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Abstract—A causal relationship forms when one event triggers
another’s change or occurrence. Causality helps to understand
connections among events, explain phenomena, and facilitate
better decision-making. In IoT systems, massive consumption of
energy may lead to specific types of air pollution. There are causal
relationships among air pollutants. Analyzing their interactions
allows for targeted adjustments in energy use, like shifting to
cleaner energy and cutting high-emission sources. This reduces
air pollution and boosts energy sustainability, aiding sustainable
development. This paper introduces a distributed data-driven
machine learning method for high-level causal analysis (DMHC),
which extracts general and high-level Complex Event Processing
(CEP) rules from unlabeled data. CEP rules can capture the
interactions among events and represent the causal relation-
ships among them. DMHC deploys a two-layer LSTM attention
mechanism model and decision tree algorithm to filter and label
data, extracting general CEP rules. Afterward, it proceeds to
generate event logs based on general rules with heuristic mining
(HM), extracting high-level CEP rules that pertain to causal
relationships. These high-level rules complement the extracted
general rules and reflect the causal relationships among the
general rules. The proposed high-level methodology is validated
using a real air quality dataset.

Index Terms—Energy management, IoT systems, Machine
learning, Causal analysis, Petri nets, CEP.

I. INTRODUCTION

The widespread implementation of IoT technology has trig-
gered a substantial increase in energy demand [1f]. However,
energy consumption must be managed effectively, otherwise,
it could lead to escalated air pollution, and hinder sustainable
development. We can mitigate adverse environmental impacts
of energy consumption by analyzing and optimizing the energy
utilization of IoT systems. Energy efficiency is a significant
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concern, and researchers in this field have invested notable
efforts [2], [3]. Energy consumption within IoT is prevalent
across diverse aspects. Both the operation of IoT systems and
energy usage of data centers consume substantial energy [4].
Improper energy consumption and utilization can lead to air
pollution. Air pollution data can effectively reflect the extent
of energy consumption. Interactions between air pollutants in-
volve complex causal relationships [5]. Analyzing these causal
relationships will assist in better managing and optimizing
energy usage, thereby ensuring the regular operation of IoT
systems while mitigating energy consumption and improving
energy efficiency in line with sustainability goals.

For causal relationship analysis, many studies have been
conducted by predecessors. Causal relationship analysis aids
in quantifying the strength of causal relationships between
variables and identifying key driving factors. Based on these
analytical results, we can extract results and required rules,
specifically rules where one event variable directly leads to
the occurrence of another event variable. These rules visually
represent the causal relationships among variables, facilitating
a better understanding and analysis. In this paper, we utilize
CEP rules to represent causal relationships. CEP rules are
employed to identify and describe complex events occurring
within data streams. These rules can help us identify the
interrelationship among events, thereby revealing the causal
relationships among events. CEP rules typically consist of
event patterns, conditions, and actions. Event patterns describe
sequences and temporal relationships of events, conditions
specify the conditions under which event patterns occur,
and actions define the operations to be performed while
requirements are met [6]. By utilizing CEP rules, complex
event patterns can be captured, anomalies detected [7]], real-
time decision support provided [8|], and appropriate actions
triggered when needed, thus enhancing system efficiency and
responsiveness.

By extracting relevant CEP rules, correlations among events
based on these CEP rules can be identified. Through the
exploration of these event correlations, we can derive rules that
represent causal relationships. Previously, experts often needed
to intervene manually to select CEP rules. However, with the
emergence and advancement of technologies such as machine
learning and data mining, automated methods to extract CEP
rules have been developed not long ago. These techniques have
been seen in diverse applications in various domains, such as
healthcare [9] and anomaly detection [10]. Similarly, these
technologies can also automatically extract CEP rules from



extensive datasets [11]], [12]. This automated rule extraction
process significantly enhances efficiency and diminishes the
risk of human errors.

Based on general CEP rules, we strive to extract high-level
CEP rules that reveal the fundamental causal relationships
within the general CEP rules. However, the extraction of high-
level CEP rules is currently not ideal, with very limited related
research. A universally applicable method for extracting high-
level CEP rules has not yet been achieved. Furthermore, there
is a lack of research attempting to extract high-level CEP
rules from unlabeled data. In addition, a thorough analysis
of high-level causal relationships among general CEP rules is
crucial for a deep understanding of complex data connections.
Currently, no research has attempted to address practical issues
from this perspective, which severely limits our ability to
conduct comprehensive and in-depth analysis of data and
complex system behaviors.

Our proposed framework DMHC in this paper integrates
machine learning methods, HM, and CEP techniques to ad-
dress these issues. The first step involves utilizing a two-
layer LSTM attention mechanism model and decision tree
algorithm to label abnormal data. This step can extract general
CEP rules from the processed data. The second step builds
upon the first step, where event data logs are generated
based on the extracted general rules. High-level rules are
then extracted by utilizing HM. These rules represent the
causal relationships existing among events. Our methodology
contributes as follows:

1) Our methodology effectively extracts high-level causal
relationships from unlabeled underlying observational data,
which are innovatively represented using CEP rules, distin-
guishing it from existing research. It analyzes causal chains
among datasets and refines high-level CEP rules representing
complex causal relationships. These reveal deep data connec-
tions and the causal logic within general CEP rules.

2) Technically, our innovation lies in the integration of
machine learning, HM, and Petri net technologies, enabling
the extraction of more complex high-level CEP rules from
general CEP rules. Our general and high-level CEP rules
are formed based on in-depth data analysis. This provides
a novel methodology for extracting and analyzing high-level
CEP rules.

3) We have applied this methodology to the monitoring of
air quality data and energy management, constructing event
patterns through a CEP engine based on the extracted general
and high-level CEP rules. These patterns can trigger alerts or
early warnings for air quality data that meet specific criteria.
This allows timely adjustment of energy strategies and control
of pollutant emissions within acceptable limits.

By extracting general CEP rules and high-level rules, our
methodology aids in a better understanding of causal rela-
tionships within the data. In an IoT system, if it is pos-
sible to determine excessive energy consumption based on
the causal relationships among air pollution events data, the
system can adjust energy allocation according to real-time
data fluctuations. It ensures the regular operation of devices
by minimizing energy wastage to the greatest extent possible.
This methodology enables more efficient energy management

and optimization, thereby driving the sustainable development
of IoT systems.

II. RELATED WORK

Diverse strategies have been employed so far for causal
relationship analysis and modeling. Regression analysis and
decision trees are widely used in causal relationship analysis
[13], [14]. Additionally, Bayesian networks are extensively
popular in this domain [[15]. With the comprehensive under-
standing of the wide range of methods for causal relationship
analysis and modeling are broadly categorized into two main
classes: knowledge-driven methods and data-driven methods
[16].

Knowledge-driven methods often require considerable do-
main expertise and a deep understanding of the system model.
Among those knowledge-driven methods, a notable approach
involves expressing causal relationships by constructing Fault
Trees (FT). [[17] through experiments and evaluation of cement
material parts printed by the printer, identified the main fault
groups and used the Fault Tree Analysis (FTA) method to find
the causes, consequences, and affected components of system
failures. Additionally, some researchers combined Fault Tree
Analysis and Bayesian Networks to analyze drone-related
risks, constructing fault trees from reports and literature,
identifying initial risk factors, converting these into Bayesian
Networks, and validating the model with real cases [[18].

Though knowledge-driven methods are applied in multi-
ple domains, they have some limitations [[19]. In large-scale
systems, causal variations of variables become challenging
to understand entirely, thus making such models difficult to
construct [20]. Therefore, data-driven methods are required.
Methods that rely on data-driven techniques are effective
in managing complex data [21]. One common data-driven
technique for establishing causal relationships is Granger
causality, which is widely used by researchers [22]. [23]
enhanced the accuracy and noise resistance of bearing fault
diagnosis by integrating Granger Causality Test with Graph
Neural Network, utilizing feature transformation and causal
analysis. Kiran et al. analyzed and ranked the performance
of different sectors using Dempster-Shafer evidence theory,
then determined inter-sector dependencies through Granger
causality tests to invest in independent strong sectors, thereby
improving investment efficiency [24].

Previous studies often focus on the direct connections
among data, but frequently overlooking the indirect causal
links that need to be elucidated when analyzing complex data
combinations. Our methodology demonstrates clear innova-
tion by using CEP rules to interpret causal relationships. It
combines data-driven machine learning methods and process
mining techniques to extract general and high-level CEP rules
from unlabeled data. This aspect distinguishes it from exist-
ing research. These high-level CEP rules not only elucidate
the connections among general CEP rules, establishing a
causal framework based on these general CEP rules, but also
depict the causal links among complex data combinations
in low-level observational data. This aspect is crucial for
a thorough understanding and analysis of system behavior



or state changes. Our methodology introduces an innovative
technique for extracting high-level CEP rules, providing a
unique perspective and framework for analyzing the causal
relationships within complex data combinations, effectively
addressing the shortcomings in existing research.

[II. METHODOLOGY

In this section, we initially present the overall framework
of the Distributed Data-driven Machine Learning Method for
High-level Causal Analysis (DMHC). Subsequently, we pro-
vide detailed explanations of the two main steps encompassed
by this methodology.

A. Framework of DMHC

The overall framework of DMHC is presented in Figure
The collected data is stored in a historical database to be pro-
cessed and analyzed by DMHC. The proposed methodology
comprises two main steps.

At first, we employ machine learning algorithms to label
abnormal data. Subsequently, we extract general CEP rules
from the processed data. Building upon the first step, the
second step involves generating event data logs based on the
extracted general CEP rules. To derive high-level CEP rules,
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Fig. 1: The overall framework of DMHC

we utilize HM. These rules offer a broader perspective on
causal relationships. The extracted CEP rules are input into
the CEP engine, within which real-time risk alerts are applied
to the incoming data. These rules enable the CEP engine
to provide timely risk warnings based on established causal
relationships. By analyzing data and extracting CEP rules,
DMHC can assist researchers in understanding the causal
relationships among pollution events, formulating more effec-
tive environmental policies and strategies, thereby reducing
the impact on the environment and promoting sustainable
development.

B. The Initial Step

In the beginning, a two-layer LSTM attention mechanism
model will be described. Subsequently, the explanation of
how this model is utilized to label abnormal data will follow.
Additionally, we will discuss how the decision tree method is
employed to extract general CEP rules.

1) Two-Layer LSTM Attention Mechanism Model

As discussed earlier, we used a two-layer LSTM attention
mechanism model [25] here. The two-layer LSTM attention
mechanism model is an extension of the traditional LSTM, de-
signed to improve the performance of sequence classification
tasks. Since our goal is to label anomalous data, we applied
this model to this method. The model normalizes the raw data
and splits the standardized air quality data into training and
testing sets. LSTM model trained using the training set to
achieve the optimal model. Then, the testing set is input into
the model to predict regression and calculate the error between
predicted and actual data. A threshold o is set using three times
the standard deviation of the reconstruction errors. When the
reconstruction error of a data point exceeds this threshold o,
it is classified as an anomaly. Following these steps, a series
of labeled data can be obtained.

In our framework, the process of identifying and marking
abnormal data is crucial, as it lays the foundation for more
accurate identification and analysis of air pollution events later
on. By analyzing air quality data and marking those data points
that deviate from the normal range, we can distinguish between
actual pollution events and temporary data fluctuations. This
not only enhances the accuracy of our pollution events detec-
tion but also allows us to identify potential pollution sources
early by analyzing the anomalies in these air quality indicators.
Therefore, this process provides strong data support for taking
timely preventive measures, reducing the impact of pollution,
and developing long-term environmental protection measures.

Analyzing the time complexity of the two-layer LSTM
attention mechanism model requires considering the com-
putational demands of each component within the model.
The two-layer LSTM structure means that the input data are
processed sequentially through two LSTM layers, with each
layer executing a complete pass over the data. The attention
mechanism adds additional computational steps, as it assesses
the importance of each element in the input sequence and
adjusts the model’s response to these elements accordingly.
The time complexity is primarily influenced by the sequence
length (N), the number of features (d), and the number of
hidden units (h). Specifically, the computational cost of each
LSTM layer is generally proportional to the product of the
sequence length and the number of hidden units, while the
computational cost of the attention mechanism is proportional
to the square of the sequence length and the number of hidden
units. Therefore, the overall time complexity of the model is
approximately O(N x (d x h + 2h?)).

2) Extraction of General Rules

The decision tree is used to extract general CEP rules after
labeling the data from the previous step. This decision tree
method is usually employed to extract useful information from
large datasets. The construction of a decision tree involves
the recursive selection of optimal features and the division



of the training dataset based on these features, ensuring the
best classification for each subset. This process not only
corresponds to the partitioning of the feature space but also to
the construction of the decision tree.

When constructing a decision tree, the process begins by
creating the root node and placing all training data samples
within it. Subsequently, an optimal feature is selected, and
the training dataset is divided into subsets based on this
feature. This division ensures the best possible classification
for each subset. If these subsets can be reasonably classified,
leaf nodes are created, and subsets are assigned to their
respective leaf nodes. However, if there are still subsets that
cannot be adequately classified, the process of selecting the
optimal feature is repeated, leading to further division and
node construction. This recursive process continues until all
training data subsets are correctly classified or no suitable
features are available. Eventually, each subset is assigned to a
leaf node, providing a clear classification result.

We can convert decision trees into general CEP rules. These
general CEP rules reveal the interactions among pollutants and
their impact on air quality, aiding in the precise monitoring
and identification of key pollution sources. Additionally, by
analyzing the relationship between pollutants and energy con-
sumption, we can optimize energy use and reduce emissions.
Utilizing these rules allows us to adjust production and energy
patterns, decrease emissions of key pollutants, and contribute
to environmental protection.

In the decision tree algorithm, general rules extraction is
attained by transforming tree structure and paths into logical
rules. Start from the root node, this process involves traversing
the branches along a path until reaching a leaf node of the tree.
Each node corresponds to a feature and a specific splitting
condition. At the time of traversal, visited nodes and their
corresponding splitting condition are recorded in this method.
Upon reaching a leaf node, a general rule is generated by
combining the features and splitting conditions encountered
along the path, forming a logical expression. This process
repeated for each path to formulate a general rule for each path
in the tree. Consequently, every path constructs an independent
general rule.

The average time complexity analysis of the decision tree
algorithm considers that the tree construction process does not
always perfectly bisect the dataset at each division. In the av-
erage case, it is assumed that the data is relatively evenly split.
Under these conditions, the time complexity of constructing
a decision tree can be approximated as O(n x m x logm),
where n is the number of features, and m is the number of
samples. This is because each node in the decision tree does
not necessarily split the dataset into two equally sized subsets
every time, but the division generally results in a progressively
smaller amount of data, so the entire dataset’s splitting process
can be viewed as multiple iterations of the data, with each
iteration corresponding to a layer of the tree. When selecting
the optimal feature at each split, the algorithm needs to traverse
m samples and evaluate n features to determine which feature
best splits the dataset into subsets with distinct category labels.

C. The Subsequent Step

This section first provides a detailed introduction to HM.
It then explains how we used HM to extract high-level rules
and how Petri nets [20] is utilized, which encompass high-
level rules among events. Additionally, It will describe how to
derive high-level rules from the obtained Petri nets here.

1) Heuristic Miner

Process Mining (PM) [27] is a technology that automatically
discovers, analyzes, and improves business processes from log
data in an actual event. It combines techniques from data min-
ing, business process management, and workflow technologies.
It aims to reveal the sequence of activities, dependencies, and
execution patterns within a business process to provide a deep
understanding of organizational processes and optimization
recommendations. In the context of environmental protection
and sustainable development, this technology can be utilized to
deeply understand the implicit relationships among pollutants,
thereby identifying possible intervention points and energy-
saving optimization schemes.

In the field of PM, various techniques have been imple-
mented. Among them, HM is one well-known process mining
algorithm. This algorithm is designed to handle noisy data and
can effectively operate short and long loops, addressing the
limitations of other algorithms. HM consists of the following
four parts [28]:

a) Construct Dependency/Frequency Table (D/F table):

Construct a dependency/frequency table based on actual
event log data, recording the dependencies and frequencies
between activities. The Alpha algorithm defines four basic
log-based relations: ‘directly follows,” ‘causal,” ‘parallel,” and
‘independent.” [29] The ‘directly follows’ emphasizes that in
the event log, activity A occurs immediately after activity B.
‘causal’ implies a direct cause-and-effect connection between
two activities, meaning if activity A occurs, activity B will
necessarily happen. ‘parallel’ indicates that there is no clear
sequential order between two activities, and they can occur
simultaneously without affecting each other. ‘independent’
means there is no direct link between two activities, and their
occurrence does not affect each other. The ‘directly follows’
relationship is used here to determine the dependencies be-
tween activities. Its specific definition is as follows:

Activity B directly follows Activity A when there is a tem-
poral relationship among them. It means that in a significant
number of cases in the event log, Activity A is immediately
followed by Activity B without any other activities in between.
That implies a strong sequential dependency between Activity
A and Activity B. Therefore, Activity B occurs right after
Activity A in the process flow in a typical situation. For ex-
ample, given an event log: H = [< m, 2 >0 < m,n,x,z >9
<m,z,n,z > <m,n,z >, <m,z,z > <m,y,z >,
<m,y, Y,z >2, < m,y,y,y, 2 >'] (The text inside the <>
represents the activity sequence or trajectory, and the numbers
following it represent the frequency of the trajectory. )

Thus, the collection of direct follow relations in the event
log H is represented as > H = {(m, z), (m,n), (n, ), (z, 2),
(m,z), (x,n), (n,z), (m,y), (y,2), (y,y)}. Then, based
on the corresponding frequencies in the collection of direct
follow relations, a dependency/frequency table is established



as shown in TABLE [} (X >p Y| represents the number of
times Y directly follows X in H.)

TABLE I: The frequency of direct follow relations in event
log H

> H m n T Y z
m 0 10 10 12 6
n 0 0 9 0 10
x 0 9 0 0 10
Y 0 0 0 4 12
z 0 0 0 0 0

b) Establish Dependency Metric Table:

Using the dependency/frequency table, calculate the depen-
dency metrics between activities to measure the strength of
their relationships.

H is the previous event log on (. X, Y € (. |X >y Y|
represents the number of times Y directly follows X in H.
|X = pu Y| represents the dependency relationship value
between X and Y. Therefore, the formula (1| [30] holds:

|X:>HY‘—‘Y:>HX| -
X—=nY|+Y—=naX|+1’ ifX#Y

X =nY|= (D

IX:>HX|

X=axpn X =Y

|X =g Y| generates a value between —1 and 1. If
|X =g Y| is close to 1, then there is a strong positive
dependency between X and Y, meaning that X is often the
cause of Y. This value approaches 1 only when X is frequently
followed directly by Y and Y is rarely followed directly by X.
If | X =g Y| is close to —1, then there is a strong negative
dependency between X and Y, meaning that Y is often the
cause of X. There is a special case when | X =y X|,
which indicates the presence of a loop and a strong reflexive
relationship if X is frequently followed by X. TABLE
presents the dependency measure of event log H.

¢) Build Dependency Graph:

Create a dependency graph based on the depen-
dency/frequency table, visualizing the relationships between
activities. The resulting Figure 2] is as shown below. A depen-
dency graph with a threshold of 5 for | > | and a threshold
of 0.9 for | =g | is established. Due to |y >y y| =4 <5
andly =g y| = 0.80 < 0.9, there is no self-loop at y.
Additionally, since |m =g z| = 0.86 < 0.9, there is also no
connection between m and z.

d) Convert Dependency Graph to Petri net:

Transform the dependency graph into a Petri net, which
represents the process model in a formal workflow notation.

10(0.91) 10(0.91)

10(0.91) 10(0.91)

12(0.92) 120092)

y

Fig. 2: A dependency graph

2) High-level rules extraction process
a) Generating Event Logs

As mentioned earlier, process mining involves extracting
information about processes from event logs. Transforming
the original dataset into an event log facilitates our subsequent
mining activities. We assume the following way of recording
events [28]:

Activity: Each event designates a step or activity defined
in the process. These activities can be tasks, operations, or
decisions in the business process.

Case: Each event represents a process instance or case. A
case refers to a specific execution process in the business, such
as a customer order, service request, or project execution.

Executor/Initiator: Each event can have an executor or initia-
tor, referring to the person or role responsible for performing
or initiating the activity. The executor can be an individual, a
team, or a department.

Timestamp: Each event is associated with a timestamp
that records the exact time when the event occurred. These
timestamps can represent either the creation time of the event
record or the actual time of the activity.

The event records are totally in order. It implies that
events are sorted based on their timestamps, reflecting the
actual sequence of activities. This ordered form of event
records provides structured data for process mining. TABLE
presents an example log involving 10 events, 4 activities,
and 5 executors.

In this research, firstly, filtered data is labeled with states in
Navicat [31]. This labeling allows the data to correspond to
general rules. After that, relevant algorithms are used to add
segment nodes, traces, and timestamps to the labeled data.
Through these procedures, the original dataset is transformed
into an event log where each event has a timestamp and a
Case ID. In this event log, Case ID represents a record for the
events that contain.

b) From Event Log to Petri net

The constructed event log is imported into ProM 6.9 soft-
ware [32]]. In the field of process mining, ProM 6.9 is one of
the most renowned open-source tools. It offers various process
mining techniques such as process discovery, conformance
checking, and process enhancement. With its diverse range of
plugins, ProM caters to different user requirements. Through
ProM, it is likely to acquire in-depth insights into business
processes and carry out optimization and improvement. By
utilizing ProM 6.9 software and its extensive plugin library, we
are able to delve into a thorough analysis and understanding
of various events and activities within the process, revealing



TABLE II: Based on the dependency measure of the 5 activities in event log H

=p m n x Y z

m % =0 1&2631 =091 139521 =0.91 % =091 6«?65:1 =0.91
n Troer = —0.91 g =0 oo =0 5 =0 70050 = 0.91
. of1047 = —0.91 stoer = 0 a1 =0 oot =0 rogor = 0-91
Y ey = —0.92 5% =0 5L =0 T =0.80 2250 =0.92
z ooy = —0.86 ooy = —0.91 oy = —0.91 Ty = —0.92 7o =0

TABLE III: An event log ’:\/ D \) D C/\ D C/ D
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casel activity A Amy 6 —3—2023:12.03 T oo
Fig. 3: The Petri net model
case? activityC Mike 6 —3—2023:12.13
case2  activityC Peter 6 —3—2023:12.23 ships. We conducted a reachability analysis on the Petri net,
o resulting in the reachability graph shown in Figure [4]
case3  actiityB Jane 6—-3-2023:12.33  pe nodes of the reachability graph represent the extracted
cases activityD Alice 6—3— 2023 : 12.43 general CEP rules, while the directed edges represent the re-
lationships among these general CEP rules. Then, we analyze
casel activity A Amy 6 —3 — 2023 :13.03 the relationships among nodes in the reachability graph and
map these relationships into high-level CEP rules.
cased activity A Amy 6 —3—2023:13.13 In our framework, by analyzing the Petri net model to
extract high-level CEP rules, we delve into the causality and
case2 activityD Jane 6 —3—2023:13.24 dependency relationships of pollution events. Through reach-
o ability graph analysis, we not only identify the interactions
cased activity B Peter 6—3-2023:13.25 among pollution events but also uncover potential influencing
case3 activityD Mike 6—3—9023 - 13.35 factors, which are crucial for developing targeted pollution

their interrelationships and dependencies. In the field of energy
conservation, this process is significant. For example, this
facilitates our in-depth analysis of the relationships between
pollution events, thereby enhancing our understanding and
management of energy consumption and allocation. By exam-
ining the interconnections and sequence of pollution events,
we can anticipate future incidents and proactively adjust
inappropriate energy usage, ensuring that energy is utilized
more efficiently and environmentally friendly, thus advancing
the goals of sustainable development.
We run the HM and obtain the Petri net model. Figure [3|
illustrates an example of a Petri net model.
c) Extraction of High-level Rules
After obtaining the Petri net model, it is essential to analyze
it and extract the desired CEP rules. In this part, we utilized a
reachability graph to assist in the analysis of causal relation-

control strategies. For instance, identifying certain events that
may trigger other pollution incidents helps us take preventive
measures at critical points to prevent pollution or reduce its
spread. This enhances our ability to formulate effective and
sustainable environmental protection strategies.

(p1)
u
(p2,p3)

2,
(p3,p4)

:4\15\

(p3,p6) (p4,p7)

3
(p2,p5)
—

(p4,p5)

JE
(p2,p7)

Fig. 4: The part of a reachability graph

The time complexity of the HM is primarily influenced by
the total number of events in the event log and the number of
different activity types. The time complexity is estimated to be
O(N +M?), where N represents the total number of events in
the event log, and M denotes the number of different activities.
The algorithm’s complexity mainly includes two aspects: First,



the algorithm analyzes the event log to construct a heuristic
relationship matrix. This matrix records the relationships be-
tween activities, including directly follows, causal, and parallel
relationships. Constructing this matrix requires traversing the
entire event log, which has a linear complexity of O(N).
Second, after building the heuristic relationship matrix, the
algorithm needs to analyze the potential relationships between
activities. This involves comparing the relationships between
different activities and determining which relationships are
significant. Since each activity needs to be compared with
all other activities, this part of the process has a quadratic
complexity of O(M?).

Our methodology primarily involves three major algorithms
mentioned above. By integrating multiple algorithms, our
methodology increases overall computational complexity but
allows us to analyze and process data from multiple dimen-
sions and perspectives, providing a more comprehensive and
in-depth approach to solving complex problems.

IV. EXPERIMENTS AND RESULTS

In this section, we will demonstrate the overall performance
of the proposed DMHC using data. To better explain the
application of the proposed framework, we review the DMHC
workflow as illustrated in Algorithm 1. First, the raw data is
normalized, then anomalies are detected and labeled using the
two-layer LSTM attention mechanism model. Next, general
CEP rules are extracted using the decision tree model. After
mapping the raw data to the general CEP rules and generating
event logs, HM is used to extract Petri net model representing
high-level CEP rules. The Petri net model is then converted
into reachability graphs for analysis, ultimately yielding high-
level CEP rules. By integrating these general and high-level
CEP rules into the CEP engine, we can monitor the data and
generate alerts. To evaluate the overall predictive capability of
our methodology, we selected air quality data from a smart
city scenario.

A. Data Set

In our experiments, we utilize urban air pollution data
collected by the Pulse project from the City EU FP7
program [33]]. The dataset consists of 17,568 samples, each
containing eight features: particulate matter, sulfur dioxide,
nitrogen dioxide, carbon monoxide, longitude, latitude, ozone,
and a timestamp. The concentrations of various pollutants
have similar maximum and minimum values, respectively at
215 and 15. For particulate matter, the average concentration
is 124.90 with a standard deviation of 54.04. The average
concentration of nitrogen dioxide is 107.10, with a standard
deviation close to that of particulate matter, at 54.09. The
average concentration of sulfur dioxide is 116.59, with a
standard deviation of 54.61. Carbon monoxide has an average
concentration of 98.13 and a standard deviation of 49.70,
indicating a relatively more concentrated distribution of car-
bon monoxide concentrations. Lastly, ozone has an average
concentration of 111.04, with the largest standard deviation of
55.04.

Algorithm 1: DMHC Workflow

Input: raw_data, threshold, lstm_model,
decision_tree_model
Output: general_cep_rules, high_level_cep_rules,

alerts
1 Step 1: Data Collection and Preprocessing
2 normalized_data =

min_max_normalize(raw_data);

3 Step 2: Anomaly Detection

4 train_set, test_set =
split_data(normalized_data);

5 Istm_model train(train_set);

6 predicted = lstm_model.predict(test_set);

7 reconstruction_error =
calculate_error(predicted, test_set);

8 anomalies =
label_anomalies(reconstruction_error,
threshold);

9 Step 3: Extraction of General CEP Rules

10 decision_tree_model .train(anomalies);

11 classification_results = ex-
tract_classification_results(decision_tree_model);

12 general_cep_rules = [];

13 foreach result in classification_results do

14 general_cep_rule = create_cep_rule(result);

15 general_cep_rules.append(general_cep_rule);

16 Step 4: Generation of Event Logs

17 labeled_data = label_data(anomalies,
general_cep_rules);
18| event_logs = generate_event_logs(labeled_data);

19 Step 5: Extraction of High-level CEP Rules

20 petri_net_model =
apply_heuristic_miner(event_logs);

21 fitness = check_fitness(petri_net_model);

22 reachability_graph =
convert_to_reachability_graph(petri_net_model);
23 edge_probabilities = calcu-
late_edge_probabilities(reachability_graph);

24 high_probability_edges =
filter_edges(edge_probabilities, threshold);

25 high_level_cep_rules = ex-
tract_high_level_cep_rules(high_probability_edges);

26 Step 6: CEP Engine Analysis

27 cep_engine =
integrate_cep_engine(general_cep_rules,
high_level_cep_rules);

28 alerts =
cep_engine.monitor_and_alert(raw_data);
29 accuracy = evaluate_alerts(alerts);

30 return general_cep_rules, high_level_cep_rules,
alerts;




This type of air pollution monitoring is also a typical
application of IoT systems [34]]. Monitoring and optimizing
pollution levels contribute to achieving energy savings and
emissions reduction, formulating energy-saving decisions to
enhance energy utilization efficiency, and promoting green
computing practices and sustainable development.

B. Experimental Environment

In the first step, we utilize the TensorFlow and Keras deep
learning frameworks on the Python platform, which can train
the model we need. Additionally, we employ the scikit-learn
machine learning library to extract general CEP rules from
its toolbox. In the second step, we utilize the ProM tool. It
is based on Eclipse [35] and JDK 1.8. We extract Petri nets
from the general CEP rules.

C. Experimental Results

a) Label Anomalous Data
In our methodology, we employ the two-layer LSTM at-
tention mechanism model to label anomalous data. Firstly,
we normalize the raw data using the min-max normalization
method. The specific formula for min-max normalization is as
follows [36]:

(x — min_value)

2)

normalized_value = -
(mazx_value — min_value)

Where ‘z’ is the original value, ‘min_value’ is the min-
imum value of the data, and ‘maxz_value’ is the maximum
value of the data. Next, the normalized standard air quality data
is randomly split into training and testing sets. The training set
is used to train and fit the two-layer LSTM model, aiming to
obtain an optimal model. Then, the testing set is input into the
trained model for regression prediction, and the model outputs
the predicted values. After receiving predicted values, we
calculate the reconstruction error (RE) between the predicted
and actual data. We select three times the standard deviation of
the reconstruction errors as the threshold. If the reconstruction
error of a data point exceeds the threshold, it is marked as an
anomaly. By performing the above operations, we obtained a
series of labeled data. In the labeled data, O represents normal
data, while 1 represents abnormal data.

b) General CEP Rules Extraction and Application

Next, we used the decision tree algorithm to extract general
CEP rules from the labeled data. To evaluate the performance
of the decision tree algorithm, we selected the Support Vector
Machine (SVM) and Random Forest for comparison because
these algorithms are widely used in the field of machine
learning for classification problems, and their performance
often serves as a benchmark for evaluation and comparison.
Common metrics for assessing machine learning algorithms
include Precision, Recall, F1 Score, and Overall Accuracy. The
performance metrics of the decision tree algorithm, SVM, and
Random Forest are presented in Table [V] The results show
that the decision tree model, even with default parameters,
exhibited good performance, especially in terms of overall
accuracy, reaching 90% and outperforming other models. This

high accuracy highlights the effectiveness and robustness of
the decision tree in processing this dataset. For the SVM
model, despite parameter tuning (C=10, gamma=0.01), its
performance in classifying class 1 data was still inferior to
the decision tree, with an overall accuracy of only 86%. After
parameter adjustment (n_estimators=10, max_depth=30), the
Random Forest achieved an overall accuracy of 88%, but
showed lower recall for class 1 data, indicating a deficiency
in classifying positive classes. Considering the comprehensive
advantages of the decision tree in terms of accuracy, balance
across classes, simplicity, and interpretability of the model, we
believe that the decision tree is the most suitable classification
model.

TABLE 1V: Performance Metrics

Metric / Classifier Decision Tree SVM Random Forest

Precision (Class 0) 0.92 0.91 0.89
Precision (Class 1) 0.83 0.62 0.80
Recall (Class 0) 0.97 0.91 0.97
Recall (Class 1) 0.62 0.62 0.50
F1-Score (Class 0) 0.94 0.91 0.93
F1-Score (Class 1) 0.71 0.62 0.62
Overall Accuracy 0.90 0.86 0.88

We visualize the decision tree model for easier extraction
of the desired rules from the tree model. The partial decision
tree obtained is shown in Figure [3]
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Fig. 5: Partial decision tree model
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samples = 8

By using the relevant code, we can convert the obtained
decision tree model into applicable general CEP rules, which
help us monitor and understand air pollution patterns. Apply-
ing these general CEP rules allows us to track the occurrence
of pollution events, enabling timely measures to mitigate
pollution. For example, we can shift to using clean energy
or adjust energy allocation and usage strategies to reduce the



emissions of specific pollutants, thereby effectively alleviating
environmental pollution and promoting the implementation of
energy-saving and environmental protection measures. Two
example rules are :

“carbon monoxide > 98.0 and sul fur dioxide > 144.0
and particulate matter > 128.5 and carbon monoxide <=
125.5 and ozone <= 157.5 and sul fur dioxride <= 165.5
and sul fur dioride <= 162.5 and particulate matter >
150.0 and particulate matter <= 152.0”

“carbon monoxide > 98.0 and sul fur dioxride > 144.0
and particulate matter > 128.5 and carbon monoxide <=
125.5 and ozone <= 157.5 and sulfur dioxide > 165.5 and
ozone <= 153.5 and sulfur dioxide > 203.5 and particulate
matter <= 144.0 and ozone <= 146.5"

We apply the extracted general CEP rules to the Esper CEP
engine and create CEP pattern events based on these rules.
We utilize these events to monitor air quality data and issue

within the unhealthy AQI range) to calculate the accuracy of
warnings generated based on the general CEP rules. Through
calculation, the accuracy based on general CEP rule alerts is
90%.
¢) Convert Labeled Data into Event Logs

Next, we proceed to extract high-level CEP rules based on
the extracted general CEP rules. High-level CEP rules reflected
correlations behind the general air pollution events. Firstly, in
Navicat, we label the processed data with their corresponding
states. Then, we use relevant algorithms to add segmentation
nodes, traces, and timestamps to the labeled data. Through
these operations, the original dataset is transformed into an
event log. Here is an example shown in TABLE [V] of a partial
event log.

TABLE V: Partial event log

early warnings. The CEP engine generates alerts for abnormal

DataTime PM2.5 O3 CO SO; label status case
atmospheric data. For instance, in the rule P2 : carbon
monoxide <= 98.0 and ozone > 95.5 and sulfur dioxide >  9:00:00 -1 - - -1 PO tracel
175.0 and carbon monoxide <= 82.0. In the extracted rule  g.00.01 65 174 119 169 0 P3  tracel
P2, the AQI value of “sul fur dioxide” falls between 151
and 200, which is marked as unhealthy by the World Health ~ 9:00:02 64 179 120 171 0 P12 tracel
Organization (WHO) as illustrated in Figure[6] It can be  ¢.5.4¢ 91 186 124 168 1 P15 tracel
harmful to human health. In this case, our CEP engine will
issue an unhealthy alert as displayed in Figure [} Relevant ~ 9:00:45 97 175 128 170 1 P13 tracel
personnel can utilize this alert information to become aware .
that energy consumption or production activities may lead to 9:00:46 o7 176 125170 0 P14 tracel
excessive emissions of “sul fur dioxide”. Decision-makers  9:00:47 97 173 124 165 0 P3  tracel
may take measures such as optimizing production processes,
reducing the use of high-sulfur coal, or transitioning to cleaner 9:00:49 100 175 129 165 0 P13 tracel
energy sources to reduce “sulfur dioxide” emissions. By  9-00:50 99 176 126 164 0 Pld  tracel
taking these actions, general CEP rules not only help monitor
air pollution but also prompt practical measures to optimize ~ 9:00:31 104174 122 166 0 P3 - tracel
energy use and reduce emissions of various pollutants. This 9:00:59 -1 -1 -1 1 1 end  tracel

not only improves energy efficiency and effectiveness but also
contributes to environmental protection.
d) Apply HM to Generate Petri net

The constructed event log was imported into ProM 6.9
software. We run the heuristic miner algorithm plugin, and
then we can obtain a Petri net model. The part of the Petri net
model is illustrated in the following Figure [§]

In a Petri net, each transition represents an event in the
system. In our experiment, each transition corresponds to
a general CEP rule. The trajectories of a Petri net refer
to sequences of transitions occurring within the Petri net,
describing changes in the system’s states. Taking our dataset
as an example, the transitions represent general air pollution
events. The trajectories reflect the correlation relationships
among air pollution events. In the obtained Petri net, places
represent the states of the trajectory. Transitions fall into two
categories. Black transitions are silent transitions, which lack
real-world significance and are included to ensure the net’s
structural completeness. In contrast, white transitions have
real-world significance and represent general CEP rules.

For PM, we need to perform conformance checking to
assess the quality of the obtained model. The expected mea-
surement used for this purpose is fitness, which indicates how

Levels of Concern Values of Index

Daily AQI Color

Moderate 51to 100

Fig. 6: AQI

[2024-03-14 22:28:23] !!!Pollution Alert: AirQualityState{co=96.0, 03=98.0, s02=170.0, pm25=50.0}
[2024-03-14 22:28:24] !!!Pollution Alert: AirQualityState{co=96.8, 03=987.0, s02=171.0, pm25=52.0}
[2024-03-14 22:28:25] !!!Pollution Alert: AirQualityState{co=97.8, 03=130.0, s02=178.0, pm25=40.0}
8:29] !!!Pollution Alert: AirQualityState{co=96.0, 03=97.0, s02=173.0, pm25=52.0}

[2024-03-14 2
[2024-03-14 22:28:38] !!!Pollution Alert: AirQualityState{co=96.0, 03=102.0, s02=173.0, pm25=51.0}
[2024-03-14 22:28:32] !!!Pollution Alert: AirQualityState{co=96.0, 03=100.0, s02=182.0, pm25=44.0}

Fig. 7: Part of the result of the unhealthy alert

We compared the warning results of general CEP rules with
a series of actual labels (indicating whether the status falls



Fig. 8: The part of the Petri nets model
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Fig. 9: A portion of the resulting reachability graph

well the model reproduces the majority of traces in the log.
A higher fitness value indicates a better fit, implying that the
model is ideal. We use a plugin to calculate the fitness of our
obtained model, which is found to be 0.82, indicating a good
fit.

e) High-level CEP Rules Extraction and Application

After obtaining the Petri net model, we need to analyze
this to extract the desired high-level CEP rules. To facilitate
rule extraction, we utilize relevant Petri nets processing tools.
We convert the Petri net into a reachability graph using the
processing tool. A portion of the resulting reachability graph
is displayed in Figure [9}

Multiple structures in the above graph contain all the high-
level CEP rules we can get. For example, based on the
relationship among adjacent three-layer nodes, we can extract
some high-level CEP rules. In this reachable graph, there
are directed arcs across layers. Through this relationship, we
can also get some high-level CEP rules. By extracting these
high-level CEP rules, we can uncover the underlying causal
relationships inherent in the general CEP rules. Analyzing
these causal relationships assists in making better decisions. In
this experiment, our analysis of high-level CEP rules aims to
uncover the underlying high-level causal relationships behind
air pollution events. Let’s take an example of an adjacent three-
layer node to illustrate how to extract high-level CEP rules.

Definition 1 [38]: Let PN(S, T; F, M) be a bounded
Petri net, where the triple G = (R(MO0), S, k) represents a

reachability graph, where:

o R(MO) is the set of reachable markings of PN, consti-
tuting the vertex set of G|

o S represents the set of arcs in G, defined as S = {(Mi,
Mj) | Mi, Mj € R(MO0), 3tk € T: Mi[tk > Mj};

o k: Ar = T, k(Mi, Mj) = bif and only if Mi[b > Mj,
and when k(Mi, Mj) = b, b is referred to as the label
of the arc(Mi, Mj).

Definition 2: Given a reachability graph G = (V, E'), where
V is the set of nodes, and F is the set of arcs (edges). R =
{(ti, tj) | ti, tj € E, pm, pn, pk € V, 3 pm — pn, pn —
pk}.

o R = (ti, tj) stands for a high-level rule, where R signifies
that event represented by ¢7 can be derived from event
represented by tj.

e pi — pj implies the existence of an arc from node pi to
node pj.

To make our extracted rules more convincing, we need to
calculate the probability that each extracted high-level CEP
rule is true. We use P to represent probability. We use the
Bayesian formula [39] to calculate the probability P. When
the value of P is greater than or equal to the median, we
consider the corresponding rule to be extractable. By applying
this filtering condition, we can retain the rules we require.

In a Petri net, the system state is represented by an array
composed of 0 and 1. 0 and 1 typically represent the quantity
of tokens within places. 0 indicates the absence of tokens



in place, while 1 indicates the presence of a single token
in place. When the token quantity in a place meets certain
conditions, it triggers the corresponding transition. After a
transition occurs, the system’s state changes. For example,
through the occurrence of transition ¢39, the state changes
from (000010000000000000000000100
0)to(0000100000000000000000000 1
0 0 ). Similarly, through the occurrence of transition ¢33, the
state changes from (000010000000000000000
0000100)to(000001000000000000000
000010 0). Transition ¢39 corresponds to the label P12,
while transition ¢8 corresponds to the label P2. This means
there is a causal relationship between the two general rules:

General Rule PI12: carbon monoxide > 98.0 and sulfur
dioxide < 144.0 and particulate matter <= 128.5.

General Rule P2: carbon monoxide <= 98.0 and ozone >
95.5 and sulfur dioxide > 175.0 and carbon monoxide <=
82.0.

We can obtain a high-level CEP rule R1: the air quality con-
dition corresponding to general CEP rule P12 leads to the air
quality condition corresponding to general CEP rule P2. In the
P2 rules extracted above, the AQI value of “sulfur dioxide” is
between 151 —200. This AQI value is labeled as unhealthy by
the WHO and will cause harm to the human body. According
to R1, the values of each air quality index corresponding to
the general CEP rule P12 meet the requirements of the health
range, so the corresponding air quality data is healthy. How-
ever, it is followed by unhealthy air quality data, which is the
air quality data corresponding to general CEP rule P2. Thus,
our CEP engine will issue an alert against the general CEP
rule P12. The early warning results are shown in Figure [I0]
In this scenario, decision-makers can take preemptive actions
such as adjusting production schedules, reducing production
activities during peak hours, or transitioning to cleaner and
more efficient energy sources such as solar or wind energy.
This helps to keep pollutant emissions levels within reasonable
limits. Such adjustments not only help mitigate anticipated
pollution events but also optimize energy use, reduce reliance
on traditional high-polluting energy sources, thereby achieving
energy conservation and emission reduction.

I'11Pollution Alert: AirQualityState{co=116.0, 03=162.0, s02=110.8, pm25=160.0}

I11Pollution Alert: AirQualityState{co=98.0, 03=123.0, s02=163.0, pm25=130.8}
[2024-03-14 23: 111Pollution Alert: AirQualityState{co=102.0, 03=142.0, s02=103.8, pm25=136.0}
[2024-83-14 23:
[2024-83-14 23:
[2024-03-14 23:
[2024-03-14 23:02:32] !!!Pollution Alert: AirQualityState{co=101.0, 03=142.0, s02=101.8, pm25=136.0}

!11Pollution Alert: AirQualityState{co=102.0, 03=160.8, s02=120.0, pm25=150.0}
!11Pollution Alert: AirQualityState{co=103.0, 03=152.8, s02=142.0, pm25=152.0}
111Pollution Alert: AirQualityState{co=116.0, 03=155.0, s02=136.8, pm25=148.0}

[2024-03-14 23:02:33] !!!Pollution Alert: AirQualityState{co=99.0, 03=146.0, $02=102.0, pm25=132.0}

Fig. 10: Part of the result of the early unhealthy alert

Similarly, based on the accuracy calculation formula men-
tioned earlier, we calculate the accuracy of the warnings issued
based on the general CEP rules and high-level CEP rules to
be 98.6%. From this, we can see that by extracting high-level
CEP rules to supplement the general CEP rules and issuing
warnings about air quality data based on the combination of
both, the accuracy of the warnings can be improved.

Therefore, general CEP rules extracted by our proposed
method can be applied to identify abnormal values in air qual-
ity data. Detecting air anomalies is closely related to energy-
saving decisions. These anomalies may indicate unnecessary

energy waste or high energy consumption. The extracted high-
level CEP rules can provide early warnings for the air state
prior to the impending polluted conditions. By anticipating
potential pollution events, it facilitates proactive adjustments
and optimization of energy consumption in relevant sectors,
allowing proactive measures to be taken before the situa-
tion worsens. Hence, analysis based on air data anomaly
detection can provide strong support for making energy-
saving decisions. It helps to optimize resource utilization, thus
contributing to sustainable energy management goals. This
mitigates the negative effects on the environment to some
degree, fostering the development of a clean and aesthetically
pleasing environment.

V. DISCUSSIONS

We proposed a new framework named DMHC to ex-
tract high-level CEP rules in this research. Machine learning
methods, HM, and CEP techniques are merged here in this
methodology. Our methodology provides a generic framework
for extracting high-level CEP rules, which has been overlooked
in previous work. In our work, the extracted general and high-
level CEP rules can be used for monitoring or warning of
air pollution states. This methodology can uncover implicit
causal relationships from unlabeled data. It also has a variety
of applications. In IoT systems, our methodology can extract
meaningful general and high-level CEP rules. High-level CEP
rules reflect the causal relationships in air pollution events, as
well as the relationships among general CEP rules. Based on
the early warning results from these rules, we can intelligently
allocate energy consumption within the IoT system to reduce
or prevent pollution, thereby promoting sustainable devel-
opment. Additionally, our work innovatively employs HM
for extracting high-level CEP rules, and explores the causal
relationships among general CEP rules to derive high-level
CEP rules. That stands in contrast to prior research efforts.

VI. CONCLUSION AND FUTURE WORK

Within the IoT, there is widespread energy consumption
that impacts diverse aspects. Inadequate handling of energy
resource allocation and utilization can hinder sustainable de-
velopment. To some extent, air pollution data can reflect
whether energy is being overconsumed or misused. There
is a complex causal relationship among air pollution events.
A deeper analysis of these relationships will aid in more
effectively managing and optimizing energy utilization. Here,
we propose DMHC based on machine learning methods, CEP
techniques, and HM. Our proposed methodology extracts both
general and high-level CEP rules from unlabeled data. These
extracted rules reveal the comprehensive causal relationships
among data. We apply this methodology to energy-saving
within the IoT domain. Monitoring or warning changes in air
status to understand energy consumption allows for intelligent
energy-saving strategies based on real-time data variations.
That contributes to improving energy utilization efficiency and
promoting the sustainable development of IoT systems.

Nonetheless, our proposed methodology also has some
limitations. Although our proposed system can extract high-
level CEP rules, when encountered with complex events, the



generated Petri nets might exhibit other intricate structures. In
the future, we intend to investigate the extraction of essential
rules within even more complex configurations.
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