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Abstract: Maritime transport plays a critical role in global logistics. Compared to road transport,
the pace of research and development is much slower for maritime transport. It faces many major
challenges, such as busy ports, long journeys, significant accidents, and greenhouse gas emissions.
The problems have been exacerbated by recent regional conflicts and increasing international shipping
demands. Maritime Autonomous Surface Ships (MASSs) are widely regarded as a promising solution
to addressing maritime transport problems with improved safety and efficiency. With advanced
sensing and path-planning technologies, MASSs can autonomously understand environments and
navigate without human intervention. However, the complex traffic and water conditions and the
corner cases are large barriers in the way of MASSs being practically deployed. In this paper, to
address the above issues, we investigated the application of Large Language Models (LLMs), which
have demonstrated strong generalization abilities. Given the substantial computational demands of
LLMs, we propose a framework for LLM-assisted navigation in connected MASSs. In this framework,
LLMs are deployed onshore or in remote clouds, to facilitate navigation and provide guidance
services for MASSs. Additionally, certain large oceangoing vessels can deploy LLMs locally, to
obtain real-time navigation recommendations. To the best of our knowledge, this is the first attempt
to apply LLMs to assist with ship navigation. Specifically, MASSs transmit assistance requests to
LLMs, which then process these requests and return assistance guidance. A crucial aspect, which
has not been investigated in the literature, of this safety-critical LLM-assisted guidance system is
the knowledge and safety performance of the LLMs, in regard to ship handling, navigation rules,
and skills. To assess LLMs’ knowledge of navigation rules and their qualifications for navigation
assistance systems, we designed and conducted navigation theory tests for LLMs, which consisted of
more than 1500 multiple-choice questions. These questions were similar to the official theory exams
that are used to award the Officer Of the Watch (OOW) certificate based on the Standards of Training,
Certification, and Watchkeeping (STCW) for Seafarers. A wide range of LLMs were tested, which
included commercial ones from OpenAI and Baidu and an open-source one called ChatGLM, from
Tsinghua. Our experimental results indicated that among all the tested LLMs, only GPT-4o passed
the tests, with an accuracy of 86%. This suggests that, while the current LLMs possess significant
potential in regard to navigation and guidance systems for connected MASSs, further improvements
are needed.

Keywords: maritime autonomous surface ships; large language model; ship-handling theory test;
mobile edge computing; mobile cloud computing
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1. Introduction

Maritime transport plays a critical role in the global economy and in the movement
of goods. It is the backbone of international trade, enabling the efficient and cost-effective
transportation of vast quantities of products across the world’s oceans [1]. The United
Nations Conference on Trade and Development expects maritime trade volume to grow by
more than 3% during the 2024–2028 period [2]. However, maritime transport faces several
significant challenges, including busy ports, long journeys, major accidents, and greenhouse
gas emissions. Additionally, current regional conflicts and escalating international tensions
have intensified international shipping demands, thereby exacerbating the issues faced by
maritime transport. For example, oil shipments reached record distances in 2022, driven
by the devastation of the war in Ukraine [3]. Similarly, grain shipments traveled farther in
2023 than in any previous year, as grain importers were forced to seek alternative exporters,
such as the United States and Brazil, necessitating long-distance transportation.

The widespread application of intelligent technologies in the shipping industry, partic-
ularly the development of Maritime Autonomous Surface Ships (MASSs), offers promising
solutions to these challenges. MASSs can enhance the efficiency and safety of maritime
transport by optimizing port operations, reducing travel times, minimizing human error,
and lowering emissions [4]. In 2021, the global autonomous ships market had a revenue
share of over 89 million USD, and it is projected to grow at a compound annual growth rate
of 6.81% through 2031 [5]. As the shipping industry continues to evolve, the integration of
autonomous technology stands to address the urgent and complex problems of maritime
transport, paving the way for a more resilient and sustainable future [6].

MASSs integrate a variety of advanced technologies, to achieve autonomous navi-
gation and operation. Their core technologies include navigation systems (such as GPS,
inertial navigation systems, and electronic chart display and information systems), sensing
and recognition technologies (such as radar, LiDAR, and computer vision), communication
systems (such as satellite communication and radio communication), data processing and
artificial intelligence (such as edge-computing and machine-learning algorithms), and
autonomous control systems (such as rudder and propulsion system control and auto-
matic docking systems) [7,8]. These technologies work in concert, to enable MASSs to
autonomously navigate under various sea conditions, perform complex navigation tasks,
and enhance efficiency, safety, and environmental performance. The extensive application
of MASSs in the shipping industry is poised to reduce the involvement of human operators,
thereby significantly mitigating the likelihood of human-related maritime accidents [9].

Autonomous navigation technology is the critical core that determines whether MASSs
can safely navigate without human intervention. This technology involves the use of
sensors, artificial-intelligence algorithms, and automatic control systems to enable a ship
to autonomously perceive its environment, plan routes, and execute navigation tasks.
Currently, the predominance of deep learning-based autonomous-navigation algorithms
is observable [8]. For example, Wright et al. [10] explored the use of deep learning to
integrate multiple sensor modalities into autonomous-navigation algorithms for ships,
allowing for decision making without human supervision. Han et al. [11] developed
deep-learning algorithms for multiple target detection and tracking using sensor fusion to
enhance autonomous navigation and collision avoidance for the Unmanned Surface Vehicle
(USV) Aragon. However, complex traffic and water conditions, as well as various extreme
situations and corner cases, pose significant challenges to deep learning-based autonomous
navigation technology. This challenge is known in the deep learning field as the “long tail”.
The “long tail” refers to the vast number of rare or outlier events that occur infrequently
but can significantly impact the performance of a model. These rare scenarios are difficult
for the model to handle effectively because the training data often does not adequately
cover such infrequent events, leading to issues with generalization and reliability. When
these long-tail cases occur, the autonomous navigation system may struggle to respond
correctly, potentially resulting in incidents, such as collisions or groundings, and causing
significant financial losses.
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Recently, the application of LLMs in autonomous driving has provided inspiration for
addressing the aforementioned challenges. These models understand the driving environ-
ment in a human-like manner and utilize their reasoning, interpretation, and memorization
capabilities to effectively solve long-tail issues. For example, Sha et al. [12] employed
LLMs as decision-making components, to enhance autonomous driving systems, particu-
larly in complex scenarios requiring human common-sense understanding. Fu et al. [13]
investigated the use of LLMs to understand the driving environment in a human-like man-
ner, emphasizing their ability to solve long-tail issues through reasoning, interpretation,
and memorization. Their extensive experiments demonstrated that LLMs exhibit impres-
sive capabilities in handling long-tailed cases, providing valuable insights for developing
human-like autonomous driving systems.

Given the notable applications of LLMs in the field of autonomous driving, contempla-
tion of the application of these models within the domain of autonomous ship navigation
was inevitable. However, there were two important challenges. Firstly, LLMs necessitate
an increased number of parameters, to encapsulate complex patterns within training data,
thereby enhancing performance. This requirement results in considerable computational
and memory demands. Secondly, the prominence of safety in autonomous ship naviga-
tion systems cannot be overstated, with safety expectations surpassing those of human
navigation markedly. Despite OOWs being mandated to clear theoretical and practical
examinations before certification, LLMs had yet to be subjected to stringent evaluations
regarding their automatic navigation capabilities.

To overcome the aforementioned challenges, we investigated a novel method that
incorporates LLMs into remote cloud or shore-based systems, to enhance autonomous
ship navigation. By employing this strategy, connected MASSs send assistance requests
to LLMs. Located onshore or within a remote cloud, the LLMs process these requests
and subsequently generate guidance for the MASSs, as illustrated in Figure 1. We aimed
to evaluate the theoretical knowledge of the LLMs, similar to the assessment of human
OOW. Although practical ship navigation and watchkeeping skills through LLMs are
indispensable, we contend that a theoretical examination is equally significant, considering
its relative simplicity and controllability. Despite the notable achievements of LLMs across
various fields, such as law, education, and economics, the number of reports detailing its
performance in ship-handling theory tests is particularly limited.

Internet

Remote Cloud
LLMs Server

Communication 
Satellite

MASS

Assistant 
Request

Assistant
Guidance: 
Maintain 
distance 

and 
Rescue

An Anomaly 
Was Observed

Onshore 
LLMs Server

Onshore Cellular 
Network

Local LLM

PORT

Figure 1. System framework of LLM-assisted navigation system for MASSs. MASSs may receive
navigation guidance from LLMs deployed in remote clouds or onshore, and some large vessels can
also obtain navigation recommendations from LLMs deployed on board.

In this study, we designed and conducted ship-handling theory tests for 14 LLMs, includ-
ing GPT-3.5-turbo [14], GPT-4 [15], GPT-4o, ERNIE-4.0-8k [16] and Qwen-turbo [17] et al.
Therefore, we developed and implemented ship-handling theory tests comprising over 1500
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questions for several LLMs. These questions were analogous to those in the China official
theory exam required for seafarers to obtain the Standards of STCW OOW certificate. We
evaluated the performance of these LLMs based on accuracy, cost, and processing latency
derived from experimental observations. The experimental results indicated that among
all the LLMs only GPT-4o achieved a test accuracy rate close to 86%, while all the other
models failed the test. In conclusion, although several LLMs showed significant potential for
autonomous ship navigation, their performance requires further enhancement to meet the
stringent demands of safe navigation. Additional training and fine-tuning are likely necessary.
The source code and datasets are available at https://github.com/PeiDashuai/LLMs_Nav,
accessed on 1 July 2024.

2. Existing Work
2.1. Autonomous Ship Navigation System

Autonomous Ship Navigation System refers to an integrated framework of sensors,
control algorithms, and navigation technologies enabling ships to operate and navigate
safely and efficiently without human intervention. Villa et al. [18] investigated the design,
modeling, and implementation challenges of a Guidance, Navigation, and Control (GNC)
architecture for an autonomous ship navigation system in harbor conditions. They devel-
oped a mathematical model validated with field-test data and implemented a line-of-sight
guidance system using LiDAR for obstacle avoidance, with their GNC architecture tested in
both simulation and field scenarios. Han et al. [11] developed algorithms for multiple target
detection and tracking using sensor fusion for the autonomous navigation and collision
avoidance system of the USV Aragon. By integrating radar, LiDAR, and cameras, and
applying automatic ship-detection algorithms, they achieved persistent and reliable target
tracking and designed collision avoidance maneuvers in compliance with the International
Regulations for Preventing Collisions at Sea (COLREGs) [19], with validation through field
experiments. Kufoalor et al. [20] conducted sea trials for an Autonomous Surface Vehicle
(ASV) equipped with a Model Predictive Control (MPC)-based collision avoidance system
in the North Sea, to verify compliance with the COLREGs. The trials demonstrated that the
MPC approach effectively finds safe solutions in challenging scenarios, often meeting the
expectations of experienced mariners, indicating the higher-than-expected technical matu-
rity of autonomous vessels. Kim et al. [21] developed autonomous navigation capabilities
for small cruise boats by converting a cruise boat into an ASV with various sensors and ac-
tuators. They designed and implemented navigation, object-detection, path-planning, and
control algorithms, and they validated the system’s performance through field experiments
in a canal and surrounding waters.

2.2. LLMs-Based Autonomous Driving

Many studies have evaluated the potential and challenges of LLMs in autonomous
driving. Cui et al. [22] proposed a novel framework for LLMs to enhance decision making
in autonomous vehicles by integrating their language and reasoning capabilities. Their
research demonstrated that LLMs can influence driving behavior through real-time per-
sonalized tasks and ongoing verbal feedback, improving safety and effectiveness in au-
tonomous driving. Sha et al. [12] employed LLMs as decision-making components, to
enhance autonomous driving systems, particularly in complex scenarios requiring human
common-sense understanding. Their approach integrated LLM decisions with low-level
controllers, demonstrating superior performance and improved handling of complex driv-
ing behaviors through experiments, highlighting the potential of LLMs for advancing
autonomous driving capabilities. Duan et al. [23] proposed a hybrid end-to-end learning
framework for autonomous driving by integrating LLMs with visual and LiDAR sensory in-
put, aiming to correct mistakes and handle complex scenarios. Their methodology achieved
a driving score of 49.21% and a route completion rate of 91.34% in offline evaluations,
comparable to state-of-the-art driving models. Huang et al. [24] explored the application of
LLM-based voice assistants, such as ChatGPT-4, to mitigate passive driving fatigue and

https://github.com/PeiDashuai/LLMs_Nav
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enhanced driving performance and safety. Their empirical study, using the voice assis-
tant “Driver Mate”, revealed that low-complexity, high-frequency conversations improve
driver alertness and acceptance, while low-complexity, low-frequency interactions enhance
driving performance.

2.3. Evaluating LLMs with Multiple-Choice Questions

Numerous studies employ multiple-choice questions (MCQs) to evaluate the capa-
bilities of LLMs. It has been proved that the use of MCQs is one of the effective means
by which to evaluate the capability of LLMs [25,26]. Zhang et al. [27] introduced Safe-
tyBench, a comprehensive benchmark designed to evaluate the safety of LLMs, using
11,435 diverse multiple-choice questions across seven safety concern categories. Their
extensive tests on 25 popular Chinese and English LLMs revealed significant performance
advantages for GPT-4, highlighting the need for further safety improvements in current
models. Huang et al. [28] presented C-Eval, the first comprehensive Chinese evaluation
suite designed to assess the advanced knowledge and reasoning abilities of LLMs, using
multiple-choice questions across four difficulty levels and 52 diverse disciplines. Their com-
prehensive evaluation revealed that only GPT-4 achieved an average accuracy above 60%,
highlighting the need for further improvement in current LLMs. Wu et al. [29] investigated
the medical knowledge capabilities of multiple LLMs by comparing their performance on
nephrology MCQs from the Nephrology Self-Assessment Program. The study revealed
significant performance differences, with open-source LLMs scoring between 17.1% and
30.6% correct answers, while the proprietary models GPT-4 and Claude 2 achieved 73.3%
and 54.4%, respectively, highlighting notable gaps in zero-shot reasoning ability among
LLMs. Xu et al. [30] evaluated the performance of two state-of-the-art LLMs, ChatGPT
and Microsoft Bing AI Chat, on a dataset of 200 high school chemistry MCQs, to assess
their educational potential and challenges. The study found that both LLMs struggled
with application- and high-application-level questions, performing worse than Vietnamese
students, indicating a need for further development to improve their capabilities.

3. System Framework of LLM-Assisted Navigation for MASSs

For this study, we innovatively constructed a framework that uniquely integrates the
power of LLMs, to enhance the performance of MASSs navigation systems. To the best of
our knowledge, this is the first attempt to apply LLMs to assist in ship navigation, pioneer-
ing this field. This framework allows MASSs to intelligently interact with LLMs located
in remote clouds or onshore bases via satellite links or advanced 5G mobile networks. It
also supports MASSs in consulting LLMs deployed on the ship directly for immediate
navigation strategies. For example, MASSs navigating crowded inland waterways or port
areas can communicate with land-based LLMs through nearby cellular network access
points. In contrast, ships traversing vast open seas can seek complex navigation decisions
via satellite communications with LLM servers deployed in remote clouds. Furthermore,
large freight or luxury cruise ships can deploy LLMs directly on board, to achieve real-time,
efficient navigation recommendations. The maneuvering inertia of ships is substantial,
and collision avoidance actions typically begin when two ships are several kilometers or
even tens of kilometers apart. This provides sufficient time for communication and course
adjustments within the radar monitoring range; thus, autonomous ship navigation does not
require extremely high LLM response speeds. Standard cellular or satellite communication
speeds are entirely sufficient to support remote LLM response rates.

To meet the needs of ship navigation, we will meticulously customize and fine-tune
existing top-tier LLM models, such as GPT-4o, Meta-Llama-3-70B, and Qwen-turbo. These
models were originally built upon vast and diverse datasets, with a deep knowledge base
and excellent generalization capabilities. After specialized tuning, these LLMs deeply un-
derstand maritime domain knowledge and can be precisely applied in practice, providing
reliable and flexible auxiliary decision-making services for MASSs.
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The integration of LLM technology in MASSs systems heralds a new phase for au-
tonomous ship navigation applications, encompassing but not limited to real-time exchange
of vessel status, environmental perception, and navigation intent information within mar-
itime areas through Automatic Identification Systems (AISs), Very High Frequency (VHF),
and cellular network technologies. This promotes collaborative environmental perception,
multi-ship cooperative navigation, automatic fleet formation navigation, and other ad-
vanced functions. This advancement not only significantly enhances navigation efficiency
and safety but also lays a solid foundation for future intelligent and networked maritime
traffic management.

Figure 1 illustrates a vivid example of how an LLM can be utilized to assist navigation.
In the scenario, a sudden collision accident occurs between a passenger ship and another
vessel in a specific water area, causing the passenger ship to capsize. At this moment, a
MASS equipped with an LLM-assisted navigation system is passing by. Its advanced sensing
system immediately detects the abnormal situation and automatically initiates a navigation
assistance request to the LLM deployed on a remote cloud server. Upon receiving the signal,
the LLM server rapidly analyzes the situation and guides the MASS to take action, such that it
maintains a safe navigation distance while urgently deploying lifeboats and related rescue
equipment, to quickly participate in the rescue of people in the water.

4. Research Methodology
4.1. OOW Theory Examination

The OOW is responsible for watchkeeping, navigation, communication, log-keeping,
and emergency responses, all of which are critical for ensuring safe navigation. This role
is assigned to a sufficiently qualified deck officer and involves various duties, including
ensuring the ship operates in accordance with regulations and company procedures, main-
taining the ship’s equipment and machinery, and ensuring the crew effectively carries out
their duties. To apply for the OOW role, candidates must meet specific eligibility criteria
and possess the required certifications. The Standards of Training, Certification, and Watch-
keeping (STCW) Training Convention for seafarers [31] outlines general requirements and
certifications by rank. For OOW, the Convention specifies requirements concerning age,
seagoing service, bridge watchkeeping, radio duties, and education and training.

Typically, after completing academic studies and gaining the necessary seafaring ex-
perience, a crew member must pass a written and practical assessment, to obtain an OOW
license. The specific assessments may vary by country and the type of license sought. In
China, the OOW examination encompasses core subjects, such as maritime English, ship
steering and collision avoidance, navigation, ship structure and cargo handling, and ship
management. The exam caters to various tonnage levels (e.g., 500 gross tons and above,
3000 gross tons and above, less than 500 gross tons) and navigational areas (unlimited and
coastal) for positions like captain, chief mate, second mate, and third mate. The total score
and passing score vary depending on the subject and the ship’s tonnage, ensuring that OOWs
possess the professional knowledge and skills necessary to fulfill their duties. Each subject
is scored out of 100 points and primarily consists of approximately 160 MCQs. The passing
score is 80 points for ship steering and collision avoidance, while it is 70 points for the other
subjects. This paper primarily considered the subjects directly related to ship handling.

4.2. Test Datasets

The competency tables outlined in the STCW Convention detail the content of training
programs for seafarers, the criteria for evaluating competencies, and the standards of compe-
tence that students must demonstrate. Relevant authorities have developed test questions
based on the STCW Convention and practical maritime experience. Due to the unavailability
of official questions, we collected test questions from Chinese public websites. The questions
were meticulously selected and processed, to ensure their relevance and quality. After re-
moving duplicates, we compiled 706 Chinese and 814 English MCQs. Each MCQ included
multiple answer options, with only one correct answer. The Chinese MCQs and English MCQs
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we collected were not different language versions of the same questions. They contained
different questions and were sourced from different websites. In Figure 2, we present two
examples of the MCQs. However, we did not find any test questions that included traffic
scenario videos or images, which are crucial components of theoretical tests. Future iterations
will include multimedia questions, to capture a broader range of navigational scenarios. All
the data we collected can be found at our open-source project address.

Chinese MCQ ExampleEnglish MCQ Example

Question 1:
在追越过程中，被追越船的协助避让行动为()。

Options:
A. 只要航道情况和周围环境允许，就应同意追越船追越
B. 尽可能让出部分航道，适当减速，减少两船并行时间，使追越船迅速

通过
C. 前方发现情况及时通知追越船的注意
D. 以上都是

Correct Answer: D

Question 1:
When approaching a traffic separation scheme, a vessel shall:

Options:
A. do so at right angles to the general direction of traffic flow
B. seek permission to do so from all other vessel in the vicinity
C. do so only in a case of an emergency or to engage in fishing

within the zone
D. do so at as small an angle as possible as nearly as practical

Correct Answer: D

Figure 2. Two examples of MCQs for MASSs asking LLMs.

4.3. Prompt Design

For this section, we designed the prompts used in our experiments, based on
prompt engineering.

4.3.1. Instructing the LLMs to Role-Play and Demonstrate Specific Skills

Instead of having the model directly answer our MCQs, we instructed it to assume
the role of an experienced OOW, to respond to our inquiries. Role-playing is considered
effective in prompt engineering, as it helps set the overall behavior of the assistant. This
enables the model to understand user requirements and provide appropriate responses
based on those needs. On the other hand, clearly specifying the skills that the model should
possess can significantly enhance its performance. Precisely describing the required skills
not only guides the LLMs to generate more relevant and high-quality responses but also
improves the accuracy and effectiveness of tasks. We demonstrated the effectiveness of this
approach in improving accuracy through continuous iterative optimization of prompts.

4.3.2. Providing Example MCQs and Answers

Providing examples to LLMs can be considered a form of “few-shot learning”, enabling
the models to utilize these demonstrations for analogical reasoning when generating responses,
thereby improving accuracy. Including examples of questions and answers in the prompt also
helps establish the model’s expected behavior, allowing it to understand the question format
and response style, thus enhancing accuracy and consistency. Furthermore, these examples
reduce ambiguity in the model’s interpretation, making it more precise in identifying patterns
and the logic of correct answers. Overall, this approach ensures that LLMs not only predict
possible answers based on the questions themselves but also understand the structure and
logic through provided examples, leading to more accurate responses. This method is crucial
for improving the accuracy and reliability of LLMs in handling MCQs.

4.3.3. Designing Structured Prompts

Designing structured prompts is crucial for querying LLMs, as it ensures clarity,
consistency, focus, and improved accuracy in the responses. In our design, we structured
the prompts to include five parts: role, skills, action, output format and constraints, and
example. For the role, we instructed the LLMs to role-play as an experienced OOW. In
the skills section, we required the LLMs to excel in ship handling, to be well-versed in the
STCW Convention, to have extensive experience in theoretical exams, and to be proficient
in selecting the most accurate option from multiple candidates based on the question’s
intent. For the action part, we asked the LLMs to answer our MCQs.

Regarding output format and constraints, we instructed the LLMs to output only the
option letter of the MCQs. Finally, we provided an MCQ and answer as an example in the
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prompts. We have provided examples of prompts that we designed in both Chinese and
English, as shown in Figure 3. They convey the same meaning, but are written in different
languages, to facilitate testing different LLMs.

Chinese Prompt ExampleEnglish Prompt Example

# Role
你是⼀个经验丰富的船舶值班驾驶员
# Skills
• 拥有丰富的船舶驾驶经验，并熟知海员培训、发证和值班标准国际公约

公约
• 具有丰富的参加理论考试的经验
• 擅⻓根据题⽬的含义从多个候选答案中选出最正确的⼀个选项
# Action
我需要你去回答⼀些船舶操纵理论和经验⽅⾯的选择题
# Output Format and Constrains
这些题⽬有多个候选答案，但是仅有⼀个答案是正确的，你的回答只需要
包含候选答案的⾸字⺟，例如A或B，不要增加任何额外的内容或标点符号，
仅需要输出候选答案的⾸字⺟。
# Example
Question:
在能⻅度受限的情况下航⾏时，如果你听到船⾸前⽅有雾笛声，你需要减速
⾄?
Options:
A、与当前情况相适应的中等速度
B、能让船舶保持航向的最低速度
C、如果当前速度较⾼，则减半
D、与安全停⻋距离相对应的安全速度
<Assistant answer> B

# Role
You are an experienced Officer of the Watch (OOW).
# Skills
• Extensive experience in ship navigation and is familiar with the

International Convention on Standards of Training, Certification, and
Watchkeeping for Seafarers Convention

• Proficient in taking theoretical exams
• Skilled at selecting the most accurate option from multiple choices

based on the question's meaning
# Action
Answer multiple-choice questions about ship handling theory and
experience.
# Output Format and Constraints
These questions have multiple candidate answers, but only one answer
is correct. Your response should only include the initial letter of the
chosen option, such as A or B. Do not add any additional content or
punctuation marks; only output the initial letter of the chosen option.
# Example
Question:
You are making way in restricted visibility when you hear the sound of a
fog signal forward of your beam. You are required to reduce speed to:
Options:
A. a moderate speed commensurate with conditions
B. the minimum where your vessel can be kept on course
C. half speed if proceeding at a higher speed
D. a safe speed in relation stopping distance
<Assistant answer> B

Figure 3. Two examples of prompts.

4.4. LLMs Used in Theory Test

There are several powerful LLMs from leading companies, such as Alibaba, Google,
Baidu, and OpenAI, et al. Several LLMs were chosen for the ship operation theory test, which
were among the best-performing ones. The fourteen chosen models have different capabilities
and price points. ERNIE-4.0-8k and Qwen-turbo are two leading LLMs developed by Baidu
and Alibaba, respectively. GPT-3.5-turbo, GPT-4, and GPT-4o are LLMs developed by the well-
known OpenAI. GLM-3-turbo, GLM-4, and GLM-4-Air [15,32] are jointly open-sourced by
Zhipu AI and the Tsinghua University. The Qianfan-Chinese-Llama-2 series models were fine-
tuned by Baidu’s Qianfan team based on the open-source Llama 2 model from Meta AI [33,34],
optimizing its support for Chinese. Gemma-7B [35] is an open-source LLM developed by
Google, with 7 billion parameters. The Meta-Llama-3 [36] series models were developed by
Meta AI. Table 1 shows information about the employed LLMs.

Table 1. Information about the LLMs used in the experiment.

Model Name
Prices ($)/1 k Tokens

Model Size Version Creators
Input Output

Qwen-turbo 0.0145 0.0435 undisclosed \ Alibaba Cloud

ERNIE-4.0-8k 0.871 0.871 undisclosed 0329 Baidu

GPT-3.5-turbo 0.0005 0.0015 undisclosed \

Open AICPT-4 0.03 0.06 undisclosed \

GPT-4o 0.005 0.015 undisclosed \

GLM-3-turbo

Open Source

undisclosed \

Tsinghua and ZhipuGLM-4-Air undisclosed \

GLM-4 9B 0520

Qianfan-Chinese-Llama-2-7B 0.029 0.029 7B \

QianfanQianfan-Chinese-Llama-2-13B 0.044 0.044 13B v1

Qianfan-Chinese-Llama-2-70B 0.254 0.254 70B \
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Table 1. Cont.

Model Name
Prices ($)/1 k Tokens

Model Size Version Creators
Input Output

Meta-Llama-3-8B

Open Source

8B Instruct
Meta AI

Meta-Llama-3-70B 70B Instruct

Gemma-7B-it 7B Instruct Google

5. Experiments
5.1. Experiments Settings

Implementation Details. In our experiments, Meta-3-Llama-3-8B and Meta-3-Llama-
3-70B were deployed on a server equipped with an L20 (48GB) GPU, 20 vCPUs of Intel(R)
Xeon(R) Platinum 8457C, and 100 GB of RAM for inference. The testing tasks for the
remaining models, accessed via API, were conducted on a laptop equipped with an i9-
13950HX CPU, Nvidia GeForce RTX 4060 GPU, and 16 GB of RAM. The parameter settings
of all the tested models are shown in Table 2. The temperature parameter determined
whether the output was more random or more predictable. A lower temperature resulted
in a higher probability, leading to a more predictable output. The top_p parameter affected
the diversity of the output text generated by the LLMs; the larger the value, the greater
the diversity of the generated text. For all Chinese MCQs, we tested using both Chinese
prompts and English prompts. For all English MCQs, we tested using only English prompts.
The max_output_tokens parameter specified the maximum number of tokens that the
model could output. The parameters that we do not mention in the table were the default
settings for the LLM creators.

Table 2. The parameter settings of the tested LLMs.

Model Name Temperature Top_p # Max Output Tokens

Qwen-turbo 0.5 0.7 100

ERNIE-4.0-8k 0.5 0.7 100

GPT-3.5-turbo 0 1 100

CPT-4 0 1 100

GPT-4o 0 1 100

GLM-3-turbo 0.5 0.7 100

GLM-4-Air 0.5 0.7 100

GLM-4 0.5 0.7 100

Qianfan-Chinese-Llama-2-7B 0.5 0.7 100

Qianfan-Chinese-Llama-2-13B 0.5 0.7 100

Qianfan-Chinese-Llama-2-70B 0.5 0.7 100

Meta-Llama-3-8B 0.5 0.7 100

Meta-Llama-3-70B 0.5 0.7 100

Gemma-7B-it 0.5 0.7 100

Evaluation Protocols. Considering that we required the tested models to output only
the correct answer option for the MCQs, we used Accuracy as the sole evaluation metric.
Accuracy was defined as the number of correctly answered MAQs by the tested LLM
divided by the total number of tested MCQs.
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5.2. Experimental Results and Discussions

Table 3 presents the experimental results using Chinese prompts to query multiple
LLMs with Chinese Ship Handling and Navigation Theory MCQs. A total of 706 MCQs
were employed, with GPT-4o achieving the best performance, attaining an accuracy of
60.76% and the lowest time consumption. It is important to note that the time reported here
does not refer to the absolute inference time of the LLM, as network latency from API access
can influence the time statistics. In our prompt, we instructed the tested models to output
only the letter corresponding to the correct option, without any additional explanations
or symbols, akin to actual human theoretical tests. However, some models still generated
explanations beyond the letter, resulting in a significant increase in output tokens. This
indicates that certain LLMs need to improve their understanding of prompts. Furthermore,
the variability in accuracy and time consumption among the models highlights differences
in their architectures and training methodologies. For instance, models like GPT-3.5-turbo
and GPT-4o not only provided high accuracy but also demonstrated efficient processing
times, suggesting their robustness in understanding and responding to Chinese prompts.
On the other hand, while models such as Meta-Llama-3-70B and Qianfan-Chinese-Llama-2-
70B exhibited competitive accuracy, their higher time consumption could be attributed to
more complex processing requirements or network-related delays. This suggests a trade-off
between accuracy and computational efficiency that should be considered based on specific
application needs. Additionally, the significant differences in the number of output tokens
across models suggests variations in their adherence to prompt instructions. For example,
Qianfan-Chinese-Llama-2-70B and Meta-Llama-3-70B generated a large number of output
tokens, indicating a propensity to provide additional explanations beyond the required
answer letter. This behavior could be detrimental in scenarios where concise responses
are crucial. Moreover, the models developed by Chinese companies, such as Qwen-turbo
and ERNIE-4.0-8k, demonstrated promising results. Their performance was comparable to
GPT-4o, which achieved the best results.

Table 3. Using Chinese prompts to query multiple LLMs with Chinese ship-handling theory MCQs.

Model # Ques. # Corr. Acc. Time (s)
# Total Tokens

# Input Tokens # Output Tokens

Qwen-turbo 706 423 59.92% 636.6 247,105 739

ERNIE-4.0-8k 706 412 58.36% 2921.65 214,026 6925

GPT-3.5-turbo 706 316 44.76% 415.86 415,338 711

CPT-4 706 389 55.10% 529.42 415,338 733

GPT-4o 706 429 60.76% 339.01 292,675 706

GLM-3-turbo 706 340 48.16% 940.27 239,117 2134

GLM-4-Air 706 352 49.86% 995.76 230,267 2122

GLM-4 706 371 52.55% 1110.49 230,267 2133

Qianfan-Chinese-Llama-2-7B 706 273 38.67% 2520.14 230,108 2,010

Qianfan-Chinese-Llama-2-13B 706 317 44.90% 6994.99 230,108 111,678

Qianfan-Chinese-Llama-2-70B 706 398 56.37% 5510.65 230,108 93,757

Meta-Llama-3-8B 706 283 40.08% 2235.81 230,108 709

Meta-Llama-3-70B 706 313 44.33% 9015.19 230,108 116,630

Gemma-7B-it 706 282 39.94% 2779.97 230,108 30,907

In Table 4, we present the results of using English prompts to test the same set of
Chinese MCQs, providing an evaluation of the impact of language on the accuracy of large
language models.
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Table 4. Using English prompts to query multiple LLMs with Chinese ship-handling theory MCQs.

Model # Ques. # Corr. Acc. Time (s)
# Total Tokens

# Input Tokens # Output Tokens

Qwen-turbo 706 333 47.17% 631.79 232,279 734

ERNIE-4.0-8k 706 398 56.37% 3129.01 218,968 8784

GPT-3.5-turbo 706 315 44.62% 442.89 260,724 713

CPT-4 706 380 53.82% 498.75 260,724 799

GPT-4o 706 435 61.61% 329.97 237,607 706

GLM-3-turbo 706 336 47.59% 1519.96 232,763 2375

GLM-4-Air 706 356 50.42% 1387.82 223,913 2116

GLM-4 706 367 51.98% 1391.58 223,913 2365

Qianfan-Chinese-Llama-2-7B 706 312 44.19% 1980.27 224,460 4461

Qianfan-Chinese-Llama-2-13B 706 337 47.73% 4285.56 224,460 113,071

Qianfan-Chinese-Llama-2-70B 706 396 56.09% 5289.31 224,460 93,379

Meta-Llama-3-8B 706 289 40.93% 1843.25 224,460 706

Meta-Llama-3-70B 706 359 50.85% 8680.55 224,460 116,637

Gemma-7B-it 706 294 41.64% 2,803.91 224,460 31,128

Figure 4 compares two datasets, showing that the nine models developed by Meta,
OpenAI, and Google exhibited a slight advantage when using English prompts over
Chinese prompts. Conversely, the five LLMs developed by Chinese companies, such as
Qwen-turbo, ERNIE-4.0-8k, and ChatGLM, demonstrated better performance with Chinese
prompts. This difference may be attributed to variations in the corpora used by different
companies in training their base models. Additionally, we observed that the number of
parameters in the tested models exhibited a linear relationship with accuracy. As the
number of model parameters increased, accuracy improved. For instance, GPT-4o, with its
higher parameter count, consistently outperformed other models in both scenarios. The
results underscore the significant influence of language on model performance. Models
like GPT-4o and GPT-3.5-turbo demonstrated high adaptability, maintaining robust per-
formance across both English and Chinese prompts, which is essential for applications
requiring multilingual support. However, certain models exhibited a marked preference for
prompts in their native language. For example, Qwen-turbo achieved accuracy of 59.92%
with Chinese prompts but dropped to 47.17% when using English prompts. This suggests
that these models may have been predominantly trained on Chinese corpora, optimizing
their performance for Chinese prompts. Time consumption data reveal that models like
GPT-4o not only provided high accuracy but also demonstrated efficient processing times,
particularly with English prompts. The significant differences in the number of output
tokens generated by the models suggest variations in their adherence to prompt instruc-
tions. While some models, such as Qianfan-Chinese-Llama-2-70B, generated excessive
tokens when using English prompts, indicating the inclusion of unnecessary explanations,
others like GPT-4o adhered strictly to the prompt requirements, thereby enhancing their
overall efficiency.
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Figure 4. Results of testing the same set of Chinese ship-handling theory MCQs using Chinese and
English prompts, respectively.

In Table 5, we present the results of testing 814 English MCQs using English prompts.
These data allowed us to evaluate the performance of LLMs across different languages and
question types. All models showed significant improvements in accuracy when queried
with English prompts. Among them, GPT-4o achieved an outstanding accuracy rate of
over 85%, making it the only LLM likely to pass the test for ship handling, watchkeeping,
and navigation theory. Regarding cross-language adaptability, models developed by Meta,
OpenAI, and Google, such as GPT-4o and GPT-3.5-turbo, exhibited high adaptability across
languages. For instance, GPT-4o maintained high performance across all prompt types,
achieving 86.00% accuracy with English prompts and slightly lower, yet still impressive,
accuracy with Chinese prompts. This adaptability is essential for applications requiring
multilingual support. Chinese LLMs, such as Qwen-turbo and ERNIE-4.0-8k, demonstrated
a strong preference for their native language prompts. Qwen-turbo exhibited a drop in
accuracy from 59.92% with Chinese prompts to 55.41% with English prompts in the English
MCQ scenario. This suggests that these models may be more optimized for their native
language, due to the training corpus. There is a clear linear relationship between the
number of model parameters and accuracy. As observed, models with higher parameter
counts, such as GPT-4o and Meta-Llama-3-70B, consistently outperformed others in both
test scenarios. This indicates that larger models tend to better handle complexity in multiple
languages. The number of output tokens varied significantly across models and prompt
languages. Models such as Qianfan-Chinese-Llama-2-70B and Meta-Llama-3-70B tended
to generate excessive tokens when using English prompts, suggesting a need for better
prompt adherence. Conversely, GPT-4o adhered closely to prompt instructions, boosting
its overall efficiency. While our results show that most models improved their performance
with English prompts, this cannot conclusively demonstrate that LLMs perform better on
English MCQs than on Chinese MCQs. The datasets contain different content, which likely
influences the performance of the models.

Table 5. Using English prompts to query multiple LLMs with English ship-handling theory MCQs.

Model # Ques. # Corr. Acc. Time (s)
# Total Tokens

# Input Tokens # Output Tokens

Qwen-turbo 814 451 55.41% 767.11 244,152 845

ERNIE-4.0-8k 814 549 67.44% 3788.96 237,234 6011

GPT-3.5-turbo 814 467 57.37% 352.25 243,151 832

CPT-4 814 613 75.31% 547.76 243,151 814

GPT-4o 814 700 86.00% 366.41 243,703 814

GLM-3-turbo 814 476 58.48% 1533.61 252,842 2481
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Table 5. Cont.

Model # Ques. # Corr. Acc. Time (s)
# Total Tokens

# Input Tokens # Output Tokens

GLM-4-Air 814 531 65.23% 1250.09 239,865 2442

GLM-4 814 553 67.94% 1523.23 239,878 2443

Qianfan-Chinese-Llama-2-7B 814 341 41.89% 2364.15 242,846 2709

Qianfan-Chinese-Llama-2-13B 814 393 48.28% 4775.56 242,846 123,678

Qianfan-Chinese-Llama-2-70B 814 486 59.71% 5511.66 242,846 93,846

Meta-Llama-3-8B 814 407 50.00% 2475.05 242,846 814

Meta-Llama-3-70B 814 542 66.58% 8699.69 242,846 113,623

Gemma-7B-it 814 361 44.35% 3588.27 242,846 32,208

6. Conclusions

In this study, we explored the use of LLMs to support navigation and guidance in
MASSs. Given the significant computational requirements of LLMs, we proposed a frame-
work for LLM-assisted navigation for connected MASSs, wherein LLMs are deployed
onshore or in remote clouds to facilitate navigation and provide guidance services. Ad-
ditionally, certain large oceangoing vessels can deploy LLMs locally, to obtain real-time
navigation recommendations. MASSs units transmit assistance requests to LLMs, which
process these requests and return guidance.

To assess the LLMs’ knowledge and suitability for the navigation assistance system,
we designed and conducted navigation theory tests comprising over 1500 multiple-choice
questions, similar in format to the official exams for the OOW certificate under the STCW.
Our experiments evaluated the performance of 14 LLMs, including GPT-3.5-turbo, GPT-4,
GPT-4o, ERINE-4.0-8k, and Qwen-turbo, among others. The performance metrics included
accuracy, cost, and processing latency.

Among all the tested models, only GPT-4o achieved a passing score with an accuracy
of 86%, suggesting its potential for supporting autonomous ship navigation and guidance
systems. Although the experimental results indicate that most large language models
(LLMs) perform relatively poorly on multiple-choice questions related to ship navigation
knowledge, the success of GPT-4o highlights the promise of LLMs in ship navigation tasks.
These findings underscore the necessity for further fine-tuning and optimization of model
architectures to enhance the capabilities of LLMs in navigation tasks.

As the maritime industry moves towards greater automation and intelligence, ensuring
the safety and reliability of LLM-assisted systems is crucial. Therefore, future work should
focus on advancing LLM capabilities to meet the stringent demands of safe ship navigation.
At the same time, we will also address the ethical, safety, and privacy issues associated with
the application of LLMs in ship navigation. We plan to tackle these issues by clarifying
responsibilities, ensuring transparency in decision making, maintaining system reliability,
and implementing data protection and privacy measures.

Author Contributions: Conceptualization, J.H.; Methodology, D.P.; Validation, D.P.; Formal analysis,
D.P.; Investigation, D.P.; Writing—original draft, D.P.; Writing—review & editing, J.H., M.C. and S.Z.;
Supervision, J.H. and K.L.; Project administration, J.H. and K.L.; Funding acquisition, J.H. and K.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was conducted by Dashuai Pei during his visit to the University of Essex,
supported by the China Scholarship Council. Additionally, the research received funding from the
Natural Science Foundation of Hubei Province, China, under Grant No. 2021CFA001. This work
was also funded by the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreements No. 824019 and No. 101022280, the Horizon Europe



Mathematics 2024, 12, 2381 14 of 15

MSCA programme under grant agreement No. 101086228, the EPSRC with RC Grant reference
EP/Y027787/1, and the EPSRC/UKRI with grant reference RCP 15831/DCM4480.

Data Availability Statement: The data supporting the reported results, including the publicly
archived datasets analyzed or generated during the study, can be found at https://github.com/
PeiDashuai/LLMs_Nav, accessed on 1 July 2024. Further inquiries can be directed to the correspond-
ing author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ma, S. Economics of Maritime Business; Routledge: London, UK, 2020.
2. UNCTAD. Review of Maritime Transport 2023, 2023rd ed.; United Nations: San Francisco, CA, USA, 2023.
3. OECD. Impacts of Russia’s War of Aggression against Ukraine on the Shipping and Shipbuilding Markets; OCED: Paris, France, 2023.
4. de Vos, J.; Hekkenberg, R.G.; Banda, O.A.V. The impact of autonomous ships on safety at sea—A statistical analysis. Reliab. Eng.

Syst. Saf. 2021, 210, 107558. [CrossRef]
5. StraitsResearch. Global Autonomous Ships Market to Expand at a CAGR of 6.81% by 2031. 2024. Available online: https:

//straitsresearch.com/press-release/global-autonomous-ships-market-outlook (accessed on 29 July 2024)
6. Fenton, A.J.; Chapsos, I. Ships without crews: IMO and UK responses to cybersecurity, technology, law and regulation of

maritime autonomous surface ships (MASS). Front. Comput. Sci. 2023, 5, 1151188. [CrossRef]
7. Thombre, S.; Zhao, Z.; Ramm-Schmidt, H.; García, J.M.V.; Malkamäki, T.; Nikolskiy, S.; Hammarberg, T.; Nuortie, H.; Bhuiyan,

M.Z.H.; Särkkä, S.; et al. Sensors and AI techniques for situational awareness in autonomous ships: A review. IEEE Trans. Intell.
Transp. Syst. 2020, 23, 64–83. [CrossRef]

8. Qiao, Y.; Yin, J.; Wang, W.; Duarte, F.; Yang, J.; Ratti, C. Survey of Deep Learning for Autonomous Surface Vehicles in Marine
Environments. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3678–3701. [CrossRef]

9. Issa, M.; Ilinca, A.; Ibrahim, H.; Rizk, P. Maritime autonomous surface ships: Problems and challenges facing the regulatory
process. Sustainability 2022, 14, 15630. [CrossRef]

10. Wright, R.G. Intelligent autonomous ship navigation using multi-sensor modalities. Transnav Int. J. Mar. Navig. Saf. Sea Transp.
2019, 13, 503–510. [CrossRef]

11. Han, J.; Cho, Y.; Kim, J.; Kim, J.; Son, N.s.; Kim, S.Y. Autonomous collision detection and avoidance for ARAGON USV:
Development and field tests. J. Field Robot. 2020, 37, 987–1002. [CrossRef]

12. Sha, H.; Mu, Y.; Jiang, Y.; Chen, L.; Xu, C.; Luo, P.; Li, S.E.; Tomizuka, M.; Zhan, W.; Ding, M. Languagempc: Large language
models as decision makers for autonomous driving. arXiv 2023, arXiv:2310.03026.

13. Fu, D.; Li, X.; Wen, L.; Dou, M.; Cai, P.; Shi, B.; Qiao, Y. Drive like a human: Rethinking autonomous driving with large language
models. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8
January 2024; pp. 910–919.

14. Ye, J.; Chen, X.; Xu, N.; Zu, C.; Shao, Z.; Liu, S.; Cui, Y.; Zhou, Z.; Gong, C.; Shen, Y.; et al. A comprehensive capability analysis of
gpt-3 and gpt-3.5 series models. arXiv 2023, arXiv:2303.10420.

15. Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.;
et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774.

16. Tang, Z.; Shen, K.; Kejriwal, M. An Evaluation of Estimative Uncertainty in Large Language Models. arXiv 2024, arXiv:2405.15185.
17. Bai, J.; Bai, S.; Chu, Y.; Cui, Z.; Dang, K.; Deng, X.; Fan, Y.; Ge, W.; Han, Y.; Huang, F.; et al. Qwen technical report. arXiv 2023,

arXiv:2309.16609.
18. Villa, J.; Aaltonen, J.; Koskinen, K.T. Path-following with lidar-based obstacle avoidance of an unmanned surface vehicle in

harbor conditions. IEEE/ASME Trans. Mechatron. 2020, 25, 1812–1820. [CrossRef]
19. Cockcroft, A.N.; Lameijer, J.N.F. Guide to the Collision Avoidance Rules; Elsevier: Amsterdam, The Netherlands, 2003.
20. Kufoalor, D.K.M.; Johansen, T.A.; Brekke, E.F.; Hepsø, A.; Trnka, K. Autonomous maritime collision avoidance: Field verification

of autonomous surface vehicle behavior in challenging scenarios. J. Field Robot. 2020, 37, 387–403. [CrossRef]
21. Kim, J.; Lee, C.; Chung, D.; Cho, Y.; Kim, J.; Jang, W.; Park, S. Field experiment of autonomous ship navigation in canal and

surrounding nearshore environments. J. Field Robot. 2024, 41, 470–489. [CrossRef]
22. Cui, C.; Ma, Y.; Cao, X.; Ye, W.; Wang, Z. Receive, Reason, and React: Drive as You Say, With Large Language Models in

Autonomous Vehicles. IEEE Intell. Transp. Syst. Mag. 2024, 4, 81–94. [CrossRef]
23. Duan, Y.; Zhang, Q.; Xu, R. Prompting Multi-Modal Tokens to Enhance End-to-End Autonomous Driving Imitation Learning

with LLMs. arXiv 2024, arXiv:2404.04869.
24. Huang, S.; Zhao, X.; Wei, D.; Song, X.; Sun, Y. Chatbot and Fatigued Driver: Exploring the Use of LLM-Based Voice Assistants for

Driving Fatigue. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems,
Honolulu, HI, USA, 11–16 May 2024; pp. 1–8.

25. Li, W.; Li, L.; Xiang, T.; Liu, X.; Deng, W.; Garcia, N. Can multiple-choice questions really be useful in detecting the abilities of
LLMs? arXiv 2024, arXiv:2403.17752.

https://github.com/PeiDashuai/LLMs_Nav
https://github.com/PeiDashuai/LLMs_Nav
http://doi.org/10.1016/j.ress.2021.107558
https://straitsresearch.com/press-release/global-autonomous-ships-market-outlook
https://straitsresearch.com/press-release/global-autonomous-ships-market-outlook
http://dx.doi.org/10.3389/fcomp.2023.1151188
http://dx.doi.org/10.1109/TITS.2020.3023957
http://dx.doi.org/10.1109/TITS.2023.3235911
http://dx.doi.org/10.3390/su142315630
http://dx.doi.org/10.12716/1001.13.03.03
http://dx.doi.org/10.1002/rob.21935
http://dx.doi.org/10.1109/TMECH.2020.2997970
http://dx.doi.org/10.1002/rob.21919
http://dx.doi.org/10.1002/rob.22262
http://dx.doi.org/10.1109/MITS.2024.3381793


Mathematics 2024, 12, 2381 15 of 15

26. Zhang, Z.; Xu, L.; Jiang, Z.; Hao, H.; Wang, R. Multiple-Choice Questions are Efficient and Robust LLM Evaluators. arXiv 2024,
arXiv:2405.11966.

27. Zhang, Z.; Lei, L.; Wu, L.; Sun, R.; Huang, Y.; Long, C.; Liu, X.; Lei, X.; Tang, J.; Huang, M. Safetybench: Evaluating the safety of
large language models with multiple choice questions. arXiv 2023, arXiv:2309.07045.

28. Huang, Y.; Bai, Y.; Zhu, Z.; Zhang, J.; Zhang, J.; Su, T.; Liu, J.; Lv, C.; Zhang, Y.; Fu, Y.; et al. C-eval: A multi-level multi-
discipline chinese evaluation suite for foundation models. In Advances in Neural Information Processing Systems; Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; Curran Associates, Inc.: New York, NY, USA, 2023; Volume 36,
pp. 62991–63010.

29. Wu, S.; Koo, M.; Blum, L.; Black, A.; Kao, L.; Fei, Z.; Scalzo, F.; Kurtz, I. Benchmarking Open-Source Large Language Models,
GPT-4 and Claude 2 on Multiple-Choice Questions in Nephrology. NEJM AI 2024, 1, AIdbp2300092. [CrossRef]

30. Dao, X.Q.; Le, N.B.; Ngo, B.B.; Phan, X.D. LLMs’ Capabilities at the High School Level in Chemistry: Cases of ChatGPT and
Microsoft Bing Chat. ChemRxiv 2023. [CrossRef]

31. Sadek, A. The Standards of Training, Certification and Watchkeeping for Seafarers (STCW) Convention 1978. In The International
Maritime Organisation; Routledge: London, UK, 2024; pp. 194–213.

32. Wang, W.; Lv, Q.; Yu, W.; Hong, W.; Qi, J.; Wang, Y.; Ji, J.; Yang, Z.; Zhao, L.; Song, X.; et al. CogVLM: Visual Expert for Pretrained
Language Models. arXiv 2023, arXiv:2311.03079.

33. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.
Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971.

34. Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv 2023, arXiv:2307.09288.

35. Team, G.; Mesnard, T.; Hardin, C.; Dadashi, R.; Bhupatiraju, S.; Pathak, S.; Sifre, L.; Rivière, M.; Kale, M.S.; Love, J.; et al. Gemma:
Open models based on gemini research and technology. arXiv 2024, arXiv:2403.08295.

36. AI@Meta. Llama 3 Model Card. 2024. Available online: https://llama.meta.com/docs/model-cards-and-prompt-formats/
meta-llama-3/ (accessed on 29 July 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1056/AIdbp2300092
http://dx.doi.org/10.26434/chemrxiv-2023-kxxpd
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/

	Introduction
	Existing Work
	Autonomous Ship Navigation System
	LLMs-Based Autonomous Driving
	Evaluating LLMs with Multiple-Choice Questions

	System Framework of LLM-Assisted Navigation for MASSs
	Research Methodology
	OOW Theory Examination
	Test Datasets
	Prompt Design
	Instructing the LLMs to Role-Play and Demonstrate Specific Skills
	Providing Example MCQs and Answers
	Designing Structured Prompts

	LLMs Used in Theory Test

	Experiments
	Experiments Settings
	Experimental Results and Discussions

	Conclusions
	References

