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Abstract

The BonferroniQ test of Campbell and Yogo (2006) is widely used in empirical studies
investigating predictability in asset returns by strongly persistent and endogenous
predictors. Its formulation, however, only allows for a constant mean in the predictor,
seemingly at odds with many of the predictors used in practice. We establish the
asymptotic size and local power properties of the Q test, and the corresponding
Bonferroni t-test of Cavanagh, Elliott and Stock (1995), as operationalised for the
constant mean case by Campbell and Yogo (2006), under a local-to-zero specification
for a linear trend in the predictor, revealing that size and power depends on the
magnitude of the trend for both. To rectify this we develop with-trend variants of
the operational Bonferroni Q and t tests. However, where a trend is not present
in the predictor we show that these tests lose (both finite sample and asymptotic
local) power relative to the extant constant-only versions of the tests. In practice
uncertainty will necessarily exist over whether a linear trend is genuinely present in
the predictor or not. To deal with this, we also develop hybrid tests based on union-
of-rejections and switching mechanisms to capitalise on the relative power advantages
of the constant-only tests when a trend is absent (or very weak) and the with-trend
tests otherwise. A further extension allows use of a conventional t-test where the
predictor appears to be weakly persistent. We show that, overall, our recommended
hybrid test can offer excellent size and power properties regardless of whether or not
a linear trend is present in the predictor, or the predictor’s degrees of persistence
and endogeneity. An empirical application to an updated Welch and Goyal (2008)
dataset illustrates the practical relevance of our new approach.
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1 Introduction and Motivation

The predictability of asset returns has received a great deal of attention in both the finance

and economics literature, leading to a large number of published studies examining whether

the lagged values of various financial and macroeconomic variables have predictive power

for returns. Candidate predictor variables considered have included valuation ratios such as

the dividend-price or earnings-price ratio, the dividend yield, various interest rate measures,

inflation, and industrial production. For early contributions see, inter alia, Fama (1981),

Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988a,b), and Fama

and French (1988,1989).

A common feature of many predictors used in empirical studies is that they are highly

persistent and endogenous, with a strong negative correlation found between the innova-

tions to the returns and those driving the predictor; see, eg, Campbell and Yogo (2006)

[CY] and Welch and Goyal (2008). Basing inference on conventional tests for such predic-

tors can be misleading. CY show that comparing a conventional regression t-statistic, ob-

tained from the linear predictive regression model with a constant and lagged putative pre-

dictor, which we denote as xt−1, with slope coefficient β, with standard normal critical val-

ues (as would be appropriate in large samples if xt was weakly stationary) leads to right-tail

tests for β = 0 that are asymptotically oversized, with this oversize becoming increasingly

severe the stronger the persistence or endogeneity of the predictor, other things equal.

As a result, predictability tests have been developed that are valid for use with strongly

persistent and endogenous regressors. These include likelihood-based tests developed by

Cavanagh, Elliott and Stock (1995) [CES], Lewellen (2004), CY and Jansson and Moreira

(2006). These approaches explicitly model the predictor series xt, as an autoregressive

process with the dominant root given by ρ = 1+cT−1 where c is a finite constant and T the

sample size. Of these, the Bonferroni Q test of CY has been widely adopted in the empirical

literature. Other approaches based on instrumental variable estimation have also been

proposed, including contributions by Kostakis et al. (2015) and Breitung and Demetrescu

(2015). Regardless of the approach taken, a common feature of all of these papers is that

their primary (or even exclusive) focus is on the constant-only tests, and the properties of

these tests in the presence of a (neglected) trend in the predictor remain unestablished.

Assuming that the predictor only contains a deterministic constant would seem justi-

fied for some of the candidate predictors considered in previous empirical studies. Few,

for example, would argue that for developed countries macroeconomic variables such as in-

flation or interest rates would likely contain deterministic elements other than a constant.
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However, the same is not true for other variables that have been considered in the litera-

ture, and in many instances one cannot discount the possibility that a predictor variable

may contain a deterministic linear trend. A key aim of this paper is to examine the im-

pact that an omitted trend can have on extant tests for predictability, and to consider pre-

dictability tests that explicitly allow for the potential presence of a trend.

To that end, we develop with-trend variants of the Bonferroni Q and t tests opera-

tionalised in CY. The Bonferroni approach underpinning these, developed in CES, con-

structs an initial confidence interval for the dominant autoregressive root, ρ, in the predic-

tor, by inverting a unit root test, then bases a confidence interval for the predictive regres-

sion coefficient on this initial confidence interval for ρ. It is well known that an omitted de-

terministic trend impacts the asymptotic distribution of constant-only unit root tests, see,

e.g., Harvey et al. (2009), and we will show in section 4 that not allowing for a trend in the

predictive regression test stage also impacts the limit distribution of the constant-only re-

gression statistics on which the Bonferroni Q and t tests are based when a trend is present

in the predictor. When the correlation between the innovations to the predictor and re-

turns is negative both of these effects combined will be shown to lead the constant-only

Bonferroni Q and t-tests to exhibit substantial asymptotic undersize when testing in the

right tail, with a subsequent loss of power, and substantial asymptotic oversize when test-

ing in the left tail. The with-trend Bonferroni procedures we consider are based on an ini-

tial confidence interval for ρ that uses a trend-augmented unit root test statistic, and a sec-

ondary confidence interval for the coefficient on the predictor from a trend-augmented pre-

dictive regression. As a result, these belong to the class of invariant tests whose associated

test statistics are numerically invariant to linear translations of the form xt 7→ xt+a0+a1t,

for arbitrary constants a0 and a1; equivalently, they do not depend on the value of the co-

efficients on the constant (level) and linear trend terms in the DGP for the predictor.

In practice, however, uncertainty will necessarily exist over whether a linear trend is

present in the predictor or not and so practitioners will be faced with the dilemma of

whether to use the extant tests that do not allow for a trend or the modifications we suggest

that do. To illustrate the difficulties this poses for practitioners, we now discuss two brief

motivating empirical examples of testing for the predictability of returns, which form part

of our wider empirical application in section 7. Specifically, consider Figure 1, panel (a)

of which graphs the quarterly log Dividend-Price Ratio, and panel (b) the monthly Book-

to-Market Value Ratio series, in each case with the linear trend line fitted by OLS to the

data added. The former is one of the most widely explored predictors in applications of

predictive regression methods to returns. The data we use are from an updated version of

the Welch and Goyal (2008) dataset; see section 7 for a detailed description of the data.
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Figure 1: Time-Series Plots of Dividend-Price Ratio and Book-to-Market Value Ratio
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(a): Dividend-Price Ratio (b) Book-to-Market Value Ratio
Series: —— , fitted trend: – –

Panels (a) and (b) in Figure 1 are both suggestive of a downward trend in the data, albeit

rather weaker in the case of the Book-to-Market Value Ratio than the Dividend-Price Ratio.

For the latter, the application of a variety of trend tests available in the literature that are

designed to be robust to the order of integration of the series under test also uncovers some

evidence of a trend. Of these tests (see Table 1 for details), the test of Perron and Yabu

(2009) fails to reject the null hypothesis of no trend in the series, while the tests proposed

in Harvey et al. (2007) and Bunzel and Vogelsang (2005) deliver statistically significant

outcomes at either the 0.10- or 0.05-level. On balance, the evidence is suggestive of a linear

trend in the Dividend-Price Ratio but it is by no means conclusive. For the Book-to-Market

Value Ratio, only the Bunzel and Vogelsang (2005) test can reject the null hypothesis at

the 0.10-level, suggesting that a trend may be present, but if so it is likely quite weak.

Using the lagged Dividend-Price Ratio as a predictor for the quarterly S&P500 value-

weighted log-return, applying the standard constant-only Bonferroni Q test of CY, we find

that the lower bound of the one-sided (upper tail) 95% confidence interval for β is −0.0134,

such that we cannot reject the null hypothesis that β = 0 against the alternative of posi-

tive predictability, β > 0, at the 0.05-level. However, using the with-trend extension of the

CY test that we propose in this paper yields a lower bound on the 95% confidence interval

for β of 0.0117, thereby yielding statistically significant evidence at the 0.05-level that the

Dividend-Price Ratio has positive predictive content for returns. When using the lagged

Book-to-Market Value Ratio as a potential predictor for monthly returns, the standard

constant-only Q test of CY gives a lower bound on the 95% confidence interval of 0.0017,

while for the with-trend version of Q this lower bound is −0.0041. Consequently, the
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constant-only CY test detects predictability at the 0.05-level while the with-trend version

of the test fails to reject the null. Note that the estimated endogeneity correlation for the

Dividend-Price Ratio is −0.951 and for the Book-to-Market Value Ratio it is −0.811, illus-

trating the strength of negative endogeneity correlation often observed with such predictors.

These two examples illustrate the dilemma the practitioner faces. In the first, by not al-

lowing for the possibility of a trend in the price-dividend ratio one fails to find predictabil-

ity that is otherwise found if the trend is accommodated. This outcome is consonant with

our theoretical and numerical findings that an unmodelled trend in the predictor causes

the right-tailed constant-only Q tests to exhibit much lower power than when no trend is

present. The second example highlights a potential drawback of simply using a conserva-

tive strategy, whereby one always uses the with-trend version of the predictability test. In

the unit root testing context it is known that while the inclusion of a trend in the unit root

test regression renders inference invariant to linear translations of the data, doing so entails

sizeable losses in (both asymptotic local and finite sample) power relative to their constant-

only counterparts if no trend is present in the data generating process [DGP]; again, see

Harvey et al. (2009). We observe a similar phenomenon in the predictive regression testing

context, with the with-trend Bonferroni Q and t-tests displaying large power losses relative

to the constant-only Bonferroni Q and t-tests when no trend is present in the predictor.

The examples also highlight that pre-testing for a trend (using a with-trend predictabil-

ity test if the trend test rejected at a given significance level, and the constant-only version

otherwise) would be unlikely to work well in practice, because in both examples the available

trend tests are rather equivocal. Nonetheless, we show that, at least in the practically most

interesting case of right-tailed testing with a negative endogeneity correlation (or, equiva-

lently, left-tailed testing with a positive correlation), one can do better than the conserva-

tive approach discussed above. Here, exploiting the different tests’ power rankings across no

trend and trend environments, we discuss a union-of-rejections strategy that combines infer-

ence from both the constant-only and with-trend Bonferroni Q tests. This proposed union-

of-rejections based procedure is asymptotically size controlled regardless of whether the

predictor contains a trend or not, and is able to capitalise on the relative power advantages

of the constant-only and with-trend tests in the no trend and trend scenarios, respectively,

delivering attractive levels of power in both scenarios. For left (right) tailed testing when

the correlation is negative (positive), the constant-only tests are over-sized (even asymp-

totically), and so a union-of-rejections approach would not deliver an asymptotically size-

controlled procedure; here, we recommend simply using the with-trend Bonferroni Q test.

For right (left) tailed testing when the correlation is negative (positive), the basic union-

of-rejections strategy is shown to be of most benefit when the predictor is strongly persistent
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with ρ = 1+cT−1 and c close to zero. For larger values of c the with-trend Bonferroni t-test

displays higher power than the with-trend Bonferroni Q test and we therefore further de-

velop our recommended hybrid test that switches into the with-trend Bonferroni t-test when

there is evidence that c is not close to zero. Our final proposed hybrid procedure employs

an additional switch, regardless of which tail is being tested in, into the conventional t-test

when there is sufficient evidence that the predictor is weakly persistent. For the Dividend-

Price Ratio and Book-to-Market Value Ratio, our recommended hybrid test gives lower

bounds for the 95% confidence interval of 0.0066 and 0.0007, respectively, thereby rejecting

the no predictability null in favour of positive predictability at the 0.05-level in both cases.

The paper is organised as follows. Section 2 outlines the predictive regression model

we consider and the assumptions we will work under. Section 3 describes the constant-

only Bonferroni Q and t-tests of CY and CES, respectively, and the modifications of these

which allow for a trend in the predictor. Section 4 reports the limiting distributions of

the predictive regression and unit root statistics used in the procedures outlined in this

paper, and examines the relative local asymptotic power of the constant-only and with-

trend Bonferroni type tests. Our proposed hybrid tests are outlined in section 5, and the

local asymptotic power of these tests, as well as recommendations on which test to use

in practice, are provided in section 6. An empirical exercise applying our new tests to an

updated version of the Welch and Goyal (2008) dataset is discussed in section 7. Section 8

concludes. A supplementary appendix provides additional simulation and empirical results,

together with mathematical proofs. In what follows “
w→” and “

p→” denote weak convergence

of the associated probability measures and convergence in probability, respectively.

2 The Predictive Regression DGP

We consider the following predictive regression DGP

rt = α + β(xt−1 − γ(t− 1)) + ut, t = 2, ..., T (1)

where rt denotes the return on an asset in period t, and xt−1 denotes a putative predictor

observed at time t− 1. We assume the process for xt is given by

xt = µ+ γt+ wt, t = 1, ..., T (2)

wt = ρwt−1 + vt, t = 2, ..., T (3)

where w1 is assumed to be an Op(1) random variable and where ut and vt are disturbances,

formal assumptions on which are made below.
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Remark 2.1. While we permit the potential presence of a linear trend in the predictor,

xt, through the parameter γ, note that (1) implies that only the detrended component of

the predictor enters the DGP for returns, rt. This assumption is made to rule out the

possibility of a linear trend in rt when β ̸= 0 which is not empirically reasonable. ♢

We make the following assumptions concerning the disturbances ut and vt.

Assumption 1. Assume that ψ(L)vt = et where ψ(L) :=
∑p−1

i=0 ψiL
i with ψ0 = 1 and

ψ(1) ̸= 0, with the characteristic roots of ψ(L) assumed to all be greater than one in absolute

value. Assume that zt := (ut, et)
′ is a bivariate martingale difference sequence [MDS] with

respect to the natural filtration Ft := σ {zs, s ≤ t} satisfying the following conditions: (i)

E[ztz
′
t] =

[
σ2
u σue

σue σ2
e

]
, (ii) supt E[u

4
t ] < ∞, and (iii) supt E[e

4
t ] < ∞. For future reference,

we define ω2
v := limT→∞ T−1E(

∑T
t=2 vt)

2 = σ2
e/ψ(1)

2 to be the long run variance of the error

process {vt}, and δ := σue/σuσe as the correlation between the innovations {ut} and {et}.

Remark 2.2. The conditions in Assumption 1 coincide with the most general set of as-

sumptions considered by CY (see pages 56-57 of CY). The assumptions placed on zt permit

conditional heteroskedasticity in the innovations, but impose unconditional homoskedas-

ticity. The MDS aspect of Assumption 1 implies the standard assumption made in this lit-

erature that the unpredictable component of returns, ut, is serially uncorrelated. Assump-

tion 1 allows the dynamics of the predictor variable to be captured by an AR(p), with the

degree of persistence of the predictor (strong or weak) controlled by the parameter ρ in

(3), as will be formalised in Assumptions 2.1 and 2.2 below. ♢

As discussed in section 1, the focus of this paper is on testing the null hypothesis that

(rt − α) is a MDS and, hence, that rt is not predictable by xt−1; that is, H0 : β = 0 in (1).

We focus on developing tests that offer reliable levels of size and power regardless of whether

a linear trend is present in the predictor variable xt under different assumptions regarding

the degree of persistence in the predictor. We therefore allow the predictor process {xt} in

(2) to satisfy one of the following two assumptions.

Assumption 2. The predictor {xt} in (2)-(3) satisfies one of the following conditions:

1. {xt} is strongly persistent, with ρ = ρT=1 + cT−1, where c is a finite constant.

2. {xt} is weakly persistent, with ρ fixed and bounded away from unity, |ρ| < 1.

Remark 2.3. Under Assumption 2.1, xt is a local-to-unity process whose persistence is

controlled by the parameter c. For c = 0, xt is a pure unit root process, while for c < 0, xt

is a near-integrated process. Finally, for c > 0, xt is a (locally) explosive process. ♢
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In order to facilitate an asymptotic power analysis in the strongly persistent case, we

consider the following local-to-zero alternative hypothesis for β:

Assumption 3. When the predictor {xt} is strongly persistent, the local alternative hy-

pothesis is given by Hb : β = βT = b(σu/ωv)T
−1, where b is a finite constant.

Our analysis will consider both with-trend predictability tests that do not depend on

the trend parameter γ, and also the corresponding constant-only versions of these tests

that do depend on γ. To provide useful asymptotic theory for the latter in the case where

the predictor xt is strongly persistent (i.e. when Assumption 2.1 holds), at points below

we will make use of a local-to-zero assumption for γ. We also consider in our analysis the

impact of a fixed magnitude trend on the constant-only tests. We therefore assume that γ

satisfies exactly one of the following two assumptions:

Assumption 4. The trend coefficient γ in (1) and (2) is given by one of the following:

1. γ = γT = κωvT
−1/2, where κ is a finite constant.

2. γ = κωv, where κ is a finite non-zero constant.

Remark 2.4. Under Assumptions 3 and 4.1, the scalings by T−1 and T−1/2 in βT and γT ,

respectively, provide the appropriate Pitman drifts when xt is strongly persistent, while the

scalings by σu/ωv and ωv are simply convenience measures to ensure that these nuisance

parameters do not appear in the subsequent expressions for the limit distributions. For

consistency, we also scale κ by ωv in Assumption 4.2. ♢

3 Predictability Tests under Strong Persistence

In this section we outline the Bonferroni-based predictability Q and t-tests of CY and CES,

respectively. We first review the extant constant-only versions of these, valid only if no

trend is present in the predictor, xt. We then discuss with-trend modifications of these

tests which allow for the possibility that γ ̸= 0, such that a trend might be present in xt.

3.1 Bonferroni Q Tests

The Bonferroni Q test of CY makes use of an initial confidence interval for ρ = 1 + cT−1,

obtained by inverting a unit root test. CY consider only the possibility of a constant

appearing in the predictor series; that is, they impose that γ = 0 in (2). For a given value

of ρ, CY propose a confidence interval for β based on the following (infeasible) statistic

Qµ(β, ρ) :=

∑T
t=2 xµ,t−1

[
rt − βxt−1 − σue

σeωv
(xt − ρxt−1)

]
+ T

2
σue

σeωv
(ω2

v − σ2
v)√

σ2
u(1− δ2)

∑T
t=2 x

2
µ,t−1

= Qµ(0, ρ)− β/(sµ
√
1− δ2)
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where s2µ := σ2
u/

∑T
t=2 x

2
µ,t−1, σ

2
v denotes the short run variance of vt, and xµ,t−1, t = 2, ..., T ,

are the residuals from regressing xt−1 on a constant. The (infeasible) statistic Qµ(0, ρ),

hereafter denoted simply by Qµ(ρ), represents a test statistic for the null hypothesis β = 0.

As we will quantify later, the behaviour of Qµ(ρ), and the confidence interval based on

this statistic, will depend on the trend coefficient γ when γ ̸= 0. In view of this, we propose

a variant of the BonferroniQ test based on a statistic which does not depend on γ. To obtain

such a variant, we replace xµ,t−1 with xτ,t−1, where xτ,t−1, t = 2, ..., T , denotes the residuals

from a regression of xt−1 on a constant and linear trend. The modified statistic is then

Qτ (β, ρ) :=

∑T
t=2 xτ,t−1

[
rt − βxt−1 − σue

σeωv
(xt − ρxt−1)

]
+ T

2
σue

σeωv
(ω2

v − σ2
v)√

σ2
u(1− δ2)

∑T
t=2 x

2
τ,t−1

= Qτ (0, ρ)− β/(sτ
√
1− δ2)

where s2τ := σ2
u/

∑T
t=2 x

2
τ,t−1. In what follows we denote Qτ (0, ρ) simply by Qτ (ρ).

Remark 3.1. As with equation (24) on page 57 of CY, the form of Qµ(ρ) given above is,

on omitting the serial correlation correction term, T
2

σue

σeωv
(ω2

v − σ2
v), the (infeasible) t-ratio

from regressing r∗t := rt − (σue/σeωv)(xt − ρxt−1) on the de-meaned predictor xµ,t−1 (up

to the factor of proportionality, 1/
√
1− δ2). Similarly, Qτ (ρ) is (again omitting the serial

correlation correction term) the t-ratio from regressing r∗t on the de-trended predictor,

xτ,t−1. Following the discussion on page 32 of CY, these t-ratios are, by the Frisch-Waugh

Theorem, equivalent to the t-ratios on xt−1 obtained from the regression of r∗t on: xt−1

and a constant, in the case of Qµ(ρ); and on xt−1, a constant, and linear trend, in the case

of Qτ (ρ). These two approaches to accounting for either the constant or the trend in the

predictor therefore yield numerically identical statistics (noting that the serial correlation

correction term added to the numerator is the same quantity in each case). ♢

Remark 3.2. The statistic Qτ (ρ) is (exact) invariant to linear translations of the form

xt 7→ xt + a0 + a1t and rt 7→ rt + a2 + a3t, for arbitrary bounded constants ai, i = 0, ..., 3.

Equivalently, Qτ (ρ) does not depend on the values of the nuisance parameters α, µ and γ

in (1) and (2). Indeed, for the more general DGP rt = α + ζt + βxt−1 + ut, Qτ (ρ) would

not depend on the values of α, µ, ζ or γ; cf. Remark 2.1. This invariance property can

be straightforwardly established using standard properties of OLS estimators. In contrast,

Qµ(ρ) is invariant to additive translations of the form xt 7→ xt + a0 and rt 7→ rt + a2, but

not to linear translations and so will depend on γ under DGP (1). ♢
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Theorem 1 in section 4 establishes that, under Assumptions 1 and 2.1, Qµ(ρ) admits a

standard normal limiting distribution when β = 0, provided γ = 0. Theorem 1 also shows

that the same holds for Qτ (ρ) under these assumptions, but regardless of the value of γ.

Therefore, when the predictor xt is strongly persistent a 100(1 − α)% confidence interval

for β, [βQ

d
(ρ, α), β

Q

d (ρ, α)] with d = µ denoting the constant-only case and d = τ the with-

trend case, can be constructed as:

βQ

d
(ρ, α) = {Qd(ρ)− zα/2}sd

√
1− δ2, β

Q

d (ρ, α) = {Qd(ρ) + zα/2}sd
√
1− δ2 (4)

with zα/2 denoting the 1− α/2 quantile of the standard normal distribution.

The confidence interval in (4), however, implicitly relies on knowledge of the value of

ρ = 1 + cT−1, where the parameter c cannot be consistently estimated. In the constant

only case, d = µ, CY propose obtaining a valid confidence interval for ρ by inverting

the constant-only ADF-GLS test1 of Elliott et al. (1996), denoted DF -GLSµ henceforth,

applied to the predictor xt using pre-computed (asymptotic) confidence belts for the DF -

GLSµ test statistic. Denoting this confidence interval for ρ constructed at the α1 level as

[ρ
µ
(α1), ρµ(α1)] CY show that the confidence interval [βQ

µ
(ρµ(α1), α2), β

Q

µ (ρµ(α1), α2)] has

(asymptotic) coverage of at least 100(1− α)% where α = α1 + α2.

In the case where d = τ , such that a linear trend is permitted in the predictor, we use the

obvious with-trend parallel of the approach taken in CY. Specifically, we obtain a confidence

interval for ρ by inverting the with-trend ADF-GLS test of Elliott et al. (1996), henceforth

denotedDF -GLSτ , applied to the predictor xt using pre-computed (asymptotic) confidence

belts for the DF -GLSτ test statistic. Denoting this confidence interval for ρ constructed

at the α1 level as [ρ
τ
(α1), ρτ (α1)], the confidence interval [βQ

τ
(ρτ (α1), α2), β

Q

τ (ρτ (α1), α2)]

will have (asymptotic) coverage of at least 100(1− α)% where, again, α = α1 + α2.

CY show that the confidence interval [βQ

µ
(ρµ(α1), α2), β

Q

µ (ρµ(α1), α2)] suffers from over-

coverage, with the asymptotic size of tests based on this confidence interval often well below

(α/2), and we found the same for the confidence interval [βQ

τ
(ρτ (α1), α2), β

Q

τ (ρτ (α1), α2)].

Therefore, we follow CY and use a refinement where the significance level used to obtain

the initial confidence interval for ρ is adapted to the upper and lower bounds separately,

and also to the value of δ. Values of this significance level are chosen numerically to

minimise over-coverage associated with the confidence interval for β, while ensuring that

the asymptotic size of the overall Bonferroni test does not exceed a chosen level across

1 In the context of both DF -GLSµ and the DF -GLSτ statistic defined below, denoting c as the param-
eter used for quasi-difference demeaning/detrending the data we follow Elliott et al. (1996) and set c = −7
for DF -GLSµ and c = −13.5 for DF -GLSτ in what follows. Owing to Assumption 1, the DF -GLSµ and
DF -GLSτ unit root statistics will be calculated from ADF-type regressions which include p− 1 lags.
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a specified range of c. Denoting the chosen significance levels for the lower and upper

confidence bounds for ρ by αQ
1,d and αQ

1,d, respectively, the confidence interval for ρ can be

written as [ρ
d
(αQ

1,d), ρd(α
Q
1,d)], and the resulting 100(1 − α2)% confidence interval for β is

obtained as [βQ

d
(ρd(α

Q
1,d), α2), β

Q

d (ρd(α
Q
1,d), α2)] where

βQ

d
(ρd(α

Q
1,d), α2) = {Qd(ρd(α

Q
1,d))− zα2/2}sd

√
1− δ2, (5)

β
Q

d (ρd(α
Q
1,d), α2) = {Qd(ρd(α

Q
1,d)) + zα2/2}sd

√
1− δ2. (6)

For a given value of δ, CY propose selecting αQ
1,d and αQ

1,d such that one-sided tests for

predictability constructed in this manner have an asymptotic size of exactly α2/2 for some

value of c while remaining slightly undersized for other values of c. Consequently, two-sided

tests will have size of at most α2 across the specified range of c.

CY calibrate their constant-only test procedure by fixing α2 = 0.1 and considering

c ∈ [−50, 5] such that their resulting one-sided tests have a maximum (asymptotic) size

of 0.05. The appropriate values of αQ
1,µ and αQ

1,µ are reported in Table 2 of CY, and are

reproduced in Table S.1 in section S.3 of the supplementary appendix for convenience. We

denote the predictability test based on this confidence interval as QGLS
µ . We follow the

approach taken by CY for the trend-augmented version of the Bonferroni Q test, with the

appropriate values of αQ
1,τ and αQ

1,τ chosen such that one-sided tests for predictability also

have a maximum asymptotic size of 0.05 for c ∈ [−50, 5], with the asymptotic size of the

test computed using the limiting distributions we subsequently outline in section 4, and

with these values of αQ
1,τ and αQ

1,τ also reported in Table S.1. We denote the predictability

test based on this confidence interval as QGLS
τ .

Remark 3.3. The appropriate values of αQ
1,d and αQ

1,d reported in Table S.1 are only

provided for δ < 0. For δ > 0, CY note that replacing xt in (1) with −xt flips the sign

of both β and δ (and, indeed, of γ). Therefore, an equivalent right (left) tailed test for

predictability when δ > 0 can be performed as a left (right) tailed test for predictability

based on (1) with xt replaced by −xt using the values of αQ
1,d and ᾱQ

1,d appropriate for a

negative value of δ. This also holds for the Bonferroni t test discussed below. ♢

3.2 Bonferroni t Tests

The second test procedure we consider is the Bonferroni t test based approach of CES.

Where γ = 0 in (2), this is based on the following (infeasible) OLS statistic for testing

the null β = 0, tµ := β̂µ/
√
σ2
u/

∑T
t=2 x

2
µ,t−1, where β̂µ is obtained from the OLS estimated

regression, rt = α̂ + β̂µxt−1 + ût. As with Qµ(β, ρ), the behaviour of tµ will be dependent

10



on the trend coefficient γ, when γ ̸= 0. Accordingly, CES suggest a with-trend variant of

the OLS t statistic that does not depend on γ, specifically

tτ :=
β̂τ

s.e.(β̂τ )
(7)

where β̂τ is obtained from the with-trend estimated OLS regression, rt = α̂+γ̂t+β̂τxt−1+ût

and s.e.(β̂τ ) =
√
σ2
u/

∑T
t=2 x

2
τ,t−1.

Under Assumptions 1 and 2.1 the limiting null distribution of td for d = µ or d = τ

is a function of the unknown parameter c. CES overcome this issue by constructing a

confidence interval for β based on an initial confidence interval for c, denoted [c(α1), c(α1)]

obtained by inverting the constant-only or with-trend ADF-OLS test (henceforth denoted

DF -OLSµ or DF -OLSτ respectively) using pre-computed confidence belts.

Specifically, for a given value of δ, a 100(1− α2)% confidence interval for β is obtained

as [βt

d
(αt

1,d, α2), β
t

d(α
t
1,d, α2)], d = {µ, τ}, where

βt
d
(αt,d

1 , α2) = β̂d −

{
max

c(αt
1,d)≤c≤c(αt

1,d)
cvc1−α2/2,d

}
sd, (8)

β
t
d(α

t
1,d, α2) = β̂d −

{
min

c(αt
1,d)≤c≤c(αt

1,d)
cvcα2/2,d

}
sd (9)

and where cvcη,d denotes the η-level critical value of the limiting null distribution of td for

a given value of c. The significance levels αt
1,d and αt

1,d used to construct the one-sided

confidence interval bounds for c, c(αt
1,d), c(α

t
1,d), c(α

t
1,d) and c(α

t
1,d), are selected numerically

to ensure that the implied one-sided tests for predictability constructed in this manner will

have an asymptotic size of exactly α2/2 for some value of c ∈ [−50, 5] while remaining

slightly undersized for other values of c. For α2 = 0.1, the appropriate values of αt
1,µ and

αt
1,µ are those given by CY, and are reported in Table S.1 in section S.3 of the supplementary

appendix. We denote the predictability test based on this confidence interval as tOLS
µ . The

appropriate values of αt
1,τ and αt

1,τ in the with-trend case are also reported in Table S.1

and were found by directly simulating the limit distributions that we subsequently detail

in section 4. We denote the predictability test based on this confidence interval as tOLS
τ .

For full details on the practical implementation of the QGLS
µ and tOLS

µ procedures, in-

cluding OLS-based consistent estimation of the parameters σe, σu, σv, σue, ωv and δ, im-

plementation of the DF -GLSµ and DF -OLSµ unit root tests, and the pre-computed con-

fidence belts for the DF -GLSµ and DF -OLSµ test statistics, see CY, CES and the corre-
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sponding supplementary material to CY.2 In constructing our QGLS
τ and tOLS

τ tests we fol-

low exactly the same steps as CY outline for QGLS
µ and tOLS

µ , augmenting any regression

including only a constant with a linear trend, including the OLS regressions used to obtain

estimates of the parameters σe, σu, σv, σue, ωv and δ. Pre-computed confidence belts for

the DF -GLSτ and DF -OLSτ test statistics are included as part of the code used to im-

plement all of the tests outlined in this paper which is available on request.

4 Asymptotic Behaviour of Tests under Strong Persistence

In this section we outline the asymptotic behaviour of the constant-only QGLS
µ and tOLS

µ

tests, and the with-trend QGLS
τ and tOLS

τ tests, when Assumption 2.1 holds, i.e. the case

where the predictor is a strongly persistent process and contains a trend. While the QGLS
τ

and tOLS
τ tests do not depend on the value of the trend coefficient γ, the QGLS

µ and tOLS
µ

tests do. For the latter statistics, in order to reflect in the asymptotic distribution theory

the uncertainty that will exist in practice over whether the predictor contains a linear

trend component, we will analyse their behaviour under the local-to-zero trend specified

by Assumption 1. We will also report results for the case where γ is a fixed constant.

We begin by outlining the limiting distributions of the relevant test statistics under

the local alternative Hb : β = b(σu/ωv)T
−1. We will then use these representations to

numerically investigate the asymptotic size and power of the corresponding procedures

both when a linear trend is present and when it is not. The following Theorem outlines the

limiting distribution of the statistics, where in the context of QGLS
µ and QGLS

τ , ρ̃ = 1+ c̃T−1

for an arbitrary c̃.

Theorem 1. Let data be generated according to (1)-(3). Let W1(s) and W2(s) be indepen-

dent standard Brownian motion processes and let W1c(r) =
∫ r

0
e(r−s)cdW1(s). Under As-

sumptions 1 and 2.1, and under the local alternative specified in Assumption 3, the follow-

ing large sample results hold, as T → ∞:

1. Under Assumption 4.1:

(i) tµ
w→
b
{
κ
∫ 1
0 rW

µ
1c(r)dr +

∫ 1
0 W

µ
1c(r)

2dr
}
+ δ

∫ 1
0 W

µ,κ
1c (r)dW1(r)√∫ 1

0 W
µ,κ
1c (r)2dr

+
√

1− δ2Zµ

(ii) Qµ(ρ̃)
w→
b
{
κ
∫ 1
0 rW

µ
1c(r)dr +

∫ 1
0 W

µ
1c(r)

2dr
}
+ δcκ

∫ 1
0 rW

µ,κ
1c (r)dr + δ(c̃− c)

∫ 1
0 W

µ,κ
1c (r)2dr

√
1− δ2

√∫ 1
0 W

µ,κ
1c (r)2dr

+ Zµ

2The supplement to CY is available at https://scholar.harvard.edu/campbell/publications/implementing-
econometric-methods-efficient-tests-stock-return-predictability-0. The confidence belts and
also code for the procedures are available from Motohiro Yogo’s personal website:
https://sites.google.com/site/motohiroyogo/research/asset-pricing.
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2. Under Assumption 4.2:

(i) tµ
w→ b

√
12

∫ 1

0

rW µ
1c(r)dr + Z∗

µ (ii) T−1/2Qµ(ρ̃)
p→ δc̃|κ|√

1− δ2
√
12

3. Under Assumption 4.1 or 4.2:

(i) tτ
w→ b

√∫ 1

0

W τ
1c(r)

2dr + δ

∫ 1

0
W τ

1c(r)dW1(r)√∫ 1

0
W τ

1c(r)
2dr

+
√
1− δ2Zτ

(ii) Qτ (ρ̃)
w→

{b+ δ(c̃− c)}
√∫ 1

0
W τ

1c(r)
2dr

√
1− δ2

+ Zτ

where W µ
1c(r) := W1c(r)−

∫ 1

0
W1c(s)ds, W

τ
1c(r) := W µ

1c(r)− 12(r− 0.5)
∫ 1

0
(s− 0.5)W1c(s)ds

and W µ,κ
1c (r) := κ(r−0.5)+W µ

1c(r). Finally, Zµ :=
(∫ 1

0
W µ,κ

1c (r)2dr
)−1/2 ∫ 1

0
W µ,κ

1c (r)dW2(r),

Zτ :=
(∫ 1

0
W τ

1c(r)
2dr

)−1/2 ∫ 1

0
W τ

1c(r)dW2(r), and Z∗
µ :=

√
12

(
δ
∫ 1

0
(r − 0.5)dW1(r)

+
√
1− δ2

∫ 1

0
(r − 0.5)dW2(r)

)
, are all standard normal random variables.

Remark 4.1. Representations for the limiting null distributions of the statistics obtain

on setting b = 0 in the expressions in Theorem 1. If b = 0 and c̃ = c, then Qτ (ρ̃) is

asymptotically distributed as a N(0, 1) random variable, as is tτ if b = δ = 0. Where

Assumption 4.1 holds: if κ = b = 0 and c̃ = c, then Qµ(ρ̃) is also asymptotically distributed

as a N(0, 1) random variable; while if κ = δ = b = 0 then tµ is also asymptotically

distributed as a N(0, 1) random variable. ♢

Remark 4.2. The representations in (i) and (ii) of Theorem 1.1 show that under Assump-

tion 4.1 the limiting null and local alternative distributions of both tµ and Qµ(ρ̃) depend

on the value of the local trend parameter, κ. In the case where γ is a fixed non-zero con-

stant, the representation in Theorem 1.2 (i) shows that tµ has a well-defined limiting dis-

tribution that depends only on b, and which is standard normal when b = 0. In contrast,

Theorem 1.2 (ii) shows that Qµ(ρ̃) will diverge to either plus or minus infinity (depending

on the signs of δ and c̃) at rate T 1/2. In particular, if c̃ is positive then Qµ(ρ̃) will diverge

to positive infinity if δ < 0 and to negative infinity if δ > 0. In contrast, from the repre-

sentations in (i) and (ii) of Theorem 1.3 the limiting distributions of tτ and Qτ (ρ̃) do not

depend on the trend parameter γ, regardless of whether it is fixed or local-to-zero. ♢
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Remark 4.3. It is straightforward but tedious to show that the representations in (i) and

(ii) of Theorem 1.1 are unchanged on replacing κ with −κ. From Theorem 1.2, it is seen

that the limiting distribution of T−1/2Qµ(ρ̃) is also invariant to the sign of κ. ♢

Remark 4.4. While the results of Theorem 1 are given for the infeasible versions of tµ,

Qµ(ρ̃), tτ and Qτ (ρ̃) that use the true values of σe, σu, σv, σue, ωv and δ, the same results

obtain if these parameters are replaced by their estimated counterparts, using the estimates

as described in the previous section. It is interesting to note that the estimates of these

parameters used in the constant-only statistics tµ and Qµ(ρ̃), which are based on OLS

regressions that do not fit a trend term, remain consistent when a trend is present in the

predictor. While this might be unsurprising in the case of a neglected local-to-zero trend,

i.e. under Assumption 4.1, it is also true in the case of a neglected trend of fixed magnitude,

i.e. under Assumption 4.2 - see section S.2 of the supplementary appendix for further

details. In the case of the with-trend statistics tτ and Qτ (ρ̃), the parameter estimates are

obtained from regressions augmented with a trend term, and are therefore trivially seen to

be consistent under both Assumptions 4.1 and 4.2. ♢

4.1 Local Asymptotic Power of tOLS
d and QGLS

d tests

We now report results of a Monte Carlo simulation experiment examining the asymptotic

power of the tOLS
d and QGLS

d tests under the local alternative given in Assumption 3, when

Assumptions 1 and 2.1 hold. For tOLS
µ and QGLS

µ , Assumption 4.1 is also taken to hold. We

will focus on testing for predictability when δ < 0 as the size and power of right (left) tailed

tests for predictability when δ > 0 are identical to left (right) tailed tests for predictability

when δ < 0, for the reasons outlined in Remark 3.3.

Before proceeding we require the limiting distributions of the DF -OLSµ, DF -GLSµ,

DF -OLSτ and DF -GLSτ test statistics used to construct the initial confidence interval for

ρ for the tOLS
µ , QGLS

µ , tOLS
τ and QGLS

τ tests, respectively. Under the conditions of Theorem

1 (also imposing Assumption 4.1 in the case of DF -OLSµ and DF -GLSµ), these limiting

distributions are given by (see, for example, Harvey et al., 2009):

DF -OLSµ
w→ (κ/2 +Wµ

1c(1))
2 − (−κ/2 +Wµ

1c(0))
2 − 1

2
√∫ 1

0 {κ(r − 1/2) +Wµ
1c(r)}

2
dr

(10)

DF -GLSµ
w→ (κ+W1c(1))

2 − 1

2
√∫ 1

0 {κr +W1c(r)}2 dr
(11)

DF -OLSτ
w→ W τ

1c(1)
2 −W τ

1c(0)
2 − 1

2
√∫ 1

0 W
τ
1c(r)

2dr
, DF -GLSτ

w→ W τ,c
1c (1)2 − 1

2
√∫ 1

0 W
τ,c
1c (r)2dr

(12)
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where W τ,c
1c (r) := W1c(r) − r

{
c∗W1c(1) + 3(1− c∗)

∫ 1

0
rW1c(r)dr

}
and c∗ := (1 − c)/(1 −

c+ c2/3).

Remark 4.5. The representations in (10) and (11) show that under the local-to-zero trend

specified by Assumption 4.1, the limiting distributions of DF -OLSµ and DF -GLSµ depend

on κ. In contrast, (12) shows that the limiting distributions of DF -OLSτ and DF -GLSτ

do not depend on the linear trend parameter γ, regardless of whether it is fixed or local-to-

zero, i.e. under either of Assumptions 4.1 or 4.2. Harvey et al. (2009) show that the impact

of a neglected local trend in DF -OLSµ and DF -GLSµ is to reduce both size and power of

the unit root tests, implying a rightward shift in the tail of the distribution, resulting in a

corresponding rightward shift in the confidence intervals for c. ♢

Remark 4.6. When a fixed magnitude trend is present in xt, the result for tµ given in

Theorem 1.2 (i) implies that

βt
µ
(αt,µ

1 , α2)

sµ
= b

√
12

∫ 1

0
rWµ

1c(r)dr + Z∗
µ −

{
max

c(αt
1,µ)≤c≤c(αt

1,µ)
cvc1−α2/2,µ

}
+ op(1),

β
t
µ(α

t
1,µ, α2)

sµ
= b

√
12

∫ 1

0
rWµ

1c(r)dr + Z∗
µ −

{
min

c(αt
1,µ)≤c≤c(αt

1,µ)
cvcα2/2,µ

}
+ op(1).

Consequently, under the nullH0, where b = 0, the confidence interval [βt

µ
(αt

1,µ, α2), β
t

µ(α
t
1,µ, α2)]

will not have the desired asymptotic coverage. This arises because the critical value scaling

terms maxc(αt
1,µ)≤c≤c(αt

1,µ)
cvc1−α2/2,µ

and minc(αt
1,µ)≤c≤c(αt

1,µ)
cvcα2/2,µ

, which depend on c and

δ, are not appropriate for the standard normal distribution of Z∗
µ. Under the local alter-

native where b ̸= 0, because E(
∫ 1

0
rW µ

1c(r)dr) = 0, it is not possible to associate the upper

or lower bound of the confidence interval with a particular sign of b. These two features

render tOLS
µ an unreliable procedure in the presence of a (neglected) fixed trend. ♢

Remark 4.7. Denoting cµ(α
Q
1,µ) = T{ρµ(α

Q
1,µ) − 1} and cµ(α

Q
1,µ) = T{ρ

µ
(αQ

1,µ) − 1}, the
result for Qµ(ρ̃) given in Theorem 1.2 (ii) implies that when a fixed trend is present in xt

and δ ̸= 0 then

T−2βQ

µ
(ρµ(α

Q
1,µ), α2) = T−1/2Qµ(ρµ(α

Q
1,µ))T

−3/2sµ
√
1− δ2 + op(1)

p→ δcµ(α
Q
1,µ)|κ|/12,

T−2β
Q

µ (ρµ(α
Q
1,µ), α2) = T−1/2Qµ(ρµ(α

Q
1,µ))T

−3/2sµ
√
1− δ2 + op(1)

p→ δcµ(α
Q
1,µ)|κ|/12.

15



Harvey et al. (2009) show that, in the fixed trend case, DF -GLSµ diverges to positive infin-

ity at rate T 1/2. Inverting this test statistic results in the confidence interval bounds cµ(α
Q
1,µ)

and cµ(α
Q
1,µ) being positive, and as a consequence, under the null or local alternative, both

the lower and upper bounds of the confidence interval [βQ

µ
(ρµ(α

Q
1,µ), α2), β

Q

µ (ρµ(α
Q
1,µ), α2)]

will diverge to +∞ when δ > 0, and to −∞ when δ < 0. This implies that upper tailed

QGLS
µ tests will have asymptotic size and local power of one (zero) when δ is positive (neg-

ative); similarly, lower tailed QGLS
µ tests will have asymptotic size and local power of one

(zero) when δ is negative (positive). ♢

For clarity, we now outline how local asymptotic power is computed for the right-tailed

tests. Left-tailed testing is handled similarly with obvious modifications. Here and through-

out the paper, for the case of the constant-only tests we use the limiting representations

that obtain under the local-to-zero trend specification imposed by Assumption 4.1.

For the QGLS
d , d = {µ, τ}, tests we first simulate draws from the limiting distribution

of DF -GLSd. These draws are then used to compute the upper bound of the confidence

interval for c which we denote c(αQ
1,d) using pre-computed confidence belts implemented

using the values of αQ
1,d appropriate for δ taken from Table S.1 in section S.3 of the supple-

mentary appendix.3 Note that this value of c also corresponds to the upper bound of the

confidence interval for ρ, i.e. ρd(ᾱQ
1,d) = 1 + c(ᾱQ

1,d)T
−1. Testing in the right tail is equiva-

lent to determining whether βQ

d
(ρd(α

Q
1,d), α2) > 0, and the asymptotic local power function

associated with Qd(ρd(ᾱ
Q
1,d)) is given by E[Φ(hd(α

Q
1,d, α2))] where Φ(.) denotes one minus

the standard normal cdf and

hd(α
Q
1,d, α2) := zα2/2 − (Q∞

d − Zd) (13)

where Q∞
d denotes the limiting distribution of Qd(ρd(ᾱ

Q
1,d)), and Zd is as defined in Theorem

1. Next we simulate a draw from Q∞
d and construct hd(α

Q
1,d, α2) in (13). Finally, we evaluate

whether a simulated draw from a Zd exceeds this value of h(αQ
1,d, α2). The limiting power

is then obtained as the average of these exceedances across replications.

For tOLS
d , in each simulation replication we first simulate a draw from the limiting

distribution of DF -OLSd, and then obtain [c(αt
1,d), c(α

t
1,d)] using the corresponding pre-

computed confidence belts for the values of αt
1,d appropriate for δ obtained from Table S.1.

Then we simulate the limit of td using the results in Theorem 1, and compare this with the

3Here and throughout the paper results were obtained by direct simulation of the limiting distributions,
with the Wiener processes approximated using NIID(0,1) random variates, and with the integrals approx-
imated by normalized sums of 1,000 steps. All simulations were performed in Gauss 22.2 using 20,000
Monte Carlo replications. The confidence belts form part of the Gauss code used throughout the paper
and are available on request.
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critical value maxc(αt
1,d)≤c≤c(αt

1,d)
cvc1−α2/2,d

. The limiting power is again calculated as the

average of these exceedances across replications.

Asymptotic local power functions of infeasible versions of the tOLS
d and QGLS

d tests,

d = {µ, τ}, where the value of ρ = 1 + cT−1 is assumed known to the practitioner, can

also be computed. For these infeasible tests, no initial confidence interval for c is needed

and the predictability statistics are computed using the true value of c. For the purposes

of computing the asymptotic local power of these infeasible tests we simply need to replace

the limit distribution of Qd(ρd(ᾱ
Q
1,d)) with the limit distribution Qd(ρ), where ρ = 1 +

cT−1, for the infeasible analogues of the QGLS
d tests, and to compare td to cvcη,d for the

infeasible analogues of the tOLS
d tests. While these tests are infeasible in practice, even for

large samples (c cannot be consistently estimated), they do provide a useful benchmark to

compare the power of the feasible tests against. Figure S.1, which along with Figures S.2–

S.15 can be found in section S.4 of the supplementary appendix, reports the asymptotic

local power functions of feasible 0.05-level right-tailed tOLS
µ and QGLS

µ tests together with

their infeasible analogues for δ = −0.95 (consonant with the estimated value of δ found for

the dividend-price ratio in section 1) and c = {0,−2,−5,−10,−20,−50} when there is no

trend in the predictor, i.e. κ = 0. The results in this figure closely mirror those reported in

Figure 3 on page 42 of CY. The feasible Bonferroni-based tests are shown to have reduced

power relative to their infeasible counterparts. Examining the results for the with-trend

tests in Figure S.2 we see a similar pattern, with the power of the feasible tests below their

infeasible counterparts. We also observe by comparing the results in Figures S.1 and S.2

that the power of the infeasible constant-only tests is almost everywhere superior to their

with-trend counterparts, other things held equal. Crucially, however, these results are for

the case where there is no trend in the predictor, i.e. κ = 0. We will subsequently show that

the power of right-tailed constant-only tests is severely diminished when the true value of κ

is non-zero, with this drop in power more severe the larger is the value of κ. In contrast, the

power of the with-trend versions of the tests do not depend on the value of κ. Therefore,

if a practitioner is uncertain as to whether the predictor contains a linear trend no single

deterministic specification for the tests is superior. Always performing constant-only tests

would give superior power for κ close to or equal to zero, but far inferior power for larger

values of κ. Likewise, while a conservative strategy where a trend is always accounted for

would deliver excellent power for larger values of κ, this would be at the expense of far

reduced power when κ is close to or equal to zero. This trade-off is the key motivation in

our development of hybrid tests in section 5 designed to capture the power of constant-

only tests when κ is close to zero and that of with-trend tests when κ is larger.
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Figures S.3-S.10 report the local asymptotic power of right-tailed test for predictability

for c = {0,−2,−5,−10,−20,−30,−40,−50} for various values of the local trend parameter

κ. We again consider the setting δ = −0.95; corresponding results for δ = −0.75 were found

to be qualitatively similar, for both right-tailed and left-tailed tests, and can be found in

section S.5 of the supplementary appendix. Note, these figures also include results for the

hybrid Uhyb and Shyb test procedures we propose in section 5 - these will be discussed later.

When κ = 0, so that no trend is present in the predictor (panel (a) of each figure), it

is apparent that for small or moderate (negative) values of c the best power performance

is offered by the QGLS
µ test, followed by the tOLS

µ test. Also for this range of c, we observe

that the QGLS
τ test has superior power to the tOLS

τ test, although both have power that falls

below the constant-only tests. These results when no trend is present are entirely expected,

since the QGLS
τ and tOLS

τ tests are based on regressions that unnecessarily include a trend.

As c becomes more negative, the Bonferroni t-tests start to display superior power to the

Bonferroni Q tests, with tOLS
µ displaying consistently superior power to QGLS

µ for c ≤ −30.

However, in this more negative c setting, the power differences between the competing

tests are reduced compared to the small c cases, hence there is relatively little to choose

between the constant-only procedures here. Overall, one would arguably wish to use the

QGLS
µ test in the case of κ = 0 if allowing only for a constant in the predictor. For the

trend-augmented tests there is little to choose between tOLS
τ and QGLS

τ for c = −30, with

tOLS
τ offering superior power to QGLS

τ for lower values of b and vice-versa. For c ≤ −40,

however, tOLS
τ clearly offers superior power to QGLS

τ across almost the full range of values

of b. This relative power performance of the trend augmented tests is true for all values of

κ given that the trend-augmented tests do not depend on the value of κ.

We now consider panels (b)-(f) of each figure, where κ is positive and increasing in

magnitude. Here a different pattern emerges as the value of κ increases away from zero.4

The asymptotic sizes of QGLS
µ and tOLS

µ are now decreasing in κ, and as a consequence the

powers of these tests are also decreasing in κ, with this effect more pronounced the more

negative is the value of c. As previously discussed, the power functions of the QGLS
τ and

tOLS
τ tests do not depend on the value of κ, with the consequence that for larger values of κ

these tests outperform their constant-only counterparts, with the QGLS
τ test becoming the

best performing procedure for small or moderate c, and the tOLS
τ test displaying the best

power for the larger c. Hence for larger κ, one would wish to use the QGLS
τ test when the

c values are small or moderate, and the tOLS
τ test otherwise.

4We also generated results for negative values of κ and found them to be almost identical to those found
for the corresponding positive values of κ, as would be expected from the discussion in Remark 4.3.
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Figures S.11-S.15 report the local asymptotic power of left-tailed tests for predictabil-

ity for δ = −0.95 and c = {0,−2,−5,−10,−20} for various values of κ. When κ = 0 the

constant-only QGLS
µ and tOLS

µ tests again outperform their with-trend QGLS
τ and tOLS

τ coun-

terparts for a given d ∈ {µ, τ}, as expected. In the left-tailed testing environment it can

also be seen that the range of values of c over which the QGLS
d tests display superior power

to the tOLS
d tests is smaller for a given d ∈ {µ, κ}. There is little to choose between the

tOLS
µ and QGLS

µ tests for c = −5, but for c ≤ −10 the tOLS
µ test has superior power to QGLS

µ .

Likewise, there is little to choose between the tOLS
τ and QGLS

τ tests for c = −10, but for

c = −20 the tOLS
τ test has superior power to QGLS

τ . Additional results reported in section

S.5 in the supplementary appendix show that the tOLS
d tests continue to display superior

power over the QGLS
d tests for c < −20. For κ > 0, however, the QGLS

µ and tOLS
µ tests can

suffer from substantial oversize, with the degree of this oversize increasing in κ and also as

c becomes more negative. As such, the QGLS
µ and tOLS

µ tests are inappropriate for testing

for predictability in the left tail when δ < 0 when uncertainty exists over the possible pres-

ence of a linear trend, and reliable inference can only be made using QGLS
τ or tOLS

τ . Here

we would ideally use QGLS
τ for small or moderate c, and tOLS

τ otherwise.

The results in Figures S.3-S.15 show that no single test is best suited to testing for

predictability when uncertainty exists over both the values of c and κ. Instead, each of

QGLS
µ , QGLS

τ and tOLS
τ provides the best overall power for certain combinations of these

parameters. Given that neither c nor κ can be consistently estimated, in the following

section we propose hybrid tests for predictability that use combinations of the QGLS
µ , QGLS

τ

and tOLS
τ tests to deliver both controlled size and good power across the parameter space.

5 Hybrid Tests for Predictability

Based on the results in section 4.1 we now propose tests for predictability when uncertainty

exists over the possible presence of a linear trend in the predictor. We start with tests

that are designed for strongly persistent predictors generated according to Assumption 2.1,

motivated by the results of the previous section, before outlining how these can be modified

to also allow for weakly stationary predictors generated according to Assumption 2.2.

We will outline our hybrid tests in what follows only for the case where δ < 0. For

δ > 0, from the result in Remark 3.3, we may simply replace the predictor xt in (1) with

−xt, thereby flipping the sign of δ such that our recommended procedures for negative

values of δ which follow can then be applied. Given that this also flips the sign of β, for

a right (left) tailed test for predictability one should perform a left (right) tailed test for

predictability in the transformed predictive regression based on the predictor −xt−1. So,

for example, the right-tailed tests appropriate for δ < 0 outlined in section 5.1 are also
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recommended, on replacing xt−1 by −xt−1 throughout, for use in the case where one wishes

to perform left-tailed tests with δ > 0. In practice, the true value of δ will be unknown, but

the appropriate approach can be determined according to the sign of a consistent estimator

of δ. Here we propose using the estimate of δ from the with-trend Bonferroni type test

procedures, i.e. the sample correlation between ût and êt, where ût are the residuals from

a regression of rt on a constant, trend and xt−1 and êt are the residuals from estimating an

AR(p) for the predictor variable allowing for a constant and trend.

5.1 Right-Tailed Tests when δ < 0

The results in section 4.1 suggest that for strongly persistent predictors, with δ < 0, when

κ = 0 the constant-only QGLS
µ test outperforms its with-trend counterpart QGLS

τ , while for

larger κ the converse is true. As such, when testing in the right-tail the first test procedure

we propose is a Union-of-Rejections strategy in which we reject the null of β = 0 in favour

of the alternative that β > 0 when either the QGLS
µ or QGLS

τ tests reject, with the aim of

capturing the relative power advantages of QGLS
µ and QGLS

τ for different magnitudes of κ.

Taking a simple union-of-rejections in this manner, however, will inevitably result in an

overall test with asymptotic size in excess of α2/2, given that inference from two tests is

being combined, each individually calibrated to have a maximum asymptotic size of α2/2.

To ensure that the union-of-rejections strategy has a maximum asymptotic size of α2/2 we

modify the significance levels at which the confidence intervals for ρ are constructed for

both the DF -GLSµ and DF -GLSτ tests, as well as the significance level used to construct

the confidence interval for β for a given value of ρ. Recalling that the lower bound of

the confidence interval for ρ used for right-tailed testing for the QGLS
d test is given by

βQ

d
(ρd(α

Q
1,d), α2) our proposed union-of-rejections test, U , is given by

U : Reject H0 if U > 0 (14)

where

U := max
(
βQ

µ
(ρµ(ξα

Q
1,µ), ξα2), β

Q

τ
(ρτ (ξα

Q
1,τ ), ξα2)

)
(15)

with ξ < 1 a scaling parameter chosen such that, for a given value of δ, the asymptotic size of

U is no greater than α2/2 for the same grid of values of c considered by CY, i.e. c ∈ [−50, 5].

The appropriate values of ξ that lead to a right-tailed test with maximum asymptotic size

of 0.05 are reported in Table S.1 in section S.3 of the supplementary appendix.5

While the union-of-rejections strategy outlined above will be shown to capture the

superior power of QGLS
µ when κ is small, and that of QGLS

τ for larger values of κ when c

5An immediate consequence of Remark 4.7 is that the maximum asymptotic size of U will also be
maintained at 0.05 in the case where the trend coefficient, γ, in (1) is a fixed constant.
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is small or moderate, it is apparent from the results reported in Figures S.3-S.10 that for

the more negative values of c the power of both the QGLS
µ and QGLS

τ tests lag behind that

of tOLS
τ . As such, we consider an extra layer to our test procedure where for right-tailed

tests the union-of-rejections test is employed when c is estimated to be “small”, and the

tOLS
τ test is employed when c is estimated to be “large”. To do so we propose using an

estimate of c to choose which test to perform in practice. Specifically, we propose computing

an estimate, ĉ, that is equal to the with-trend ADF-GLS normalised bias unit root test

statistic, henceforth denoted NB-GLSτ . Specifically, ĉ = NB-GLSτ := T ϕ̃/(1−
∑p−1

i=1 ψ̃i),

where ϕ̃ and ψ̃i, i = 1, ..., p− 1 are obtained by OLS estimation of

∆x̃t = ϕx̃t−1 +
∑p−1

i=1
ψi∆x̃t−i + et

where, on setting ρ̄T := 1+ cT−1, x̃t := xt− z′tθ̃ with θ̃ obtained from the quasi-differenced

regression of xc̄ := (x1, x2− ρ̄Tx1, ..., xT − ρ̄TxT−1)
′ on Zc̄ := (z1, z2− ρ̄T z1, ..., zT − ρ̄T zT−1)

′,

where zt := (1, t)′. The NB-GLSτ statistic is closely related to DF -GLSτ , being obtained

from the same regression, and in keeping with this link between the statistics, we use

c = −13.5; cf. footnote 1. Under Assumption 2.1, the limiting distribution of ĉ is given by

ĉ
w→ W τ,c

1c (1)2 − 1

2
∫ 1
0 W

τ,c
1c (r)2dr

(16)

where W τ,c
1c is as previously defined under equation (12). While it is clear that ĉ is not

a consistent estimate of c, a near monotonic relationship nonetheless exists between the

expected value of the limiting distribution of ĉ and the true value of c. We therefore propose

a cut-off rule where we employ the U test for ĉ ≥ cR, but switch to the tOLS
τ test for ĉ < cR

for some cut-off point cR (R denoting right-tailed). Formally, our second proposed testing

procedure, S, is therefore given by:

S : Reject H0 if US > 0 (17)

where

US := I(ĉ ≥ cR)U + I(ĉ < cR)β
t

τ
(αt

1,τ , α2). (18)

and where I(.) denotes the indicator function equal to 1 (0) when its argument is true

(false). Our choice of the cut-off value cR to use in practice is motivated by the asymptotic

local power functions in Figures S.3-S.10 and the associated discussion in section 4.1. We

found through extensive Monte Carlo simulation that the choice of cR = −35 gave an

overall test for predictability with the best overall power properties, tracking the power of

U for small c and that of tOLS
τ for large c. We also found that using the existing calibration
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for U and tOLS
τ led to S maintaining a maximum asymptotic size of 0.05 for c ∈ [−50, 5],

so no further calibration was required for this particular test.

5.2 Left-Tailed Tests when δ < 0

We now turn our attention to left-tailed tests when δ < 0 and Assumption 2.1 holds. We

propose a simpler strategy for left-tailed tests as the asymptotic oversize of QGLS
µ and tOLS

µ

when κ ̸= 0 prevents the implementation of an asymptotically size-controlled union-of-

rejections procedure, such as that proposed in section 5.1, as this relies on the constituent

tests being (asymptotically) correctly sized or undersized both when κ = 0 and when κ ̸= 0.

The appropriate simplification for the U procedure is then to just use QGLS
τ , which recalling

section 3, entails rejecting the null of no predictability if β
Q

d (ρd(α
Q
1,d), α2) < 0.

Examining the relative power of QGLS
τ and tOLS

τ in Figures S.11-S.15 it is immediately

apparent that the QGLS
τ test only offers superior power to tOLS

τ when c is small, with the

power of tOLS
τ above that of QGLS

τ for even modest values of c. As such, for the switching

strategy S we propose a simpler version to that in section 5.1 where the QGLS
τ test is

employed when ĉ ≥ cL (L denoting left-tailed) and the tOLS
τ test is used when ĉ < cL.

Specifically, for left-tailed tests the decision rule for our test procedure S is given by.

S : Reject H0 if S < 0 (19)

where

S := I(ĉ ≥ cL)β
Q

τ (ρτ (α
Q
1,τ ), α2) + I(ĉ < cL)β

t

τ (α
t
1,τ , α2). (20)

Our choice of the cut-off value cL to use in practice is, again, motivated by the local

asymptotic power functions presented in Figures S.11-S.15 which, as discussed in section

4.1, show that the local asymptotic power of the QGLS
τ test is superior to that of tOLS

τ for

c > −10 but inferior for c < −10, with little to choose between the two tests for c = −10.

We again used Monte Carlo simulation to determine an appropriate value for cL and found

a value of cL = −15 led to a test with the best overall power properties. As was the case for

right-tailed testing, we found that the maximum asymptotic size of S was still maximised

at 0.05 for c ∈ [−50, 5] when testing in the left tail, so no further calibration was required.

5.3 Dealing with Weakly Persistent Predictors

The U and S tests outlined in sections 5.1 and 5.2 are constructed under the assumption

that the predictor is strongly persistent. When Assumption 2.2 holds, such that the predic-

tor is weakly persistent, the QGLS
d and tOLS

d tests, and hence the U and S tests, are asymp-

totically invalid. In contrast, under Assumption 2.2 a “conventional” OLS t-test, which
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compares the OLS t-statistic tτ of (7) with standard normal critical values, is asymptoti-

cally valid and is optimal (among feasible tests) under Gaussianity, regardless of the value

of δ; see Jansson and Moreira (2006,p.704).6

Based on these considerations, we propose an approach similar to that followed by Elliott

et al. (2015) and Harvey et al. (2021), whereby we switch from the use of the U and S tests

to a conventional t-test which compares tτ of (7) with standard normal critical values, when

there is sufficient evidence that the predictor is weakly persistent. We will use the with-

trend variant of the ADF-OLS normalised bias statistic, NB-OLSτ := T ϕ̂/(1−
∑p−1

i=1 ψ̂i),

where ϕ̂ and ψ̂i, i = 1, ..., p− 1 are obtained by OLS estimation of

∆xt = π0 + π1t+ ϕxt−1 +
∑p−1

i=1
ψi∆xt−i + et,

to determine whether the predictor is weakly persistent. We use the OLS variant of the

normalised bias unit root statistic, rather than the GLS variant used to estimate c in section

5.1, because of its superior power properties for non-local departures from a unit root.

Under Assumption 2.1, NB-OLSτ = Op(1), while under Assumption 2.2, NB-OLSτ

diverges to −∞ at a rate faster than T 1/2. If we classify a predictor as weakly persistent

when NB-OLSτ < cvNB then, for any fixed value of cvNB, a predictor generated according

to Assumption 2.2 will be classified as weakly persistent asymptotically with probability

one. However, employing a fixed critical value can result in a strongly persistent predictor

generated according to Assumption 2.1 being classified as weakly persistent with non-zero

probability (the usual type I error). To address this issue we instead propose the use of

a (sample size dependent) diverging critical value given by cvNB = −υT 1/2 where υ > 0

is a user-chosen tuning parameter, so that the conventional t-test is employed whenever

NB-OLSτ < −υT 1/2. The divergence rate of NB-OLSτ ensures that, in the limit, our

Bonferroni-type U and S tests will always be performed when the predictor is strongly

persistent, while the conventional t-test based on comparing tτ of (7) with standard normal

critical values will always be performed when the predictor is weakly persistent, regardless

of the value of υ.

5.4 Overall Testing Approach

On the basis of sections 5.1-5.3 we are now in a position to present our overall hybrid test-

ing procedures for predictability, which we denote by Uhyb and Shyb. We outline these test

6In contrast to the case of strongly persistent predictors, for weakly stationary predictors there is no loss
of asymptotic local power, relative to a test based on tµ (where the trend regressor is omitted), from basing
the conventional t-test on the with-trend tτ statistic when the trend is irrelevant (see, e.g., Grenander and
Rosenblatt, 1957). We therefore always base the conventional t-test on tτ because, unlike tµ, it does not
depend on the linear trend coefficient, γ.
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procedures for the case where δ < 0. For δ > 0, proceed as per the discussion at the start

of section 5 substituting xt−1 for −xt−1 throughout. The decision rules for one-sided tests

performed at the α/2 nominal asymptotic level can be written as follows, where we again

denote the (1 − α) quantile of the normal distribution as zα. All confidence intervals are

constructed so that the resultant one-sided tests for predictability have maximum asymp-

totic size of α/2.

Decision Rule for Hybrid Test Procedures (δ < 0)

� Decision Rule for Uhyb:

– Right-Tailed Tests:

* If NB-OLSτ ≥ −υT 1/2: Reject H0 if U > 0

* If NB-OLSτ < −υT 1/2: Reject H0 if β̂τ − zα/2s.e.(β̂τ ) > 0

– Left-Tailed Tests:

* If NB-OLSτ ≥ −υT 1/2: Reject H0 if β
Q
τ (ρτ (α

Q
1,τ ), α2) < 0

* If NB-OLSτ < −υT 1/2: Reject H0 if β̂τ + zα/2s.e.(β̂τ ) < 0

� Decision Rule for Shyb:

– Right-Tailed Tests:

* If NB-OLSτ ≥ −υT 1/2: Reject H0 if US > 0

* If NB-OLSτ < −υT 1/2: Reject H0 if β̂τ − zα/2s.e.(β̂τ ) > 0

– Left-Tailed Tests:

* If NB-OLSτ ≥ −υT 1/2: Reject H0 if S < 0

* If NB-OLSτ < −υT 1/2: Reject H0 if β̂τ + zα/2s.e.(β̂τ ) < 0

Remark 5.1. Although the definitions of the Uhyb and Shyb procedures given above are

framed in terms of one-sided tests for predictability, in principle each of these procedures

can also be used to perform two-sided tests for predictability. For a given test, if the right

tailed and left-tailed versions of the test are constructed such that they have asymptotic

size no greater than α/2, then combining inference from the two individual one-sided tests

for predictability will lead to an overall two-sided test for predictability that will have

asymptotic size no greater than α. ♢

6 Local Asymptotic Power of Hybrid Tests

We now return to Figures S.3-S.10 to assess the power of our proposed Uhyb and Shyb test

procedures, concentrating first on right-tailed tests for predictability.

On examining Figures S.3-S.7 we see that when c is small or moderate, the powers of

our hybrid Uhyb and Shyb tests essentially coincide with each other, as for such values of
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c, drawings from the limit distribution of ĉ in (16) rarely fall below cR. For small κ, the

powers of Uhyb and Shyb lie between those of the QGLS
µ and QGLS

τ tests, as expected, but

it can be seen that the Uhyb and Shyb power profiles are reasonably close to that of the

best performing QGLS
µ test and often well in excess of that for QGLS

τ . As κ increases, QGLS
τ

becomes the most powerful individual test, and here we see that the Uhyb and Shyb powers

now move towards the QGLS
τ power profile. The consequence of this is that the hybrid tests

are always among the best performing tests, having power close to that of QGLS
µ when κ is

close to or equal to zero, and that of QGLS
τ for larger values of κ.

We next examine Figures S.8-S.10 where c is large. When κ is small the power of the

Uhyb test still tracks the power of the QGLS
µ test reasonably well, and for larger values of κ

the power of Uhyb continues to track the power of the QGLS
τ test. However, for the larger

c values we see that the power of Uhyb can lag behind that of the tOLS
τ test regardless of

the value of κ. For these larger c cases we see that the power of the Shyb test now diverges

from that of Uhyb since ĉ is here much more likely to take a value below −35, causing Shyb

to switch into the tOLS
τ test, more so as c becomes increasingly negative. The consequence

is that the power of Shyb is far superior to that of Uhyb for these values of c, and is almost

identical to that of the best performing tOLS
τ test for c = {−40,−50}.

We now turn our attention to Figures S.11-S.15 which present the performance of Shyb

when testing in the left tail. (Here, we recall that the Uhyb test reduces to QGLS
τ in the left

tail under strong persistence.) The results show that for small c, ĉ is almost never less than

−15, hence the power of Shyb coincides almost perfectly with that of QGLS
τ , which is the

most powerful test in these scenarios that maintains size control across κ. As c becomes

more negative, ĉ increasingly drops below −15, with the consequence that inference for Shyb

increasingly becomes based on tOLS
τ . As such, for large c the power of Shyb more closely

tracks that of tOLS
τ , which is the best performing size-controlled test. As a consequence, the

Shyb test displays one of the best power profiles among size-controlled tests across all values

of c, having power close to that of the QGLS
τ test for smaller c and close to that of tOLS

τ for

larger c. We note also that, by virtue of being constructed using only the QGLS
τ and tOLS

τ

tests, the Shyb test also does not depend on the value of κ when testing in the left tail.

An additional consideration in evaluating the local asymptotic size and power of the

tests is their behaviour when c > 0, such that the predictor series is locally explosive. In

section S.5 of the supplementary appendix, we report additional results for the case c = 2,

for both right-tailed and left-tailed testing. We find that in the right-tailed testing context,

the best performing individual tests are QGLS
µ and tOLS

µ , even when a large local trend is

present (i.e. large κ), and the Uhyb and Shyb procedures (which coincide here) track QGLS
µ

fairly well across the different κ values considered. In the left-tailed testing scenario, of
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the two individual tests that achieve size control across c, i.e. QGLS
τ and tOLS

τ , we find that

QGLS
τ provides the better power profile, as in the case of c = 0 and small negative c. Here,

the Shyb test has a power profile that always follows this better performing QGLS
τ test,

offering an attractive power profile across κ. Overall, the newly proposed hybrid tests also

perform well in the locally explosive context.

In summary, our proposed hybrid test procedures display excellent asymptotic size and

power properties regardless of the values of c and κ. The Shyb test, in particular, has a

power profile that is always close to the best performing size-controlled test in each scenario.

Finite sample simulation results reported in section S.6 of the supplementary appendix

show that theQGLS
τ , tOLS

τ , Uhyb and Shyb test procedures display excellent size control across

a range of values of c and κ both when vt in (3) is i.i.d. or serially correlated, with the only

exception being QGLS
τ and Uhyb which display significant oversize for larger negative values

of c. The oversize for QGLS
τ for less persistent predictors is expected given that this test is

asymptotically invalid for weakly stationary predictors, while the oversize for Uhyb in this

region arises from use of QGLS
τ through the union-of-rejections approach. Aside from this

case, the relative power of the tests in finite samples is almost identical to that observed

in the asymptotic power simulations, with the Shyb test in particular displaying excellent

power across the large range of simulation DGPs considered.

On the basis of our simulation results, we recommend basing inference on our proposed

Shyb predictability testing procedure as it has controlled size, and is always among the most

powerful tests, over the full range of parameter settings considered.

7 Empirical Application

We report results of an empirical exercise applying the tests for predictability outlined in

this paper to the US equity series analysed in Welch and Goyal (2008), using updated

data at the annual, quarterly and monthly frequencies for the period 1926-2022, yielding

effective sample sizes T = 96, 387 and 1163, respectively. The data can be obtained from

http://www.hec.unil.ch/agoyal/. The dependent variable, rt, is the S&P500 value-weighted

log-return. For xt we consider thirteen candidate predictors: the log Dividend Payout Ratio,

log Earnings-Price Ratio, log Dividend-Price Ratio, log Dividend Yield, Default Yield

Spread, Long Term Yield, Default Return Spread, Net Equity Expansion, Inflation Rate,

Treasury Bill Rate, Term Spread the Book-to-Market Value Ratio, and Stock Variance.

Data from the original Welch and Goyal (2008) dataset (and updates thereof) have been

examined by many authors in the context of predictability testing; see, inter alia, Welch

and Goyal (2008), Campbell and Thompson (2008), Neely et al. (2014), Kostakis et al.

(2015), Breitung and Demetrescu (2015), Harvey et al. (2021) and Goyal et al. (2024), and
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references therein. Overall these papers, all of which implicitly assume that the candidate

predictors variables are free of any linear trend components, find only modest evidence in

support of predictability. The first part of our empirical analysis is therefore to examine

to what extent, if any, the presence of linear trends is a consideration for these predictors.

7.1 Robust Tests for a Linear Trend

For a given predictor, xt, we do not take an a priori stance on whether its stochastic com-

ponent, wt in (3), is strongly persistent (as under Assumption 2.1) or weakly persistent (as

under Assumption 2.2). Therefore, in trying to establish whether xt contains a determin-

istic linear trend component, we need to employ trend detection tests that are valid under

either strong or weak persistence, in the sense that they have robust size control under the

null of no trend (γ = 0) and have non-trivial power against local trend alternatives. Sev-

eral such tests are available in the literature. Here we consider the tRQF
β (MU) test of Per-

ron and Yabu (2009) the zλ, z
m1
λ and zm2

λ tests of Harvey et al. (2007), and the Dan-J test

of Bunzel and Vogelsang (2005). All of these tests are designed to have correct asymptotic

size when xt is either weakly persistent or follows an exact unit root process, while being

conservative for local-to-unit root processes.7

We perform one-sided trend tests for all predictors using the recommended test settings,

with the tail under test determined by the sign of the trend test statistic. Table 1 reports

the p-value of the tRQF
β (MU) and zλ tests (referenced to the standard normal distribution),

as well as the significance level at which the remaining tests (which are designed to be per-

formed only at discrete pre-assigned significance levels of their non-standard distributions)

reject the no trend null hypothesis (γ = 0), for each predictor at each data frequency.

From the results reported in Table 1 it is seen that for each of six predictor series:

Default Yield Spread, Long Term Yield, Default Return Spread, Inflation Rate, Treasury

Bill Rate and Stock Variance, no trend is detected, regardless of data frequency. In contrast,

for the four series: Dividend Payout Ratio, Dividend-Price Ratio, Dividend Yield and Net

Equity Expansion, a significant linear trend is detected by one or more of the trend tests,

regardless of the data frequency. Moreover, for each of these latter four series there appears

7By way of a brief description of these tests, the tRQF
β (MU) test is a quasi-feasible GLS test which

employs a super-efficient estimate of ρ for the case when ρ = 1. The Dan-J trend test is based on a
standard regression t-statistic for a linear trend multiplied by a scaling factor that allows the limit critical
values to be the same in the |ρ| < 1 and ρ = 1 cases for a given significance level. The zλ test takes a
weighted average of a regression t-statistic for a linear trend from a regression of the data in levels and a
t-statistic for a constant from a regression of the data in first differences. The weight is shifted between
the two t-statistics according to whether |ρ| < 1 or ρ = 1 so that the asymptotic null distribution of zλ is
standard normal in either case. Here zm1

λ and zm2
λ are modifications of zλ designed to improve size when

ρ is local to unity and have non-standard limit distributions.
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to be generally substantial levels of agreement between the outcomes of the different trend

tests. For the remaining three predictor series: Earnings-Price Ratio, Term Spread and

Book-to-Market Value Ratio, the results of the trend tests are mixed, with one or more of

the trend tests indicating the presence of a trend at some, but not all, data frequencies. In

summary, there is statistically significant evidence of a linear trend being present in seven

of the thirteen predictors considered.

We next examine to what extent the confidence intervals for the autoregressive param-

eters are affected by what is assumed about the trend component in the ADF-GLS tests.

7.2 GLS-Based Confidence Intervals for the Autoregressive Parameter

Table 1 also reports the values of the constant-only DF -GLSµ and with-trend DF -GLSτ

unit root tests for each predictor xt. The underlying ADF-GLS regressions were estimated

with the number of lagged difference terms selected using the Bayes Information Criterion

(BIC) with a maximum number of lagged differences of 4. For each of DF -GLSµ and

DF -GLSτ we present the associated 95% confidence intervals for c, denoted cµ and cτ in

the table, and the associated 95% confidence intervals for the autoregressive coefficient

ρ, denoted ρµ and ρτ in the table. The two sets of confidence intervals are related by

ρd = 1 + cdT
−1, d = {µ, τ}.

Taking the leading case of Dividend Payout Ratio with annual data, here we saw

very convincing evidence for the presence of a linear trend from all of the robust trend

tests. The confidence interval for c based on DF -GLSµ is [−64.5,−25.8], compared with

[−101.2,−49.3] when the confidence interval is based on DF -GLSτ . Therefore, failure to

account for the trend causes a very substantial rightward shift in this confidence interval

for c. Equivalently, this is also seen in the confidence interval for ρ whereby we see the

without-trend interval [0.328, 0.731] is rightward shifted compared to the with-trend ver-

sion [−0.054, 0.486]. In contrast, examining, for example, the Book-to-Market Value Ratio

at the same annual frequency, no significant evidence for a trend was uncovered. Here the

confidence intervals for c and ρ associated with DF -GLSµ and DF -GLSτ are very similar.

Overall, we see that those series for which marked rightward shifts in the confidence inter-

vals for c and ρ associated with DF -GLSµ are seen, relative to those associated with DF -

GLSτ , are those where the strongest evidence of a trend was found, while often those series

for which little such rightward shift is evident are those where no evidence of a trend was

found. This is the kind of behaviour we would have anticipated in view of the discussion

in Remarks 4.5 and 4.7. A notable exception to this pattern seen for the Dividend Payout

Ratio with monthly data. The majority of the robust trend tests suggest a linear trend is
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present, but there is very little difference between the confidence intervals from DF -GLSµ

and DF -GLSτ . However, this is pretty much the only substantive exception of this type.

Having found evidence for the presence of trends in the majority of our predictor series,

and seen the subsequent effect of these on the confidence intervals for the autoregressive

parameter, we now examine the extent to which what is assumed about the trend compo-

nent affects inference arising from the tests for return predictability for these data.

7.3 Predictability Tests

We now discuss the results of applying all the predictability tests considered in the paper:

tOLS
µ , QGLS

µ , tOLS
τ , QGLS

τ and the hybrid procedures Uhyb and Shyb. Campbell and Thomp-

son (2008) find that imposing positive predictability (so that the sign of the predictor is

imposed to be positive under the alternative) almost always improves the out-of-sample

predictability obtained for the predictors considered for equity returns in Welch and Goyal

(2008). Consequently, for all of the putative predictors (each of which is lagged one pe-

riod in the predictive regressions) we conduct right-tailed tests for H0 : β = 0 against

H1 : β > 0, at the 0.05 nominal significance level. All of the unit root tests utilised in the

test procedures are again performed using BIC with a maximum of 4 lagged differences.

In order to perform 0.05-level right-tailed tests we compute the lower bound of the 95%

one-sided (upper-tail) confidence interval for β, generically denoted β, when δ̂ < 0 (where

δ̂ denotes the appropriate with-trend or without-trend estimate of δ), or when δ̂ > 0 we

multiply the predictor by −1 and compute β as −1 times the upper bound of the 95% one-

sided confidence interval for β from the transformed data (cf. Remark 3.3). For the QGLS
µ

and QGLS
τ tests this involves inverting the DF -GLSµ and DF -GLSτ tests, respectively,

and computing an initial confidence interval for c using the significance levels appropriate

for the value of δ̂ found in Table S.1 in section S.3 of the supplementary appendix, as

discussed in section 3.1, and then computing the confidence interval for β according to

(5)-(6). For the tOLS
µ and tOLS

τ tests this involves inverting the DF -OLSµ and DF -OLSτ

tests, respectively, and computing an initial confidence interval for c using the significance

levels appropriate for the value of δ̂ found in Table S.1 as discussed in section 3.2, and then

computing the confidence interval for β according to (8)-(9). For the hybrid Uhyb test,

when δ̂ < 0, β is computed as the maximum value of β implied by the QGLS
µ and QGLS

τ

tests when the significance levels used to construct the initial confidence interval c in these

tests is scaled by the appropriate value of ξ reported in Table S.1,8 whereas when δ̂ > 0, β

is simply the value of β implied by the QGLS
τ test. The value of β for the hybrid Shyb test

8A specific worked example detailing how β is calculated in the context of the Uhyb test for the case of
the quarterly log Dividend-Price ratio predictor is given in section S.3 in the supplementary appendix.
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is computed in exactly the same manner as the Uhyb test, but where the value of β implied

by the Uhyb test is replaced by that computed using the tOLS
τ test for ĉ < −35 (ĉ < −15)

when δ̂ < 0 (δ̂ > 0), where ĉ is computed as the value of the NB-GLSτ statistic; see section

5.1. Finally, in the calculation of the diverging critical value cvNB = −υT 1/2 we set υ = 10

such that our hybrid procedures Uhyb and Shyb compute β using a standard confidence

interval using standard normal critical values whenever NB-OLSτ < −10T 1/2 as we found

this choice of υ delivered good finite sample performance across a wide range of DGPs in

the Monte Carlo simulation results reported in section S.6 of the supplementary appendix.

The results are reported in Table 2. The first column of Table 2 reports the estimate

of the correlation δ from the with-trend Bonferroni type test procedures.9 Then, for each

test we report the lower bound of the associated 95% one-sided confidence interval for β,

β.10 We highlight any instances where this lower bound is greater than zero in bold, these

corresponding to cases where the null of β = 0 is rejected in favour of the alternative

that β > 0 at the 0.05-level. Finally, for the lower bound of β from the Uhyb and Shyb

tests we use the superscript ‡ to identify instances where these tests have switched into

the conventional t-test for predictability, and for Shyb we use the superscript † to denote

instances where this test is basing inference on the Bonferroni tOLS
τ test.

For the eight predictor series: Dividend Payout Ratio, Default Yield Spread, Long Term

Yield, Net Equity Expansion, Inflation Rate, Treasury Bill Rate, Term Spread and Stock

Variance, no evidence of predictability is found by any of the tests at any data frequency and

so we will not discuss results for these predictors further. For the other five predictors, one

or more of the tests does infer predictability so we concentrate our discussion around these.

For the Earnings-Price Ratio, as noted above, evidence for a linear trend is mixed across

the different frequencies and tests considered. Interestingly, evidence for predictability

is also mixed if we focus on the constant-only tests, with tOLS
µ rejecting the null of no

predictability for all frequencies, but QGLS
µ failing to reject at any frequency. In contrast,

the with-trend tests QGLS
τ and tOLS

τ both reject the null for all frequencies, as do the

hybrid tests Uhyb and Shyb. This pattern of results is in line with what might be expected

from our earlier theoretical and simulation results if a modest trend is present and right-

tailed predictability testing is conducted when the correlation is negative. Note that at

9The corresponding constant-only correlation estimates are very similar and hence not reported.
10When reporting our confidence intervals for β we follow CY and scale this confidence interval by

(σ̂e/σ̂u). In other words, we report the confidence interval for β̃ = (σe/σu)β instead of β. As discussed in
CY, this scaling does not affect inference, but is a more natural way to report results for two reasons. First,
β̃ can be interpreted as the coefficient in (1) when the innovations are normalised to have unit variance.
Secondly, β̃ can be interpreted as the standard deviation of the change in expected returns relative to the
standard deviation of the innovations to returns.

30



the quarterly and monthly frequencies, the Shyb procedure switches out of the union of

rejections statistic U and into the tOLS
τ statistic (with Bonferroni critical values).

For the Dividend-Price Ratio, the QGLS
τ , Uhyb and Shyb tests all reject the null of no

predictability for annual and quarterly data, with tOLS
τ also rejecting in the case of annual

data. Neither of the constant-only tests tOLS
µ and QGLS

µ reject the null for either frequency,

and given very credible evidence of a linear trend is present at both of these frequencies,

together with a large negative correlation, this suggests that an unmodelled trend in the

predictor may be negatively impacting the power of the constant-only tests, with the trend-

augmented and hybrid tests retaining power to find significant evidence of predictability.

For monthly data, no tests reject the null, indicating no evidence of predictability.

In the case of the Dividend Yield predictor, which exhibits evidence of a trend at

all frequencies, we again find that the constant-only tests fail to reject the null of no

predictability, whilst the with-trend and hybrid tests all reject at all frequencies (note again

that here Shyb switches into Bonferroni tOLS
τ ). Once again it appears that a neglected trend

affects the ability of the constant-only tests to detect predictability.

For the Default Return Spread, very little evidence of predictability is detected by any of

the tests across the different frequencies, with a sole rejection byQGLS
µ for monthly data. No

trends were detected for this predictor at any frequency, and the unit root statistics suggest

that this series is weakly persistent, with the hybrid procedures Uhyb and Shyb switching into

the conventional t-test tτ , which uses standard normal critical values. Given the evidence

that this predictor is likely to be weakly persistent, it may be the case that the rejection from

QGLS
µ is simply an artefact reflecting the oversize of this test for weakly persistent predictors.

Results for the Book-to-Market Value Ratio are mixed. At the annual frequency no ev-

idence of a trend is found and the only test to reject is QGLS
µ , as might be expected if no

trend is present and the predictive power of this series is weak. For quarterly data, again

there is no evidence for a trend, and now both constant-only tests display evidence of pre-

dictability. In contrast, only one of the with-trend tests, tOLS
τ , rejects, which could be in-

dicative of with-trend tests having reduced power when accounting for a trend is not nec-

essary. It is interesting to note that both hybrid tests reject the null of no predictability,

again demonstrating their ability to reject when there is disagreement between the con-

stituent tests. For monthly data, some weak evidence of a trend is now detected by one

of the tests, and QGLS
µ rejects the null of no predictability, while tOLS

µ , tOLS
τ and QGLS

τ do

not. Reassuringly, this more limited evidence for predictability, arising from just one of the

constant-only tests, still translates into rejections by both hybrid procedures.

Overall, we conclude from our empirical application that where trends are identified in

these predictor series, there is a distinct tendency for this to be associated with compro-
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mised ability of the constant-only Bonferroni tests to infer predictability. In contrast, our

proposed hybrid tests find evidence of predictability in many of these cases, highlighting

the value of our procedures in detecting predictability when uncertainty exists regarding

the presence of a linear trend in the predictor.

8 Conclusions

In this paper we have developed operational trend-augmented versions of the Bonferroni

Q test of CY and the Bonferroni t-test of CES. We have shown that in the presence of

an omitted trend in the predictor, when the endogeneity correlation δ < 0 (δ > 0) the

constant-only Bonferroni Q and t-tests can be severely undersized when testing in the right

(left) tail, displaying a subsequent lack of power, and severely oversized when testing in

the left (right) tail. The trend augmented Bonferroni Q and t-tests, while displaying power

below their constant-only counterparts when no trend is present, do not depend on whether

or not a trend is present in the predictor. We subsequently proposed union-of-rejections

type hybrid testing procedures that are able to capture the power of the constant-only

Bonferroni Q test when the predictor admits only a deterministic constant, and the power

of the trend-augmented Bonferroni Q and t-tests when a trend is present in the predictor,

with Shyb being our recommended testing procedure given that it has controlled size, and is

always among the most powerful tests, over the full range of parameter settings considered.

An empirical illustration using an updated version of the dataset of Welch and Goyal

(2008) demonstrated that our proposed approach finds evidence of predictability in several

instances where a trend appears to be present in the predictor where the constant-only

Bonferroni Q and t-tests fail to reject, indicating that the presence of omitted trends may

be negatively impacting the power of the constant-only tests in this commonly used dataset.
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Table 2: Correlation Estimates, Lower Bounds of One-Sided 95% Confidence Intervals for
β, and Normalised-Bias Statistics for Updated Welch and Goyal (2008) Dataset

Annual Data
β

Predictor δ̂ tOLS
µ QGLS

µ tOLS
τ QGLS

τ Uhyb Shyb NB-GLSτ NB-OLSτ

Dividend Payout Ratio -0.366 -0.1693 -0.1416 -0.1676 -0.1315 -0.1556 -0.1676† -54.363 -60.435
Earnings-Price Ratio -0.261 0.0036 -0.0037 0.0328 0.0486 0.0291 0.0291 -31.513 -31.549
Dividend-Price Ratio -0.843 -0.0628 -0.0454 0.0092 0.0532 0.0381 0.0381 -24.801 -26.528
Dividend Yield 0.118 -0.0001 -0.0003 0.0985 0.0907 0.0907 0.0907 -12.913 -13.522
Default Yield Spread -0.646 -0.1379 -0.1105 -0.1844 -0.1389 -0.1290 -0.1290 -28.986 -30.718
Long Term Yield -0.061 -0.0372 -0.0357 -0.0446 -0.0449 -0.0443 -0.0443 -4.530 -4.412

Default Return Spread 0.272 -0.2007 -0.2159 -0.1953 -0.3159 -0.2043‡ -0.2043‡ -198.824 -245.534

Net Equity Expansion 0.135 -0.3699 -0.3378 -0.3634 -0.3812 -0.3812 -0.3634† -68.659 -73.124
Inflation Rate -0.013 -0.0597 -0.0585 -0.0716 -0.0692 -0.0781 -0.0781 -11.231 -13.492
Treasury Bill Rate 0.053 -0.0684 -0.0719 -0.0728 -0.0753 -0.0753 -0.0753 -10.817 -10.868

Term Spread -0.085 -0.0814 -0.0844 -0.0950 -0.0941 -0.1065 -0.0950† -36.378 -38.281
Book-to-Market Value Ratio -0.807 -0.0357 0.0065 -0.0228 -0.0152 -0.0057 -0.0057 -15.136 -20.757

Stock Variance -0.448 -0.1428 -0.1205 -0.1500 -0.1369 -0.1413 -0.1500† -36.799 -39.521

Quarterly Data
β

Predictor δ̂ tOLS
µ QGLS

µ tOLS
τ QGLS

τ Uhyb Shyb NB-GLSτ NB-OLSτ

Dividend Payout Ratio -0.154 -0.0350 -0.0357 -0.0375 -0.0442 -0.0397 -0.0375† -99.545 -139.120

Earnings-Price Ratio -0.596 0.0056 -0.0145 0.0124 0.0105 0.0063 0.0124† -47.414 -50.125
Dividend-Price Ratio -0.951 -0.0146 -0.0134 -0.0059 0.0117 0.0066 0.0066 -25.323 -27.086

Dividend Yield 0.073 -0.0015 -0.0015 0.0241 0.0230 0.0230 0.0241† -22.500 -26.390
Default Yield Spread -0.507 -0.0281 -0.0253 -0.0438 -0.0323 -0.0308 -0.0308 -26.348 -26.832
Long Term Yield -0.056 -0.0128 -0.0124 -0.0146 -0.0145 -0.0146 -0.0146 -5.160 -5.049

Default Return Spread 0.303 -0.1004 -0.1520 -0.0987 -0.3237 -0.1039‡ -0.1039‡ -418.736 -430.409

Net Equity Expansion 0.094 -0.0716 -0.0651 -0.0815 -0.0806 -0.0806 -0.0815† -62.271 -72.145

Inflation Rate 0.013 -0.0732 -0.0709 -0.0767 -0.0744 -0.0744 -0.0767† -36.998 -46.726
Treasury Bill Rate -0.046 -0.0220 -0.0213 -0.0241 -0.0240 -0.0247 -0.0247 -13.245 -13.449

Term Spread 0.005 -0.0327 -0.0326 -0.0354 -0.0357 -0.0357 -0.0354† -45.802 -53.015
Book-to-Market Value Ratio -0.796 0.0084 0.0058 0.0256 -0.0013 0.0025 0.0025 -26.775 -43.187

Stock Variance -0.384 -0.0643 -0.1039 -0.0643 -0.0874 -0.0971 -0.0643† -98.537 -102.249

Monthly Data
β

Predictor δ̂ tOLS
µ QGLS

µ tOLS
τ QGLS

τ Uhyb Shyb NB-GLSτ NB-OLSτ

Dividend Payout Ratio -0.057 -0.0064 -0.0065 -0.0073 -0.0080 -0.0071 -0.0073† -72.853 -120.237

Earnings-Price Ratio -0.798 0.0015 -0.0056 0.0026 0.0028 0.0016 0.0026† -39.697 -40.377
Dividend-Price Ratio -0.976 -0.0052 -0.0045 -0.0035 -0.0012 -0.0029 -0.0029 -20.699 -26.126
Dividend Yield -0.062 -0.0003 -0.0002 0.0088 0.0087 0.0073 0.0073 -21.307 -26.552
Default Yield Spread -0.249 -0.0094 -0.0090 -0.0118 -0.0098 -0.0106 -0.0106 -30.098 -30.531
Long Term Yield -0.093 -0.0043 -0.0041 -0.0050 -0.0049 -0.0048 -0.0048 -4.308 -4.179

Default Return Spread 0.179 -0.0141 0.0647 -0.0138 -0.0235 -0.0155‡ -0.0155‡ -1204.471 -1275.306

Net Equity Expansion -0.036 -0.0208 -0.0212 -0.0243 -0.0245 -0.0227 -0.0243† -35.012 -37.824

Inflation Rate 0.033 -0.0648 -0.0560 -0.0667 -0.0626 -0.0626 -0.0667† -221.076 -240.319
Treasury Bill Rate -0.047 -0.0060 -0.0058 -0.0065 -0.0065 -0.0067 -0.0067 -11.334 -11.693

Term Spread -0.005 -0.0089 -0.0089 -0.0100 -0.0098 -0.0110 -0.0100† -46.721 -56.723
Book-to-Market Value Ratio -0.811 -0.0019 0.0017 -0.0011 -0.0041 0.0007 0.0007 -9.055 -19.037

Stock Variance -0.299 -0.0580 -0.1119 -0.0582 -0.1039 -0.1098 -0.0582† -154.848 -181.770

Notes:

(i) δ̂ := σ̂ue/σ̂uσ̂e represents the estimated correlation between the innovations to returns, ut, and the innovations to the predictor, et,
when allowing for a linear trend in the predictor.
(ii) Bold entries in the β columns highlight cases where the null hypothesis of no predictability can be rejected at the 0.05-level in favour

of positive predictability.

(iii) Bold entries in the NB-GLSτ column highlight cases where NB-GLSτ < −35 when δ̂ < 0 or NB-GLSτ < −15 when δ̂ > 0

such that Shyb switches into the tOLS
τ test. Commensurately, for entries in the Shyb columns, a † superscript denotes that β is

computed using the Bonferroni-based tOLS
τ test.

(iv) Bold entries in the NB-OLSτ column highlight cases where NB-OLSτ < −10T1/2. Commensurately, for entries in the Uhyb and

Shyb columns, a ‡ superscript denotes that β is computed using a conventional confidence interval based on standard normal critical values.
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Abstract

The outline of this supplementary paper is as follows. Section S.1 provides a proof of

Theorem 1 in the paper. Section S.2 establishes consistency of the nuisance parameter

estimates used to construct the tOLS
µ and QGLS

µ test statistics in the presence of a

fixed magnitude trend in the predictor. Section S.3 shows numerically how the lower

bound of the confidence interval for β is computed for the Uhyb procedure for one

of the returns/predictor pairings considered in the empirical application of the main

paper. Section S.4 reports Figures S.1–S.15 discussed in section 4.1 of the paper.

Section S.5 reports the local asymptotic power of our proposed tests across additional

scenarios to those considered in the main paper. Finally, section S.6 reports results

from a Monte Carlo simulation exercise examining the finite sample size and power

performance of our proposed tests.



S.1 Proof of Theorem 1

It is useful to use the Cholesky decomposition to write

et = σeε1t

ut = σu{δε1t + (1− δ2)1/2ε2t}

where et denotes the innovation to vt, and ε1t and ε2t are independent martingale difference

sequences each with unit (unconditional) variance. Also, note that we can write as

rt = α∗ + βTwt−1 + ut (S.1)

with α∗ = α + βTµ. Since a constant term is fitted in the regression, for the purposes of

the theory we can set α = µ = 0 (and therefore α∗ = 0) without loss of generality. In what

follows we make use of the following weak convergence results:

T−1/2

⌊rT ⌋∑
t=2

ε1t
w→ W1(r)

T−1/2

⌊rT ⌋∑
t=2

ε2t
w→ W2(r)

whereW1(r) andW2(r), r ∈ [0, 1], are independent standard Brownian motions, and where

⌊·⌋ denotes the integer part of its argument.

S.1.1 Proof of Theorem 1.1 (i)

The tµ statistic can be written as

tµ =
T−1

∑T
t=2 xt−1(rt − r̄)√

σ2
uT

−2
∑T

t=2(xt−1 − x̄−1)2
.
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Consider first the numerator of tµ. Using (S.1),

T−1

T∑
t=2

xt−1(rt − r̄) = βTT
−1

T∑
t=2

xt−1(wt−1 − w̄−1) + T−1

T∑
t=2

xt−1(ut − ū)

= b(σu/ωv)T
−2

T∑
t=2

xt−1(wt−1 − w̄−1) + T−1

T∑
t=2

xt−1(ut − ū).

Here,

T−2

T∑
t=2

xt−1(wt−1 − w̄−1) = T−2

T∑
t=2

{γT (t− 1) + wt−1}(wt−1 − w̄−1)

= κωvT
−5/2

T∑
t=2

(t− 1)(wt−1 − w̄−1) + T−2

T∑
t=2

(wt−1 − w̄−1)
2

w→ κω2
v

∫ 1

0

rW µ
1c(r)dr + ω2

v

∫ 1

0

W µ
1c(r)

2dr.

Also,

T−1

T∑
t=2

xt−1(ut − ū) = T−1

T∑
t=2

(xt−1 − x̄−1)ut

= κωvT
−3/2

T∑
t=2

{(t− 1)− t− 1}ut + T−1

T∑
t=2

(wt−1 − w̄−1)ut

= κωvσuT
−3/2

T∑
t=2

{(t− 1)− t− 1}{δε1t + (1− δ2)1/2ε2t}

+σuT
−1

T∑
t=2

(wt−1 − w̄−1){δε1t + (1− δ2)1/2ε2t}

w→ κωvσu{δ
∫ 1

0

(r − 0.5)dW1(r) + (1− δ2)1/2
∫ 1

0

(r − 0.5)dW2(r)}

+ωvσu{δ
∫ 1

0

W µ
1c(r)dW1(r) + (1− δ2)1/2

∫ 1

0

W µ
1c(r)dW2(r)}

= ωvσu

∫ 1

0

W µ,κ
1c (r){δdW1(r) + (1− δ2)1/2dW2(r)}.
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So,

T−1

T∑
t=2

xt−1(rt − r̄)
w→ σuωvb{κ

∫ 1

0

rW µ
1c(r)dr +

∫ 1

0

W µ
1c(r)

2dr}+ σuωv{δ
∫ 1

0

W µ,κ
1c (r)dW1(r)

+(1− δ2)1/2
∫ 1

0

W µ,κ
1c dW2(r)}.

Next consider the denominator of tµ

T−2

T∑
t=2

(xt−1 − x̄−1)
2 = T−2

T∑
t=2

{γT (t− 1− t− 1) + (wt−1 − w̄−1)}2

= κ2ω2
vT

−3

T∑
t=2

(t− 1− t− 1)2 + T−2

T∑
t=2

(wt−1 − w̄−1)
2

+2κωvT
−5/2

T∑
t=2

(t− 1− t− 1)(wt−1 − w̄−1)

w→ κ2ω2
v/12 + ω2

v

∫ 1

0

W µ
1c(r)

2dr + 2κω2
v

∫ 1

0

rW µ
1c(r)dr

= ω2
v

∫ 1

0

{κ(r − 0.5) +W µ
1c(r)}

2 dr

= ω2
v

∫ 1

0

W µ,κ
1c (r)2dr.

Hence we obtain

tµ =
T−1

∑T
t=2 xt−1(rt − r̄)√

σ2
uT

−2
∑T

t=2(xt−1 − x̄−1)2

w→
b{κ

∫ 1

0
rW µ

1c(r)dr +
∫ 1

0
W µ

1c(r)
2dr}+ δ

∫ 1

0
W µ,κ

1c (r)dW1(r) + (1− δ2)1/2
∫ 1

0
W µ,κ

1c dW2(r)√∫ 1

0
W µ,κ

1c (r)2dr

=
b{κ

∫ 1

0
rW µ

1c(r)dr +
∫ 1

0
W µ

1c(r)
2dr}+ δ

∫ 1

0
W µ,κ

1c (r)dW1(r)√∫ 1

0
W µ,κ

1c (r)2dr
+ (1− δ2)1/2Zµ.
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S.1.2 Proof of Theorem 1.1 (ii)

Assuming ρ̃T = 1+ c̃/T and letting yt := (rt − (σue/σeωv)(xt − ρ̃xt−1)), we can write Qµ(ρ̃)

as

Qµ(ρ̃) =

∑T
t=2(xt−1 − x̄−1)yt +

T
2
(σue/σeωv)(ω

2
v − σ2

v)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

. (S.2)

Turning first to the numerator of (S.2) first note that we can write

yt = βTwt−1 + ut − (σue/σeωv)(xt − ρ̃xt−1)

= βTwt−1 + ut − (σue/σeωv)(xt − ρxt−1)

+(σue/σeωv)T
−1(c̃− c)xt−1

= βTwt−1 + ut − (σue/σeωv){vt − γT{cT−1(t− 1)− 1}

+(σue/σeωv)T
−1(c̃− c)xt−1

using

xt − ρxt−1 = γT t+ wt − ρwt−1 − ργT (t− 1)

= vt + γT{t− (1 + cT−1)(t− 1)}

= vt − γT{cT−1(t− 1)− 1}.

So,

yt = βTwt−1 + {ut − (σue/σeωv)vt}+ (σue/σeωv)γT{cT−1(t− 1)− 1}

+(σue/σeωv){T−1(c̃− c)xt−1}
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Hence we find

Qµ(ρ̃) =
βT

∑T
t=2(xt−1 − x̄−1)wt−1

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

(S.3)

+

∑T
t=2(xt−1 − x̄−1)(ut − (σue/σeωv)vt) +

T
2
(σue/σeωv)(ω

2
v − σ2

v)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

(S.4)

+
(σue/σeωv)γT cT

−1
∑T

t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

(S.5)

+
(σue/σeωv)T

−1(c̃− c)
∑T

t=2(xt−1 − x̄−1)
2

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

. (S.6)

We now examine the limit of each of the terms (S.3)-(S.6) in turn. Beginning with (S.3),

we can write it as

(bσu/ωv)T
−2

∑T
t=2 xt−1(wt − w̄−1)

(1− δ2)1/2σu

√
T−2

∑T
t=2(xt−1 − x̄−1)2

w→
(bσu/ωv){κω2

v

∫ 1

0
rW µ

1c(r)dr + ω2
v

∫ 1

0
W µ

1c(r)
2dr}

(1− δ2)1/2σu

√
ω2
v

∫ 1

0
W µ,κ

1c (r)2dr

=
b{κ

∫ 1

0
rW µ

1c(r)dr +
∫ 1

0
W µ

1c(r)
2dr}

(1− δ2)1/2
√∫ 1

0
W µ,κ

1c (r)2dr
.

For (S.4) we note that

T−1

T∑
t=2

(xt−1 − x̄−1)vt
w→ ω2

v

∫ 1

0

W µ,κ
1c (r)dW1(r) +

1

2
(ω2

v − σ2
v).
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Then,

T−1
∑T

t=2(xt−1 − x̄−1)(ut − σue

σeωv
vt) +

1
2

σue

σeωv
(ω2

v − σ2
v)

σu(1− δ2)1/2(T−2
∑T

t=2(xt−1 − x̄−1)2)1/2

=
T−1

∑T
t=2(xt−1 − x̄−1)ut − σue

σeωv
T−1

∑T
t=2(xt−1 − x̄−1)vt +

1
2

σue

σeωv
(ω2

v − σ2
v)

σu(1− δ2)1/2(T−2
∑T

t=2(xt−1 − x̄−1)2)1/2

w→
ωvσu

∫ 1

0
W µ,κ

1c (r){δdW1(r) + (1− δ2)1/2dW2(r)} − σue

σeωv
ω2
v

∫ 1

0
W µ,κ

1c (r)dW1(r)

σu(1− δ2)1/2ωv

√∫ 1

0
W µ,κ

1c (r)2dr

+
−1

2
σue

σeωv
(ω2

v − σ2
v) +

1
2

σue

σeωv
(ω2

v − σ2
v)

σu(1− δ2)1/2ωv

√∫ 1

0
W µ,κ

1c (r)2dr

=
δ
∫ 1

0
W µ,κ

1c (r)dW1(r) + (1− δ2)1/2
∫ 1

0
W µ,κ

1c dW2(r)− δ
∫ 1

0
W µ,κ

1c (r)dW1(r)

(1− δ2)1/2
√∫ 1

0
W µ,κ

1c (r)2dr

=

∫ 1

0
W µ,κ

1c (r)dW2(r)√∫ 1

0
W µ,κ

1c (r)2dr

= Zµ.

For (S.5),

(σue/σeωv)γT cT
−1

∑T
t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

=
(σue/σeωv)cκωvT

−3/2
∑T

t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

=
δcκT−5/2

∑T
t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2
√
T−2

∑T
t=2(xt−1 − x̄−1)2

w→
δcκωv

∫ 1

0
rW µ,κ

1c (r)dr

(1− δ2)1/2ωv

√∫ 1

0
W µ,κ

1c (r)2dr

=
δcκ

∫ 1

0
rW µ,κ

1c (r)dr

(1− δ2)1/2
√∫ 1

0
W µ,κ

1c (r)2dr
.
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Finally, for (S.6),

(σue/σeωv)T
−1(c̃− c)

∑T
t=2(xt−1 − x̄−1)

2

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

=
δω−1

v (c̃− c)T−2
∑T

t=2(xt−1 − x̄−1)
2

(1− δ2)1/2
√
T−2

∑T
t=2(xt−1 − x̄−1)2

w→
δω−1

v (c̃− c)ω2
v

∫ 1

0
W µ,κ

1c (r)2dr

(1− δ̂2)1/2ωv

√∫ 1

0
W µ,κ

1c (r)2dr

=
δ(c̃− c)

∫ 1

0
W µ,κ

1c (r)2dr

(1− δ2)1/2
√∫ 1

0
W µ,κ

1c (r)2dr
.

Combining results we therefore have that

Qµ(ρ̃)
w→
b{κ

∫ 1

0
rW µ

1c(r)dr +
∫ 1

0
W µ

1c(r)
2dr}+ δcκ

∫ 1

0
rW µ,κ

1c (r)dr + δ(c̃− c)
∫ 1

0
W µ,κ

1c (r)2dr

(1− δ2)1/2{
∫ 1

0
W µ,κ

1c (r)2dr}1/2
+Zµ.

S.1.3 Proof of Theorem 1.2 (i)

The tµ statistic can be written as

tµ =
T−3/2

∑T
t=2 xt−1(rt − r̄)√

σ2
uT

−3
∑T

t=2(xt−1 − x̄−1)2
.

Using (S.1), the numerator can be expressed as

T−3/2

T∑
t=2

xt−1(rt − r̄) = b(σu/ωv)T
−5/2

T∑
t=2

xt−1(wt−1 − w̄−1) + T−3/2

T∑
t=2

xt−1(ut − ū).

Here,

T−5/2

T∑
t=2

xt−1(wt−1 − w̄−1) = T−5/2

T∑
t=2

{γ(t− 1) + wt−1}(wt−1 − w̄−1)

= κωvT
−5/2

T∑
t=2

(t− 1)(wt−1 − w̄−1) + op(1)

w→ κω2
v

∫ 1

0

rW µ
1c(r)dr.

S7



Also,

T−3/2

T∑
t=2

xt−1(ut − ū) = T−3/2

T∑
t=2

(xt−1 − x̄−1)ut

= κωvT
−3/2

T∑
t=2

{(t− 1)− t− 1}ut + T−3/2

T∑
t=2

(wt−1 − w̄−1)ut

= κωvσuT
−3/2

T∑
t=2

{(t− 1)− t− 1}{δε1t + (1− δ2)1/2ε2t}+ op(1)

w→ κωvσu

{
δ

∫ 1

0

(r − 0.5)dW1(r) + (1− δ2)1/2
∫ 1

0

(r − 0.5)dW2(r)

}
.

So,

T−3/2

T∑
t=2

xt−1(rt − r̄)
w→ σuωvbκ

∫ 1

0

rW µ
1c(r)dr + κσuωv{δ

∫ 1

0

(r − 0.5)dW1(r)

+(1− δ2)1/2
∫ 1

0

(r − 0.5)dW2(r)}. (S.7)

Next consider the denominator of tµ

T−3

T∑
t=2

(xt−1 − x̄−1)
2 = T−3

T∑
t=2

{γ(t− 1− t− 1) + (wt−1 − w̄−1)}2

= κ2ω2
vT

−3

T∑
t=2

(t− 1− t− 1)2 + op(1)

p→ κ2ω2
v/12. (S.8)

Hence we obtain

tµ
w→

σuωvbκ
∫ 1

0
rW µ

1c(r)dr + κσuωv

{
δ
∫ 1

0
(r − 0.5)dW1(r) + (1− δ2)1/2

∫ 1

0
(r − 0.5)dW2(r)

}
√
σ2
uκ

2ω2
v/12

=
√
12

{
b

∫ 1

0

rW µ
1c(r)dr + δ

∫ 1

0

(r − 0.5)dW1(r) + (1− δ2)1/2
∫ 1

0

(r − 0.5)dW2(r)

}
= b

√
12

∫ 1

0

rW µ
1c(r)dr + Z∗

µ.
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S.1.4 Proof of Theorem 1.2 (ii)

The Qµ(ρ̃) statistic can again be written as in (S.3)-(S.6), but with γT replaced by γ in

(S.5). Introducing the appropriate scalings we can write

T−1/2Qµ(ρ̃) = T−1/2 (bσu/ωv)T
−5/2

∑T
t=2(xt−1 − x̄−1)wt−1

(1− δ2)1/2σu

√
T−3

∑T
t=2(xt−1 − x̄−1)2

(S.9)

+T−1/2T
−3/2

∑T
t=2(xt−1 − x̄−1)(ut − (σu,e/σeωv)vt) + T−3/2 T

2
(σu,e/σeωv)(ω

2
v − σ2

v)

(1− δ2)1/2σu

√
T−3

∑T
t=2(xt−1 − x̄−1)2

(S.10)

+
(σu,e/σeωv)γcT

−3
∑T

t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2σu

√
T−3

∑T
t=2(xt−1 − x̄−1)2

(S.11)

+
(σu,e/σeωv)(c̃− c)T−3

∑T
t=2(xt−1 − x̄−1)

2

(1− δ2)1/2σu

√
T−3

∑T
t=2(xt−1 − x̄−1)2

. (S.12)

Notice that terms (S.9) and (S.10) are op(1). Examining the limits of (S.11) and (S.12),

we find

T−3

T∑
t=2

(xt−1 − x̄−1)(t− 1) =
T∑
t=2

{γ(t− 1− t− 1) + (wt−1 − w̄−1)}(t− 1)

= κωvT
−3

T∑
t=2

(t− 1− t− 1)2 + T−3

T∑
t=2

(wt−1 − w̄−1)(t− 1)

p→ κωv/12

which together with (S.8) results in

(σu,e/σeωv)γcT
−3

∑T
t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2σu

√
T−3

∑T
t=2(xt−1 − x̄−1)2

p→ (σu,e/σe)κ
2c/12

(1− δ2)1/2σu
√
κ2/12

=
δc |κ|

(1− δ2)1/2
√
12
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and

(σu,e/σeωv)(c̃− c)T−3
∑T

t=2(xt−1 − x̄−1)
2

(1− δ2)1/2σu

√
T−3

∑T
t=2(xt−1 − x̄−1)2

p→ (σu,e/σe)(c̃− c)κ2/12

(1− δ2)1/2σu
√
κ2/12

=
δ(c̃− c) |κ|

(1− δ2)1/2
√
12
.

Combining results we therefore have that

T−1/2Qµ(ρ̃)
p→ δc |κ|

(1− δ2)1/2
√
12

+
δ(c̃− c) |κ|

(1− δ2)1/2
√
12

=
δc̃ |κ|

(1− δ2)1/2
√
12
.

S.1.5 Proof of Theorem 1.3 (i)

We can write the tτ statistic as

tτ =
bσuω

−1
v (T−2

∑T
t=2 x

2
τ,t−1)

1/2

σu
+

T−1
∑T

t=2 xτ,t−1ut

σu

√
T−2

∑T
t=2 x

2
τ,t−1

w→ b(

∫ 1

0

W τ
1c(r)

2dr)1/2 +
δ
∫ 1

0
W τ

1c(r)dW1(r) + (1− δ2)1/2
∫ 1

0
W τ

1c(r)dW2(r)√∫ 1

0
W τ

1c(r)
2dr

= b(

∫ 1

0

W τ
1c(r)

2dr)1/2 + δ

∫ 1

0
W τ

1c(r)dW1(r)√∫ 1

0
W τ

1c(r)
2dr

+ (1− δ2)1/2Zτ .

S.1.6 Proof of Theorem 1.3 (ii)

The Qτ (ρ̃) statistic can be written as

Qτ (ρ̃) =
bω−1

v (T−2
∑T

t=2 x
2
τ,t−1)

1/2

(1− δ2)1/2
+
δ(c̃− c)(T−2

∑T
t=2 x

2
τ,t−1)

1/2

ωv(1− δ2)1/2

+
T−1

∑T
t=2 xτ,t−1(ut − σue

σeωv
vt) +

1
2

σue

σeωv
(ω2

v − σ2
v)

σu(1− δ2)1/2
√
T−2

∑T
t=2 x

2
τ,t−1

. (S.13)

We will derive limiting expressions for each of the three terms on the right hand side of

(S.13). Here

bω−1
v (T−2

∑T
t=2 x

2
τ,t−1)

1/2

(1− δ2)1/2
w→
b{
∫ 1

0
W τ

1c(r)
2dr}1/2

(1− δ2)1/2
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and

δ(c̃− c)(T−2
∑T

t=2 x
2
τ,t−1)

1/2

ωv(1− δ2)1/2
w→
δ(c̃− c)

(∫ 1

0
W τ

1c(r)
2dr

)1/2

(1− δ2)1/2
.

Finally,

T−1
∑T

t=2 xτ,t−1(ut − σue

σeωv
vt) +

1
2

σue

σeωv
(ω2

v − σ2
v)

σu(1− δ2)1/2
√
T−2

∑T
t=2 x

2
τ,t−1

=
T−1

∑T
t=2 xτ,t−1ut − σue

σeωv
T−1

∑T
t=2 xτ,t−1vt +

1
2

σue

σeωv
(ω2

v − σ2
v)

σu(1− δ2)1/2
√
T−2

∑T
t=2 x

2
τ,t−1

w→
σuωv

∫ 1

0
W τ

1c(s){δdW1(r) + (1− δ2)1/2dW2(r)} − σue

σeωv
ω2
v

∫ 1

0
W τ

1c(s)dW1(s)

σu(1− δ2)1/2ωv

√∫ 1

0
W τ

1c(r)
2dr

+
−1

2
σue

σeωv
(ω2

v − σ2
v) +

1
2

σue

σeωv
(ω2

v − σ2
v)

σu(1− δ2)1/2ωv

√∫ 1

0
W τ

1c(r)
2dr

=

∫ 1

0
W τ

1c(s)dW2(s)√∫ 1

0
W τ

1c(r)
2dr

= Zτ .

Combining results we obtain

Qτ (ρ̃)
w→

{b+ δ(c̃− c)}{
∫ 1

0
W τ

1c(r)
2dr)1/2}

(1− δ2)1/2
+ Zτ .

S.2 Consistency of Parameter Estimates with Neglected Fixed

Trend

In this section we demonstrate that the parameter estimates used in tµ and Qµ(ρ̃) remain

consistent in the presence of a neglected fixed trend, i.e. under Assumption 4.2. For

simplicity, we consider the case where p = 1 in Assumption 1, i.e. where vt = et and

ωv = σv = σe. Given that δ = σue/σuσe, consistency of the estimator of δ follows directly

from consistency of the estimators of σe, σu and σue.
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S.2.1 Consistency of σ2
e estimator

First consider σ̂2
e := T−1

∑T
t=2 ê

2
t with êt the residuals from the fitted OLS regression

∆xt = â+ ϕ̂xt−1 + êt.

Here,

σ̂2
e = T−1

T∑
t=2

{(∆xt −∆x)− ϕ̂(xt−1 − x̄−1)}2

= T−1

T∑
t=2

(∆xt −∆x)2 + ϕ̂2T−1

T∑
t=2

(xt−1 − x̄−1)
2 − 2ϕ̂T−1

T∑
t=2

∆xt(xt−1 − x̄−1)

where

ϕ̂ =

∑T
t=2 ∆xt(xt−1 − x̄−1)∑T

t=2(xt−1 − x̄−1)2
.

As regards the numerator,

T∑
t=2

∆xt(xt−1 − x̄−1) =
T∑
t=2

(γ +∆wt)(xt−1 − x̄−1)

=
T∑
t=2

∆wt(xt−1 − x̄−1)

=
T∑
t=2

∆wt{γ(t− 1− t− 1) + (wt−1 − w̄−1)}

= γ
T∑
t=2

(t− 1− t− 1)∆wt +
T∑
t=2

∆wt(wt−1 − w̄−1)

T−3/2

T∑
t=2

∆xt(xt−1 − x̄−1) = κωvT
−3/2

T∑
t=2

(t− 1− t− 1)∆wt + op(1)

= Op(1)

S12



and, together with the result for the denominator given in (S.8), we obtain ϕ̂ = Op(T
−3/2).

It then follows that

σ̂2
e = T−1

T∑
t=2

(∆wt −∆w)2 + (T 3/2ϕ̂)2T−4

T∑
t=2

(xt−1 − x̄−1)
2 − 2(T 3/2ϕ̂)T−5/2

T∑
t=2

∆xt(xt−1 − x̄−1)

= T−1

T∑
t=2

(∆wt −∆w)2 + op(1).

Finally,

T−1

T∑
t=2

(∆wt −∆w)2 = T−1

T∑
t=2

{(ρ− 1)(wt−1 − w̄−1) + (vt − v̄)}2

= T−1

T∑
t=2

{cT−1(wt−1 − w̄−1) + (vt − v̄)}2

= c2T−3

T∑
t=2

(wt−1 − w̄−1)
2 + T−1

T∑
t=2

(vt − v̄)2 + 2cT−2

T∑
t=2

(wt−1 − w̄−1)(vt − v̄)

= T−1

T∑
t=2

(vt − v̄)2 + op(1)

p→ σ2
e

and so σ̂2
e

p→ σ2
e .

S.2.2 Consistency of σ2
u estimator

Next consider σ̂2
u := T−1

∑T
t=2 û

2
t with ût the residuals from the fitted OLS regression

rt = α̂∗ + β̂∗xt−1 + ût.

Here,

σ̂2
u = T−1

T∑
t=2

{
(rt − r̄)−

∑T
t=2 xt−1(rt − r̄)∑T
t=2(xt−1 − x̄−1)2

(xt−1 − x̄−1)

}2

= T−1

T∑
t=2

(rt − r̄)2 − T−1{T−3/2
∑T

t=2 xt−1(rt − r̄)}2

T−3
∑T

t=2(xt−1 − x̄−1)2

= T−1

T∑
t=2

(rt − r̄)2 + op(1)
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given (S.7) and (S.8). Next,

T∑
t=2

(rt − r̄)2 = β2
T

T∑
t=2

(wt−1 − w̄−1)
2 +

T∑
t=2

(ut − ū)2 + 2βT

T∑
t=2

(wt−1 − w̄−1)(ut − ū)

T−1

T∑
t=2

(rt − r̄)2 = σ2
uω

−2
v b2T−3

T∑
t=2

(wt−1 − w̄−1)
2 + T−1

T∑
t=2

(ut − ū)2

+2σuω
−1
v bT−2

T∑
t=2

(wt−1 − w̄−1)(ut − ū)

= T−1

T∑
t=2

(ut − ū)2 + op(1)

p→ σ2
u

and therefore σ̂2
u

p→ σ2
u.

S.2.3 Consistency of σue estimator

Finally consider σ̂ue = T−1
∑T

t=2 ûtêt. Here,

σ̂ue = T−1

T∑
t=2

{
(rt − r̄)− β̂∗(xt−1 − x̄−1)

}
{(∆xt −∆x)− ϕ̂(xt−1 − x̄−1)}

= T−1

T∑
t=2

(∆xt −∆x)(rt − r̄) + (T 3/2ϕ̂)(T 3/2β̂)T−4

T∑
t=2

(xt−1 − x̄−1)
2

−(T 3/2ϕ̂)T−5/2

T∑
t=2

(xt−1 − x̄−1)(rt − r̄)− (T 3/2β̂)T−5/2

T∑
t=2

(∆xt −∆x)(xt−1 − x̄−1)

= T−1

T∑
t=2

(∆xt −∆x)(rt − r̄) + op(1)

since ϕ̂ = Op(T
−3/2) and β̂∗ = Op(T

−3/2) given that

T 3/2β̂∗ =
T−3/2

∑T
t=2 xt−1(rt − r̄)

T−3
∑T

t=2(xt−1 − x̄−1)2

= Op(1).
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Now

T−1

T∑
t=2

(∆xt −∆x)(rt − r̄) = T−1

T∑
t=2

(∆wt −∆w){βT (wt−1 − w̄−1) + (ut − ū)}

= (bσu/ωv)T
−2

T∑
t=2

(∆wt −∆w)(wt−1 − w̄−1)

+T−1

T∑
t=2

(∆wt −∆w)(ut − ū)

= T−1

T∑
t=2

(∆wt −∆w)(ut − ū) + op(1)

= T−1

T∑
t=2

{cT−1(wt−1 − w̄−1) + (vt − v̄)}(ut − ū) + op(1)

= T−1

T∑
t=2

(et − ē)(ut − ū) + op(1)

p→ σue

and hence σ̂ue
p→ σue.

S.3 Empirical Implementation Example

In this section we outline how β, the lower bound of the confidence interval for β, is

obtained for the Uhyb procedure in one of the empirical returns/predictor pairings, namely

the predictability of quarterly log returns using the log Dividend-Price ratio. In this case

the BIC selects p = 1 when allowing for either a constant or constant and linear trend in

the DGP for xt, and so no correction for serial correlation is required.

The lower bound of the confidence interval for β from Uhyb is given by the maximum

of the lower bound of the confidence interval for β obtained from the QGLS
µ and QGLS

τ

procedures where the significance levels used to construct the initial confidence interval for

c, ᾱQ
1,µ and ᾱQ

1,τ , as well as the significance level used to construct the subsequent confidence

interval for β, are scaled by ξ, with the values of ᾱQ
1,µ, ᾱ

Q
1,τ and ξ determined by using an

estimate of the value of δ.
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S.3.1 Lower Bound from QGLS
µ

The regression model is given by

rt = α + βxt−1 + ut (S.14)

xt = µ+ ρxt−1 + et (S.15)

1. We first run regressions (S.14) and (S.15) and obtain the residuals ût and êt. Using

these residuals we compute σ̂2
u = 0.0108, σ̂2

e = ω̂2
v = 0.0117, σ̂ue = −0.0107, δ̂ =

−0.952 and the standard error of β̂, denoted SE(β̂) = 0.0111.

2. We then compute the DF -GLSµ statistic applied to the predictor xt which takes a

value of -1.275.

3. Given δ̂ = −0.952, from Table S.1 below the appropriate values of ᾱQ
1,µ and ξ are 10%

and 0.66, respectively. Inverting the DF -GLSµ test at the 10%×0.66=6.6% level

gives us an upper bound on the confidence interval for c of 1.83.

4. We then construct r∗t as defined in Remark 3.1 using ρ = 1+1.83/T , setting σue and

σe = ωv to their estimated values obtained in step 1. We then run regression (S.14),

replacing rt with r
∗
t , and denote the estimated coefficient on xt−1 as β̂(ρ).

5. Given that ξ = 0.66 the significance level used for the confidence interval for β is

5%×0.66=3.3%. This implies a lower bound on the confidence interval for β from

this test of

β = β̂(ρ)− z0.033(1− δ2)1/2SE(β̂) (S.16)

= −0.0087− 1.84(1− (−0.952)2)1/20.0111 = −0.01495 (S.17)

6. Finally we scale this lower bound for β by σ̂e/σ̂u = 1.0433 to give a final value of

β = −0.0156
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S.3.2 Lower Bound from QGLS
τ

The regression model is given by

rt = α + θt+ βxt−1 + ut (S.18)

xt = µ+ γt+ ρxt−1 + et (S.19)

1. We first run regressions (S.14) and (S.15) and obtain the residuals ût and êt. Using

these residuals we compute σ̂2
u = 0.0106, σ̂2

e = ω̂2
v = 0.0115, σ̂ue = −0.0105, δ̂ =

−0.951 and the standard error of β̂, denoted SE(β̂) = 0.0179.

2. We then compute the DF -GLSτ statistic applied to the predictor xt which takes a

value of -3.608.

3. Given δ̂ = −0.951, from Table S.1 below the appropriate values of ᾱQ
1,τ and ξ are

6.5% and 0.66, respectively. Inverting the DF -GLSτ test at the 6.5%×0.66=4.3%

level gives us an upper bound on the confidence interval for c of -9.79.

4. We then construct r∗t as defined in Remark 3.1 using ρ = 1− 9.79/T , setting σue and

σe = ωv to their estimated values obtained in step 1. We then run regression (S.18),

replacing rt with r
∗
t , and denote the estimated coefficient on xt−1 as β̂(ρ).

5. Given that ξ = 0.66 the significance level used for the confidence interval for β is

5%×0.66=3.3%. This implies a lower bound on the confidence interval for β from

this test of

β = β̂(ρ)− z0.033(1− δ2)1/2SE(β̂) (S.20)

= 0.0165− 1.84(1− (−0.951)2)1/20.0179 = 0.0063 (S.21)

6. Finally we scale this lower bound for β by σ̂e/σ̂u = 1.0410 to give a final value of

β = 0.0066

The lower bound for the Uhyb procedure is therefore given by max{−0.0156, 0.0066} =

0.0066.
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Table S.1: Parameters to Deliver One-Sided Tests with Maximum 0.05 Asymptotic Size.

QGLS
µ tOLS

µ QGLS
τ tOLS

τ U

δ αQ
1,µ ᾱQ

1,µ αt
1,µ ᾱt

1,µ αQ
1,τ ᾱQ

1,τ αt
1,τ ᾱt

1,τ ξ

-0.999 0.050 0.055 0.020 0.035 0.050 0.050 0.040 0.035 0.500
-0.975 0.055 0.080 0.025 0.035 0.055 0.055 0.040 0.025 0.630
-0.950 0.055 0.100 0.025 0.040 0.060 0.065 0.040 0.020 0.660
-0.925 0.055 0.115 0.025 0.040 0.065 0.070 0.035 0.020 0.710
-0.900 0.060 0.130 0.025 0.035 0.070 0.075 0.050 0.020 0.730
-0.875 0.060 0.140 0.025 0.035 0.070 0.085 0.050 0.015 0.710
-0.850 0.060 0.150 0.025 0.035 0.075 0.090 0.050 0.015 0.730
-0.825 0.060 0.160 0.025 0.035 0.075 0.095 0.055 0.010 0.740
-0.800 0.065 0.170 0.025 0.035 0.080 0.100 0.060 0.010 0.750
-0.775 0.065 0.180 0.030 0.035 0.080 0.105 0.065 0.010 0.760
-0.750 0.065 0.190 0.025 0.035 0.085 0.110 0.065 0.010 0.760
-0.725 0.065 0.195 0.025 0.035 0.085 0.115 0.065 0.010 0.760
-0.700 0.070 0.205 0.025 0.035 0.090 0.120 0.065 0.010 0.750
-0.675 0.070 0.215 0.025 0.035 0.090 0.125 0.065 0.005 0.750
-0.650 0.070 0.225 0.025 0.035 0.095 0.130 0.080 0.005 0.740
-0.625 0.075 0.230 0.025 0.035 0.095 0.135 0.080 0.005 0.740
-0.600 0.075 0.240 0.030 0.035 0.100 0.140 0.085 0.005 0.740
-0.575 0.075 0.250 0.035 0.035 0.100 0.140 0.085 0.005 0.740
-0.550 0.080 0.260 0.035 0.035 0.105 0.145 0.090 0.005 0.730
-0.525 0.080 0.270 0.045 0.035 0.110 0.150 0.095 0.005 0.730
-0.500 0.080 0.280 0.060 0.035 0.115 0.150 0.095 0.010 0.730
-0.475 0.085 0.285 0.050 0.035 0.120 0.150 0.095 0.010 0.730
-0.450 0.085 0.295 0.055 0.040 0.120 0.155 0.095 0.010 0.730
-0.425 0.090 0.310 0.035 0.040 0.125 0.165 0.095 0.010 0.710
-0.400 0.090 0.320 0.060 0.040 0.130 0.165 0.150 0.010 0.710
-0.375 0.095 0.330 0.040 0.040 0.135 0.165 0.150 0.010 0.710
-0.350 0.100 0.345 0.030 0.040 0.140 0.170 0.150 0.010 0.690
-0.325 0.100 0.355 0.015 0.045 0.145 0.170 0.150 0.010 0.690
-0.300 0.105 0.360 0.010 0.050 0.150 0.175 0.150 0.010 0.680
-0.275 0.110 0.370 0.005 0.040 0.155 0.175 0.200 0.010 0.680
-0.250 0.115 0.375 0.005 0.035 0.165 0.175 0.200 0.010 0.680
-0.225 0.125 0.380 0.005 0.025 0.170 0.175 0.200 0.010 0.680
-0.200 0.130 0.390 0.005 0.025 0.175 0.175 0.200 0.005 0.670
-0.175 0.140 0.395 0.005 0.010 0.185 0.175 0.200 0.005 0.650
-0.150 0.150 0.400 0.005 0.010 0.200 0.175 0.200 0.005 0.650
-0.125 0.160 0.405 0.005 0.010 0.200 0.165 0.200 0.005 0.630
-0.100 0.175 0.415 0.005 0.005 0.210 0.145 0.200 0.005 0.610
-0.075 0.190 0.420 0.005 0.005 0.220 0.130 0.200 0.005 0.610
-0.050 0.215 0.425 0.005 0.005 0.225 0.100 0.150 0.005 0.590
-0.025 0.250 0.435 0.005 0.005 0.185 0.035 0.150 0.005 0.570
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S.4 Figures S.1–S.15
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Figure S.1: Local Asymptotic Power of Right-Tailed Bonferroni and Infeasible tµ and Qµ

tests. DGP (1)-(3) with δ = −0.95 and κ = 0, where c, κ and δ are the local-to-unity AR,
trend, and endogeneity correlation parameters, respectively.

(a) c = 0 (b) c = −2

(c) c = −5 (d) c = −10

(e) c = −20 (f) c = −50

tOLS
µ : – – , QGLS

µ : ——, Infeasible tµ: – – , Infeasible Qµ: ——
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Figure S.2: Local Asymptotic Power of Right-Tailed Bonferroni and Infeasible tτ and Qτ

tests. DGP (1)-(3) with δ = −0.95, where c and δ are the local-to-unity AR and endogeneity
correlation parameters, respectively.

(a) c = 0 (b) c = −2

(c) c = −5 (d) c = −10

(e) c = −20 (f) c = −50

tOLS
τ : – – , QGLS

τ : ——, Infeasible tτ : – – , Infeasible Qτ : ——
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Figure S.3: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = 0,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.4: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −2,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.5: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −5,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.6: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −10,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.7: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −20,
δ = −0.95 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.8: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −30,
δ = −0.95 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.9: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −40,
δ = −0.95 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.10: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −50,
δ = −0.95 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.11: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = 0,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.12: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −2,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.13: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −5,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.14: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −10,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.15: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −20,
δ = −0.95 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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S.5 Additional Local Asymptotic Power Simulations

In this section we report additional asymptotic simulation results to those reported in

the main paper. Figures S.16 - S.23 report the local asymptotic power of right-tailed

tests for predictability for δ = −0.75 over the same grid of values of c considered for

δ = −0.95 in the main paper. Figures S.24 - S.26 report local asymptotic power for left-

tailed tests for predictability with δ = −0.95 and c = −30,−40,−50. Figures S.27 -

S.34 report local asymptotic power for left-tailed tests for predictability with δ = −0.75

and c = 0,−2,−5,−10,−20,−30,−40,−50. The local asymptotic power of the tests for

predictability for an explosive predictor with c = 2 are reported in Figures S.35 - S.38,

with Figures S.35 and S.36 reporting the power of right-tailed tests for δ = −0.95,−0.75,

respectively, and Figures S.37 and S.38 reporting the power of left-tailed tests for δ =

−0.95,−0.75, respectively. Finally, Figure S.39 reports the local asymptotic power of right-

tailed versions of the infeasible tµ and Qµ tests compared to the feasible tOLS
µ and QGLS

µ

tests, and Figure S.40 reports the local asymptotic power of right-tailed versions of the

infeasible tτ and Qτ tests compared to the feasible tOLS
τ and QGLS

τ tests, in both cases

where δ = −0.75.
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Figure S.16: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = 0,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
S36



Figure S.17: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −2,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.18: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −5,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.19: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −10,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.20: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −20,
δ = −0.75 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.21: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −30,
δ = −0.75 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.22: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −40,
δ = −0.75 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.23: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = −50,
δ = −0.75 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.24: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −30,
δ = −0.95 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.25: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −40,
δ = −0.95 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.26: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −50,
δ = −0.95 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
S46



Figure S.27: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −0,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.28: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −2,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.29: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −5,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.30: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −10,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.31: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −20,
δ = −0.75 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.32: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −30,
δ = −0.75 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
S52



Figure S.33: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −40,
δ = −0.75 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.34: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = −50,
δ = −0.75 and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
S54



Figure S.35: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = 2,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.36: Local Asymptotic Power of Right-Tailed Tests. DGP (1)-(3) with c = 2,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
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Figure S.37: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = 2,
δ = −0.95 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.38: Local Asymptotic Power of Left-Tailed Tests. DGP (1)-(3) with c = 2,
δ = −0.75 and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR,
local-to-zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Shyb: – –
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Figure S.39: Local Asymptotic Power of Right-Tailed Bonferroni and Infeasible tµ and Qµ

tests. DGP (1)-(3) with δ = −0.75 and κ = 0, where c, κ and δ are the local-to-unity AR,
trend, and endogeneity correlation parameters, respectively.

(a) c = 0 (b) c = −2

(c) c = −5 (d) c = −10

(e) c = −20 (f) c = −50

tOLS
µ : – – , QGLS

µ : ——, tIFµ : – – , QIF
µ : ——
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Figure S.40: Local Asymptotic Power of Right-Tailed Bonferroni and Infeasible tτ and Qτ

tests. DGP (1)-(3) with δ = −0.75, where c and δ are the local-to-unity AR and endogeneity
correlation parameters, respectively.

(a) c = 0 (b) c = −2

(c) c = −5 (d) c = −10

(e) c = −20 (f) c = −50

tOLS
τ : – – , QGLS

τ : ——, tIFτ : – – , QIF
τ : ——
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S.6 Finite Sample Size and Power

In this section we evaluate the finite sample size and power of tests for predictability

discussed in this paper. To do so data were generated according to (1) - (3) with vt =

ϕvt−1 + et where et ∼ NIID(0, 1), setting w1 = v1 = e1. We set T = 250 and generate

data according to Assumptions 1 and 4.1 such that ρ = 1 + cT−1 and γT = κωvT
−1/2,

noting that for larger negative values of c the predictor will behave more like a weakly

stationary process in finite samples. All tests are performed at a nominal level of 0.05.

Following CY, lag selection for all of the unit root tests utilised in the test procedures is

performed using the Bayes Information Criterion (BIC) with a maximum number of lagged

differences of 4. Finally in the context of the diverging critical value cvNB = −υT 1/2, we

set υ = 10 such that our hybrid Shyb and Uhyb tests switch into the conventional t-test

whenever NB-OLSτ < −10T 1/2 as we found this choice of υ delivered good finite sample

performance across a wide range of DGPs.

S.6.1 Finite Sample Size

We being by examining the finite sample size of the tests. We first report result for ϕ = 0.0

such that vt is an i.i.d. process, and for c = 2, 0,−2,−5,−10,−20,−30,−40,−50,−100,−250,

with the final setting clearly corresponding to weak persistence (ρ = 0 when c = −250).

We report results for κ = 0 in Table S.2 and κ = 0.5 + 0.5I(c > −20) in Table S.3, where

we make κ dependent on c in the latter scenario due to the impact of κ on the size of the

tests being greater the more negative is the value of c.

Turning first to Table S.2 we see that for right-tailed tests with κ = 0 and ϕ = 0.0 all

tests are well size controlled for c > −50, with this result unsurprising given that all tests

are designed to be asymptotically size controlled when ρ is local-to-unity, with the tOLS
µ and

tOLS
τ tests retaining size control across all other values of c. As c becomes more negative we

do see some size distortions for the QGLS
d tests, as for these values of c the predictor will be

behaving more like a weakly stationary process, in which case these tests are asymptotically

invalid. While the QGLS
µ test displays severe size distortions only for c = −250, the QGLS

τ

test also suffers severe size distortions for c = −100. As a consequence, the Uhyb test does

suffer from severe size distortions for c = −100 as while Uhyb is correctly switching into
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the conventional t-test in almost all (99.9%) of replications for c = −250, and is therefore

correctly sized, this will not be true for c = −100 and the oversize of QGLS
τ in this scenario

feeds through into the size of Uhyb. This renders the Uhyb test potentially unreliable. The

size of the Shyb test, on the other hand, is well controlled across all values of c. This is due

to the fact for intermediate values of c that span the gap between strongly persistent and

weakly persistent predictors this test will be switching into the size controlled tOLS
τ test

with very high probability.

For left-tailed tests with κ = 0 and ϕ = 0.0 we observe that, with the exception of the

QGLS
µ test for larger negative values of c, all tests display reasonable size control across all

values of c. While the tests have very low size for values of c closer to zero this is in line

with the asymptotic size of the tests when maximising size at 0.05 across a large range of c.

We see that the size of Shyb is identical to that of QGLS
τ for c close to 0, and to that of tOLS

τ

for more negative values of c (with the exception of c = −250 where Shyb is almost always

switching into conventional t) demonstrating that the switching rule in (20) is effective in

finite samples.

We now turn to Table S.3 which reports results for a large positive value of κ. First

we observe that the size of the QGLS
τ and tOLS

τ tests are identical to those in Table S.2 for

both right and left-tailed tests due to these tests being invariant to the value of κ. For

right (left) tail tests we see that both the QGLS
µ and tGLS

µ tests can be severely undersized

(oversized), with this undersize (oversize) more pronounced the more negative is the value

of c for a given value of κ. For right-tailed tests we see that for c close to zero the size of

both Uhyb and Shyb is slightly lower relative to the case where κ = 0, and we will see that

this translates into a loss of power for these tests relative to when κ = 0, although the

power of these tests for κ ̸= 0 will be shown to still be close to that of the most powerful

test in each scenario. For left-tailed tests the Shyb test has identical size to that seen in

Table S.2 as this test is a function of two tests that are both invariant to κ.

We now briefly discuss the results for the size of the tests when ϕ = 0.5 so that the

predictor is generated as an AR(2) process. We report results only for

c = 2, 0,−2,−5,−10,−20,−30,−40,−50 so that the serial correlation induced by the

value of ρ = 1 + cT−1 remains the dominant driver of the persistence of the predictor.
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Table S.4 reports the size of the tests when κ = 0 and Table S.5 reports results for when

κ = 0.5 + 0.5I(c > −20). While the size of the tests is not identical to the case when

ϕ = 0.0, the difference in size between ϕ = 0.5 and ϕ = 0.0 is minimal in a vast majority

of cases. This is likely due to the fact that we are using the BIC to select the AR order for

the predictor, which selects the true order in a vast majority of instances.

S.6.2 Finite Sample Power

We now examine the finite sample power properties of all tests. We begin by reporting

power for both right and left-tailed tests for c = 0,−2,−5,−10,−20,−30,−40,−50,−100,−250

and for δ = −0.95,−0.75, all across various values of κ. We then briefly discuss the rela-

tive power performance of the tests for an explosive predictor with c = 2.

We first examine the finite sample power of right-tailed tests for predictability when

δ = −0.95 reported in Figures S.41 - S.50. The power of the tests when κ = 0 is reported

in panel (a) of each figure, with these results mirroring those found for local asymptotic

power in sections 4.1 and 6 where the best overall power performance for c close to zero

is displayed by the QGLS
µ test. For the more negative values of c <= −30 the best power

is displayed by the tOLS
µ test. For c close to zero we see that, much like when examining

local asymptotic power, the finite sample power of the hybrid Uhyb and Shyb tests is very

close to that of the best performing QGLS
µ test. For larger negative values of c the power

of the Uhyb test is less competitive, and for c = −100 the test is oversized, as noted above.

The Shyb test, on the other hand, is among the better performing tests for all values of c,

owing to this test basing inference on the tOLS
τ test with increasing probability as c becomes

more negative. For the largest value of c considered (c = −250), both Uhyb and Shyb have

switched into the standard tτ test in almost all replications, and consequently display an

attractive power profile.

The power of right-tailed tests when δ = −0.95 and κ > 0 is reported in panels (b)

- (f) of Figures S.41 - S.50. Again, these results closely mirror those found for the local

asymptotic power of the tests, with the power of the QGLS
µ and tOLS

µ tests falling away as

the value of κ increases, and the power of QGLS
τ and tOLS

τ invariant to the value of κ. For c

close to zero the power of the hybrid Uhyb and Shyb tests tracks close to the most powerful

QGLS
µ test for small κ, while for larger κ, the hybrid tests closely track the power of the
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better performing QGLS
τ test, hence the Uhyb and Shyb tests are among the most powerful

tests regardless of the value of κ. For larger negative values of c we see that Shyb continues

to be among the most powerful tests given that it is increasingly likely to switch into the

tOLS
τ test, which performs well in this region, as the value of c decreases.

Results for right-tailed tests with δ = −0.75 are reported in Figures S.51 - S.60, with

the relative power of the tests across both c and κ qualitatively similar to that found for

δ = −0.95.

Results for left-tailed tests with δ = −0.95 are reported in Figures S.61 - S.70. As with

the local asymptotic power results, although the QGLS
µ and tOLS

µ tests perform well when

κ = 0, these tests suffer from substantial oversize when κ ̸= 0. Among the with-trend

tests, the QGLS
τ test displays the best overall power for c close to zero, and the tOLS

τ test

performs best for more negative values of c. With the exception of the case c = −250,

the Uhyb test here reduces to QGLS
τ , and therefore does not perform well unless c is close

to zero. On the other hand, the hybrid Shyb test is able to capture the superior power of

the best performing test in each scenario, tracking closely the power of QGLS
τ for c close to

zero, and that of tOLS
τ for other values of c.

Results for left-tailed tests with δ = −0.75 are reported in Figures S.71 - S.80, with the

relative power of the tests across both c and κ, again, qualitatively similar to that found

for δ = −0.95.

Finally, the finite sample power of the tests for an explosive predictor with c = 2 are

reported in Figures S.81 - S.84. Figures S.81 and S.82 report power of right-tailed tests for

δ = −0.95 and δ = −0.75, respectively. The main differences that we see compared to the

previous values of c considered is that in the explosive predictor case the best overall power

performance is, in fact, delivered by the tOLS
µ test, with the impact of an omitted trend on

the constant-only tests less pronounced than for c ≤ 0. Figures S.83 and S.84 report power

of left-tailed tests for δ = −0.95 and δ = −0.75, respectively. Much like with right-tailed

tests with an explosive predictor, the presence of an omitted trend has minimal impact

on the constant-only tests such that QGLS
µ and tOLS

µ are the best performing tests. While

for an explosive predictor the constant-only tests appear to remain the better performing

tests even for relatively large values of κ, this does not change our recommendation to use
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our proposed hybrid tests in practice given that a predictor that is explosive for the entire

sample period is extremely unlikely to be observed in empirical practice.

Overall, we have demonstrated that the Shyb test, in particular, is very well suited to

testing for predictability when uncertainty exists over the presence of a trend. For both

right and left-tailed tests Shyb displays excellent size control, and has power that is never

far behind that of the best performing test in each scenario considered across a very wide

range of values of c and κ.
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Table S.2: Finite Sample Size, T = 250, ϕ = 0.0, κ = 0.

(a) Right-Tailed Tests (b) Left-Tailed Tests

c δ QGLS
µ tOLS

µ QGLS
τ tOLS

τ Uhyb Shyb c δ QGLS
µ tOLS

µ QGLS
τ tOLS

τ Uhyb Shyb

2 -0.95 0.049 0.048 0.047 0.053 0.055 0.055 2 -0.95 0.017 0.005 0.009 0.000 0.009 0.009
-0.75 0.046 0.049 0.055 0.050 0.056 0.056 -0.75 0.013 0.010 0.013 0.000 0.013 0.013
-0.50 0.045 0.050 0.054 0.047 0.052 0.052 -0.50 0.021 0.023 0.018 0.005 0.018 0.018
-0.25 0.047 0.049 0.053 0.050 0.053 0.053 -0.25 0.035 0.030 0.029 0.027 0.029 0.029

0 -0.95 0.049 0.051 0.047 0.036 0.052 0.052 0 -0.95 0.010 0.004 0.023 0.000 0.023 0.023
-0.75 0.052 0.052 0.045 0.038 0.054 0.054 -0.75 0.010 0.010 0.013 0.000 0.013 0.013
-0.50 0.055 0.051 0.046 0.040 0.052 0.052 -0.50 0.018 0.021 0.013 0.007 0.013 0.013
-0.25 0.057 0.052 0.048 0.046 0.049 0.049 -0.25 0.030 0.028 0.025 0.028 0.025 0.026

-2 -0.95 0.050 0.044 0.039 0.025 0.044 0.044 -2 -0.95 0.010 0.011 0.024 0.000 0.024 0.024
-0.75 0.051 0.038 0.033 0.024 0.044 0.044 -0.75 0.009 0.018 0.019 0.002 0.019 0.019
-0.50 0.054 0.041 0.035 0.029 0.041 0.042 -0.50 0.016 0.029 0.019 0.014 0.019 0.019
-0.25 0.055 0.045 0.041 0.039 0.041 0.041 -0.25 0.029 0.034 0.029 0.036 0.029 0.030

-5 -0.95 0.049 0.044 0.036 0.028 0.041 0.042 -5 -0.95 0.013 0.034 0.016 0.001 0.016 0.016
-0.75 0.049 0.034 0.031 0.018 0.038 0.038 -0.75 0.010 0.035 0.013 0.007 0.013 0.013
-0.50 0.051 0.034 0.031 0.021 0.036 0.036 -0.50 0.015 0.041 0.017 0.026 0.017 0.017
-0.25 0.052 0.038 0.036 0.031 0.036 0.036 -0.25 0.028 0.041 0.031 0.043 0.031 0.032

-10 -0.95 0.045 0.047 0.039 0.039 0.038 0.038 -10 -0.95 0.019 0.046 0.017 0.006 0.017 0.017
-0.75 0.044 0.039 0.033 0.020 0.035 0.036 -0.75 0.012 0.045 0.013 0.026 0.013 0.013
-0.50 0.047 0.034 0.031 0.018 0.031 0.032 -0.50 0.017 0.045 0.018 0.042 0.018 0.021
-0.25 0.047 0.034 0.034 0.026 0.032 0.032 -0.25 0.028 0.045 0.029 0.049 0.029 0.035

-20 -0.95 0.038 0.049 0.043 0.047 0.034 0.038 -20 -0.95 0.035 0.046 0.017 0.046 0.017 0.026
-0.75 0.036 0.045 0.036 0.034 0.031 0.034 -0.75 0.020 0.046 0.014 0.050 0.014 0.033
-0.50 0.039 0.042 0.033 0.026 0.028 0.030 -0.50 0.021 0.047 0.017 0.049 0.017 0.040
-0.25 0.045 0.042 0.037 0.028 0.030 0.031 -0.25 0.031 0.046 0.029 0.050 0.029 0.047

-30 -0.95 0.034 0.050 0.053 0.049 0.037 0.047 -30 -0.95 0.067 0.048 0.019 0.048 0.019 0.048
-0.75 0.032 0.045 0.041 0.043 0.031 0.040 -0.75 0.035 0.049 0.014 0.049 0.014 0.049
-0.50 0.036 0.046 0.037 0.038 0.028 0.037 -0.50 0.028 0.047 0.017 0.049 0.017 0.049
-0.25 0.043 0.047 0.039 0.038 0.029 0.036 -0.25 0.036 0.048 0.029 0.051 0.029 0.051

-40 -0.95 0.032 0.049 0.067 0.050 0.046 0.050 -40 -0.95 0.107 0.049 0.020 0.047 0.020 0.047
-0.75 0.030 0.047 0.050 0.046 0.036 0.045 -0.75 0.057 0.048 0.014 0.048 0.014 0.048
-0.50 0.034 0.047 0.042 0.044 0.029 0.042 -0.50 0.041 0.049 0.017 0.049 0.017 0.049
-0.25 0.042 0.049 0.041 0.044 0.029 0.042 -0.25 0.041 0.048 0.027 0.051 0.027 0.051

-50 -0.95 0.032 0.049 0.085 0.051 0.060 0.051 -50 -0.95 0.150 0.048 0.022 0.047 0.022 0.047
-0.75 0.030 0.048 0.064 0.047 0.046 0.047 -0.75 0.084 0.048 0.016 0.049 0.016 0.049
-0.50 0.033 0.049 0.051 0.047 0.033 0.046 -0.50 0.054 0.048 0.017 0.049 0.017 0.049
-0.25 0.041 0.051 0.045 0.048 0.030 0.048 -0.25 0.046 0.049 0.028 0.051 0.028 0.051

-100 -0.95 0.050 0.047 0.316 0.048 0.259 0.048 -100 -0.95 0.315 0.050 0.040 0.052 0.037 0.052
-0.75 0.042 0.047 0.248 0.049 0.203 0.049 -0.75 0.232 0.051 0.026 0.052 0.024 0.052
-0.50 0.036 0.049 0.161 0.049 0.118 0.049 -0.50 0.148 0.051 0.018 0.051 0.017 0.051
-0.25 0.037 0.051 0.085 0.051 0.055 0.051 -0.25 0.079 0.051 0.020 0.052 0.020 0.052

-250 -0.95 0.281 0.040 0.857 0.036 0.065 0.065 -250 -0.95 0.447 0.065 0.048 0.074 0.039 0.039
-0.75 0.274 0.041 0.837 0.038 0.061 0.061 -0.75 0.407 0.062 0.039 0.067 0.042 0.041
-0.50 0.207 0.045 0.793 0.041 0.057 0.057 -0.50 0.345 0.059 0.030 0.062 0.044 0.043
-0.25 0.099 0.048 0.594 0.047 0.053 0.054 -0.25 0.205 0.053 0.018 0.055 0.046 0.046
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Table S.3: Finite Sample Size, T = 250, ϕ = 0.0 κ = 0.5 + 0.5I(c > −20).

(a) Right-Tailed Tests (b) Left-Tailed Tests

c δ QGLS
µ tOLS

µ QGLS
τ tOLS

τ Uhyb Shyb c δ QGLS
µ tOLS

µ QGLS
τ tOLS

τ Uhyb Shyb

2 -0.95 0.050 0.048 0.047 0.053 0.055 0.055 2 -0.95 0.046 0.006 0.009 0.000 0.009 0.009
-0.75 0.047 0.047 0.055 0.050 0.057 0.057 -0.75 0.030 0.011 0.013 0.000 0.013 0.013
-0.50 0.045 0.047 0.054 0.047 0.053 0.053 -0.50 0.030 0.026 0.018 0.005 0.018 0.018
-0.25 0.045 0.047 0.053 0.050 0.051 0.051 -0.25 0.040 0.033 0.029 0.027 0.029 0.029

0 -0.95 0.030 0.044 0.047 0.036 0.044 0.044 0 -0.95 0.042 0.011 0.023 0.000 0.023 0.023
-0.75 0.034 0.045 0.045 0.038 0.043 0.043 -0.75 0.027 0.017 0.013 0.000 0.013 0.013
-0.50 0.039 0.044 0.046 0.040 0.043 0.043 -0.50 0.030 0.029 0.013 0.007 0.013 0.013
-0.25 0.046 0.047 0.048 0.046 0.046 0.046 -0.25 0.038 0.033 0.025 0.028 0.025 0.026

-2 -0.95 0.010 0.029 0.039 0.025 0.027 0.027 -2 -0.95 0.069 0.032 0.024 0.000 0.024 0.024
-0.75 0.014 0.028 0.033 0.024 0.027 0.027 -0.75 0.038 0.036 0.019 0.002 0.019 0.019
-0.50 0.023 0.032 0.035 0.029 0.030 0.030 -0.50 0.039 0.043 0.019 0.014 0.019 0.019
-0.25 0.038 0.041 0.041 0.039 0.039 0.039 -0.25 0.043 0.039 0.029 0.036 0.029 0.030

-5 -0.95 0.001 0.020 0.036 0.028 0.023 0.023 -5 -0.95 0.161 0.064 0.016 0.001 0.016 0.016
-0.75 0.004 0.020 0.031 0.018 0.021 0.021 -0.75 0.077 0.061 0.013 0.007 0.013 0.013
-0.50 0.013 0.025 0.031 0.021 0.024 0.024 -0.50 0.058 0.060 0.017 0.026 0.017 0.017
-0.25 0.031 0.035 0.036 0.031 0.033 0.033 -0.25 0.055 0.045 0.031 0.043 0.031 0.032

-10 -0.95 0.000 0.011 0.039 0.039 0.024 0.025 -10 -0.95 0.302 0.101 0.017 0.006 0.017 0.017
-0.75 0.002 0.012 0.033 0.020 0.022 0.023 -0.75 0.138 0.085 0.013 0.026 0.013 0.013
-0.50 0.010 0.019 0.031 0.018 0.023 0.024 -0.50 0.086 0.074 0.018 0.042 0.018 0.021
-0.25 0.027 0.030 0.034 0.026 0.032 0.032 -0.25 0.066 0.052 0.029 0.049 0.029 0.035

-20 -0.95 0.001 0.029 0.043 0.047 0.027 0.037 -20 -0.95 0.341 0.079 0.017 0.046 0.017 0.026
-0.75 0.003 0.027 0.036 0.034 0.023 0.029 -0.75 0.162 0.069 0.014 0.050 0.014 0.033
-0.50 0.009 0.027 0.033 0.026 0.022 0.027 -0.50 0.095 0.061 0.017 0.049 0.017 0.040
-0.25 0.025 0.034 0.037 0.028 0.031 0.032 -0.25 0.068 0.052 0.029 0.050 0.029 0.047

-30 -0.95 0.001 0.028 0.053 0.049 0.035 0.047 -30 -0.95 0.460 0.080 0.019 0.048 0.019 0.048
-0.75 0.002 0.026 0.041 0.043 0.028 0.040 -0.75 0.229 0.071 0.014 0.049 0.014 0.049
-0.50 0.007 0.027 0.037 0.038 0.025 0.036 -0.50 0.125 0.063 0.017 0.049 0.017 0.049
-0.25 0.022 0.032 0.039 0.038 0.030 0.037 -0.25 0.079 0.055 0.029 0.051 0.029 0.051

-40 -0.95 0.001 0.026 0.067 0.050 0.045 0.050 -40 -0.95 0.535 0.081 0.020 0.047 0.020 0.047
-0.75 0.002 0.026 0.050 0.046 0.035 0.045 -0.75 0.282 0.072 0.014 0.048 0.014 0.048
-0.50 0.006 0.027 0.042 0.044 0.028 0.043 -0.50 0.149 0.064 0.017 0.049 0.017 0.049
-0.25 0.020 0.033 0.041 0.044 0.032 0.042 -0.25 0.088 0.057 0.027 0.051 0.027 0.051

-50 -0.95 0.000 0.024 0.085 0.051 0.060 0.051 -50 -0.95 0.577 0.082 0.022 0.047 0.022 0.047
-0.75 0.001 0.024 0.064 0.047 0.046 0.047 -0.75 0.321 0.072 0.016 0.049 0.016 0.049
-0.50 0.005 0.027 0.051 0.047 0.033 0.046 -0.50 0.167 0.064 0.017 0.049 0.017 0.049
-0.25 0.019 0.033 0.045 0.048 0.034 0.048 -0.25 0.092 0.056 0.028 0.051 0.028 0.051

-100 -0.95 0.001 0.007 0.316 0.048 0.259 0.048 -100 -0.95 0.609 0.098 0.040 0.052 0.037 0.052
-0.75 0.002 0.011 0.248 0.049 0.203 0.049 -0.75 0.377 0.086 0.026 0.052 0.024 0.052
-0.50 0.006 0.018 0.161 0.049 0.120 0.049 -0.50 0.200 0.074 0.018 0.051 0.017 0.051
-0.25 0.018 0.029 0.085 0.051 0.062 0.051 -0.25 0.105 0.057 0.020 0.052 0.020 0.052

-250 -0.95 0.000 0.003 0.857 0.036 0.065 0.065 -250 -0.95 0.830 0.158 0.048 0.074 0.039 0.039
-0.75 0.000 0.006 0.837 0.038 0.061 0.061 -0.75 0.594 0.125 0.039 0.067 0.042 0.041
-0.50 0.002 0.012 0.793 0.041 0.057 0.057 -0.50 0.314 0.101 0.030 0.062 0.044 0.043
-0.25 0.012 0.024 0.594 0.047 0.053 0.054 -0.25 0.143 0.062 0.018 0.055 0.046 0.046
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Table S.4: Finite Sample Size, T = 250, ϕ = 0.5, κ = 0.

(a) Right-Tailed Tests (b) Left-Tailed Tests

c δ QGLS
µ tOLS

µ QGLS
τ tOLS

τ Uhyb Shyb c δ QGLS
µ tOLS

µ QGLS
τ tOLS

τ Uhyb Shyb

2 -0.95 0.050 0.050 0.048 0.055 0.054 0.054 2 -0.95 0.000 0.006 0.010 0.000 0.010 0.010
-0.75 0.045 0.051 0.053 0.053 0.056 0.056 -0.75 0.005 0.010 0.013 0.000 0.013 0.013
-0.50 0.045 0.049 0.052 0.048 0.052 0.052 -0.50 0.015 0.023 0.018 0.005 0.018 0.018
-0.25 0.048 0.049 0.051 0.049 0.053 0.053 -0.25 0.033 0.031 0.029 0.027 0.029 0.029

0 -0.95 0.048 0.051 0.046 0.038 0.051 0.052 0 -0.95 0.010 0.004 0.021 0.000 0.021 0.021
-0.75 0.051 0.051 0.044 0.040 0.054 0.054 -0.75 0.010 0.010 0.011 0.001 0.011 0.011
-0.50 0.055 0.052 0.044 0.042 0.051 0.051 -0.50 0.018 0.021 0.013 0.007 0.013 0.013
-0.25 0.055 0.052 0.048 0.047 0.048 0.048 -0.25 0.031 0.028 0.026 0.027 0.026 0.026

-2 -0.95 0.048 0.043 0.037 0.026 0.042 0.043 -2 -0.95 0.010 0.011 0.023 0.000 0.023 0.023
-0.75 0.050 0.040 0.033 0.025 0.043 0.043 -0.75 0.009 0.018 0.018 0.002 0.018 0.018
-0.50 0.053 0.042 0.034 0.031 0.043 0.043 -0.50 0.016 0.029 0.019 0.014 0.019 0.019
-0.25 0.055 0.045 0.041 0.040 0.042 0.042 -0.25 0.029 0.035 0.029 0.034 0.029 0.030

-5 -0.95 0.046 0.045 0.033 0.028 0.037 0.037 -5 -0.95 0.013 0.033 0.015 0.001 0.015 0.015
-0.75 0.046 0.036 0.029 0.018 0.036 0.036 -0.75 0.010 0.034 0.013 0.006 0.013 0.013
-0.50 0.049 0.034 0.031 0.022 0.035 0.036 -0.50 0.015 0.040 0.018 0.025 0.018 0.018
-0.25 0.052 0.040 0.037 0.032 0.036 0.036 -0.25 0.029 0.041 0.030 0.043 0.030 0.032

-10 -0.95 0.040 0.048 0.033 0.035 0.031 0.033 -10 -0.95 0.017 0.046 0.017 0.005 0.017 0.017
-0.75 0.040 0.039 0.029 0.019 0.030 0.031 -0.75 0.012 0.043 0.013 0.023 0.013 0.014
-0.50 0.043 0.033 0.030 0.019 0.029 0.030 -0.50 0.017 0.044 0.019 0.040 0.019 0.022
-0.25 0.047 0.036 0.034 0.027 0.031 0.031 -0.25 0.029 0.045 0.031 0.049 0.031 0.036

-20 -0.95 0.028 0.049 0.032 0.046 0.027 0.037 -20 -0.95 0.033 0.046 0.020 0.036 0.020 0.026
-0.75 0.029 0.045 0.028 0.029 0.026 0.030 -0.75 0.020 0.047 0.015 0.047 0.015 0.030
-0.50 0.035 0.041 0.030 0.023 0.025 0.028 -0.50 0.022 0.047 0.020 0.048 0.020 0.038
-0.25 0.043 0.039 0.036 0.027 0.028 0.030 -0.25 0.033 0.047 0.031 0.049 0.031 0.045

-30 -0.95 0.021 0.048 0.034 0.047 0.024 0.045 -30 -0.95 0.063 0.047 0.021 0.049 0.021 0.049
-0.75 0.023 0.047 0.028 0.037 0.022 0.036 -0.75 0.034 0.047 0.016 0.049 0.016 0.047
-0.50 0.029 0.045 0.030 0.032 0.023 0.034 -0.50 0.030 0.047 0.019 0.049 0.019 0.048
-0.25 0.039 0.044 0.036 0.032 0.027 0.033 -0.25 0.038 0.049 0.030 0.050 0.030 0.049

-40 -0.95 0.016 0.049 0.035 0.049 0.024 0.048 -40 -0.95 0.104 0.048 0.023 0.049 0.023 0.049
-0.75 0.019 0.047 0.029 0.042 0.022 0.042 -0.75 0.055 0.048 0.016 0.047 0.016 0.047
-0.50 0.025 0.046 0.029 0.037 0.022 0.037 -0.50 0.041 0.047 0.019 0.050 0.019 0.050
-0.25 0.037 0.047 0.036 0.038 0.025 0.038 -0.25 0.043 0.048 0.030 0.050 0.030 0.050

-50 -0.95 0.013 0.050 0.037 0.049 0.024 0.049 -50 -0.95 0.150 0.049 0.024 0.049 0.024 0.049
-0.75 0.015 0.047 0.030 0.045 0.021 0.045 -0.75 0.081 0.048 0.017 0.048 0.017 0.048
-0.50 0.022 0.046 0.030 0.041 0.020 0.041 -0.50 0.055 0.048 0.020 0.049 0.020 0.049
-0.25 0.035 0.049 0.036 0.043 0.025 0.043 -0.25 0.048 0.047 0.030 0.050 0.030 0.050
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Table S.5: Finite Sample Size, T = 250, ϕ = 0.5 κ = 0.5 + 0.5I(c > −20).

(a) Right-Tailed Tests (b) Left-Tailed Tests

c δ QGLS
µ tOLS

µ QGLS
τ tOLS

τ Uhyb Shyb c δ QGLS
µ tOLS

µ QGLS
τ tOLS

τ Uhyb Shyb

2 -0.95 0.049 0.048 0.048 0.055 0.056 0.056 2 -0.95 0.007 0.006 0.010 0.000 0.010 0.010
-0.75 0.046 0.047 0.053 0.053 0.057 0.057 -0.75 0.012 0.012 0.013 0.000 0.013 0.013
-0.50 0.045 0.047 0.052 0.048 0.052 0.052 -0.50 0.022 0.026 0.018 0.005 0.018 0.018
-0.25 0.045 0.048 0.051 0.049 0.051 0.051 -0.25 0.036 0.033 0.029 0.027 0.029 0.029

0 -0.95 0.030 0.044 0.046 0.038 0.044 0.044 0 -0.95 0.039 0.011 0.021 0.000 0.021 0.021
-0.75 0.033 0.043 0.044 0.040 0.044 0.044 -0.75 0.026 0.016 0.011 0.001 0.011 0.011
-0.50 0.038 0.045 0.044 0.042 0.044 0.044 -0.50 0.031 0.030 0.013 0.007 0.013 0.013
-0.25 0.047 0.048 0.048 0.047 0.045 0.045 -0.25 0.040 0.033 0.026 0.027 0.026 0.026

-2 -0.95 0.009 0.030 0.037 0.026 0.026 0.026 -2 -0.95 0.067 0.033 0.023 0.000 0.023 0.023
-0.75 0.012 0.028 0.033 0.025 0.026 0.027 -0.75 0.039 0.036 0.018 0.002 0.018 0.018
-0.50 0.023 0.030 0.034 0.031 0.030 0.030 -0.50 0.039 0.043 0.019 0.014 0.019 0.019
-0.25 0.038 0.039 0.041 0.040 0.039 0.039 -0.25 0.044 0.039 0.029 0.034 0.029 0.030
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Figure S.41: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = 0, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.42: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −2, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.43: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −5, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.44: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −10, δ = −0.95
and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.45: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −20, δ = −0.95
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.46: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −30, δ = −0.95
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.47: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −40, δ = −0.95
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.48: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −50, δ = −0.95
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.49: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −100, δ = −0.95
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.50: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −250, δ = −0.95
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.51: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = 0, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.52: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −2, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.53: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −5, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.54: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −10, δ = −0.75
and κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.55: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −20, δ = −0.75
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.56: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −30, δ = −0.75
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.57: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −40, δ = −0.75
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.58: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −50, δ = −0.75
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.59: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −100, δ = −0.75
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.60: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = −250, δ = −0.75
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.61: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = 0, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.62: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −2, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.63: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −5, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.64: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −10, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.65: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −20, δ = −0.95 and
κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.66: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −30, δ = −0.95 and
κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.67: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −40, δ = −0.95 and
κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.68: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −50, δ = −0.95 and
κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.69: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −100, δ = −0.95
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
S98



Figure S.70: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −250, δ = −0.95
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.71: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = 0, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.72: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −2, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.73: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −5, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.74: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −10, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.75: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −20, δ = −0.75 and
κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
S104



Figure S.76: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −30, δ = −0.75 and
κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.77: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −40, δ = −0.75 and
κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.78: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −50, δ = −0.75 and
κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.79: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −100, δ = −0.75
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.80: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = −250, δ = −0.75
and κ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where c, κ and δ are the local-to-unity AR, local-to-
zero trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5
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Figure S.81: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = 2, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLS
µ : – – , QGLS

µ : —— , tOLS
τ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: – –
S110



Figure S.82: Finite Power of Right-Tailed Tests. DGP (1)-(3) with c = 2, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.83: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = 2, δ = −0.95 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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Figure S.84: Finite Power of Left-Tailed Tests. DGP (1)-(3) with c = 2, δ = −0.75 and
κ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where c, κ and δ are the local-to-unity AR, local-to-zero
trend, and endogeneity correlation parameters, respectively.

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0
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