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Abstract—This paper introduces a novel Rate-Adaptive Com-
pressed Sensing-based Joint Source-Channel Coding scheme,
termed RACS-JSCC, which leverages deep block-based CS to
dynamically adjust the encoding rate based on available channel
bandwidth and input image statistics. RACS-JSCC selects the
encoding rate using both local and global statistics of the
input image, alongside channel state information, prior to the
feature extraction stage. This approach eliminates the trans-
mission of redundant features and ensures the input image is
encoded at an optimal rate. By training a deep learning-based
JSCC encoder-decoder pair to operate across multiple rates and
channel conditions, the proposed method reduces the necessity
for multiple models and enhances practical applicability in
diverse communication environments. Our experimental results
demonstrate that RACS-JSCC achieves superior performance in
terms of image quality and robustness against varying channel
conditions, making it a highly efficient solution for real-world
wireless image transmission.

Index Terms—Wireless image transmission, joint source-
channel coding, compressed sensing, deep learning

I. INTRODUCTION

Modern wireless image transmission systems typically rely
on a separate design of source and channel coding. This
approach is currently being utilized for real-world applications
due to its modularity and, hence, ease of optimisation. How-
ever, the optimality of the separation-based source and channel
coding can only be guaranteed in the case of infinitely, or, in
practice, very long code blocks which becomes an important
consideration in applications requiring low latency such as
autonomous driving, remote surgery and other mission critical
scenarios. In this regard, joint source and channel coding
(JSCC) becomes a powerful alternative to separate source
and channel coding as it can jointly leverage the statistical
properties of the sources and the channel characteristics to
achieve an optimal trade-off between source compression and
error resilience for finite code block lengths [1].

Recent advancements in machine learning, and in particular,
deep learning (DL), have revolutionized the research in the
domain of JSCC design for wireless image transmission [2].
A number of works have demonstrated remarkable results
showing that DL-based JSCC algorithms are resilient to chan-
nel variations and exhibit superior performance under low
signal-to-noise ratios (SNR) and limited bandwidth condi-
tions compared to their separation-based coding counterparts,
making DL-based JSCC a promising candidate for efficient
wireless image transmission systems [3], [4]. Bourtsoulatze
et al. have proposed the first DL-based JSCC algorithm for

wireless image transmission (DeepJSCC) [5] which leverages
convolutional neural networks (CNNs) to directly map image
pixel values to channel symbols, effectively integrating the
processes of compression and transmission. This was later
extended by Kurka et al. who proposed DeepJSCC-I [6] and
DeepJSCC-f [7], which adapt the original DeepJSCC model
to sequential and feedback-based transmission scenarios, re-
spectively. These methods showed improved performance in
low channel SNR and limited bandwidth conditions. Yang et
al. [8] further advanced the field by integrating DeepJSCC
with Orthogonal Frequency Division Multiplexing (OFDM)
for multipath fading channels, enhancing robustness against
signal degradation in complex transmission environments.

Despite their advantages, most of DL-based JSCC algo-
rithms in the literature face several challenges that hinder
practical adoption. The over-parameterized nature of CNNs
deployed to realise the encoding and decoding functions
results in high computational costs and significant storage
requirements. This, combined with the fact that DL-based
JSCC models are often trained for specific channel conditions
and, thus, necessitate multiple models for different scenarios,
renders them impractical for real-world applications. In this
context, rate- and SNR-adaptive JSCC schemes have emerged
as a key area of research [9]. These approaches aim to dy-
namically adjust the encoding rate based on available channel
bandwidth and varying SNR conditions, thereby improving the
adaptability and efficiency of DL-based JSCC algorithms. The
authors in [10] have introduced attention mechanisms into the
DL-based JSCC algorithm to achieve optimal encoding over
a range of channel SNR values with a single model. Ding et
al. [11] have introduced SNR-adaptive JSCC algorithm, which
dynamically adjusts to different SNR levels without requiring
multiple pre-trained models. The authors in [12], [13] achieve
rate adaptivity by using a policy network which selects the
most important features to be transmitted over the channel
based on feature characteristics. However, the challenge of
reducing the model size and computational complexity without
sacrificing performance persists. Techniques such as low-rank
decomposition, particularly Tensor-Train (TT) decomposition
[14], [15], explored to mitigate these issues by compressing
the neural network parameters, thus making the models more
suitable for deployment on resource-constrained devices.

In our previous work [16], we have demonstrated that
the integration of compressed sensing (CS) [17] into JSCC
algorithm can significantly improve the performance. Specif-



Fig. 1. Key components of the system model.

ically, we have introduced an CS-based sampling module,
which leverages the sparsity of natural images and reduces
the amount of input information prior to feature extraction
and encoding by a CNN-based encoder. The addition of the
CS module facilitates subsequent feature extraction modules
to learn and encode features with high semantic content.

In this paper, we capitalise on the success of our CS-
based JSCC algorithm and propose a novel rate-adaptive
JSCC scheme, termed RACS-JSCC, that employs a deep
block-based CS technique, designed to dynamically adjust the
encoding rate, based on the available channel bandwidth and
the statistics of the input images. Unlike existing works, the
encoding rate is selected using both local/global statistics of
the input signal and the channel state information prior to
feature extraction. This eliminates the learning of redundant
features that are never transmitted and enables the encoding
of the input signal at an optimal rate. By training a DL-
based JSCC encoder-decoder pair to handle multiple rates and
channel conditions, our method not only reduces the need for
multiple models but also enhances practical applicability in
diverse communication environments.

II. SYSTEM MODEL

Consider a point-to-point image transmission system illus-
trated in Fig. 1. The encoder encodes an input image of
dimensions H × W × C, where H is the height, W is the
width, and C is the number of channels, represented as a
vector x ∈ Rn with n = H ×W × C. The encoded image is
then transmitted over a wireless communication channel and
reconstructed at the decoder.

The joint source-channel encoder comprises two parts: a
sampling rate selection network and an encoding network.
The optimal sampling rate is chosen based on the channel
state information (CSI), which is estimated at the decoder
and fed back in the form of the channel SNR, and the
input image statistics. Subsequently, the encoder, represented
by the encoding function fθ : Rn → Ck, maps the input
image x to complex-valued channel input symbols z ∈ Ck.
Mathematically, this operation is:

z = fθ(x) ∈ Ck (1)

where k denotes the number of encoded symbols, θ denotes
the encoder parameters, and C is the set of complex numbers.

The wireless communication channel introduces noise and
distortion to the encoded symbols z. In this work, we consider
an additive white Gaussian noise (AWGN) channel model,
where the channel function η : Ck → Ck is represented as:

ẑ = η(z) = z+w. (2)

Here, w ∈ Ck represents i.i.d samples with a circularly
symmetric complex Gaussian distribution CN (0, σ2I), where
σ2 denotes the noise power.

The noisy symbols are decoded at the decoder which
comprises three networks: the decoding network, the initial
reconstruction network, and the deep reconstruction network.
The decoding function gφ maps the received symbols ẑ back
to an intermediate compressed representation x̃:

x̃ = gφ(ẑ) = gφ(η(fθ(x))) (3)

The initial reconstruction network produces an initial estimate
of the transmitted image from x̃:

x̂init = hψ(x̃) (4)

where hψ represents the initial reconstruction function param-
eterized by ψ. Finally, the deep reconstruction step employs a
deep learning-based approach to enhance x̂init further, leverag-
ing the advantages of compressed sensing and deep learning
techniques. This step aims to refine the initial estimate x̂init
into the final reconstructed image:

x̂ = dχ(x̂init) (5)

where dχ is the deep reconstruction function parameterized by
χ.

III. PROPOSED RACS-JSCC
Our proposed RACS-JSCC framework (Fig. 2) introduces

a strategy to optimize the image transmission process by dy-
namically adjusting the sampling rate based on image content
and transmission channel conditions. Our adaptive approach
ensures efficient use of bandwidth while maintaining high
image quality.

A. Encoder Design
The overall architecture of the RACS-JSCC encoder is

shown in Fig. 2. The encoding process begins by partitioning
the image into non-overlapping blocks of size B × B × C,
where C represents the number of colour channels and B
denotes the block size. The image blocks are then inputted into
the sampling rate selection module where both global and local
features of each image block are calculated. The sampling
rate is defined as the ratio of the number of compressed
measurements generated by the BCS module over the total
number of pixels in the input block. Both the extracted features
and the SNR of the communication channel are then used to
determine the sampling rate for each image block. Once the
optimal rate for the block is selected, the block is compressed
and encoded by the corresponding branch of the encoder.

The sampling rate selection module utilizes a CNN archi-
tecture to extract a variety of global and local features from the



Fig. 2. Architecture of the proposed encoder.

Fig. 3. Architecture of the sampling rate selection module.

input image such as spatial frequency content, overall contrast,
edges and local texture variations. This is then followed by
a combination of fully connected layers and attention mech-
anisms which combine the image features and the channel
state information to determine the optimal sampling rate for
each block. Specifically, the sampling rate selection process
involves the following key steps:
• Feature fusion: Global and local features are combined to

form a comprehensive feature representation for each image
block. This fusion captures both the broader context and fine
details necessary for optimal sampling.

• Attention mechanisms: Attention layers dynamically weigh
the importance of different features, allowing the model
to focus on the most relevant aspects when deciding the
sampling rate for each block. This ensures that critical
regions are sampled more finely.

• Rate decision: The module computes a sampling rate R for
each block based on the fused features and attention weights,
as well as the channel SNR. The rate is chosen to balance the
trade-off between compression efficiency and image quality,
taking into account the current channel conditions and the
block’s importance.
The CNN used for feature extraction consists of several con-

volutional and pooling layers, followed by batch normalization
and activation functions to capture and process the image
features effectively. Attention mechanisms are implemented
using multi-head self-attention layers that provide a robust
method for focusing on different parts of the feature space.
The architecture details of this module are shown in Fig. 3.

The rate selection process involves directing each block to
one of three sampling modules with high, medium and low
sampling rate (Fig. 2). The high-rate module samples input

blocks at high rate when the blocks contain critical details
or have high importance based on the extracted features, and
when the channel conditions are good (i.e., high SNR). Con-
versely, the low-rate sampling module samples input blocks
at lower sampling rates when image blocks have few details
maximizing compression without significantly affecting per-
ceived image quality, or when the channel noise is high and
higher resilience against transmission errors is required at the
expense of compression.

Once the sampling rate decision is made, the image blocks
are processed through their respective compressing modules.
Each module compresses the image blocks according to the
sampling rates defined in the previous stage. A BCS sampling
network, outlined in [18], generates compressed measurements
using a sampling matrix φB with dimensions nB×CB2. The
sampling process of the j-th block can be mathematically
expressed as yj = φBx

j , meaning that each row of the
measurement matrix φB acts as a filter. To implement the
described sampling process using a neural network module, a
convolutional layer is employed, with filter dimensions match-
ing the size of image blocks. For non-overlapping sampling,
the convolutional layer adopts a stride of B × B. No biases
or activation functions are used. In essence, the output is nB
feature maps, with each column of output encapsulating nB
measurements originating from an image block. The learning
process involves optimizing the sampling matrix alongside
other network parameters through end-to-end training, as
detailed in subsequent sections.

Following the sampling network, data flow proceeds through
a series of convolution layers, PReLU activation functions,
and a Generalized Divisive Normalization (GDN) layer which
constitute the encoding structure. These layers, except for the
power normalization layer, are organized into five modules.
Each of the first four modules comprises a convolution layer, a
GDN layer, and a PReLU layer, while the fifth module consists
of only a convolution layer and a GDN layer. This sequence of
convolution layers, shown in Fig. 2, extracts essential features
from the compressed image, which are then combined to pro-
duce the channel input samples. The incorporation of nonlinear
activation functions, such as PReLU, plays a crucial role in
learning a nonlinear mapping from the source signal space
to the coded space, enabling the network to capture complex
relationships within the data. Also, the GDN layer employs
local divisive normalization, which is highly effective for tasks
like image compression by capturing statistical dependencies



Fig. 4. Architecture of the proposed decoder

within the image. The details of the implementation of these
layers can be found in [16].

After the image blocks are compressed and encoded, they
are concatenated into a single vector for transmission over
the channel. To ensure that the decoder can correctly identify
and reconstruct each part of the transmitted vector, each
encoder output is labeled based on its respective sampling
rate. We employ three distinct labels corresponding to the
three different sampling rates: high, medium, and low. These
labels are appended to the encoded outputs, thus providing
the decoder with the necessary information to identify the
sampling rates used for each block. This enables the decoder
to apply the appropriate reconstruction algorithm, ensuring
accurate image reconstruction.

As a final step, the output of the encoder, which is a vector
comprised of compressed encoded image blocks, is subjected
to a normalization process as follows:

z =
√
kP

z̃√
z̃∗z̃

(6)

where z̃ is the vector of concatenated encoded blocks and z̃∗ is
the conjugate transpose of z̃. The above normalization ensures
that the channel input z satisfies the average transmit power
constraint P . After encoding, the joint source-channel coded
sequence is transmitted over the communication channel by
directly sending the real and imaginary parts of the channel
input samples via the I and Q components of the transmitted
signal. The channel introduces random corruption to the trans-
mitted symbols. To optimize the end-to-end wireless image
transmission system, the communication channel is included
in the architecture as a non-trainable layer, represented by the
transfer function in Eq. (2).

B. Decoder Design

As shown in Fig. 4, the first decoding step involves reversing
the vectorization process performed during encoding. This
requires identifying and separating each encoded sub-vector
based on the labels attached during the encoding phase. These
labels, which indicate the sampling rates used for each sub-
vector, guide the decoder in directing each sub-vector to the
appropriate decoding module. The decoder processes each sub-
vector according to its label, utilizing different convolutional
layers and deep learning models specifically tailored for the
corresponding sampling rate.

Following the vector separation process, the decoding net-
work consists of three distinct decoders, each of which oper-
ates in three consecutive stages: decoding, initial reconstruc-
tion, and deep reconstruction. In the first stage, the decoder

aims to map the corrupted and compressed complex-valued
signals back to an estimate of the original channel input.
This stage effectively reverses the operations performed during
the encoding process. The received corrupted coded inputs
are processed through a sequence of transpose convolutional
layers, which include Parametric ReLU (PReLU) activation
functions and Inverse Generalized Divisive Normalization
(IGDN). The details of these layers can be found in [16]. These
layers work together to decode the noisy signals and perform
an initial recovery, mitigating the effects of compression and
noise introduced during transmission.

The reconstruction network comprises initial and deep
reconstruction networks, ensuring accurate recovery of the
original image from the CS encoded measurements. For
the initial reconstruction stage, similar to the compressive
sampling process, CB2 convolutional filters with kernel size
1 × 1 × nB and stride 1 × 1 are applied to generate each
initial reconstructed block. Subsequently, a combination layer
is utilized, comprising a reshape function and a concatenation
function, to obtain the initial reconstructed image. This layer
first reshapes each 1 × 1 × CB2 reconstructed vector into
a B × B × C block, followed by concatenating all blocks
to form the initial reconstructed image. This initial phase
allows considering reconstruction of the entire image rather
than individual blocks, enabling comprehensive utilization of
both intra-block and inter-block information for improved
reconstruction. Since there is no activation layer in the initial
reconstruction network, it functions as a linear signal recon-
struction network.

The initial reconstruction is followed by a non-linear re-
construction process which further improves the quality of
the reconstructed image. We use a deep reconstruction sub-
network, which realises the non-linear reconstruction process.
The deep reconstruction sub-network contains m layers where
all the layers but the first and the last ones are of the same
type: d filters of size f×f×d where a filter operates on a f×f
spatial region across d channels (feature maps). The first layer
of the deep reconstruction sub-network operates on the initial
reconstructed output so that it has d filters of size f×f×1. The
last layer, which outputs the final image estimation, consists
of a single filter of size f × f × d. In the experiments, d and
f are set to d = 64 and f = 3. Furthermore, ReLU is utilized
as an activation function after each convolution layer in the
deep reconstruction sub-network.

C. Loss Function
The proposed encoder and decoder networks are optimized

jointly in an end-to-end manner. Given the input image x, the
goal is to obtain a highly compressed encoded measurement



Fig. 5. CIFAR-10 dataset: performance of different methods with compression
ratio k/n = 1/6, versus varying channel SNRs over an AWGN channel

with the encoder, and then recover the original input image
x from its noisy version with the decoder network. Since the
encoder, decoder and communication channel form an end-to-
end network, they can be trained jointly. Following most DL-
based methods, the mean square error is adopted as the cost
function of the proposed network. The optimization objective
is formulated as:

min
θ,φ,ψ,χ

1

N

N∑
i=1

∥dχ (hψ (gφ (η (fθ(xi)))))− xi∥22 (7)

where N represents the number of samples or data points in
the dataset, θ is the parameter set of the encoder network,
{φ,ψ, χ} is the set of the parameters of the decoder network,
and dχ (hψ (gφ (η (fθ(xi))))) is the final reconstructed output
x̂. It should be noted that we train the encoder network
and the decoder network jointly, but they can be utilized
independently.

IV. RESULTS

The proposed model is implemented using TensorFlow and
optimized by the Adam algorithm. The performance of the
RACS-JSCC algorithm is evaluated based on the peak signal-
to-noise ratio (PSNR) of the reconstructed images. PSNR is
calculated as the ratio of the peak signal power to the mean
squared error between the original and reconstructed images.
To train the proposed RACS-JSCC architecture, CIFAR-10
and Imagenet datasets are used. Once trained, our model
is tested on CIFAR-10 and Kodak datasets [19], and the
results are compared with state-of-the-art DL-based JSCC
methods, namely DeepJSCC [5] and ADJSCC [10]. To achieve
robustness to varying channel conditions, our model is trained
for SNRs ranging from 0 to 20 dB. This training strategy
ensures that the model is exposed to a wide spectrum of noise
conditions, enabling it to perform effectively under different
scenarios eliminating the need for training a separate model
for each SNR value. During each training epoch, the model
randomly samples a batch of data with varying SNR levels.
This approach allows the model to generalize better across
different channel conditions, rather than being optimized for
a specific SNR regime.

Fig. 6. Kodak dataset: performance of different methods with compression
ratio k/n = 1/6, versus varying channel SNRs over an AWGN channel

It is worth noting that both DeepJSCC and ADJSCC are
designed to operate for a fixed compression ratio. Thus,
the number of channel input symbols for both benchmark
algorithms is always exactly k in all experiments. In contrast,
our proposed RACS-JSCC algorithm is rate-adaptive. Hence,
for comparison purposes, we allow our algorithm to generate
at most k channel input symbols, meaning that in practice due
to the adaptive BCS sampling, the number of actual channel
input symbols may be less than k.

A. Evaluation on CIFAR-10 Dataset

The training dataset consists of 60, 000 CIFAR-10 images,
each with dimensions of 32 × 32 × 3, alongside randomly
generated realizations of the communication channel. To eval-
uate the performance of our algorithm, we test on a separate
set of 10, 000 images from the CIFAR-10 dataset, distinct
from those used for training. Initially, a learning rate of 10−3

is utilized, which is then reduced to 10−4 after 500, 000
iterations. Training is performed using mini-batches, each con-
taining 64 samples until there is no further improvement of the
loss function observed on the test dataset. In the experiments
for this dataset we set B = 8. It is worth mentioning that
the test set images are not utilized for tuning the network
hyperparameters. To address the impact of channel-induced
randomness during performance evaluation, each image is
transmitted 10 times. The study assesses the performance of
the proposed algorithm for an AWGN channel by varying the
channel SNR.

Fig. 5 illustrates the PSNR of the reconstructed images
plotted against the SNR of the channel for a compression ratio
k/n = 1/6. This evaluation demonstrates the effectiveness
of the proposed RACS-JSCC method when optimized over a
broad SNR range and tested under different channel conditions
(SNRtest). We can see that our algorithm is robust to changes
in channel quality and can operate under varying channel
conditions. Furthermore, the results clearly reveal that the
proposed method consistently outperforms the DeepJSCC and
ADJSCC algorithms. Both the proposed method and ADJSCC
exhibit adaptability to changing SNR levels, as indicated by
their gradual performance degradation with decreasing SNR.



Fig. 7. Reconstruction quality of an exemplary image (PSNR/SSIM) with
different methods under the compression ratio k/n = 1/6 and SNR=4dB

However, RACS-JSCC surpasses ADJSCC, demonstrating bet-
ter performance as SNRtest increases. This highlights the su-
periority of the proposed method in maintaining higher image
quality under varying channel conditions, while transmitting
less or at most the same number of encoded symbols as the
benchmark methods, thus utilizing less bandwidth resources.

B. Evaluation on Kodak Dataset

To demonstrate the validity of our RACS-JSCC algorithm,
we further train our model on the Imagenet dataset. The input
images are cropped to produce patches with dimensions of
224 × 224. These patches are subsequently processed by the
network in batches of 32 samples. In this series of experiments,
we set B = 32. The training process is carried out until
convergence is attained, with the model learning rate fixed
at 10−4. We use SNRtrain values ranging from 0dB to 20dB
to train the model on this dataset. To do this, the dataset
is divided into training and validation groups using a 9 : 1
ratio. The Kodak dataset is then used to evaluate the model,
and throughout this procedure, each image is transmitted
100 times, allowing the performance to be averaged over
several random channel instances. As previously, we consider
transmission over an AWGN channel.

Fig. 6 illustrates the comparison of average PSNR against
SNR for a compression ratio of 1/6 with DeepJSCC and
ADJSCC. The performance depicted in Fig. 6 reveals that our
approach surpasses DeepJSCC and ADJSCC by preserving
essential visual details in compressed images, leading to
enhanced reconstruction quality. These results indicate con-
sistently elevated PSNR values across different SNR levels,
emphasizing improved image fidelity and reduced channel-
induced distortions. The proposed method demonstrates ex-
cellence in delivering superior image quality, even at higher
compression levels and under noisy conditions.

In Fig. 7, a visual comparison of the reconstructed images
is presented, showcasing the performance of RACS-JSCC
trained on Imagenet in AWGN channels, contrasted with
DeepJSCC and ADJSCC. For each reconstruction, both PSNR
and Structural Similarity Index Measure (SSIM) values were
calculated. The results indicate that the proposed method
demonstrates superior visual reconstruction capabilities by
accurately restoring the details of the original image while
achieving a high compression ratio.

V. CONCLUSION

In this paper, we introduced RACS-JSCC, a rate-adaptive
JSCC scheme equipped with deep block-based CS to dynam-
ically adjust encoding rates based on channel bandwidth and

image statistics. This innovative approach optimizes rate se-
lection by utilizing local and global image statistics along with
channel state information, thereby eliminating the learning
of redundant features. By training deep learning-based JSCC
encoder-decoder pairs to manage various rates and channel
conditions, RACS-JSCC reduces the need for multiple mod-
els and enhances its applicability in diverse communication
environments. Our experimental results demonstrate superior
image quality and robustness, confirming the effectiveness
of RACS-JSCC for adaptive and efficient wireless image
transmission.
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