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• An interval type-2 beta fuzzy membership function with deep features extracted.
• The Multi-Variational Auto-Encoder is used for dimension reduction.
• Type-2 fuzzy similarity measures are used to ameliorate the retrieved images.
• Performance of the strategy after combining Deep fuzzy features with dimensionality reduction.
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A B S T R A C T
Deep learning, that one of its key benefits is automated feature extraction, has become a principal
solution for computer vision. This paper presents a Deep Type-2 Beta Fuzzy (DT2F) approach for
Content-Based Image Retrieval (CBIR) systems. Firstly, the suggested architecture uses Inception-
ResNetv2 a pre-trained deep learning model on Image-Net data as a feature extractor. Secondly,
the obtained feature space is fuzzified to handle the uncertainties associated with the extracted
values of deep features. Thirdly, the reduction dimensionality step is efficiently applied using a
Multi-Variational Auto-Encoder (MVAE) to reduce computational complexity and achieve better
performance. Ultimately, we retrieve images using the nearest neighbors rule based on type-2 fuzzy
similarity to having higher proximity sensitivity. Extensive experimentations were accomplished on
various image-retrieving datasets of different scales the proposed system achieved an average precision
of 97.15% exceeding other state-of-the-art methods over many systems on Corel datasets, which can
open the door for several hybridization breakthroughs in the area of image retrieval.

1. Introduction
Visual similarity is the main purpose of the approach in

content-based image retrieval (CBIR) [2], [52]. Measuring
visual similarity between images described by feature de-
scriptors is one way in which visual content similarity can
be measured. The search performance of a CBIR system
depends critically on feature extraction and similarity mea-
sures. The development of a CBIR system that simulates
human vision is a very difficult and complex process. Indeed,
a major challenge for CBIR systems is the semantic gap
between the low-level visual information extracted from
images and the high-level information perceived by human
evaluators. Traditional methods proceed the low-level or
high-level feature extraction and use handcrafted methods
to reduce this gap. The image contents on behalf of the low-
level visual descriptor, are described by a feature vector [5].
Various research works, including [57, 25, 5], have also been
guided every so often to introduce the progress in content-
based image retrieval. We need to design a feature extraction
framework that combines low-level and high-level features
to bridge this gap without using hand-crafted features. After
10 years, we observed a switch from hand-craft to deep
learning (DL) in functional representation. For representing
features, deep learning is extremely powerful and can fully
map high-level and low-level information while extracting
meaningful insights, which are modeled after the human
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brain. Since the success of DL depends above all on classifi-
cation tasks, e.g. the emblematic success of the ILSVRC’122
challenge [26]. ImageNet-based convolutional networks are
also very powerful visual representations called "Deep Fea-
tures", whose use in content searching has recently shown
very promising results [20] which inspired us to work on
this axis to solve the problem of CBIR. Pre-trained deep
learning neural networks are the latest developments of the
recently applied convolutional neural networks, demonstrat-
ing high accuracy and good results in many research areas.
The greater ability of pre-trained networks emanates from
training on large images with many classes. Over the past
decade, great strides have been made in harnessing the power
of deep learning for content-based image retrieval [55, 37,
34, 21, 17, 39, 10, 12]. Indeed, in [12] Gkilos et Al., present
a process that gives image retrieval features by the latest
architectures of pre-trained models. In [46], the authors used
a deep CNN model to obtain feature representations while
activating the convolutional layers. They have proposed a
model retraining method for learning more efficient convo-
lutional representations for Content-Based Image Retrieval.

Motivation: The motivation behind this study stems
from the acknowledged limitations of existing deep learning
methods, particularly in terms of robustness and handling
uncertainty in high-dimensional data. To address these chal-
lenges, the study incorporates feature normalization to main-
tain robustness. Additionally, the utilization of fuzzy logic is
considered a technique to provide more flexible representa-
tions for effectively handling the underlying uncertainty in
the data. The motivation is further reinforced by existing

2https://image-net.org/challenges/LSVRC/2012/
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works, such as the deep type-2 fuzzy logic system proposed
by Ravikiran et al. in [7] and the Deep Fuzzy Hashing
Network (DFHN) method presented by Lu et al. in [29] to
overcome weaknesses in deep hashing approaches.

Innovation: The primary innovation of this research
lies in presenting an interval type-2 fuzzy deep learning
framework as a novel feature extraction method. The hy-
bridization of deep and fuzzy methods is positioned as
a solution to several problems, leveraging the advantages
of type-2 fuzzy sets in effectively handling uncertainty.
The study aims to address the limitations associated with
high-dimensional data by emphasizing the essential task of
dimensionality reduction following the feature extraction
process. Classic methods like principal component analysis
(PCA) and Auto-Encoders (AE) are acknowledged for their
role in reducing data dimensionality. The ultimate goal of
the study is clearly defined as enhancing search efficiency,
reducing data size, minimizing storage requirements, and
decreasing query processing time in the context of Content-
Based Image Retrieval (CBIR). Previous works, such as in
[54] and in [46], are referenced to highlight the ongoing
efforts in this direction. Distance (similarity) measurements
are identified as crucial for CBIR systems’ efficiency, with
Euclidean distance and Manhattan distance being common
metrics. The successful application of Fuzzy Logic in image
retrieval systems is recognized, citing instances in various
applications. The study introduces the use of interval type-2
similarity measures to represent multiple levels of relevance,
offering a more flexible approach than absolute similar-
ity. The optimization of interval type-2 similarity measures
is emphasized for better comparison of deep fuzzy fea-
tures. The experimental validation on three standard datasets
demonstrates the proposed system’s high performance for
image retrieval. The study commits to empirically proving
the efficiency of the proposed method in real-time CBIR
contexts compared to other deep fuzzy methods.

Contribution: The originality of this study can be elab-
orated more specifically as follows:
1) Pretrained deep neural networks InceptionResNetV2 can
be used to extract rich and transferable representations from
fully connected layers from images.
2) Computing the fuzzy deep features using the lower and
upper membership degrees of interval type-2 beta fuzzy
sets which improved the novel method proposed by this
paper, and can alleviate the negative impact of parameter
uncertainties on the extraction feature step.
3)A study of dimensionality reduction methods was ex-
plored to minimize the computational complexity (from
1536 to 100 features) and increase the performance (from
95.35% without reduction to 96.94% with reduction) on
Corel dataset in terms of the precision of retrieval. Com-
paring these results with other existing works [52, 2, 46,
41, 19, 1] in the literature, we notice that the resulting
approach MVAE-DS-IR is efficient. Finally, the final degree
of belonging of the feature vector extraction is obtained after
this reduction.

4) The similarity between images was evaluated using type-
2 fuzzy similarity measures based on fast library nearest
neighbor (FLANN).

Sections of the manuscript: This paper is structured as
follows: The theoretical foundations of the used methods are
presented in section II. Section III is reserved for the details
of the adopted research methodology. Section IV presents
the results of extensive experiments and their discussions.
The conclusion is presented in section V.

2. Preliminaries

2.1. Literature review of image retrieval
Thanks to the effective techniques and methodologies

from artificial intelligence, which can intelligently solve
complex problems related to image retrieval systems, re-
searchers have shown significant interest in utilizing these
approaches. We aim to provide a succinct survey of sev-
eral notable research works in this field, highlighting their
objectives to not only improve the accuracy and efficiency
of image retrieval systems but also to optimize their overall
performance. For instance, AI-driven techniques have been
used to enhance the precision and speed of image retrieval
systems, leading to improved user experiences and more
efficient data management.
2.1.1. Recent Literature of Feature Extraction

Techniques for Image Retrieval
Numerous traditional methods have been proposed to

address the challenge of feature extraction in continuous
image description, utilizing handcrafted features [46]. Hand-
crafted features are the ones that were manually designed
and engineered. The most used handcrafted features are the
histogram of oriented gradients (HOG), the local binary
pattern (LBP), the Gabor filter, and other features such as
color histograms, color moments, wavelet statistical his-
tograms, and local phase quantization [31]. Recent work has
shown that by using methods similar to trained networks,
creating deep learning features to represent image content
for content-based image retrieval (CBIR) leads to better
retrieval performance. Typically, for the final layers, the
trained networks are replaced with random networks, allow-
ing pre-trained weights to be used separately. The final layers
are trained using some final features in an attempt to model
the new output signal or label [11]. However, a weakness
exists with this type of training and data: some images that
the trained network has to classify are not similar to the
available data, causing the network parameters to change
incrementally to correct the classification. Table 1 gives a
performance comparison of some of the results obtained in
CBIR. These approaches, however, struggle to adapt to fea-
ture ambiguities and uncertainties, creating inefficiencies in
retrieval systems. Consequently, researchers are increasingly
turning to Fuzzy Logic as a valuable tool for handling such
uncertainties [19].
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Table 1
Relevant Related Works on Technique of Feature Extraction for Image Retrieval

Refs Year Techniques of
feature extraction Data Performance Indicators Results

[19] 2020 fuzzy class
membership

Corel-1k/5k/10k,
CIFAR-10 Precision -

[21] 2020 combining DCNN
and Fuzzy c-means

Oxford5K, Inria
Holidays

mean average precision
(mAP) 83%, 86%

[30] 2021 InceptionResNetV2
pre-trained model Corel, Caltech Average precision

(mAP) 93.39%, 81%

[1] 2021

fusion of handcrafted
and deep features

(VGG-19,
GoogLeNet)

Caltech-256,
ALOT(250), Corel1K,

Cifar-100/10
Precision 66%, 99%/95%, 99%,

99%, 99%

[11] 2022 CNN (AlexNet) Corel-1k/10k,
Caltech-101, Scene-67

mean average precision
(mAP), Accuracy

mAP=97.04%,
P=98.81%, P=96.09%

[9] 2023 GoogleNet + Gabor Harbour and Iceberg
class mAP 63.3%

[40] 2024 fusion handcraft and
DCNN Corel-1/5k Precision 96,68%, 94,56%

2.1.2. Synthesis
Extracting good features is crucial because of the dif-

ficulty for machines to understand the content of images
before analyzing low-level structures. Manually designed
features, or handcrafted features, are developed by experts
based on their knowledge of the relevant fields. They are
quick and easy to use, but their effectiveness may be limited.
In contrast, deep learning features, extracted from the inter-
mediate and final layers of neural networks, are very effec-
tive in describing image content. However, these features are
complex and their extraction is time and memory intensive.
Recent methods generally rely on the combination and fu-
sion between the two methods handcraft and deep learning.
Fuzzy logic-based feature extraction strikes a balance by
providing robust and efficient features that improve the over-
all performance of CBIR systems. Our proposed fuzzy deep
features build upon this concept to offer a comprehensive
solution to the challenges in feature extraction.
2.2. Deep Feature Extraction Using Pre-Trained

CNN Models
2.2.1. Convolutional Neural Network

CNNs are a class of deep neural networks that use con-
volutional layers to filter inputs to obtain useful information.
A convolutional layer in a CNN applies convolutional filters
to the input to compute the output of neurons connected
to local regions of the input. It helps extract spatial and
temporal features of images. Convolutional Layers in CNNs
use weight-sharing techniques to reduce the total number of
parameters [4].
2.2.2. Pre-trained models

In general, CNNs perform better on large datasets than
on small datasets. Transfer learning can be used when it isn’t
possible to create a big training dataset. Learning transfer
has become more popular with deep learning, especially in

convolutional neural networks. Not only does it effectively
reduce training time, but also improves the accuracy of
the models designed for jobs with minimal or inadequate
training data. The learning transfer can be used as a pre-
trained model to extract feature vectors.

A pre-trained model is a model inspired by the process
with which he learned to solve a specific problem similar to
the one you want to solve. This approach can save significant
time and resources compared to training a new model from
scratch. But, training is computationally expensive and it
is common to import while using different models (VGG,
ResNet, Inception, etc.). A comprehensive review of the
performance of pre-trained models on computer vision prob-
lems using ImageNet data [36] is provided by Canziani et
al. [6]. This motivated us to use a pre-trained model trained
on the ImageNet dataset containing over 14 million images
belonging to over 20,000 classes.
2.3. Fuzzification of Feature Vector

After the feature extraction step, and for a better result,
we move on to the feature standardization step. The standard-
ization of feature vectors is widely used in machine learning.
It is used to eliminate the effects of scale, rotation, and trans-
lation between all the features using the fuzzy logic model
to correctly determine the relevant information of the image,
which will greatly increase and improve the precision rate of
the proposed system. This step consists of normalizing the
features using the fuzzification method. A fuzzy logic system
has been widely used in image processing. According to
[33], by conducting various pre-processing on the data, it is
possible to make the model learn faster. Indeed, fuzzification
(normalization) of data allows for the simplification of a
problem that would otherwise need more in-depth learning.
Fuzzification, in particular, allows the data to be re-ordered
in the same order of magnitude, simplifying a portion of
the work to be completed. Thus, it is proven that a neural
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network trained using normalized input converges to an opti-
mum quicker than one trained with the same non-normalized
data [43]. Many standardization techniques exist. Following
our research work in [52] we will use interval type-2 beta
fuzzy (IT2BF) MF. The beta functions’ primary significance
stems from their ability to mimic a wide range of common
functions (triangular, trapezoidal, or gaussian shapes) [3].
2.4. Feature Dimensionality Reduction

Machine learning algorithms are based on factors known
as variables. The more characteristics there are, the more
challenging it is to visualize and interact with training data.
Sometimes most of the characteristics are correlated result-
ing in redundancy. This is where dimensionality reduction
algorithms come in handy in tackling the scourge of di-
mensionality. The dimension reduction techniques can be
classified by linear aspect or not of the methods [53].
2.4.1. Principal Component Analysis (PCA)

PCA one of the most popular techniques for processing,
compressing, and visualizing multidimensional data origi-
nates in [18]. Given a set of vectors 𝑦𝑖, 𝑖 = 1, ..., 𝑁 of
dimension 𝑑, the PCA consists in looking for the orthogonal
projection axes along which the variance is maximum. The
optimal approximation, in the sense of the mean squared
error, of a vector 𝑦𝑖 by a 𝑡𝑖 vector of dimension 𝑟 < 𝑑 is
given by:

𝑊 𝑡
𝑟 = (𝑦𝑖 − 𝜇) (1)

where 𝜇 is the mean of 𝑦𝑖 and 𝑊𝑟 is the projection matrix
composed of the 𝑟 first eigen vectors of the data covariance
matrix ∑

𝑦, corresponding to the 𝑟 largest eigenvalues given
in descending order 𝜆𝑖, 𝑖 = 1, ..., 𝑟 The reduced data co-
variance matrix is diagonal of elements 𝜆𝑖, 𝑖 = 1, ..., 𝑟. The
quadratic error of the approximation is given by the sum of
the separated eigenvalues (the smallest):

𝑒2 =
𝑑
∑

𝑖=𝑟+1
𝜆𝑖 (2)

The choice of 𝑟 can be based on equation 2, or in an
equivalent manner on the choice of a threshold 𝑝 between
0 and 1 such that:

∑𝑟
𝑖=1 𝜆𝑖

∑𝑑
𝑖=1 𝜆𝑖

≥ 𝑝 (3)

Although PCA is a widely used technique in data analysis,
it has the disadvantage of relying only on a very narrow
geometric approach.
2.4.2. Auto-Encoder

Although principal component analysis can reduce di-
mensions, PCA transforms data using linear algebra. With
their nonlinear activation function and numerous layers,
Auto-Encoder approaches, on the other hand, can conduct
nonlinear transformations. Using an Auto-Encoder to create

numerous layers is more efficient than using PCA to create
a large transformation [49]. As a result, when the data is
complicated and non-linear, auto-encoder approaches reveal
their value. Furthermore, a seminal article by Geoffrey Hin-
ton (2006) in [14] demonstrated that a trained Auto-Encoder
produces a lower error and better cluster separation than the
first 30 major components of a PCA. On the other hand, an
Auto-Encoder (AE) [49] is a sort of neural network that is
trained to duplicate its input to its output. It converts the
input to a reduced-dimensional latent space before codifying
the latent representation to the output. An Auto-Encoder

Figure 1: Auto-Encoder for Features Reduction

(AE) [49], learns to compress data by reducing reconstruc-
tion error. Figure 1 illustrates the simple architecture of an
Auto-Encoder with an Encoder-Decoder structure. An Auto-
Encoder includes an input layer, a hidden layer with a finite
number of units (at least one), and an output layer composite
of the same unit number as the input layer. Examples are
regularized Auto-Encoders (AE) [24]: Sparse, Denoising,
and Contractive.

However, two things must be born in mind. To be-
gin with, a substantial reduction in dimensionality without
sacrificing reconstruction often comes at a cost: the latent
space lacks interpretable and exploitable structures. Second,
in most cases, the goal of dimensionality reduction is to
fight against the scourge of dimension while maintaining the
quality of information (altered to achieve the ultimate goal
of noise dimensionality reduction all while must be careful).
2.5. Image Retrieval
2.5.1. k-Nearest Neighbors Approximation

The k-Nearest-Neighbors (kNN) algorithm is a non-
parametric and supervised classification method introduced
in [32]. It is widely used in classification in general and
image segmentation, in particular. It is based on a simple and
intuitive principle of grouping people together according to
their neighborhood. The KNN follows two main elements:

1. the number of the closest cases (K) to use and a metric
to measure the nearest neighbor.

2. The value of K is specified each time the algorithm is
used as it determines the number of the existing cases that
are considered to predict a new case.

The KNN is based on the distance concept. A distance
measure is required to calculate the similarity rate; the latter
is both important and arbitrary because the choice of metric
significantly impacts the quality of the forecasts. The k near-
est neighbors method groups pixels by their proximity: each
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point has designated the class with the most representation
among its k closest neighbors.

This method requires the establishment of a similarity
measure and the determination of the number of neighbors
to be considered, as well as a training set representing the
different classes. The k-NN algorithm necessitates retaining
all of the points of the learning base in memory, resulting in
expensive storage (in O(n)).
2.6. Similarity by Distance and Similarity

Measures
Human perception of similarity can be modeled by an

appropriate distance measurement in a multidimensional
metric space. A normalized distance is defined mathemati-
cally as a function with a value in the range [0; 1] and which
satisfies the three conditions listed below.

Definition: The properties of a distance measure be-
tween three sets 𝑋, 𝑌 and 𝑍 of fuzzy sets are suggested in
[50], as shadows:

• Property of Reflexivity: If 𝑑(𝑋, 𝑌 ) = 1, then 𝑋 = 𝑌

• Property of Symmetry: 𝑑(𝑋, 𝑌 ) = 𝑑(𝑌 ,𝑋)

• Property3. Transitivity: If 𝑋 ⊆ 𝑌 ⊆ 𝑍 then
𝑑(𝑋,𝑍) ≤ 𝑑(𝑋, 𝑌 ) and 𝑑(𝑋,𝑍) ≤ 𝑑(𝑌 ,𝑍)

• P4. Overlapping: If 𝑋 ∩ 𝑌 = ∅ then 𝑆(𝑋, 𝑌 ) > 0
otherwise 𝑆(𝑋, 𝑌 ) = 0

Many distance metrics exist in the literature (defined for
scalar, set, vector values, etc.) including absolute difference,
cosine, Dice, Jaccard, Manhattan, Hamming, Euclidean, etc.
The principles of similarity and distance measurement are
both related to proximity (see equation 4). The value of
similarity can range from -1 to 1. A unit similarity measure
between two fuzzy sets A and B indicates that the two sets
are comparable, whereas a similarity value of -1 indicates
that the two sets are opposed.

In [52], we used three type-2 fuzzy similarity metrics:
IT2FSM1, IT2FSM2 and IT2FSM3. They are defined as:

Interval Type-2 Fuzzy Similarity Measure 1 (IT2FSM1)
The Interval Type-2 Fuzzy Similarity Measure is the mean
of Interval Type-2 Fuzzy-upper Nearness Measure and Inter-
val Type-2 Fuzzy-lower Nearness Measure. Since measure
similarity is :

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 −𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (4)
Then
𝐼𝑇 2𝐹𝑆𝑀1 = 1 −

(𝑑 + 𝑑)
2

(5)
where

𝑑≅B,𝜖
(�̃�, 𝑌 ) = (

∑

⏟⏟⏟
�̄��̃�∈HB,𝜖(Z)

|

|

�̄��̃�||)
−1

∑
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|

|
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and
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(7)

where H≅B,𝜖
(Z) is the set of fuzzy tolerance classes, as

described in [52].
Interval Type-2 Fuzzy Similarity Measure 2 (IT2FSM2)

According to Jaccard’s similarity and Henry’s metric-free
description-based nearness measure, IT2FSM2 measure is
defined by Ghozzi et al. in [52] as follows:

𝐼𝑇 2𝐹𝑆𝑀2 = 1 −
(𝑑 + 𝑑)

2
(8)

where
𝑑≅B,𝜖

(𝑋, 𝑌 ) = (2 ×
∑

⏟⏟⏟
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|

|

�̄�𝐴||)
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|
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|
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)

(9)

and
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where 𝑑 and 𝑑 define the upper and lower values respec-
tively.

Interval Type-2 Fuzzy Similarity Measure 3 (IT2FSM3)
For two IT-2 FSs X and Y, the following formula is hence
obtained:

𝐼𝑇 2𝐹𝑆𝑀3 = 1 −
(𝑑 + 𝑑)

2
(11)
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where
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where 𝑑 and 𝑑 defined the upper and lower values respec-
tively.

3. THE PROPOSED DEEP INTERVAL
TYPE-2 FUZZY APPROACH FOR CBIR
SYSTEM (DIT2F-CBIR)
Content-based image retrieval system searches the sim-

ilarity of feature vectors that describe the image. In effect, a
new fuzzy module is proposed to combine deep fuzzy fea-
tures extraction which includes a dimensionality reduction
and fuzzy similarity measure. The retrieval process is shown
in Figure 2: Start with inputting the images to be retrieved.

Figure 2: Architecture of DT2F for CBIR system

The steps of our research are as follows:
1. Extract the deep features using the transfer learning of

the image and use these features to perform content-
based image retrieval.

2. Normalized the deep feature vector.
3. Reduce the dimensional of the features vector, with

the PCA or the Auto-Encoder method.
4. Retrieve similar images by calculating the distance

between the feature vectors and using the fuzzy simi-
larities measures proposed previously.

3.1. Deep Feature Extraction Backbone and
Fuzzification

3.1.1. Deep Feature Extraction Backbone
Deep Learning fulfills âĂĲend-to-endâĂİ learning: from

input data, a network is assigned tasks to accomplish (a
classification, for example) and learns how to automate
them. Thus, it begins with low-level features learning to
get the high-level ones. Feature extraction, in the case of
transfer learning, consists of taking the convolutional basis
of the previously trained network, passing new data through
it, and finally removing the new classifier’s last layer and
assuming this network output as a feature vector. Figure
3 shows a flowchart of this process with more details for
understanding the goal. As in most cases, we removed the
layer of classification which is the last softmax activation
layer. Thus we obtained the feature vector for CBIR system.
This vector represents the most learned high-level features as
it is the deepest layer of the model. We encoded the images

Figure 3: The flowchart of the proposed feature extraction
backbone method

of the database by a pre-trained model and obtained for each
image an n-dimensional feature vector. Thus, various pre-
trained models are employed to extract deep features for
comparisons.
Comparison between Deep ImageNet pre-trained Mod-
els

The implementation of the specified architectures within
Keras provided the use of pre-trained network as a feature
extractor of the last fully connected layer of the network
[13]. As the images in our problem are comparable to those
of ImageNet, we suppose that features extracted by pre-
trained models would particularly be useful in similar image
research.

There are various pre-trained deep CNNs. However, the
CNN architecture is one of the most important changes as
it helps improve efficiency. This typically involves using
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Table 2
Different model network architectures

Model Number of params Number of features
VGG19 143.667.240 512
VGG16 138,357,544 512

NasNetLarge 84,916,818 4032
InceptionResNetV2 55.873.736 1536

InceptionV3 23,851,784 2048
Xception 22,910,480 2048
DenseNet 20,242,984 2048

MobileNetV2 3,538,984 1280

depth (adding new layers) and space. We have evaluated
the proposed method on 8 pre-trained deep CNN architec-
tures in table 2 (VGG16, VGG19 [42], NasNetLarge [58],
InceptionV3 [45], Inception-Resnet-V2 [44], Xception [8],
DenseNet [16], MobileNetV2 [15]).

We conducted a comparative analysis to pick the best
deep learning model to check the influence of pre-trained
models, as indicated above. We provide a comparative eval-
uation of the average precision for a range value of 20 on
the Corel database for six selected ImageNet pre-trained
models. The Euclidean Distance is the dissimilarity metric
utilized (L2 norm). We test different pre-trained models
(with high/medium/low number of parameters) using Keras
libraries as itâĂŹs described in table 2.

Figure 4 below shows the comparison curve of the
different models we tested as follows: Figure 4 shows that

Figure 4: Performance comparison of pre-trained models on
Corel Dataset

all the feature extraction backbones used to have similar
performance for CBIR system. We will next use Inception-
ResnetV2 backbone to carry out experiments taking into
account the simple architecture described in section III.
3.1.2. Fuzzification of the Data

Fuzzification interval type-2 beta is introduced to nor-
malize features. We denote the absolute comparison result
as 𝑦, from a set 𝑌 of all the features for the corresponding
search, and the corresponding normalized feature as 𝜇𝛽(𝑦).The Interval type-2 Beta upper and lower MF (LMF, UMF)
is characterized by four variables, the uncertain center 𝑟 ∈
[𝑟1, 𝑟2], a fixed width 𝜎, 𝑚 and 𝑛, and as is expressed in [52]:

�̄�𝛽(𝑦) =

⎧

⎪

⎨

⎪

⎩

𝛽(𝑦; 𝑟1, 𝜎, 𝑚, 𝑛) 𝑦 < 𝑟1
1 𝑟1 < 𝑦 < 𝑟2
𝛽(𝑦; 𝑟2, 𝜎, 𝑚, 𝑛) 𝑦 > 𝑟2

(14)

𝜇
𝛽
(𝑦) =

{

𝛽(𝑦; 𝑟1, 𝜎, 𝑚, 𝑛) 𝑦 ≤ (𝑟1 + 𝑟2)∕2
𝛽(𝑦; 𝑟2, 𝜎, 𝑚, 𝑛) 𝑦 > (𝑟1 + 𝑟2)∕2

(15)

Where the beta MF can be expressed by:

𝛽(𝑦) = (1+
(𝑚 + 𝑛)(𝑦 − 𝑟)

𝜎𝑚
)𝑚(1−

(𝑚 + 𝑛)(𝑟 − 𝑦)
𝜎𝑚

)𝑚 (16)
Since, the Footprint of Uncertainty 𝐹𝑂𝑈 (𝛽) is the set of
all T1FS embedded within IT2FS, the outermost embed-
ded T1FS is the UMF(𝛽), and the innermost embedded
T1FS is the LMF(𝛽). According to Mendel et al., 2006,
the uncertainty of the footprint of FOU is expressed as the
uncertainty range in (i.e. [UMF(𝛽), LMF(𝛽)]) at y shown
below [𝜇

𝛽
(𝑦), �̄�𝛽(𝑦)]. And the FOU(𝛽) is the interval linear

function described by the lower and upper degree UMF(𝛽)
and the LMF(𝛽). Hence, FOU(𝛽) = ⋃

𝑦∈𝑌
[𝜇

𝛽
(𝑦), �̄�𝛽(𝑦)].

3.2. Dimensionality Reduction of Derived Interval
Type-2 Fuzzy Deep Features

To decrease the dimension of a derived interval type-
2 fuzzy deep features, we can distinguish two approaches
namely PCA, the linear dimension reduction method, and the
Auto-Encoder that allows a non-linear dimension reduction
[35].

Our proposed algorithm computes the aggregation em-
bedding the upper and lower bounds that is the range for
imprecision FOU(). It has the property that neighboring
points stay close in high-dimensional space and are similarly
located to each other in low-dimensional space. Expressly,
the embedding of the reduction dimensionality step pre-
serves the FOU() presentation of the feature vector while
reducing its dimensionality.
3.2.1. PCA Dimensionality Reduction

Principal component analysis (PCA), presents a method
of analyzing and visualizing multivariate data with several
quantitative variables. It is a question of summarizing the
information included in a large database in a certain number
of synthetic variables called: Principal components. The
goal of PCA is to determine the directions (projection) along
which the data variation is maximum. It is a form of data
compression that preserves as much information as possible.
3.2.2. Dimensionality Reduction by Auto-Encoder

The general idea of "Auto-Encoders" is very simple,
and involves which allows to build an output representation
very close to the input one via a new short intermediate
representation.

Simple Auto-Encoder
A different approach to nonlinear dimensionality reduction

Yosr Ghozzi et al.: Preprint submitted to Elsevier Page 7 of 16



A Deep Learning Based Interval Type-2 Fuzzy Approach for Image Retrieval Systems

using autoencoders, as a generalization nonlinear of PCA.
An autoencoder has two main functions: the first is to encode
the input data to generate an output that has fewer descrip-
tors, and the decoder function recreates the input data from
the last coded representation.

Deep Auto-Encoder (DAE)
A DAE is a model of a neural network designed to retain
a compressed representation of input data. It consists of
multiple layers of encoding and decoding, where each layer
reduces the input data dimension and learns a compressed
representation. The final layer of the encoder produces the
lowest dimensional representation, which is then fed into the
decoder layers to reconstruct the original input. The dimen-
sionality reduction process involves training the deep auto-
encoder on a dataset while minimizing the reconstruction
error between the input dataset and its compressed represen-
tation. The model learns to encode the most important fea-
tures input into a lower-dimensional space while discarding
irrelevant information, as shown in figure 5 below.

Figure 5: Difference between Simple Auto-Encoder AE and
Variational Auto-Encoder VAE

Variational Auto-Encoder (VAE)
A Variational Auto-Encoder can be defined as an Auto-
Encoder whose formation is regularized to avoid over-fitting
and to ensure good properties for the latent space allowing
a generative process. The VAE differs from the simple
auto-encoder in that the objective is to estimate the latent
space with a Gaussian distribution (mean and variance). To
generate X’, it is, therefore, necessary to draw a Z code from
the distribution and pass it to the decoder. The VAE are
powerful tools for reducing dimensionality in large datasets
and extracting meaningful features from them.

Multi-Variational Auto-Encoder (MVAE)
A multi-variational autoencoder (MVAE) is an extension
of the traditional variational autoencoder, which includes
a latent space that captures the underlying structure of the
input data. This latent space is learned through variational
inference, which allows the MVAE to generate new samples
from the learned distribution. Overall, the MVAE architec-
ture is an effective way to reduce dimensionality in high-
dimensional datasets while preserving essential features and
relationships between different aspects of the data [28].

3.3. Image Retrieval process
3.3.1. Fast Library of Approximation Nearest

Neighbors (FLANN)
FLANN3 is a library for performing fast approximate

closest-neighbor searches on huge datasets. The complexity
of algorithm is 𝑂(𝑛)2 in comparison to 𝑂(2)𝑛 for division
approach. FLANN provides a collection of algorithms for
nearest neighbor search, including hierarchical k-means tree,
randomized kd-tree, and locality-sensitive hashing. These
algorithms are designed to be efficient in both memory
usage and query time, making them suitable for large-scale
applications.

FLANN is written in C++ and provides interfaces for
several programming languages, including Python, MAT-
LAB, and Java. It also includes support for parallel process-
ing using OpenMP. FLANN has been used in a variety of
applications, including computer vision, robotics, bioinfor-
matics, and information retrieval. It is widely regarded as
one of the fastest and most accurate libraries for approximate
nearest-neighbor searches.
3.3.2. Distance Metric Learning

To find images in a database, search systems perform
comparisons between a query and the descriptors extracted
from the images. Hence, the user is offered a list of images
sorted by the degree of their resemblance to the query. For
this task, there is a large variety of similarity measures
to choose from. However, we can play with FLANN pa-
rameters. Various similarity measures, such as Euclidean,
Manhattan, and Canberra distance, are employed in metric
learning for image matching. It is trustworthy to note that the
fuzzy similarity measures perform quite well.
3.3.3. Retrieving Images

The best similarity metric is used to determine how
similar the feature vectors are. Our system returns the set
of most similar query images sorted by similarity to any
image in the source group. In addition to iterating over each
image in the source set, the program computes the degree of
similarity to each image in the query set and ranks her with
the shortest distance to the source images higher.

4. Experiments and Results
4.1. Results Setting

This section presents a discussion and a comparison of
the experiment results of SD-CBIR system. We used Corel-
1k (Corel database) [48] which is a very popular database
of 1000 images captured from outdoor scenes. It is divided
into 10 categories, such as Africans, Foods, Mountains,
dinosaurs, Horses, Elephants, Flowers, Buildings, Beaches,
and Buses. This database is divided into 90% for database
train and 10% database test. Each image of the database test
can be selected as a query image. Indeed, we first extract
its feature vector with InceptionResNetV2 model pre-trained
with ImageNet. Then, we fuzzify this vector using IT2B

3https://github.com/flann-lib/flann
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fuzzy function. After that, we reduce its dimensionality with
MVAE. Finally, we compare the query image with all images
in the database using a fuzzy similarity measure. Thereafter,
the images will be sorted into the query image based on their
similarity. In this research, Average Precision (AP) was used
as the evaluation criterion, which is shown in Equation 17:
𝐴𝑃 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(

𝑁𝑢𝑚𝑏𝑒𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐼𝑚𝑎𝑔𝑒𝑠𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑
𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑𝐼𝑚𝑎𝑔𝑒𝑠

) (17)
The development of our algorithms, we used Python in
Colaboratory, or "Colab" for short, which is a product from
Google Research. For our experiments, we developed our
system with the Python programming language. All net-
works pre-trained on ImageNet are provided by the Keras4
library. The mapping is performed by the approximate near-
est neighbor algorithm KNN and "FLANN" (Fast Library
Approximations Nearest Neighbor) 5.
4.2. Results and Analysis

Image Results of Sample Query Image for SD-CBIR
In this experience, we use InceptionResNetV2 model on

the Corel database for the feature extraction. Then, we use
the KNN with Euclidean distance to calculate the similarity
between images.

In Figure 6, the query image is in the first row and the
remaining images show 20 images retrieved for a sample
query image belonging to "beach" category on Corel dataset.
We find that all 20 retrieved images are relevant (belong to
the same class of the query image), hence the precision rate
is 1.

When considering another test image belonging to "food"
category in Figure 7 from Corel image dataset, it can be
observed that out of the first 20 images retrieved, 15 images
are from the query image class and the other ones are not.

Figure 6: SD-CBIR Top 20 Images Retrieval of Simple Query
Image (beach)

4https ://keras.io/api/applications/
5https://github.com/flann-lib/flann/tree/master/src/python

Figure 7: SD-CBIR Top 20 Images Retrieval of Simple Query
Image (food)

AP wise category performance of SD-CBIR:
This part reports the category-wise performance on

Corel database for a range of the first 20 image retrieved
while using Euclidean Distance as a similarity metric.

Figure 8: AP wise category performance assessment of SD-
CBIR system of Corel database

Figure 8 illustrates that Bus, Dinosaurs, Elephant, Flower,
Horse, and Mountain categories have 100% precision for
Corel database. With the pre-trained chosen model Incep-
tionResNetV2, our system retrieves all the images, but we
obtained 96.5%, 86.5% and 71.5% precision rate of the
food, Beach and African People categories, respectively.
The overall average precision for Corel database is 95.35%.
As can be seen in Table 3, it appears that categories with
similar features such as "African," "Beach," "Building," and
"Foods" may be more susceptible to confusion. The reason
for this confusion likely stems from the presence of overlap-
ping visual elements, characteristics, or patterns within these
categories. Images within these groups may share certain
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Table 3
Comparison of our proposed method with recent papers
methods precision/category on Corel database

Categories SD-CBIR [41] [2] [19] [52] [46] [1]
African 71.50 74.19 81.41 90.00 89.02 84.00 90.00
Beach 86.50 75.38 79.21 75.00 70.50 75.00 85.00

Building 99.49 75.82 91.65 95.00 78.14 87.00 100
Bus 100 81.59 76.54 100 92.30 99.00 99.00

Dinosaurs 100 100 99.76 100 98.00 99.00 95.00
Elephant 100 96.70 96.78 95.00 100 98.00 100
Flower 100 93.21 97.49 95.00 100 99.00 98.00
Horse 100 85.25 84.13 95.00 100 97.00 90.00

Mountain 100 80.47 97.42 70.00 82.00 88.00 100
Food 96.50 81.32 91.46 60.00 80.00 96.00 80.00

Average 95.35 84.39 89.58 87.50 88.65 92.20 93.70

visual attributes that make it challenging for the model
or observer to accurately distinguish between them. The
African people category has a poor precision value, which
can be justified by the nature of the content of the images
in this category which are quite complicated. Indeed, these
images pose a challenge because they contain objects, with
color patterns, which makes it hard to accurately distinguish
and separate them. Consequently, it is important to note that
our algorithm is capable of accurately recognizing visual
features of a wide range of objects, including natural scenes,
artificial structures, animals, and food products.

Result achieved from the Proposed Systems:
In the literature, several research works on Corel Database

have demonstrated that researchers extracted different types
of features and calculated similarity distances using different
methods. Two types of methods were performed to compare
the obtained results: Category/precision comparison Figure
9 and comparison of average precision with other works in
table 3. According to table 3, we observe that our proposed
system achieved the best performance with 100% AP in
many categories in comparison with other literature methods
on the Corel dataset. The lowest accuracy was recorded for
the African (71.5%) and Beach (86.5%) categories. The work
of Ahmed et al in [1] achieved a rate of 93.7%, with precision
values that vary between 80% and 100% which used deep
features. Also in [46], the authors used deep features, the
highest accuracy was recorded for the Buses, Dinosaurs,
and Horses categories, all achieving 99% accuracy. The
lowest accuracy was recorded for the beach category (75%).
Overall, the average accuracy across all categories was found
to be highest in the SD-CBIR method (95.35%), followed
by method [1] (93.7%), method [46] (92.2%), and other
works have accuracy rates of less than (90%). These results
indicate that our method achieved better results in terms of
overall accuracy compared to other methods. These findings
support our primary hypothesis, as our SD-CBIR system
outperforms that of [52] with 88.65% which its CBIR system
uses features extracted in hand-craft.

These findings support our primary hypothesis, as our
SD-CBIR system outperforms that of [52] by 95.35% with
88.65% which its CBIR system uses features extracted in
hand-craft.

Figure 9: Comparison of SD-CBIR with recent methods works
category/precision for the scope of 20 on Corel database

4.2.1. SD-CBIR with Dimensionality Reduction

SD-PCA-CBIR : Dimensionality Reduction with PCA
We have already seen that introducing a very deep neural
network model (InceptionResNetV2) significantly improves
the results, but the image acquisition time is questionable.
Our ultimate goal, regardless of the model we use, is to
restore the image in a reasonable amount of time. Indeed,
we explore the time complexity and demonstrate that our
system with deep models, can retrieve images from the Corel
dataset in a fair amount of time. It also illustrates how
using Principal Component Analysis can speed up image
retrieval without sacrificing precision. We employ principal
component analysis PCA to evaluate the performance of
our SD-CBIR system with dimensionality reduction in the
first application. First, to explain the experiment using PCA
method, we extract the features of all dataset images through
the InceptionResNetV2 model, then reduce the dimension of
the features vector to 100 of each image.

When a query image is received, it is now passed via the
CBIR model and the PCA. The extracted features from the
query image will then be compared to each of the dataset’s
feature vectors, to retrieve those images whose features are
closest to the query image features as measured by the
Euclidean Distance metric. The image retrieval time is the
time required to search for the most similar images to the
query. This time is shown in table 4. We take all of the test
query photos and calculate the retrieval time for each one,
then provide the average retrieval time. The length of time
it takes to get an image is determined by the database’s size
and dimensionality. Table 4 shows the effect of the reduction
with PCA by average precision and response time with the
variation of features dimensionality reduction. From Figure
4, we have noticed better precision of 97.27% and 97.29% for
the dimensions of 100 and 500, respectively. That is why, we
will apply it on the test base. Figures 10 shows the result: For
several categories such as building, bus, dinosaurs, elephant,
flower, horse, and mountain the average precision value
is 100%. From Table 4, we choose the dimension = 100
because the average precision is better than for dimension
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Table 4
PCA Derived Deep Learning Features to CBIR: Setting

Dimensions Accuracy(%) Time(s)
1 45.80 0.48
5 87.02 0.51
10 96.90 0.49
50 97.09 0.77
75 97.17 0.82
100 97.27 0.88
200 97.25 0.95
300 97.25 1.05
400 97.26 1.15
500 97.29 1.26
600 97.29 1.41
800 97.29 1.60

Figure 10: SD-PCA-CBIR: Result on Corel database

Table 5
Different architectures using AE

Method Architecture Total param
AE [(1536, 100, 1536)] 308,836

DAE [(1536, 864, 256, 100, 864, 256, 1536)] 3,151,652
SVAE [(1536, 100, 1536)] 158,712
MVAE [(1536, 864, 256, 100, 256, 864, 1536)] 3,126,968

= 500. Rate of average precision with PCA: 96.8% and
the rate of average precision without PCA: 96.44%. Briefly,
the application of PCA improves precision while reducing
computational time because we are dealing with relatively
low dimensionality.

SD-AE-CBIR : Dimensionality Reduction with Auto-
Encoder

In this experiment, we use the Auto-Encoder to reduce
the extracted features from dimension 1536 to 100 features
of each image. Then these features are compared with the
feature list in the bank of features. To this end, we used 4
types of auto-encoder as shown in Table 5.

Experiment 1: Simple Auto-Encoder
In the first experiment, we will train a neural network

with only one hidden layer h to encode input x into output z.
Indeed, the hidden layer should contain information relevant
to the reconstruction. After pre-training our network (Auto-
Encoder), the obtained results are shown in Figure 6, in

Table 6
SD-AE-CBIR : Results

CategoriesAP (%) Method SAE DAE VAE MVAE
African 89.49 86.00 85.00 91.50
Beach 80.99 76.50 82.00 79.50

Building 100 98.00 100 99.49
Bus 100 100 100 100

Dinosaur 100 99.49 100 100
Elephant 100 100 100 100
Flower 100 100 100 100
Horse 100 100 100 100

Mountain 100 100 98.50 100
Food 94.50 98.00 96.00 99.00

Average 96.50 95.80 96.14 96.94
Epoch 1000 50 500 500

Time of training 2min 9s 42s 1min

which we notice that although the performance of AE is not
satisfactory compared to the PCA 96.8% they encourage us
to modify the network configuration. We can see that the
precision has slightly increased with an epoch of 1000, it
reaches 96.50% compared to our system without reduction
with 95.35%. Additionally, We can see that several cate-
gories reached a precision rate of 100%. This stimulates
us, together with the parameters adjustment, to proceed to
the investigation of another kind of auto-encode to achieve
better performance. Therefore, we will try to use deep Auto-
Encoders.
Experiment 2: Deep Auto-Encoder:
It is possible to perform the reconstruction by passing the
information through several hidden layers ℎ1, ..., ℎ𝑛, and
thus we obtain a deep Auto-Encoder. As this type of Auto-
Encoders contains multiple layers, the number of parameters
increases significantly, as shown in Figure 5. According to
the experimental results in Table 6, while employing deep
Auto-Encoder to retrieve images, there is a minor improve-
ment of 95.80% precision for 50 iterations compared to our
methodwithout reduction of 95.35%. Although deep Auto-
Encoder does not achieve the best result in terms of precision
compared to simple Auto-Encoder, the complexity of the
hidden layers and the parameterization in the used Deep
AE can affect the performance of the obtained results. To
have better performance, we decide to use Variational Auto-
Encoders.

Experiment 3: Simple Variational Auto-Encoder:
In its simplest form, a Variational Auto-Encoder (VAE)

is a three-layer network, which is equivalent to one-hidden-
layer neural network. The input and output have the same
dimension and VAE learns the reconstruction of the input.
Figure 5 shows that the number of VAE parameters is close
to that of a simple Auto-Encoder since they have the same
number of layers. According to the experimental results in
Table 6, there is a slight improvement achieved of 96.14%
precision after 500 epochs, but it doesn’t outperform PCA
reduction with 96.8%. Since a hidden layer is not enough to
achieve satisfactory results, we extend the Variational Auto-
Encoder with several hidden layers (Multilayer Variational
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Table 7
Comparison of the average precision values on the Caltech-101
database

Works SD-MVAE-CBIR DFPCA [30] [2] [11]
AP (%) 83.64 82.54 62.00 83.00

Auto-Encoder (MAE)) to achieve better performance as
discussed in the next subsection.

Experiment 4: Multi-layer Variational Auto-Encoder
(MVAE):

MVAE is a VAE with several hidden layers. An influence
of the hidden layers was noticed on the number of the
used parameters in Figure 5. Table 6 reveals that applying
MVAE improves image retrieval performance significantly.
Indeed, the acquired precision index of 96.94% for 500
epochs is the best of all experiences, even when compared
to PCA reduction results. It can also be noticed that the
precision rate for certain categories, such as bus, dinosaur,
elephant, flower, horse, and mountain, is 100% regardless of
the number of iterations. Besides, the performance for the
categories building and food is close to 99%. As a result, it
can be observed that the MVAE reduces the dimension of the
features vector and improves the outcomes in one minute,
which is enough time. The importance of our strategy is
demonstrated by experimental results, which show that the
MVAE reduction method used does not lead to significant
information loss. We thus obtain the best result of 96.94% for
epochs = 1000 with MVAE. Since this result outperforms
all the previous ones, we will take it for all our subsequent
experiments.

Experiment 5: Results on Caltech-101
To demonstrate the efficiency of adding a dimension-

ality reduction module, We apply our method to Caltech-
101 database and record image retrieval time since Corel-
1k (corel database) is a small image database. In this ex-
periment, the dimension of the InceptionResNetV2-model
encoded feature vector is 1536, which looks large. Therefore,
we performed MVAE reduction on the feature vector to
reduce its dimensionality to 100. Table 7 shows the av-
erage precision values on the Caltech-101 database. With
the MVAE reduction dimensionality, the performance is
83.64%. This value takes 52 minutes of execution time which
is a reasonable time according to the number of database
images. Also, our method outperforms [30], [2] and [11]
respectively by 1.1%, 21.64% and 0.64% on Caltech-101
dataset. Our algorithm can be said to perform well by com-
paring this average precision value to other previous research
in the literature on the Caltech-101 database.
4.2.2. Results of Similarity Measures

In this experiment, we process all the images of Corel
database through the SD-MVAE-CBIR model with Incep-
tionResNetV2 and Multi-Variational Auto-Encoder models,
then save the 100 pertinent features extracted from each
image in a database. Now when a test image is received,
feature extraction is applied through deep fuzzy method

and Auto-Encoder. After that, using the K-Nearest Neighbor
method, we compare the features extracted from the query
image with each feature vector in the feature vector database
to find images with features close to those of the query image
measured by various methods. In the second phase, we will
introduce the fuzzy logic in the vector features and use the
proposed fuzzy similarity measures defined in section 2.5.
In the next phase, we will employ these proposed fuzzy
similarity measures to integrate fuzzy logic into the vector
features.

Experiment 1: Effects of the distance measures
This section presents the results of SD-CBIR system

with some distance measures that allow us to find the closest
images to a given query image. As shown in Figure 11
we compare some metrics based on different criteria6. We
need a mechanism to measure the outcomes’ performance by
providing an average precision score to evaluate them. The
first experiment will be conducted using Metric distances.
Except for the beach category, these results obtained a rate of
100% for most of the categories, and for the various distance
measurements, we notice a decrease of 20% for all distance
measures compared to other categories. This is proven by a
near precision for all measures and better average precision
for Euclidean distance.

Figure 11: Effects of the distance measures to SD-CBIR:
Results

Experiment 2: Effects of the fuzzy similarity mea-
sures

In the previous tests, we studied the obtained perfor-
mance using some distance metrics with the kNN nearest
neighbor search algorithm. Further, we note that similarity
metrics fail with the k-nearest neighbor search algorithm.
For this, we use the nearest neighbor approximation FLANN
instead of KNN. Indeed, FLANN is a fast library allowing
the use of some similarity measures as well as distance
measures. In this part, we will study the results obtained with
the fuzzy similarity measures described in section II in the
context of similar image searches using SD-MVAE-CBIR.
With a deep learning feature extraction backbone, all of the
features of the request picture and the database images are

6https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.Distance
Metric.html
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Table 8
Time and Precision of different clustering criteria in FLANN
algorithm

Method KD-trees K-means Composite Hierarchical clustering
AP (%) 95.20 96.40 96.30 93.80
Time (s) 1.2 1.2 1.1 1

extracted. After that, from these vectors, an affine interval
type-2 beta fuzzification step is performed. If our data is on
various scales, fuzzy similarity metrics will fail. The use of
feature normalization can help to ensure that results are not
skewed. The FLANN method is then applied with Euclidean
distance to compare its performance to that of the KNN.
The FLANN algorithm has numerous initialization methods
that can be used as parameters. To adjust these criteria, we
test the four FLANN implementations (KD-trees, Kmeans,
composite, hierarchical clustering). Table 8 shows the results
of this test. All four FLANN implementations take about
the same amount of time to compute. The results of all four
techniques are delivered in approximately a second, showing
that the implementations are extremely comparable, except
for the clustering criterion. It is also noted that the k-means
clustering criteria have the best average precision. As a
result, we used K-means to implement neighbor search.

Effects of the normalization step on reduction
The questions we have considered are: how does the

fuzzification method influence the ability of the trained
model SD-CBIR: What is the power of the dimension re-
duction modules on SD-MVAE-CBIR system?

After the deep extraction features backbone, we need
to normalize our data set. Several distance methods will
not work if we use structurally different scales of data. In
this part, we check the precision of retrieval images for
the Corel database after using the proposed fuzzy similar-
ity measures with and without a dimensionality reduction
step. Besides, we compare the performance of the proposed
fuzzy similarity measures with and without dimensionality
reduction. According to the experimental details presented
in Table 9, the best performance in terms of average pre-
cision is 97.15%, which is obtained with IT2FSM2 with
a feature reduction step to 100 features per image. While
without reduction, the achieved average precision of this
similarity measure is 97.14% (the same rate). For IT2FSM1,
the average precision achieves 96.25% with reduction and
94.4% without reduction. Furthermore, IT2FSM3 achieves
an average precision of 94.95% with reduction and 95.7%
without reduction. Thus, we can conclude that with dimen-
sionality reduction, our system gives better results. However,
on the Corel dataset, the results show the best real-time
performance across all categories. This is an unexpected side
benefit, as our method does not accurately optimize mAP
scores that rely on fuzzy models trained on fuzzy similarity
measures.

The second experiment was performed on Caltech-101
data collection. We selected randomly fifteen categories;
the contents include airplanes, ferry, camera, brain, minaret,

motorbrikes, etc. To use the Caltech database. The average
precision rates for 15 categories of the Caltech-101 database
are shown in 10. The best performance in terms of average
precision is 86.70% with reduction and 78.44% without
reduction, both with IT2BFNS2. The reason for these perfor-
mance indicators is that many classes have images that are
less than one hundred, and some even have less than fifty.
Nevertheless, the proposed system’s effectiveness remains
intact and it proves to be a practical and feasible solution to
address the image retrieval problem.

Now we consider the experiment results on CIFAR-10
dataset. Our results in 11 do suggest that the deep fuzzy
system is more performant in accuracy terms (achieving the
highest accuracy of 93.43%) than other deep fuzzy systems
in the literature. Furthermore, our method improves the
state-of-the-art [27], [23] and [51] respectively by 0.51%,
0.75% and 1.55% on Cifar-10 dataset. From these experi-
ments, we can conclude that we have explored the most used
datasets in the literature. In all these experiments, we give
performances acceptable and superior to other works of the
state of the art.

We reinforced the presented results, by comparing our
fuzzification method with other normalization methods. The
application of fuzzy theory in the context of deep learning is
constrained and the broader context of Content-Based Image
Retrieval (CBIR). The assessment of various normalization
techniques enables an evaluation of their impact on the
feature vector extracted and their effectiveness in enhancing
the performance of CBIR. We present the results obtained
from experiments conducted to investigate data fuzzification
(normalization). To evaluate the performance of different
normalization methods, we compared four techniques: the
fuzzy mathematical algorithm applied to color and texture
feature extraction, as presented in [57], the l2-norm nor-
malization from [38], the transitional normalization method
introduced in [47], the linear normalization technique dis-
cussed in [22] and the fuzzy deep function with a lower
membership degree used in this work. 12 displays the results
of comparing these normalization methods based on the pre-
cision metric in the CBIR context. Our work with IT2FSM2
outperformed other methods with a precision of 97.14%. The
linear normalization technique achieved a close precision
of 96.67% in [38]. The linear normalization technique was
given a good precision rate of 93% in [22] The remaining
normalization methods yielded lower precisions of 86% and
78.31%, respectively. These contributions were introduced
in [47] and [57]. Lower and upper fuzzy deep features
are typically computed to investigate how different levels
of uncertainty affect CBIR performance. By experimenting
with using either the lower membership degree with the
fuzzy similarity measure 7, we have obtained a precision rate
of 87%, which does not lead to better retrieval results but
is slightly higher than the degree of the upper membership
degree with the fuzzy similarity measure which is 86.4%.
This result justified the precision with a type 2 fuzzy function
is more efficient than with one of its members (upper or
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Table 9
Effects of the proposed fuzzy similarity measures to CBIR: Results on Corel dataset

without reduction with reduction

Cat
AP(%) IT2FSM1 IT2FSM2 IT2FSM3 IT2FSM1 IT2FSM2 IT2FSM3

African 84.00 86.99 82.00 86.00 87.00 78.50
Beach 75.00 88.00 83.00 89.00 89.00 87.50
Building 98.50 100 99.00 100 100 97.50
Bus 95.50 100 100 93.00 99.00 98.00
Dinosaurs 99.00 100 100 100 100 100
Elephant 100 100 100 100 100 100
Flowers 100 100 100 100 100 100
Horses 97.50 100 100 100 100 100
Mountains 100 100 93.49 100 100 100
Food 94.50 96.49 99.49 96.50 94.50 98.00
Average 94.40 97.14 95.70 96.25 97.15 95.95

Table 10
Effects of the proposed fuzzy similarity measures to CBIR: Results on Caltech-101 database

without reduction with reduction

Cat
AP(%) IT2FSM1 IT2FSM2 IT2FSM3 IT2FSM1 IT2FSM2 IT2FSM3

Airplanes 95.00 91.10 87.00 94.00 94.00 92.18
Ferry 66.00 68.50 66.00 71.51 78.00 71.50
Camera 85.00 71.10 72.00 84.02 84.00 87.11
Brain 76.00 71.20 70.00 74.50 81.00 76.22
Cougarface 83.00 78.90 71.00 91.05 93.00 85.00
Grad piano 90.00 84.05 73.00 93.00 92.00 95.00
Dalmation 73.00 66.00 68.00 76.00 90.00 79.00
Dollar bill 35.00 41.78 40.00 44.21 56.00 47.11
Starfish 49.00 37.00 44.00 42.20 58.00 47.68
Soccer ball 80.00 71.22 71.00 83.05 87.00 81.55
Minaret 68.00 63.88 79.00 73.50 88.00 75.05
Motorbikes 78.00 81.00 72.00 81.78 90.00 83.00
Revolver 63.00 59.00 71.00 72.00 75.00 76.66
Sunflower 76.00 78.44 68.00 83.00 92.00 80.05
Windsorchair 73.00 78.44 73.00 73.00 84.00 80.05
Average 69.50 78.44 72.80 83.00 86.70 79.05

Table 11
Comparison of the average precision values with recent works on the CIFAR-10 dataset

Works DIT2F-MVAE-CBIR PSCH [27] [23] Deep GK [51]
Accuracy (%) 93.42 92.91 92.67 91.87

Table 12
Comparison of normalization methods for precision of COREL dataset

Cat
AP(%) [38] [47] [56] [22] IT2FSM2 Lower-Fuzzy-

Deep
Upper-
Fuzzy-Deep

African 96.67 98.00 77.9 89.00 87.00 83.50 88.20
Beach 93.33 66.00 60.10 84.00 89.00 87.00 79.33
Building 100 90.00 69.10 82.00 100 76.20 100
Bus 100 100 87.60 100 99.00 99.00 82.50
Dinosaurs 100 100 99.40 100 100 97.50 100
Elephant 100 76.00 59.25 97.00 100 74.88 68.00
Flowers 100 100 95.80 100 100 94.00 100
Horses 100 100 91.85 100 100 93.00 91.33
Mountains 90.00 40.00 64.00 91.00 100 88.75 90.50
Food 90.00 90.00 78.10 88.00 94.5 78.90 64.33
Average 96.67 86.00 78.31 93.00 97.15 87.27 86.41
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lower) and confirmed our choice of the Interval type 2 Beta
fuzzy function for the fuzzification function.

5. Conclusion
In comparison to the features produced by traditional ap-

proaches in prior works, this research shows that employing
deep fuzzy learning features with decreased dimensionality
delivers improved precision outcomes. Hence, using pre-
trained deep learning features was confirmed to improve the
result in our CBIR system. Because we are dealing with high
dimensions, the dimensionality reduction improves preci-
sion and saves computational time. We performed extensive
experiments on two widely used image datasets to validate
the performance of what was proposed MVAE to achieve
competitive performance. In addition, the feature represen-
tation is based on InceptionResNet-V2 model and Interval
type-2 beta fuzzy function, with the use of interval type-2
fuzzy similarity measures. The proposed method achieved
97.15% performance that represents 8.5%, 1.03%, 3.45%
and 0.55% increase compared to the results of respectively
[52], [30], [1] and [11] on the Corel data set. Furthermore,
our method improves the state-of-the-art [27], [23] and
[51] respectively by 0.51%, 0.75% and 1.55% on Cifar-10
dataset. Also, our method outperforms [30], [2] and [11]
by 1.1%, 21.64% and 0.64% on Caltech-101 dataset. Which
can open the door for several hybridization breakthroughs
in the area of image retrieval. Thus, an extensive evaluation
using several databases shows that deep fuzzy method-based
retrieval system framework convincingly outperforms deep
or fuzzy methods-based retrieval. The results are motivating
and indicate that our proposed approach can be applied for
several real live applications such as medical diagnosis.
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