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Abstract—With many advancements in in silico multiscale
biology in recent years, the paramount challenge is to translate
the accumulated knowledge into exciting industry partnerships
and clinical applications. Historically, the pharmaceutical indus-
try has worked well with in silico models by leveraging their
prediction capabilities for drug testing. However, the needed
higher fidelity and higher resolution of models for efficient
prediction of pharmacological phenomenon dictates that in silico
approaches must account for the verifiable multiscale biophysical
phenomena, as a spatial and temporal dimension variation for
different processes and models. Our paper has two main goals: 1)
To clarify to what extent detailed single- and multiscale modeling
has been accomplished thus far, we provide a review on this
topic focusing on the biophysics of epithelial, cardiac, and brain
tissues; 2) To discuss the present and future role of multiscale
biophysics in in silico pharmacology as a digital twin solution by
defining a roadmap from simple biophysical models to powerful
prediction tools. Digital twins have the potential to pave the
way for extensive clinical and pharmaceutical usage of multiscale
models, and our paper shows the fundamentals and opportunities
for their accurate development, enabling the quantum leaps of
future precise and personalized medical software.

Index Terms—Multiscale modelling, biophysics, in silico phar-
macology, drug testing, digital twin.

I. INTRODUCTION

DEVELOPING digital representations of the human body
that characterise both spatial structures as well as ac-

tivity need to account for the link between molecules, their
propagation dynamics, and their reactions on various scales,
thus bringing together a set of models that are termed multi-
scale biophysics. Modern biophysics brings together physical
molecular behaviour with highly complex biological activity
and structure separated on multiple spatial and temporal scales,
herein referred to as multiscale biophysics. Systems biology
does not have a general law for the multiscale phenomena
that govern most eukaryotic organisms [1]. Capturing all the
phenomena present in cells and tissues into a mathematical
model is an arduous task due to the plurality of molecules
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and their respective pathways as well as biological variability
[2]. The existing solutions for modelling multiscale biological
systems rely on simulators that are data-intensive, which
means that experimental data is used to tailor pre-existing
simulators to fit the specific time and spatial behaviours
of a particular system [3]. In recent years, the importance
of developing personalised computer models to enable pre-
cision pharmacology and medicine has become more and
more evident. This situation can be radically changed with
high-fidelity digital twins. Digital twins are defined as full
digital reconstructions of tissue and organs from our bodies
that exhibit detailed biological function and structure de-
scriptions that facilitate multidimensional predictions. They
are constructed based on ever-evolving computational biology
methods on multiple scales; however, they include more than
just activity information; they also include structural and
behavioural information. These are particularly important for
replicating specific information about patients digitally. Digital
twins personalised patient-specific computational models can
then lead to clinical recommendation guidelines for disease
treatment and prevention by using patient data to adjust the
models with lower variability and increased prediction power
[4]–[6].

Multiscale models pick up the existing successful efforts of
in silico biology [7], which have been confined to specific non-
scalable analysis, and that has already been proven to have its
utility in the pharmaceutical industry [8]. The pharmaceutical
industry can leverage efforts on multiscale modelling in the
realm of cell-free drug discovery and screening technology.
On the human body’s microscales, drugs interact with specific
molecules in the intracellular space and the cellular mem-
brane that influence tissues and organs. However, how the
microscales and higher scales are tackled is still a current
challenge. Future prediction techniques on drug effects will
also be data-intensive and based on digital multiscale twins,
where a large number of drug types will be evaluated under an
integrated digital twin solution. Either a top-down or bottom-
up approach works here, where drugs shall be analysed from
the molecule level to organs and vice versa. By identifying
adverse drug effects and sub-populations at a higher risk very
early on in the drug development pipeline, in silico trials could
be used to integrate or even replace the current methodologies,
also contributing to an overall reduction of animal use and
costs. Although in this review we concentrate our efforts
on multiscale biophysical models that can be fostered by
the pharmaceutical industry, our characterization of multiscale
biophysics can transcend this scenario and reach way beyond
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Fig. 1. Digital twin tissues reconstructed through multiscale modelling will
be used in data centres to perform drug safety and efficacy evaluations.
The forecast response will predict potential drug-induced effects and inform
subsequent experiments. [Figure created with BioRender.com]

academia, industry, clinical, and regulatory settings. As an
example, they can assist clinicians by providing new insights
into disease mechanisms and predicting the most effective
pharmacological (or non-pharmacological) intervention for a
specific patient. For the heart, numerous such examples can
be found in the literature [9]–[12].

Multiscale modeling in itself poses many challenges, as
highlighted by the biophysical modeling community in many
different works including [13]–[15]. The main challenges
can be summarised as follows: a) lack of good quality ex-
perimental data able to capture the dynamical behaviors at
multiple scales; b) scarcity of mathematical tools that can
bridge multiple scales and can be run without requiring high-
performance computing; c) incomplete biophysical knowledge
of the biological systems at all scales. Therefore, there is a
need for a community effort to develop verified and easy-
to-use simulation frameworks that will facilitate multiscale
simulations for predictions of physiological activity.

In this paper, we aim to review existing works of biophysical
models from single ion channels to whole organs, including
single cells, multiple cells, and tissue, across different spatial
and temporal scales. The main goal is to provide a compre-
hensive modelling reference for either academic or industry
researchers who want to learn the basics of multiscale bio-
physics. The presented solutions are aimed at the integration of
pharmacological studies with multiscale biophysics to inspire
researchers from the basics to advanced knowledge in this
endeavour. We target the cardiac, brain, and epithelial tissues
based on their importance in human biological systems. They
also provide a good representation of different development
statuses of in silico modelling - ranging from cardiac models
as the most advanced models in this context to brain models
to epithelial models. We will show the recent advances of
multiscale modeling and simulations in these fields, and the
existing integrative approaches to link biological data and
model development. Further, we discuss the current challenges
to raise the profile of in silico biology as a reliable source
for prediction. Finally, we highlight the impact of multiscale
modelling and simulations in pharmacology to show how they
can reshape the landscape of existing solutions and provide
support across academia, industry, clinicians, and regulators.

II. MULTI-SCALE BIOPHYSICS IN THE BODY FOR DIGITAL
TWINS SOLUTIONS

We base our analysis on four to six bottom-up spatial and
temporal scales depending on the considered tissue type: the
sub-cellular, cellular, cell-cell, tissue, tissue-tissue, and the
whole organ level (Figs. 2, 5, and 9). We do not include pro-
teomics or genomics in this paper due to their additional levels
of complexity. Excluding proteomics from modelling solutions
will present limited molecular insights. Proteins play diverse
roles in cellular processes, and their dynamic behaviours
are linked to tissue physiology and disease mechanisms. We
recognise that integrating proteomic data into tissue models
is essential for comprehensively developing digital twins;
however, there are a few caveats. The available proteomic data
is of poor quality or lacks generality, so omitting it could
prevent unnecessary noise and inaccuracies in the models.
Since the multiscale models represent in part codependent
models, proteomic data is gathered and evaluated in a different
manner, which hinders easier integration. Moreover, omitting
proteomic data will ultimately reduce the already expensive
computational resources and time required for analysis, which
may streamline model development and interpretation as well.

We concentrate on modeling approaches varying from typ-
ical biophysical approaches (including ordinary differential
equations, partial differential equations, reaction-diffusion, and
continuum methods) and phenomenological models (stochas-
tic, rate-based, and cellular mass models) and show how
existing literature deals with the rising complexity and volume
of data when considering rich biophysics with molecular
dynamics in modeling. Now, in the following, we will dive
into the biophysical models from each scale for the cardiac,
brain, and epithelial tissues.

III. CARDIAC MODELS

The heart, and in particular cardiac electrophysiology, is
currently the domain where multiscale modeling demonstrates
close to its full potential. The existing cardiac models con-
stitute a reference example for other systems of the body.
The conceptual pipeline is, in principle, straightforward, and
models at the higher scales rely upon the lower levels
(Fig. 2): 1) single ion channels/currents/transports, 2) sin-
gle cardiomyocytes (CM), 3) tissue, and 4) whole organ
[43]. Furthermore, each scale can contain additional levels
of complexity, e.g., modeling single ionic currents using
detailed paradigms (Hodgkin-Huxley, Markov [44], molecular-
structure-to-function [45]) or simulating different CM phe-
notypes (ventricular [46] vs. atrial [47]). Advanced digital
reconstructions of the heart, including the Living Heart Project
[48], are perfect examples of how the multiscale can be
understood. However, there are still existing challenges in
cardiac modeling that have only been partially addressed, e.g.,
patient-profile-based tissue variability, and disease modeling,
as described in the work of McCulloch [1]. In this section,
we will clarify what modeling work is needed to perform
simulations from single-cell to the whole organ level, taking
as an example cardiac electrophysiology. We present the
conceptual pipeline, also including some mathematical details.
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TABLE I
CAPTION

Cell Type Model focus Multiscale Level Main Feature Reference
Cardiac Ion Channels Molecular Single ion currents, Hodgkin-Huxley [16], [17]

Cardiomyocytes Cellular Single cell electrophysiology, Markov models [18], [19]
Tissue Tissue Propagation dynamics, Bidomain model [20]–[22]

Whole Heart Organ Heart electrophysiology integration, 3D simulations [23]–[26]
Brain Ion Channels Molecular Ion channel dynamics, Hodgkin-Huxley models [27]

Neurons Cellular Neuronal action potentials, Compartment models [28], [29]
Neural Networks Microcircuit Network dynamics, Connectivity models [30], [31]
Cortical Loops Inter-region networks Regional interactions, Mean field theories [32]
Whole Brain Organ Global brain function, Large-scale network models [33]

Epithelial Claudin Channels Molecular Ion selectivity and permeability [34]
Tight Junctions Cellular Barrier properties, Dynamic strand models [35]

Sheets Tissue Paracellular transport, Compartment models [36], [37]
Organ-specific Organ Integrated organ function, Multi-compartment models [38]–[42]

However, given the extension and complexity of the topic, we
refer to previous works for an advanced description [44], [49],
[50]. The trustworthiness and validation of cardiac models are
important points and have been previously analyzed [43]. They
will not be further discussed in this paper.

1) Single ion currents - The Hodgkin-Huxley paradigm
(scale 1): The most basic brick we consider in this section
is the single ion current flowing through the cell membrane
via selective ion channels [16], [17], given the difference of
potential Vm at the two membrane sides.

Iion = Gion(Vm − Eion), (1)

where Gion represents the constant conductance of the current,
usually expressed in nS/pF , and Eion is the Nernst equilib-
rium potential for the ion species computed as

Eion =
RT

zF
ln(

[ion]o
[ion]i

), (2)

where R is the universal gas constant, T is the temperature, F is
Faraday’s constant, and [ion]i and [ion]o are the intracellular
and extracellular concentrations. Such a simple formalism is
not adequate for simulating more complex current evolution
in time. For example, when INa is triggered by a voltage step,
it shows first a rapid activation and then a slow inactivation
(Fig. 3 A). Mathematical constructs like the activation and
inactivation gating variables enable the simulation of a voltage-
and time-dependent modulation of the current conductance. In
case of INa, the Eq. 1 changes into

INa = GNa(Vm − ENa) = GNam
3h(Vm − ENa). (3)

In this Eq., GNa conductance is composed of three terms: the
constant maximum conductance GNa, the series of three acti-
vation gating variables m and the inactivation gating variable
h. A generic gating variable x(t, Vm) can be represented in
two equivalent forms. The first formulation

dx

dt
= αx(1− x)− βxx (4)

highlights the meaning of x and 1 − x as the open and
closed probabilities of the gate x. If the values of either αx

or βx depend on Vm, x is both voltage-dependent and time-
dependent. By imposing and

αx =
x∞

τx
and βx =

1− x∞

τx
, (5)

equation 4 can be written as

dx

dt
=

x∞ − x

τx
(6)

in order to highlight the dynamic sense of the gating variable
x(t, Vm). The steady-state

x∞ =
αx

αx + βx
(7)

represents the value to which x tends at a certain voltage and
it is obtained by fitting the in vitro data using the sigmoid
function

x∞ =
1

1 + e
Vm−Vh

K

, (8)

Fig. 2. Five different spatial and temporal scales that are linked with the progression from intracellular pathways to organs in cardiac models.



4

Fig. 3. Simulation of cardiac ionic currents. (A) Scheme of the current flows
across the cell membrane INa, IK and IL. (B) Simulation of a voltage-
clamp step with the Hodgkin-Huxley model. From top to bottom: holding
potential -109 mV (red); time course of INa conductance (blue) with in vitro
experiments (black dots) from [27]; time course of INa (green). (C) INa

steady state activation (m∞) and inactivation (h∞) curves. (D) INa time
constants of activation (τm) and inactivation (τh).

where Vh is the voltage of half activation and K is the gradient
of activation. The time constant

τx =
1

αx + βx
(9)

represents how fast the gating variable x reaches its steady-
state x∞ (Fig. 3 B and C). Following this modeling paradigm,
the conductance GNa(t, Vm) is a function of the open prob-
abilities of the series of three voltage- and time-dependent
activation and one inactivation gating variables. Although very
powerful, this representation of ion current kinetics suffers two
important limitations. First, the gates are not related to any
actual conformational state of the ion channel. Second, the
activation and inactivation gates are independent. For example,
regarding INa, it has been shown that its inactivation is more
likely to happen when the channel is open [16], [17]. This
cannot be captured with the Hodgkin-Huxley paradigm.

2) Single ion currents - The Markov paradigm (scale 1):
A more powerful modeling paradigm, that can represent the
dependence of a given transition on the occupancy of different
biophysical states of the channel, is the Markov paradigm.
Markov models take into consideration multiple channel con-
formation states and state-to-state transitions, which have been
characterized in vitro. This type of model considers that
one transition between channel states depends on the present
conformation of the channel, but not on previous behavior
[44]. As the first example, we take a look at a channel
characterized only by a single open (O) and a single closed
(C) state (Fig. 4A). The rate of occupancy of the two states is
expressed by the following first-order equations

dC

dt
= −αmC + βmO and

dO

dt
= αmC − βmO (10)

Considering that the open Markov state corresponds to the
probability that the channel is in the open state O = Popen =

m and similarly for the closed state C = Pclosed = 1 − m,
we can write for the open state in (10)

dm

dt
= αm(1−m)− βmm (11)

that is nothing more than the formulation of the activation
gating variable m in the Hodgkin-Huxley INa according to Eq.
4. However, ion channels can also be inactivated. We consider
a slightly more complex Markov model with four states closed
(C), open (O), open inactivated (IO), and closed inactivated
(IC), and transitions rates equal in the horizontal sides and
in the vertical sides of the square diagram in Fig. 4A. This
model can be expressed by the following first-order equations

dC

dt
= βmO + βhIC − (αm + αh)C (12)

dO

dt
= αmC + βhIO − (βm + αh)O (13)

dIO
dt

= αhO + αmIC − (βh + βm)IO (14)

dIC
dt

= αhC + βmIO − (αm + βh)IC (15)

The fact that the horizontal transition rates αm (rate of
activation) and βm (rate of deactivation) are the same for C−O
and IC−IO means that they can be represented by a single gate
m as in the previous example. Applying the same approach
for the vertical transition rates αh (rate of inactivation) and
βh (rate of recovery) and sides, we can obtain the following
equation similar to Eq. 11

dh

dt
= αh(1− h)− βhh (16)

that again is nothing more than the formulation of the inacti-
vation gating variable h in the Hodgkin-Huxley INa. Further-
more, since the inactivation rates are the same on the vertical
side, the inactivation of the channel is independent of the states
C and O or, in other terms, is independent of the activation
gate m, as in the Hodgkin-Huxley INa. Considering again the
state occupancy probabilities, we can write C = (1 − m)h,
IC = (1 − m)(1 − h), IO = m(1 − h) and O = mh. In
particular, the probability that the channel is in the O state
closely resembles the gating variable product in Eq. 3 (except
for the third power). The previous considerations demonstrate
that it is possible to convert specific Markov models with
certain geometries and independent activation and inactivation
into Hodgkin-Huxley models. Since a whole-cell ionic current
is a sum of currents flowing through multiple channels, an
equivalent interpretation of a Markov state is that it represents
the ratio between the channels in that specific state and the
total number of channels. Markov models are very intuitive
in that they obey the conservation law: the sum of the states
must be 1 and each state can assume values [0, 1]. Therefore,
a Markov model can be represented in a reduced form, for
example, replacing Eq. 15 by IC = 1−(C+O+IO). However,
not all the Markov models can be translated into Hodgkin-
Huxley models. This is clear, e.g., in the case of inactivation
dependent on the activation, as in the simple example proposed
by [44] and illustrated in Fig. 4C. In this three-state model,
the inactivated state I can be reached only from the open
state O and the assumption of independent gating is not valid.
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Fig. 4. Three illustrative examples of Markov models. In red, we report the
occupancy probability for the Markov states. For the open states O in panels
A and B, the occupancy probability for the Markov states corresponds to the
open probability of an equivalent Hodgkin-Huxley (HH) model. (A) Two-state
model with an open O and a close C state. This model corresponds to a single
HH activation gate. (B) Four-state model with one open O, one close C, and
two inactivated IO and IC states. Since the transition rates αm and βm are
the same in the horizontal transitions, they can be represented with a single
HH gating variable m. The same applies to αh and βh. In this model, the
activation is independent of the activation, so an equivalent HH model with
two gating variables m and h exists. (C) Three-state model with one open
O, one closed C and one inactivated I state. As inactivation is dependent on
activation, no HH equivalent model exists.

Independently of the complexity of the Markov model for a
channel, the form of the macroscopic ion current, in this case
of INa is the following

INa = GNa(Vm − ENa) = GNaO(Vm − ENa)

= gsc,NanO(Vm − ENa)
(17)

where gsc,Na is the single channel conductance and n is the
number of channels.

3) Modelling a single CM (scale 2): In the previous
sections, we introduced two powerful modeling paradigms,
namely Hodgkin-Huxley and Markov, to simulate ion trans-
port. As in the seminal work of Hodgkin and Huxley [27], the
three ion currents INa, IK , and IL were gathered to simulate
the initiation and propagation of the action potential (AP) in
the squid axon, the same approach has been used to simulate
also the cardiac AP in a single CM, using the well-known
equation

dVm

dt
= −Iion − Istim

Cm
, (18)

where Vm = Vi − Ve represents the cell membrane potential
computed as the difference between the intra- and extracellular
potential, Iion the sum of the ion currents flowing through the
ion channels, active transports, etc. (e.g., Iion = INa + IK +
IL in the Hodgkin-Huxley model), Istim the stimulus/pacing
current and Cm the membrane capacitance. Eq. 18 highlights
the capacitive and resistive nature of the cell membrane.

Although a detailed review of the goals, pros and cons,
and impact of each CM model from the first Noble model in
1962 [18] up to the state-of-the-art ones is out of the scope of
this paper, we acknowledge that this plethora of models can
be divided into two generations. The first generation includes
the most seminal CM models like the aforementioned Noble

(1962, three ion currents) and McAllister-Noble-Tsien (1975,
nine ion currents) [51] of generic Purkinje cells and the first
ventricular CM Beeler-Reuter (1977, four ion currents) model
[19]. However, it is with the second generation of models
that more complex mechanisms started being included. For
example, the first second-generation model by Di Francesco
et al. (1985) [52] has mechanisms that transcend Eq. 18 or the
current formulations we presented in the previous sections. In
fact, it includes i) a sarcoplasmic reticulum (SR) separated
from the cytosol and divided into one uptake and one release
store, ii) the release and uptake fluxes moving Ca2+ in and
out of SR, iii) a detailed description of the Na+, Ca2+ and
K+ ionic concentrations formulated (for the i-th compartment
with volume Vi) as

d[ion]i
dt

=
1

FVi

∑
n

Iion,n (19)

that enable simulating also iv) ion exchangers like the
Na+/K+ pump (INaK) and the Na+/Ca2+ exchanger
(INCX ). Although, these new elements require mathematical
formulations beyond Eq. 18, it still governs the simulation of
the time course of the membrane voltage. For example, despite
the following formulations (whose parameters are explained in
detail in the original publication [52])

INaK = INaK
[K]o

Km,K + [K]o

[Na]i
Km,Na + [Na]i

(20)

or

INCX = kNCX
e

γVmF
RT [Na]3i [Ca]o − e

(γ−1)VmF
RT [Na]3o[Ca]i

1 + dNCX([Ca]i[Na]3o + [Ca]o[Na]3i )
(21)

are surely different from the Hodgkin-Huxley or Markovian
paradigm, INaK and INCX can be included into Eq. 18 in
the term Iion.

4) Modelling cell-to-cell interaction (scale 3): It can be
argued that the interaction of cardiomyocytes with neigh-
bouring cardiomyocytes or other cell types, such as fibrob-
lasts, is perhaps the most under investigated scale in cardiac
modelling. Accordingly, we will not delve into the details
of the simulation approaches. Instead, we would recommend
for the interested reader to check out, as a starting point,
the two following reviews: 1) how e.g. fibroblasts modulate
the electrophysiological function [20], and 2) for an in-depth
description of discrete cell-based modelling see e.g. [21].
Finally, we would like to highlight that the advent of human
stem cell-derived cardiomyocytes and their wide adoption in
pharmacology is creating a new kind of need for cell-based
modelling. As the engineered cardiomyocyte sheet and tissues
are far less homogeneous than a healthy human myocardium,
the continuum-based approaches (i.e., monodomain and bido-
main modelling described in the next section) are likely unable
to capture potentially relevant microscale phenomena. Please
see Chapter IV for further discussion.

5) Cardiac tissue modeling (scale 4): In this section, ex-
tending from the single CM models, we present two different
approaches, one continuous and the other discrete, to simulate
cardiac electrophysiology in a 2D portion of cardiac tissue.
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The electrical continuity in the tissue is granted by gap junc-
tions which are intercellular channels connecting the cytosol of 
adjacent individual CMs. They allow the passage of molecules 
and ions [53], and thus the propagation of the electrical signal 
in the tissue. The bidomain model does not simulate individual 
CMs and their connections via gap junctions as discrete en-
tities [22]. Conversely, it averages the CM electrical behavior 
in a continuum model derived from the multidimensional 
expansion of the traditional cable model [27]. The ”bidomain” 
description refers to, i.e., the extracellular and the intracellular 
domains, both modeled as grids of resistors. The two domains 
are coupled by a layer of the cell membrane, represented as 
red boxes, each one containing the resistive and capacitive 
branches of the 0D model. As reported by Roth et al. [22], 
under the assumption that the spatial scale where the intra- and 
extra-cellular electrical gradients of interest develop is large 
enough compared to the CM size, this circuit can be modeled 
with continuum equations. With respect to the 1D cable, the 
bidomain model can take into account the anisotropy of the 
cardiac tissue: conduction velocity is anisotropic and its orien-
tation is determined by multiple factors, like the CM direction, 
shape and size, excitability, the gap junction distribution and 
heterogeneity in the tissue [54]. A full description of how to 
obtain the two bidomain equations, available at [50], is out of 
the scope of this paper; here we present their final form:

·((σi + σe)Ve) = − · (σiVm) + IS1 (22)

·(σiVm) + ·(σiVe) = β(Cm
∂Vm

∂t
+ Iion)− IS2 (23)

where σi and σe are the conductivity tensors in the intra-
and extracellular domains, β is the surface-to-volume ratio
of the CM membrane, IS1 and IS2 the stimulus current in
either domain, and Vm, Ve, Cm and Iion have the same
meaning as in the previous Section. In particular, Iion is the
sum of all the currents computed by a single CM model
(see the previous Section). At each numerical integration step,
Eq. 22 allows computing the extracellular potential Ve given
the transmembrane potential Vm, while Eq. 23 returns Vm.
The anisotropy of the cardiac tissue is described by the two
conductivity tensors σi and σe: in the case of a 2D model, the
two spatial dimensions represent the directions longitudinal
and transverse to the cardiac fibers. Several values for the σi

and σe elements are available [22], [55]. However, there is
consensus on the conductivity ratios along the longitudinal
and transverse directions: σiL/σiT ∼ 10 and σeL/σeT ∼ 2,
i.e., the intracellular domain is more anisotropic than the
extracellular. Assessing the values in actual living heart tissue
is far from solved as it is an ill-posed problem with several
technological and mathematical challenges [56].

A simplification of the bidomain model is possible under
the assumption that the intra- and extracellular domains are
equally anisotropic, i.e., σi = kσe. In this case, the mon-
odomain model is represented as

1

(1 + k)β
· (σiVm) = Cm

∂Vm

∂t
+ Iion − IS (24)

Considering the domain H , its boundary ∂H and the position
vector r⃗, the traditional boundary conditions [57] are

(σiVm) · n̂ = −(σiVe) · n̂r⃗ ∈ ∂H (25)

and
(σeVe) · n̂ = 0r⃗ ∈ ∂H (26)

if H is immersed in a non-conductive medium. Conversely, if
an extramyocardial domain is considered, e.g., a torso model
T with its tensor and potential σt and Vt, Eq. 26 must take into
account the current balance between H and T , thus becoming

(σeVe) · n̂e = −(σtVt) · n̂tr⃗ ∈ ∂H (27)

A different and somehow more intuitive modeling approach
represents a 2D cardiac tissue as a grid of single CMs, coupled
together with resistors that simulate the gap junctions. Given
the CM with indexes i and j, CMi,j , its membrane potential
can be computed as

Cm
dVi,j

dt
= −Iion,i,j + Ii,j−1 − Ii,j+1 + Ii−1,j − Ii+1,j ,

(28)

where Iion,i,j is the current computed by the chosen single
cell model, as in Eq. 18, and Ii,j−1, Ii,j+1, Ii−1,j and Ii+1,j

are the currents entering/leaving CMi,j via the surrounding
gap junctions.

6) Whole heart modeling (scale 5): The natural expansion
of the tissue modeling presented in the previous section is
anatomically detailed 3D models of the electrical propagation
in the whole heart or in the cardiac chambers (atrial and/or
ventricular) [58]–[63]. Although a detailed mathematical for-
mulation is out of the scope of this review, we consider it
useful for the reader to present the following pipeline that
leads to these organ models. In case the organ model is not
enveloped in a conductive medium, the monodomain Eqs. (24,
25, 26) are used [60]–[62], [64]. Sebastian et al. [23] identified
four main steps:

• Segmentation of the cardiac geometry. Firstly, it is nec-
essary to build a realistic representation of the organ
anatomy in order to shape the domain Ω. [24].

• Volume meshing. Secondly, in order to solve the mon-
odomain reaction-diffusion problem, it is necessary to
convert the 3D surface model into a 3D mesh.

• Myocardial fiber orientation. As reported in the previous
section, the conduction velocity is anisotropic, thus the
propagation in the organ model is influenced by the
fiber orientation. Such information can be acquired by
diffusion tensor MRI (DT-MRI) and associated with each
node in the volumetric mesh [25].

• Fast conduction system. Accurate simulations of the or-
gan’s electrical activation require a detailed conduction
system model. [26].

However, the bidomain model enables more complex simula-
tions, as the organ model can be enveloped in a conductive
medium, e.g., as a torso model [58], [59], [64]. Shortly,
patient-specific torso models can be constructed by MRI slices,
i) segmenting the lungs, bone regions, etc., ii) inserting the
whole heart model in the torso, and iii) finally meshing the
torso. As the torso represents a passive domain, i.e., the
reaction-diffusion problem is reduced to a diffusion problem,
the torso meshing can be coarser than the heart meshing. We
provide an overview of the applications of these anatomically
detailed 3D models in the Discussion section.
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Fig. 5. Six different spatial and temporal scales that are linked with the progression from intracellular pathways to organs in brain models.

IV. BRAIN MODELS

The rich dynamics of neural tissues inhibit the fast progress
of its validated multiscale modeling. This results in a medium
readiness level of a complete digital twin solution even though
there are far more efforts in depicting the multiscale in brain
tissues than any other type [65], [66]. The main challenge
is the multiscale of the functional level and the plastic,
complex, variable, and dense structure organization of the
brain. Currently, the existing technology cannot be used to
provide a complete understanding of it. At the functional
level, we have the multiscale variability, depicted in Fig. 5
from ion channels [67] to synapses [68], single cells [69]–
[71], microcircuits or microcolumns [72], brain parts [73], [74]
and whole brain [75], [76]. However, there is a considerable
gap between functional and organizational models, including
the issue of having comprehensive models integrated into the
multiscale spectrum [77]. Earlier, the focus was mostly on
neuronal cells - now we are progressing to model multiple
scales with other brain cell types such as glial cells like
astrocytes, oligodendrocytes, and microglia.

1) Neurons (scales 1 and 2): In Cable theory, each neuron
type can be modeled separately as a sequence of capacitances
and resistances in parallel and then grouped to form an entire
cortical microcircuit:

τ
∂Vη

∂t
−λ2 ∂

2Vη

∂x2
= −gl(Vη−Vl)+IS+INa+IKd+IM+IT+IL

(29)
The Telegrapher’s Equation and the Compartment Models are
the most common mathematical frameworks to implement
the cable theory (Eq. 29), and it follows [27], in which τ
is the leakage conductance decay rate, V is the membrane
voltage, x is the dendrite axis length, λ is the spatial coordinate
decay rate and VL is the leakage (or resting) potential of the
cell. We also obtain the synaptic current IS , which represents
the total membrane voltage derived from a number of active
terminals. In the farthest right-hand side term, we have a
summation of all ionic channels, which enriches the biological
relevance of the membrane potential dynamics. Based on
[78], INa and IKd are the sodium (Na+) and potassium
(K+) currents responsible for action potentials, IM is a slow
voltage-dependent K+ current responsible for spike-frequency
adaptation, IT is a high-threshold calcium (Ca2+) current and
IL is a low-threshold Ca2+ current. The big advantage of this

model is the rich number of ion channels, by which different
types of neurons from each cortical layer can be replicated by
fine adjustment of the ion channels. This is where experimental
data provides fitted values to the variables in each ionic current
description.

The voltage-dependent currents for the ion channels in the
HH model can be obtained through variations of the same
generic equation for a current Ij defined as

Ij = gjm
MhN (Vη − Ej), (30)

where gj is the maximal conductance. The parameters m and
h are the activation and inactivation variables respectively with
the order of M and N , followed by the difference between
the membrane potential Vη and the reversal potential Ej . The
steady-state activation and time constants are, respectively,
given by m∞0α/(α + β) and τm = 1/(α + β). Similarly,
it is for h, in which α is the conditional rate of active ion
channel based on Vη and β is the conditional rate of inactive
ion channel based on Vη .

2) Neuron-astrocyte interactions (scale 3 and 4) : Nadkarni
and Jung [79] introduced a tripartite synapse model, meaning
that they included a pre- and a postsynaptic neuron and
an adjacent astrocyte (Fig. 6). The presynaptic pyramidal
neuron is formulated as a Pinsky-Rinzel model [28] with two
compartments:

Cm
dVs

dt
= −ILeak (Vs)− INa (Vs, h)− IK−DR (Vs, n)

+
gc
p
(Vd − Vs) +

Is
p

Cm
dVd

dt
= −ILeak (Vd)− ICa (Vd, s)− IK−AHP (Vd, w)

− IK−C (Vd, [Caneuron] , c) +
gc

1− p
(Vs − Vd)

+
Id

1− p
.

(31)

The parameters Vs and Vd denote the somatic and dendritic
membrane potentials, which are measured in relation to a
reference potential of −60 mV . Id is the current injected
into the dendrite divided by the total membrane area. The
parameter p represents the fraction of the somatic cell volume.
The following currents are included: leakage (Ileak), Na+

(INa), delayed rectified K+ (IK−DR), and Ca2+ (ICa).
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The glutamate contained in a vesicle released from the 
presynapse binds to the AMPA (α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid) receptors at the postsynapse:

IAMPA = gAMPAYAMPA (Vinh − Vsyn)

dYAMPA

dt
= Θ(t− trel)−Θ(t− trel − 1 ms)− YAMPA

1.0
.

(32)

The maximum conductance is given by gAMPA and the
voltage Vsyn by the reversal potential of the Na+ conductance
of the postsynaptic interneuron, ENa = 55 mV . YAMPA de-
notes the stochastic first-order kinetics of the AMPA receptor
and a Heaviside function for the initiation of the postsynaptic
current. The membrane potential of the interneuron is then
modeled as follows:

Cinter
dVinter

dt
= −INa, inter −IK, inter −IL, inter +IAMPA, (33)

where INa, inter , IK, inter and IL, inter are the respective
Na+, K+ and leak currents.

The glutamate released from the presynapse also binds to
metabotropic glutamate receptors (mGluR) at the membrane
of a nearby astrocyte (Fig. 6). The binding leads to a release
of inositol trisphosphate (IP3) from the endoplasmic reticulum
(ER) and subsequently to Ca2+ release. The intracellular Ca2+

concentration is described as:
d
[
Ca2+astro

]
dt

= −JChannel (q)− JPump − JLeak , (34)

where JChannel is the flux from the ER to the cytosol through
the fraction of open IP3 receptor channels q, JPump the flux
from the cytosol to the ER and JLeak the leak flux from
the ER to the cytosol. This simplified model of an astrocyte
follows the Hodgkin–Huxley model [27] by exchanging the
transmembrane potential with the Ca2+ concentration.

Lenk et al. [80] introduced a phenomenological neuron-
astrocyte network model called INEXA, which contains both
excitatory and inhibitory neurons. The model was initially
developed to study the astrocytes’ effect on neuronal firing
rates in the cortex. The neurons and astrocytes in the network
are connected via tripartite synapses. The governing equation
for the firing rate λi of a postsynaptic neuron i for each time
step tk of 5 ms is:

λi(tk) =

max

0, ci +
∑
j

yij · sj(tk−1)−
∑
j

yAstro ·Aija(tk−1)

 .

The parameter ci is denoted as stochastic noise of neuron
i. The term yij represents the synaptic weight between the
presynaptic neuron j and a postsynaptic neuron i, which can
be either excitatory (yij ∈ [0, 1], corresponding to glutamater-
gic neurons) or inhibitory (yij ∈ [−1, 0], corresponding to
GABAergic interneurons). The parameter sj indicates whether
neuron j transmitted a spike in the previous time step tk−1.
The second part of the equation denotes the depressing effect
caused by astrocytes on the excitatory synapses. The variable

Fig. 6. Tripartite synapse model including a pre- and a postsynapse contacted
by an astrocyte. An action potential in the presynapse triggers glutamate
release which can be taken up by the postsynapse. Glutamate can also bind
to the metabotropic glutamate receptors (mGluR) of the astrocyte. Then, a
cascade of IP3 and Ca2+ release from the endoplasmic reticulum follows and
may induce a Ca2+-induced Ca2+ release. Mainly IP3 diffuses through gap
junctions to the neighboring astrocytes. Higher Ca2+ concentrations within
the astrocyte can trigger a transmitter release of glutamate towards the neurons.
[Figure created with BioRender.com]

Aija shows whether the astrocyte a connects to the synapse
ij and if astrocyte a was activated at the previous time step.

Glutamate is released by excitatory synapses into the synap-
tic cleft with rate Ωf , which binds to astrocytic mGluRs with
rate Ωg . This causes an IP3-mediated release of Ca2+ from
the ER into the astrocytic cytoplasm (Fig. 6). The governing
equation for astrocyte dynamics is based on the intracellular
Ca2+ dynamics [Ca2+]ija:

[Ca2+]ija(tk) =

Ca2+ija(tk−1) + Ωacc · ([IP3]ija(tk) − [Ca2+]ija(tk−1)).

The intracellular Ca2+ concentration consists of the Ca2+

concentration left from the last time step (Ca2+ija(tk−1)),
the IP3-mediated Ca2+-induced Ca2+-release from the ER
stores, and the Ca2+ uptake back to the ER by the SERCA
(sarco/endoplasmic reticulum Ca2+-ATPase) pumps. The slow
dynamics of the Ca2+ release are considered by a multiplica-
tion of the ER term with the time scale Ωacc.

3) Microcircuits/ Microcolumns (scale 4 and 5): Moving up
on the spatiotemporal scales, the brain exhibits the structure of
biological neural networks with different cell types in different
brain locations, which can be termed microcircuits. We also
consider that this scale should incorporate groups of biological
networks that form a more complex type of microcircuits
that are, however, mainly located in the gray brain areas and
are termed microcolumns. Due to its increased complexity
with even more cell types being considered, microcolumns
are also divided into layers with which individual cells are
associated with. The somatosensory cortical layer hierarchy
can be captured by the relationship of connection probabilities
between cortical layers that have been explored in vitro [31],
[81]. This area has been the main focus of efforts for the
digitalization of the human brain, including the Blue Brain
Project. They have considered a phenomenological approach
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Fig. 7. (A) Cortical circuit presenting different physiological characteristics,
such as connection, hierarchy, and morphology that ultimately impact the
channel capacity. (B) The cortical layer hierarchy can be captured by the
relationship between connection probabilities between cortical layers that has
been extensively explored in vitro and modeled as a Markov chain. The image
presents the Markov chain model used in this paper, with both pre and post-
synaptic connection probabilities. [Figure created with BioRender.com]

where cell connections are depicted in a probabilistic manner.
Even though this approach helps to characterize a connectome
of some of the brain areas, the true complexity and characteri-
zation should incorporate the dynamics at scales that describe
the true biophysical phenomenon [82]. However, since this
approach has not been yet explored in the literature, we will
depict a phenomenological model in the following.

The basic idea is to provide a description of the network
connections and time-variant connection changes in a prob-
abilistic manner based on what has been observed in exist-
ing microcircuit modeling and digital reconstruction efforts
[30], [31]. Many probabilistic tools that describe network
connections can be employed. However, we believe Markov
Chains enable us to algebraically investigate the many neu-
ronal connections and their plastic behavior at the macroscale
using identity matrices and corresponding matrix operations
(eigenvalues, eigenfunctions, etc). Consider a discrete-time
Markov chain with |N| states, which is also the number of
cortical layers, and with N = {2/3, 4, 5, 6} states, which
correspond to layers 2/3, 4, 5 and 6 respectively. The state
2/3 is defined for cortical layers 2 and 3 simultaneously. The
transition probability matrix P is characterized by |N| × |N|
elements, where P should satisfy

∀i, j, Pi,j ∈ [0, 1] and ∀i,
|N|∑
j=1

Pi,j = 1. (35)

To compute P, we consider two different Markov chains
that account for the presynaptic connection probabilities (Nα)
and the postsynaptic connection probabilities (Nβ), with
transition probabilities matrices (Pα) and (Pβ), respectively.
The (Pα) and (Pβ) initial probabilities were obtained from
[31] and are depicted in Fig. 7. Finally, considering indepen-
dent connections, we can represent the post- and presynaptic
connections as P = E[Pα + Pβ ], in which E[·] is the
expected value. For simplicity, we consider that the network
model is defined by a binary adjacent matrix Υ of N and
Υ(N) = Υ(Nα) = Υ(Nβ).

We model the connectivity of a microcircuit using a tran-
sition stochastic matrix of an ergodic Markov Chain. Such a

stochastic matrix can be defined by Pi,j , as the i-th row and
j-th column element. Such i and j represent the non-ordered
set of neurons as part of nodes of the network.

P =



P1,1 P1,2 . . . P1,j . . . P1,S

P2,1 P2,2 . . . P2,j . . . P2,S

...
...

. . .
...

. . .
...

Pi,1 Pi,2 . . . Pi,j . . . Pi,S

...
...

. . .
...

. . .
...

PS,1 PS,2 . . . PS,j . . . PS,S


(36)

We then need to follow the property of
∑S

j=1 Pi,j = 1,
where S is the cardinality of the matrix.

Since plasticity in a phenomenological model can be re-
duced to a probability term, we hypothesize that a plasticity
model for a microcircuit is a time-dependent matrix that
directly changes the stochastic transition matrix. Therefore, we
can incorporate any existing biophysical plasticity model into
a phenomenological model, providing an interesting option
for multiscale modeling. We can define such plasticity term
(Pl(t)) as Pl(t) = f(t)P, t ∈ [0,∞), where f(t) is
a normalized plasticity biophysical function and must be
f(t) ̸= 0.

Many approaches to obtaining a plasticity biophysical func-
tion f(t) exist, depending on the level of molecular interac-
tions one wants to study. For a better understanding of how
synaptic plasticity relates to biophysical modeling, we can thus
consider models of Ca2+-dependent or signal transduction-
dependent synaptic plasticity, explained in the following. First,
let’s define Wi as the synaptic weight of the i-th synapse. This
synaptic weight is the same as previously described for scales
1 and 2. Now, considering

• Ca2+-dependent synaptic plasticity: The synaptic
weight is defined by relating with the Ca2+ transient
behavior, which is associated with long-term depression
and long-term potentiation More directly, Ca2+ transients
coordinate neurotransmitter release and production. [83],
introduces Ca2+ as the central variable in the changing
of Wi over time, as

f(Ca) =
dWi

dt
= η(Ca) (Ω(Ca)− λWi) (37)

where Ω is the Ca2+ transient magnitude, η is the Ca2+-
dependent, and λ is a decay constant.

• Signal transduction-dependent synaptic plasticity: The
synaptic weight is based on the dynamical assessment of
the potentiation and depression phenomena. We can thus
define that the synaptic weight depends on a potentiation
(P (t)) and a depression (D(t)) function as

f(g0, γ)
dWi

dt
= g0{P (t)D(t)γ −D(t)P (t)γ}, (38)

where g0 is a scaling constant and γ the competition
degree that dictates the potentiation and depression func-
tions.

4) Cortical Loops (scale 5): Modeling beyond microcir-
cuits requires an alternative approach since the compart-
mentalization method for the various Hodgkin-Huxley func-
tions requires extreme computing resources in order to host
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Fig. 8. Modelling of a cortical loop between thalamus and cortical populations
following a mean-field approach based on a given stimulus. The relationship
of the population is used to understand θ-band oscillations. [Figure created
with BioRender.com]

such digital twins. The EBRAINs (https://www.ebrains.eu/)
platform for the EU Human Brain project exemplifies such
requirements - a data center-like infrastructure is required to
run around 1mm3 of microcolumn tissue, which comprises
roughly 10,000 neurons of different types. As they focus on the
neocortex, however, other works provide evidence of a similar
setup for the hippocampus as well as the thalamus [84]. The
literature explores a mathematical formulation that simplifies
the description of action potential propagation in populations
or multiple populations, using a simple set of equations [85].

Rosjat et al. [32] presented a minimal model of the thalamus
and the cortex using complex mean-field approaches. Each
population comprises neural oscillators aiming to describe the
brain wave activity in both the thalamus and cortex within the
θ-band spectrum. Here, the mean fields represent a coarse-
grained description of their spatial arrangement as a population
and how the two populations relate to each other in commu-
nicating electrophysiological activity. This is another level of
phenomenological modeling since the population description
is a cumulative value compared to the detailed electrophysio-
logical tracking model presented before. The reason for this is
that areas of the hypothalamus or the cortex will now present
millions of neurons, and therefore, even probabilistic models,
with reduced complexity, will not be able to present valuable
computationally feasible solutions. The description of the two
populations using the complex mean field is

dϕT (ωT )
dt = ωT +KCRC sin (θC − ϕT (ωT ))

+I(t) cos (ϕT (ωT ))
dϕC(ωC)

dt = ωC +KTRT sin (θT − ϕC (ωC))

, (39)

where ωT and ωC are continuous variables distributed in each
population of oscillators as

na (ωa) =
2

π
(
1 + 4 (ωa − ω̃a)

2
) , a = {T,C} (40)

and represent the natural frequencies of these oscillators. ϕT

and ϕC are the phases of these oscillators of the thalamus and
cortex populations, respectively. The state of each population
can be described by the distribution density W (x, ϕ, t) =
n(x)w(x, ϕ, t), with the conditional distribution density of
oscillators denoted by w(x, ϕ, t). These probability density
distributions can be either estimated arbitrarily or from actual

experimental data, as the latter is the best option for pre-
validation.

Each oscillator in the cortical population is coupled to the
complex mean field

YT = RT e
iθT =

∫
n(x)

∫ π

−π

eiϕTw (x, ϕT , t) dϕdx (41)

of the thalamic population and each oscillator in the thalamic
population is coupled to the complex mean field

YC = RCe
iθC =

∫
n(x)

∫ π

−π

eiϕCw (x, ϕC , t) dϕdx (42)

of the cortical populations (see Fig. 8). Coupling strengths are
KT and KC , respectively.

The thalamus population is stimulated by an external stim-
ulus that acts directly on it (see Fig. 8). The stimulus term
is basically the signal entry point from other areas of the
brain. However, it can be used for external signal inputs from
stimulation devices, even though this has not been exactly in
the referred model. This stimulus is represented by the term
I(t)cos(ϕT ) where

I(t) =

{
I during stimulus,
0 otherwise. (43)

Mean-field dynamic modeling such as presented here should
be carefully integrated with lower-scale models and incorpo-
rate neuronal activity types such as populations that integrate
both excitatory and inhibitory neurons. The further the level
of dynamics in the models is, the more connections it needs to
lower scales in order to link the source of dynamical behavior
and mean-field approximations. This will help the credibility
of these more gray models. Issues such as population syn-
chronization can then be tackled when more complete models
emerge since variations of spike rate convoluted to operat-
ing synchronization frequency can then be mathematically
described.

5) Whole brain (scale 6): A whole brain model is clearly
the most challenging as many dynamics of different brain
parts hinder the agreement on an actual methodology that
is validated (even if in parts), personalized (brings different
structural and functional changes based on the subject’s brain
in question), and in terms of model complexity. In this section,
we focus on the most recent methodology that has been pro-
posed by Kringelbach et al. [33]. The main advantage is that
brain imaging is coupled with temporal functional modeling,
which allows us to address many past challenges. First, a
multiscale model can be broken down into the following main
parts:

• Neurodynamical system comprising of spontaneous
brain activity at the level of the whole brain where each
node in the network represents a brain region and the
links between nodes represent white matter connections.

• Blood oxygen level-dependent (BOLD) signal which
is the relation of the population level activity to the
homeodynamic state of that tissue given by the deoxyhe-
moglobin content from the extravascular and intravascular
signals.

• Parcellated structural and functional data from corti-
cal and subcortical brain regions.
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Fig. 9. Different spatial and temporal scales that are linked with the progression from molecular diffusion to organs with epithelial tissues.

Kringelbach et al. [33] termed the approach dynamic mean-
field (DMF). As with other mean-field approaches, the model
is based on excitatory and inhibitory pools of neurons, which
are coupled with a guiding factor. Their coupling factor
takes into account the inhibitory and excitatory currents, the
GABA and NMDA receptors, however, only with excitatory-
to-excitatory connections. Some more recent work has taken
another step to propose a vultiscale dynamic mean-field
(MDMF), where the microdomain kinetics of the synaptic cleft
are used for the coupling of the neuronal populations [86].

V. EPITHELIAL MODELS

Modeling epithelial tissue with multiscale approaches can
lead to developments in the understanding of a variety of
pathologies originating from disorders in these tissues. Fur-
thermore, the role of epithelia as the diffusion barrier makes
them an important component in drug delivery to any tissue.
The bulk of the computational research on epithelia has
focused on embryo- and organogenesis. The models of the
epithelial barrier are mostly limited to the scale of the tissues.
Even though epithelial tissues are everywhere in the body and
their functions are integrated into most organ systems, there
have been minimal efforts on multiscale organ-level models.
There is also a great variety of diseases and conditions that
can highlight the utility of digital twins for epithelial systems.
In this section, we will focus on epithelial barriers and detail
how their digital twins can be constructed and how epithe-
lial multiscale influences their organ-specific functionalities.
Unlike cardiac and neuronal cells, the epithelial tissues often
support multiple functions specific to the adjacent tissues.

The epithelial barriers are usually divided into two compo-
nents: the transcellular (through the cells) and the paracel-
lular (between the cells). The majority of the transcellular
component is formed by the cell plasma membrane and its
specific channels and transporters. On the other hand, the
governing paracellular barrier component is formed by the
tight junctions, molecular structures that close off the space
between cells. These semipermeable structures are formed by
intercellular connections that organize into a 2D network of
strands between neighboring cells [87], [88]. The barrier prop-
erties are generally studied experimentally by measuring the
permeability of various neutral molecules or the transepithelial
electrical resistance (TER). Small molecules and ions can pass

through the tight junctions via extracellular channels formed
by claudins, one of the main structural transmembrane proteins
in these junctions [89], [90]. However, also larger molecules
can pass via the so-called leak pathway, whose precise origin
is unclear.

1) Claudin channels (scale 1): The extracellu-
lar/paracellular channels (Fig. 9), formed by some claudin
proteins, enable the movement of ions and small molecules
from one side of epithelium to the other, rather than
between the intra- and extracellular space. The channels form
charge- and size-selective pores and have been shown to be
dynamically gated similar to ion channels [91]. Weber &
Turner [34] modeled the conductivity of the stochastically
gated claudin-2 channels and described them as having
two closed states, stable (C1) and unstable (C2), and an
open state (O). The states changed based on the following
transition probability matrix, with the transition from C1 to
C2 omitted:

Prob =

 pO,O pO,C1 pO,C2

pC1,O pC1,C1 0
pC2,O pC2,C1 pC2,C2

 , (44)

where pi,j is the probability of transiting from state i to state
j and

∑
j pi,j = 1. The channel conductivity could then be

defined based on their state and the conductivity of each state.
The molecular permeability of these channels has been mod-

eled using the so-called Renkin function [92]–[95], where the
channel is described by a circular pore with the permeability
calculated as

Ppore =
AporeDfreeF (rm/Rpore)

dpore
. (45)

The parameter Apore is the total pore area per unit tissue area,
Dfree is the molecule’s free diffusion coefficient, dpore is the
pore depth, and F (rm/Rpore) is a Renkin-type hindrance as a
function of the relative size between the radius of the molecule,
rm, and the pore radius, Rpore. Different formulations for the
hindrance function F have been compared in [95].

The claudin pores have also been the target of molecular
scale diffusion modeling [96] and molecular dynamics simula-
tions, with the aim to identify the charge-selective component
in the channels [97], [98]. However, these studies are outside
the scope of this review.
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2) Tight junction strand network (scale 2): Tight junctions
have also been modeled in the scale of the strands and 
the network they form (Fig. 9). Here, the focus has been 
on the different pathways through these junctions as well 
as on the effect of compartmentalization and strand-level 
dynamics. Weber & Turner [34] simulated the effect of the 
stochastic claudin-2 gating behavior – in combination with the 
compartmentalization in the strand network – on the resulting 
TER. In essence, they defined a circuit with stochastic resistors 
that form in the strand network and solved the time-dependent 
linear system of equations to replicate their tight junction 
patch-clamp experiments.

Different components have been proposed to form the leak 
pathway in the tight junctions, including structural strand dy-
namics manifested by constant strand breaking and annealing, 
and large tubes in the tricellular junctions at the meeting points 
of three cells. Guo et al. [92] modeled the tight junctions by a 
static two-pathway strand model composed of multiple small 
pores and large, rare breaks. They described the two pathways 
in parallel with differing contributions for molecules and ions.

The model by Tervonen et al. [35] described these rare 
breaks as dynamic phenomena to represent the leak pathway, 
in combination with the large static tubes at the tricellular 
junctions. The claudin-channel dynamics were omitted in the 
model, as it concentrated on the formation of the leak pathway. 
Here, the model was built to describe both the molecular 
permeability and TER measurements between the basal and 
apical sides of the tissue, and the strand dynamics were 
described by stochastic rate constants, respectively, between 
the tight junction compartments. The permeability model was 
based on solving the amount of substance in each compartment 
by using the following ordinary differential equation:

dqi(t)

dt
=

n∑
i̸=j

(kij(t)qj(t)− kij(t)qi(t)) , (46)

where qi is the amount of substance in compartment i, and
kij is the stochastic rate constant between compartments i and
j, whose value was calculated based on a stochastic variable
to describe the breaking and annealing behavior. The final
permeability of this system can then be calculated from the
apical concentration as a function of time as

Pnetwork =
dqapical(t)

dt

1

wmodelcbasal
, (47)

where wmodel is the width of the modelled section of tight
junctions and cbasal is the basal concentration. The static tri-
cellular tube permeability can be calculated using an equation
of a type shown in Eq. 45 and the total epithelial permeability
as a sum of the permeabilities of the dynamic strand breaking
pathway and the tricellular tubes.

Tervonen et al. [35] also simulated the electrical barrier
using the same geometrical idea as in their permeability model,
but calculated the total dynamic strand system resistance by
solving the circuit formed by the strand network. For each
current loop formed into the strand network, an equation of

the following type was formed
n∑
j

Rij(t)Ii −
n∑

j ̸=j

Rij(t)Ij =

{
Vs, if outer current loop
0, otherwise

,

(48)
where Rij is a stochastic resistor shared by current loops i
and j, Ii is the current in loop i, and Vs is the measurement
voltage. An average dynamic strand network resistance is
calculated by solving the linear system of equations over
time. Finally, the total TER can be calculated by connecting
the resistance of the static tricellular pore in parallel with
the resistance of the strand breaking dynamics. The resistive
properties of the dynamic random strand network have also
been studied by Washiyama et al. [99] using percolation theory
where the strand network was described by a random resistor
network.

3) Epithelial level (scale 3): In the tissue scale (Fig. 9),
the epithelial barrier is usually modeled as a homogeneous
layer consisting of different pathways for electric current or
molecules through it. The electrical properties of homogeneous
epithelial tissue can be represented by equivalent circuits,
where the components of the epithelial barrier are described
using a combination of resistors and capacitors [36], [37]. In
the simplest equivalent circuit, these properties are separated
simply by connecting the resistive and capacitive properties in
parallel and can thus be described by

Zepi =
Repi

1 + iωCepiRepi
, (49)

where i =
√
−1, ω is the angular frequency, and Repi and

Cepi are the resistance and capacitance of the epithelium,
respectively [100], [101]. Also, more complex circuits have
been used, for example, those that further divide the resistance
into paracellular and transcellular resistance [36].

Similar strategies have also been used to study steady-state
epithelial permeability. Here, the different barrier components
can be connected in parallel or in series to describe the roles
of the components in the epithelial barrier. For example, Ed-
wards & Prausnitz [102] modeled the permeability of corneal
epithelium for topical drugs by dividing the permeability into
paracellular and transcellular pathways. A similar approach
was also taken by Tervonen et al. [103] to study the perme-
ability of retinal pigment epithelium. These models usually
take a form similar to the following example that considers
the permeation through the paracellular pathway and a single
transcellular pathway:

Pepi = Ppara+Ptrans =

(
1

Ptj
+

1

Pls

)−1

+

(
2

Ppm
+

1

Pcyt

)−1

.

(50)
In this example, the paracellular permeability (Ppara) consists
of tight junctions (Ptj) and the space between the cells, or
lateral space, (Pls) permeabilities. Furthermore, the transcel-
lular pathway is described by the permeabilities of the plasma
membranes (Ppm) and the cytoplasm (Pcyt). The specific
permeabilities of these components can be calculated based
on, usually phenomenological, models that describe their per-
meability as a function of properties of the molecule, such as
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size and lipophilicity. For example, Ptj can be described as
small circular pores using Eq. 45.

Similar approaches have also been taken to model the
permeability of the epithelia in lungs [104], [105] and the
skin [106]–[109]. For skin, the selected permeation pathways
are generally different due to the distinct nature of the skin
epithelium. Furthermore, time-dependent multicompartment
and finite element models have been used for the permeation
through the skin [108]–[111].

Another class of models describing the permeability of
epithelial tissues are the quantitative structure-property rela-
tionship models, where the permeability of the epithelium is
defined phenomenologically based only on the properties of
the diffusing molecules [112]–[115]. This technique is espe-
cially useful for quickly estimating the permeability properties
of new drug molecules across an epithelium.

4) Organ-level epithelial models (scale 4): While epithelia
usually form a part of an organ rather than being an organ
themselves, they have been included as a component of the
model in organ-scale drug delivery studies (Fig. 9). In these
models, usually taking the form of a multicompartment or
finite element model, the properties of the epithelium are
reduced to a single permeability coefficient. For example, in
ocular drug delivery, the properties of the retinal pigment
epithelium are usually described in this way [38]–[42].

VI. THE FUTURE OF in silico PHARMACOLOGY:
INTEGRATING THE MULTISCALE BIOPHYSICS

Computational models have been used in drug development
for many years, for drug discovery [116]–[118], to safety
pharmacology [119]–[121], and toxicology [116], [119], [122].
Big pharmaceutical companies often have their own internal
team of bioinformaticians who integrate computer science
methodologies directly into their pipelines, but only at certain
scales. Here, we aim to clarify why this partnership is far away
from its full potential. We also highlight ongoing challenges
for the widespread use of in silico trials in pharmacology as an
effective alternative to current methodologies. It is important to
point out that in recent years, several works have been done to
promote the use of modelling and simulation across academia,
industry, and regulatory agencies, and to define a framework
to assess model credibility [116], [123].

We will consider cardiac safety as a representative example
of how in silico methods can bring innovation compared to the
currently used methodologies. As described above, multiscale
computer models of the heart have been used for more than
60 years. There are numerous human-based models publicly
available, and they have been validated and used over the years
in a variety of different contexts. Therefore, they constitute a
“mature technology”, which is ready to go beyond academia
and have a concrete impact on the industry. Those models
can be used as an alternative or in combination with current
methodologies, as described in more detail below.

Drug-induced cardiotoxicity, i.e., adverse effects on the
heart function (whole-heart), caused by a drug still con-
stitutes a big challenge in drug development [124], [125].
Pre-clinical testing – mainly performed in animal models –

is not always able to predict the effects later observed in
humans [126]. Since 2013, the need to rechannel the cardiac
proarrhythmia safety paradigm has started to emerge, also
thanks to the launch of the CiPA (Comprehensive in vitro
Proarrhythmia Assay - (tissue level)) initiative, promoted by
the FDA and other organizations [127], [128]. CiPA includes
in silico cardiac cell models as one of its primary com-
ponents, together with the use of human stem cell-derived
cardiomyocytes. This led to a global effort that resulted in
numerous publications, all aimed at demonstrating the power
of computer modelling and simulations for drug cardiac safety
using different methodologies on multiple scales but not yet
fully integrated [129]–[133]. Most of these studies have been
performed at the cellular level, to maximize performances in
standard computers and provide fast predictions, even if there
are some examples at the whole heart level [134]. More efforts
are needed to advance these models to fully integrated mul-
tiscale approaches, which is the way to bring detailed digital
twins of the heart. Two user-friendly software programmes
are also available to perform cardiac safety simulations: i)
the Virtual Assay (Oxford University Innovation© 2018) [8],
and the Cardiac Safety Simulator (CSS) by Certara®. Thanks
to these validation studies that raised the profile of computer
modeling and simulations for drug cardiac safety, more and
more companies started to incorporate in silico evidence in
their publications [135]–[137]. This suggests that changes are
possible, even if sometimes their implementation is somehow
slow.

However, there are still ongoing challenges to address for
full integration of in silico methods in pharmacology. Here, we
decided to focus on two crucial ones. First, there is no clear
standard for the collection of the input data used to characterise
the effect of the drugs at the cellular level. These data are
used to construct, calibrate, and validate in silico models, and
their consistency is really important to obtain accurate predic-
tions. The Ion Channel Working Group (ICWG), developed
within the CiPA initiative, is working to deliver best practice
recommendations for generating these data [138]. However,
at the moment, there is a large variability between different
laboratories and even within the same laboratories over time.
This is, of course, standardising the models in relation to the
multiscale models that are provided as input, which can lead to
comprehensive ways to tackle lack of multiscale data. Second,
there are many other sources of variability that influence drug
response in humans, e.g., genetic profiles, sex, hormones,
underlying conditions, and concomitant medications, all on
different scales. Taking these factors into account is key to
predicting drug effects at the population level as well as the
whole-organ level. Over the years, multiple strategies have
been proposed to incorporate different sources of variability in
computer modelling and simulations [129], [133], [139], even
if there is no regulatory recommendation of which would be
more appropriate to use until today.

The complexity of biological systems requires sophisticated
modelling techniques that can capture interactions at various
biological scales. Multiscale modelling can transform drug
development by integrating detailed molecular interactions
with broader biological processes. Molecular dynamics in-
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sights into the drug-receptor binding affinities and the struc-
tural conformation changes upon binding are not yet linked
to cellular models that incorporate these binding effects to
simulate subsequent changes in cellular signalling pathways
and metabolic processes. This will lead to advanced organ-
level models that aggregate cellular responses to estimate
the overall impact on organ function, crucial for assessing
therapeutic outcomes.

The integration afforded by multiscale models allows for
the simulation of drug actions under various physiological
conditions, enhancing the predictive power of the models
concerning drug efficacy and safety. Multiscale modelling then
facilitates a smoother transition from laboratory research to
clinical trials by providing a robust pre-clinical evaluation tool.
This capability not only reduces the cost and duration of drug
development but also improves its success rates by identifying
potential issues early in the development process. We are
confident that, moving forward, these issues will be tackled
by multiscale biophysics when integrated, standardized, and
detailed biophysics are captured in silico and allowing drug
prediction models the accuracy it needs to create an everlasting
impact on reducing animal models in pharmacology research.

VII. DISCUSSION

Drawing from the challenges inherent in multiscale mod-
eling—namely, the scarcity of experimental data, inadequate
mathematical tools for multiscale integration, and incomplete
understanding of biological systems—we engage in a discus-
sion aimed at identifying key solutions and opportunities to
address these hurdles. Our focus lies on conceptual frame-
works that aim to bridge the gap between the evolution of
multiscale models and the generation of experimental data,
with the aspiration that future endeavors will converge to
narrow this divide.

Throughout scales and tissue types, the balance between
prediction accuracy and modelling complexity interferes with
the ability to describe biology. One needs to recognise that
the computational infrastructure needed to have a full working
version of a descriptive model of tissues or organs needs to be
of a full-scale data centre. For example, the Blue Brain Project
researchers work with IBM data centres. They use highly
sophisticated biological models to describe the workings of
compartments of neurons (a 20µm neuron can have more than
50 compartments) along with their ion channels, in order to
build realistic neuronal activity from a realistic morphological
description of each neuron. However, the spatial scale only
covers from the µm and above. Thus, the interactions of
individual ions, proteins, and molecular structures are not fully
accounted for. As the spatial scale grows, more computational
resources are needed to retain the spatial and functional
accuracy with increasing simulation runtime, which tends to
make researchers consider less and less precise biological de-
scriptions and focus on the ”grey boxes” of phenomenological
models. Phenomenological models consist of approximated or
probabilistic approaches to account for groups of cells and
their communications in a computationally feasible way. Those
methods do, however, produce reliable results and the issue

is not about their reliability in the scale they operate. When
attempting to integrate different multiscale models, they tend
not to provide a representative model that is also descriptive.

The description of biological phenomena is largely reduced
to particular events, by which probabilistic volume in models
is used. Models should always strive to provide realistic
yet computationally feasible descriptions. We argue that a
combination of biophysical and phenomenological models
needs to be further explored in the future for multiscale
modelling. Alternatively, the development of models must
have integration for other scales as a requirement, which
allows seamless integration. Such an approach still needs to
have a biophysical basis for smaller scales when building two
phenomenological models at the largest scales. That has been
a successful approach in heart modelling. Researchers now
have the capability of inferring a whole organ state based
on changes in ionic channels from scale levels in space and
time. However, a reversible approach of having higher-level
scale information be used to predict lower-scale information
may seem a hard challenge if you consider the mixture of
biophysical and phenomenological models. Another impor-
tant issue where phenomenological models can aid further
is addressing environmental variations such as pressure and
temperature. Current models often incorporate environmental
factors through parameterization, where specific values or
ranges are assigned to represent typical conditions. However,
this simplistic approach may overlook the complex interplay
between environmental variables and biological processes,
leading to inaccuracies in model predictions. To more effec-
tively accommodate environmental variations, models could
adopt dynamic or adaptive strategies that adjust parameters
in real-time based on environmental inputs. Additionally,
integrating multiscale approaches that capture environmental
influences at different spatial and temporal scales can enhance
the fidelity of biophysical models.

Since the whole idea of using digital twin solutions is to pro-
vide certain reliable levels of prediction based on the response
of adding a drug into a tissue or model, we argue that this
predictive ability should be maintained in a computationally
feasible solution so that it can become a service. We hope
that initiatives for distributed computing or high-performance
computing can be applied to integrate the complexity of the
lower scale levels with accurate phenomenological models of
higher scale levels. Computer scientists have been amazingly
successful at administering large quantities of data and models
in the context of data centres and know how to exploit this
infrastructure correctly. However, in the integration of biophys-
ical and phenomenological models, there may be opportunities
to apply old techniques of high-performance computing or
develop new ones dedicated to the type of modelling and
data that we see in biophysical models. This requires a bridge
to understanding available data for each specific tissue type;
for that, we recommend that readers first look at the data
available in the following references: brain [140], cardiac
[141] and epithelial [142]. However, to summarise, we identify
three points that require attention in this matter. The first one
is about biological variability, which is a key characteristic
of biology. While modelling is generally driven, biological
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variability in the data is sparse. This means that for solutions
in steady-states or led by close-form expressions, limited or no
generality will ultimately be achieved since this variability also
impacts the based modelling description they are realiant on.
Secondly, the ideal model development is based on interactive
refinement with observations. That is a difficult challenge to
tackle since it depends on the development and interaction
of interdisciplinary teams, which have their own additional
challenges. Lastly, data availability and reliability are related
to the scale reasonably favouring larger scales. This means
that organ, tissue and even cell-level activity data can be
found easily and analysed as well. Once we move towards
specific cell intra and inter-signalling, focused on molecular
scale levels, will have challenges in both their availability, their
validity and their applicability as well.

Advancements in the area of biophysics take time since
they have to deal with the full validation of drug modelling
integration into the existing models. Novel methods are likely
needed to deal with drug development computationally in
an accessible framework, facilitating testing in a digital twin
solution with full confidence in representing the biologically
desired prediction. Such models will need to take into account
different levels of the physical environment. In that way, bio-
physical modeling needs to address pending challenges such
as the variations of pressure, temperature, or other changing
factors that interfere with the most basic bricks at a lower scale
level. That is, however, not to exclude the existing reliable
models. In lieu, to employ in silico methods in the drug
validation pipeline, the constant effort for improving prediction
accuracy should be driven by, but not limited to, the ion
channels and any other spatial temporal scale below that.

Several initiatives have been established to store models and
to standardize data. In general, platforms like CellML [143]
allow the sharing of computational models of various cell
types. The website of COMBINE gives minimum information
about conducting simulation experiments [144] and minimal
information required for model annotation [145]. In computa-
tional neuroscience, for example, ModelDB [146] and INCF
[147] provide a platform for sharing models as well as data
reuse and reproducibility, respectively.

VIII. CONCLUSION

Multiscale biophysics needs to be addressed before we
implement digital twin solutions. We argue that overall, across
all tissue types, there is a long way to go before the modelling
of multiscale biophysics is considered mature enough to draw
precise prediction measures. Cardiac models have a level of
maturity that is perhaps closest to achieving prediction, as evi-
denced by the pharmacological in silico solutions with already
significant industry involvement. In our review, we describe
biophysical models from the cardiac, brain, and epithelial
tissue types. We also highlight their drawbacks through the
lenses of multiscale modelling and argue that many lessons
from cardiac modelling. The main goal should be reliable and
predictive modelling that can become a service for industry
and academia to optimise the drug development pipeline and
avoid the future need for animal trials. Both points may lead to

a dramatic decrease in route-to-marked costs of drugs, which
could be centred on powerful multiscale modelling.
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O. Dössel and W. C. Schlegel, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 2207–2210.
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