.u-szeged.hu/~ferenc/papers/BugHunterDataSet/
https://github.com/MehrasaModanlou/DNN-for-Software-Fault-Prediction/blob/main/SFP-DNN.ipynb
https://github.com/MehrasaModanlou/DNN-for-Software-Fault-Prediction/blob/main/SFP-DNN.ipynb
https://doi.org/10.5281/zenodo.10719301
http://dx.doi.org/10.7717/peerj-cs.2270#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2270#supplemental-information
http://dx.doi.org/10.3390/math9111180
http://dx.doi.org/10.7717/peerj-cs.2270
https://peerj.com/computer-science/


Arar Ö.F, Ayan K. 2017. A feature dependent Naive Bayes approach and its application to the
software defect prediction problem. Applied Soft Computing 59(10):197–209
DOI 10.1016/j.asoc.2017.05.043.

Ayyadevara VK. 2018. Gradient boosting machine. In: Pro Machine Learning Algorithms: A
Hands-on Approach to Implementing Algorithms in Python and R. Berkeley, USA: Apress,
117–134.

Aziz SR, Khan TA, Nadeem A. 2021. Exclusive use and evaluation of inheritance metrics viability
in software fault prediction—an experimental study. PeerJ Computer Science 7(5):e563
DOI 10.7717/peerj-cs.563.

Batool I, Khan TA. 2022. Software fault prediction using data mining, machine learning and deep
learning techniques: a systematic literature review. Computers and Electrical Engineering
100(2):107886 DOI 10.1016/j.compeleceng.2022.107886.

Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: a review of applications and future
directions. ISPRS Journal of Photogrammetry and Remote Sensing 114(Part A):24–31
DOI 10.1016/j.isprsjprs.2016.01.011.

Chen X, Zhao Y, Wang Q, Yuan Z. 2018. MULTI: multi-objective effort-aware just-in-time
software defect prediction. Information and Software Technology 93(6):1–13
DOI 10.1016/j.infsof.2017.08.004.

Cynthia ST, Roy B, Mondal D. 2022. Feature transformation for improved software bug detection
models. In: Proceedings of the 15th Innovations in Software Engineering Conference. 1–10.

Ertel W. 2018. Introduction to artificial intelligence. Berlin, Germany: Springer.

Farid AB, Fathy EM, Eldin AS, Abd-Elmegid LA. 2021. Software defect prediction using hybrid
model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term
memory (Bi-LSTM). PeerJ Computer Science 7(5):e739 DOI 10.7717/peerj-cs.739.

Feng S, Keung J, Yu X, Xiao Y, Bennin KE, Kabir MA, Zhang M. 2021. COSTE: complexity-
based oversampling technique to alleviate the class imbalance problem in software defect
prediction. Information and Software Technology 129(1):106432
DOI 10.1016/j.infsof.2020.106432.

Ferenc R, Gyimesi P, Gyimesi G, Tóth Z, Gyimóthy T. 2020. An automatically created novel bug
dataset and its validation in bug prediction. Journal of Systems and Software 169(10):110691
DOI 10.1016/j.jss.2020.110691.

Freund Y, Schapire RE. 1997. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences 55(1):119–139
DOI 10.1006/jcss.1997.1504.

García S, Luengo J, Herrera F. 2015. Data preprocessing in data mining. Berlin, Germany:
Springer.

Giray G, Bennin KE, Köksal Ö, Babur Ö, Tekinerdogan B. 2023. On the use of deep learning in
software defect prediction. Journal of Systems and Software 195(11):111537
DOI 10.1016/j.jss.2022.111537.

Gupta H, Asha V. 2020. Impact of encoding of high cardinality categorical data to solve prediction
problems. Journal of Computational and Theoretical Nanoscience 17(9–10):4197–4201
DOI 10.1166/jctn.2020.9044.

Heidari AA, Faris H, Mirjalili S, Aljarah I, Mafarja M. 2020. Ant lion optimizer: theory, literature
review, and application in multi-layer perceptron neural networks. Nature-Inspired Optimizers:
Theories, Literature Reviews and Applications 811:23–46 DOI 10.1007/978-3-030-12127-3.

Modanlou Jouybari et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2270 24/26

http://dx.doi.org/10.1016/j.asoc.2017.05.043
http://dx.doi.org/10.7717/peerj-cs.563
http://dx.doi.org/10.1016/j.compeleceng.2022.107886
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1016/j.infsof.2017.08.004
http://dx.doi.org/10.7717/peerj-cs.739
http://dx.doi.org/10.1016/j.infsof.2020.106432
http://dx.doi.org/10.1016/j.jss.2020.110691
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1016/j.jss.2022.111537
http://dx.doi.org/10.1166/jctn.2020.9044
http://dx.doi.org/10.1007/978-3-030-12127-3
http://dx.doi.org/10.7717/peerj-cs.2270
https://peerj.com/computer-science/


Huda S, Liu K, Abdelrazek M, Ibrahim A, Alyahya S, Al-Dossari H, Ahmad S. 2018. An
ensemble oversampling model for class imbalance problem in software defect prediction. IEEE
Access 6:24184–24195 DOI 10.1109/ACCESS.2018.2817572.

Japkowicz N, Stephen S. 2002. The class imbalance problem: a systematic study. Intelligent Data
Analysis 6(5):429–449 DOI 10.3233/IDA-2002-6504.

Jia F, Lei Y, Lin J, Zhou X, Lu N. 2016. Deep neural networks: a promising tool for fault
characteristic mining and intelligent diagnosis of rotating machinery with massive data.
Mechanical Systems and Signal Processing 72:303–315 DOI 10.1016/j.ymssp.2015.10.025.

Khan F, Kanwal S, Alamri S, Mumtaz B. 2020. Hyper-parameter optimization of classifiers, using
an artificial immune network and its application to software bug prediction. IEEE Access
8:20954–20964 DOI 10.1109/ACCESS.2020.2968362.

Khan B, Nadeem A. 2023. Evaluating the effectiveness of decomposed Halstead Metrics in
software fault prediction. PeerJ Computer Science 9(2):e1647 DOI 10.7717/peerj-cs.1647.

Kramer O. 2013. K-nearest neighbors. In: Dimensionality Reduction with Unsupervised Nearest
Neighbors. Berlin, Germany: Springer, 13–23.

Malhotra R. 2015. A systematic review of machine learning techniques for software fault
prediction. Applied Soft Computing 27:504–518 DOI 10.1016/j.asoc.2014.11.023.

Matloob F, Ghazal TM, Taleb N, Aftab S, Ahmad M, Khan MA, Abbas S, Soomro TR. 2021.
Software defect prediction using ensemble learning: a systematic literature review. IEEE Access
9:98754–98771 DOI 10.1109/ACCESS.2021.3095559.

Muhammad R, Nadeem A, Sindhu MA. 2021. Vovel metrics—novel coupling metrics for
improved software fault prediction. PeerJ Computer Science 7(10):e590
DOI 10.7717/peerj-cs.590.

Omri S, Sinz C. 2020. Deep learning for software defect prediction: a survey. In: Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering Workshops. Piscataway, New
York: IEEE, ACM, 209–214.

Osman AIA, Ahmed AN, Chow MF, Huang YF, El-Shafie A. 2021. Extreme gradient boosting
(Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Engineering
Journal 12(2):1545–1556 DOI 10.1016/j.asej.2020.11.011.

Pandey S, Kumar K. 2023. Software fault prediction for imbalanced data: a survey on recent
developments. Procedia Computer Science 218:1815–1824 DOI 10.1016/j.procs.2023.01.159.

Pandey SK, Mishra RB, Tripathi AK. 2021. Machine learning based methods for software fault
prediction: a survey. Expert Systems with Applications 172(2):114595
DOI 10.1016/j.eswa.2021.114595.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,
Perrot M, Duchesnay É. 2011. Scikit-learn: machine learning in python Fabian. Journal of
Machine Learning Research 12:2825 DOI 10.5555/1953048.2078195.

Qiao L, Li X, Umer Q, Guo P. 2020. Deep learning based software defect prediction.
Neurocomputing 385(2):100–110 DOI 10.1016/j.neucom.2019.11.067.

Rathore SS, Kumar S. 2017. An empirical study of some software fault prediction techniques for
the number of faults prediction. Soft Computing 21(24):7417–7434
DOI 10.1007/s00500-016-2284-x.

Rathore SS, Kumar S. 2019. A study on software fault prediction techniques. Artificial Intelligence
Review 51(2):255–327 DOI 10.1007/s10462-017-9563-5.

Modanlou Jouybari et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2270 25/26

http://dx.doi.org/10.1109/ACCESS.2018.2817572
http://dx.doi.org/10.3233/IDA-2002-6504
http://dx.doi.org/10.1016/j.ymssp.2015.10.025
http://dx.doi.org/10.1109/ACCESS.2020.2968362
http://dx.doi.org/10.7717/peerj-cs.1647
http://dx.doi.org/10.1016/j.asoc.2014.11.023
http://dx.doi.org/10.1109/ACCESS.2021.3095559
http://dx.doi.org/10.7717/peerj-cs.590
http://dx.doi.org/10.1016/j.asej.2020.11.011
http://dx.doi.org/10.1016/j.procs.2023.01.159
http://dx.doi.org/10.1016/j.eswa.2021.114595
http://dx.doi.org/10.5555/1953048.2078195
http://dx.doi.org/10.1016/j.neucom.2019.11.067
http://dx.doi.org/10.1007/s00500-016-2284-x
http://dx.doi.org/10.1007/s10462-017-9563-5
http://dx.doi.org/10.7717/peerj-cs.2270
https://peerj.com/computer-science/


Salazar JJ, Garland L, Ochoa J, Pyrcz MJ. 2022. Fair train-test split in machine learning:
mitigating spatial autocorrelation for improved prediction accuracy. Journal of Petroleum
Science and Engineering 209:109885 DOI 10.1016/j.petrol.2021.109885.

Santos CFGD, Papa JP. 2022. Avoiding overfitting: a survey on regularization methods for
convolutional neural networks. ACM Computing Surveys (CSUR) 54(10s):213
DOI 10.1145/3510413.

Singh P, Raj P, Namboodiri VP. 2020. EDS pooling layer. Image and Vision Computing
98(1):103923 DOI 10.1016/j.imavis.2020.103923.

Song Q, Guo Y, Shepperd M. 2018. A comprehensive investigation of the role of imbalanced
learning for software defect prediction. IEEE Transactions on Software Engineering
45(12):1253–1269 DOI 10.1109/TSE.2018.2836442.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a simple
way to prevent neural networks from overfitting. The Journal of Machine Learning Research
15(1):1929–1958.

Tantithamthavorn C, Hassan AE, Matsumoto K. 2018. The impact of class rebalancing
techniques on the performance and interpretation of defect prediction models. IEEE
Transactions on Software Engineering 46(11):1200–1219 DOI 10.1109/TSE.2018.2876537.

Tong H, Liu B, Wang S. 2018. Software defect prediction using stacked denoising autoencoders
and two-stage ensemble learning. Information and Software Technology 96(1):94–111
DOI 10.1016/j.infsof.2017.11.008.

Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. 2018. Deep learning for computer
vision: a brief review. Computational Intelligence and Neuroscience 2018:068349
DOI 10.1155/2018/7068349.

Wang K, Liu L, Yuan C, Wang Z. 2021. Software defect prediction model based on LASSO-SVM.
Neural Computing and Applications 33(14):8249–8259 DOI 10.1007/s00521-020-04960-1.

Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu
PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D. 2008. Top 10 algorithms in data mining.
Knowledge and Information Systems 14(1):1–37 DOI 10.1007/s10115-007-0114-2.

Zain ZM, Sakri S, Ismail NHA, Parizi RM. 2022. Software defect prediction harnessing on multi
1-dimensional convolutional neural network structure. Computers, Materials and Continua
71(1):1521 DOI 10.32604/cmc.2022.022085.

Zhu K, Ying S, Zhang N, Zhu D. 2021. Software defect prediction based on enhanced
metaheuristic feature selection optimization and a hybrid deep neural network. Journal of
Systems and Software 180(18):111026 DOI 10.1016/j.jss.2021.111026.

Modanlou Jouybari et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2270 26/26

http://dx.doi.org/10.1016/j.petrol.2021.109885
http://dx.doi.org/10.1145/3510413
http://dx.doi.org/10.1016/j.imavis.2020.103923
http://dx.doi.org/10.1109/TSE.2018.2836442
http://dx.doi.org/10.1109/TSE.2018.2876537
http://dx.doi.org/10.1016/j.infsof.2017.11.008
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1007/s00521-020-04960-1
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.32604/cmc.2022.022085
http://dx.doi.org/10.1016/j.jss.2021.111026
http://dx.doi.org/10.7717/peerj-cs.2270
https://peerj.com/computer-science/

	A novel deep neural network structure for software fault prediction
	Introduction
	Related works
	The proposed approach
	Phase 1) preprocessing
	Phase 2) building the model
	Environment and experiments
	Dataset
	Performance evaluation
	Performance improvement
	Baseline models
	Results and discussion
	Conclusion and future work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


