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Multimodal Sentiment Analysis (MSA) holds extensive applicability owing to its capacity to analyze and interpret users’ emotions, feelings, and perspectives by 
integrating complementary information from multiple modalities. However, inefficient and unbalanced cross-modal information fusion substantially undermines the 
accuracy and reliability of MSA models. Consequently, a critical challenge in the field now lies in effectively assessing the information integration capabilities of
these models to ensure balanced and equitable processing of multimodal data. In this paper, a Disentanglement-based Variable Auto-Encoder (DVAE) is proposed for 
systematically assessing fusion performance and investigating the factors that facilitate multimodal fusion. Specifically, a dis-tribution constraint module is presented 
to decouple the fusion matrices and generate multiple low-dimensional and trustworthy disentangled latent vectors that adhere to the authentic unimodal input 
distribution. In addition, a combined loss term is modified to effectively balance inductive bias, signal reconstruction, and distribution constraint items to facilitate 
the optimization of neural network weights and parameters. Utilizing the proposed evaluation method, we can evaluate the fusion performance of multimodal 
models by contrasting the classifi-cation degradation ratio derived from disentangled hidden representations and joint representations. Experi-ments conducted with 
eight state-of-the-art multimodal fusion methods on the CMU-MOSEI and CMU-MOSEI benchmark datasets demonstrate that DVAE is capable of effectively 
evaluating the effects of multimodal fusion. Moreover, the comparative experimental results indicate that the equalizing effect among various advanced mechanisms 
in multimodal sentiment analysis, as well as the single-peak characteristic of the ground label distribution, both contribute significantly to multimodal data fusion.

1. Introduction

Multimodal sentiment analysis (MSA) is a crucial area in affective
computing. By leveraging cross-modal information and feature inte-
gration, MSA models bridge the gap between vision, speech, and lan-
guage. As shown in Fig. 1-①, these models improve the accuracy of
predicting sentiments by integrating various signals. Consequently, MSA
models are widely used in healthcare [1,2], intelligent education [3],
and social opinion monitoring [4]. Although numerous state-of-the-art
fusion strategies in MSA have achieved excellent experimental results,
there remain challenges in assessing the effectiveness and credibility of
multimodal fusion strategies. The modal bias in multimodal fusion
(shown in Fig. 1-②) impedes cross-modal semantic complementarity

between different modal representations, hindering models from
generating reliable joint representations across different datasets [5–7].
Moreover, inappropriate coupling in cross-modal scenarios amplifies the
instability of end-to-end model training, directly increasing the uncer-
tainty in the performance evaluation of multimodal fusion models [8].
Therefore, exploring a robust approach for collectively evaluating
models, particularly addressing modality bias and inappropriate
coupling in multimodal fusion, has garnered significant attention among
researchers in recent years.

Currently, performance metrics like accuracy, precision, recall, and
F1 score are commonly used to evaluate multimodal fusion [9]. How-
ever, relying solely on these metrics is insufficient due to the limitation
of assessing the correlation between unimodal vectors and multimodal
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simulates the multimodal fusion process by decoupling and recon-
structing joint representation, aiming to evaluate and investigate the
determinants affecting multimodal fusion by analyzing discrepancies in
the distribution of different representations (shown in Fig. 1-③).
Notably, the distribution constraint layers guide encoders in generating
disentangled latent unimodal representations. This layer helps to bridge
the distribution gap between disentangled latent representations
derived from joint representations and unimodal representations
employed for multimodal fusion. Additionally, a modified combined loss
term is constructed to incorporate distribution constraint loss, recon-
struction loss, and inductive bias loss, aiming to balance the parameter
optimization of the neural network. The main contributions of this paper
can be summarized as follows:

• A novel DVAE model is proposed to evaluate the effectiveness of
multimodal fusion in MSA by introducing decoupled representation
learning.

• A modality distribution constraint layer is proposed to guide the
encoder in decoupling joint representations and generating
explainable disentangled latent representations. In addition, a
modified combined loss term is presented to balance and facilitate
the parameters update during model training.

• Experimental results characterizing distributional properties indi-
cate that the equilibrium effect between recurrent neural units and
attentional mechanisms, as well as the unimodal nature of ground
label distributions, can enhance multimodal information fusion.

The rest of the paper is organized as follows. Section II outlines some
related work in terms of multimodal fusion strategies, explainable

Fig. 1. Schematic analysis of MSA. The upper section of the figure shows an example of the Instagram (Ins) scene related to multimodal sentiment analysis. The lower
section includes the schematic diagram of the fusion model (①), the schematic diagram illustrating the difficulties in model evaluation (②), and the proposed model
evaluation method depicted in the schematic diagram (③).

joint matrices [10]. Additionally, techniques like Layer-wise Relevance 
Propagation (LRP) [11,12] have been used to visualize the contributions 
of different modal representations. The effectiveness of these methods is 
still affected by the architecture and configuration of the neutral 
network [11]. This sensitivity becomes more apparent when integrating 
multiple feature extraction components and fusion units with different 
mechanisms into a multimodal fusion model. Some state-of-the-art 
techniques, such as attention-based assessment methods [13] and 
parameter optimization methods [14], are dedicated to exploring 
inter-modal information interactions and feature dependencies by 
optimizing weight assignments [15].

However, their interpretability and operating efficiency are greatly 
limited by inherent black-box nature or additional gradient computation 
[6], thus reducing the generalization ability of evaluation methods. 
Following the groundbreaking advancements in Disentangled Repre-
sentation Learning (DRL) that transforms high-dimensional, entangled 
features into low-dimensional explanatory elements [16], a great num-
ber of DRL-based approaches are widely employed to evaluate the fusion 
performance in multimodal learning [17,18]. Nevertheless, current 
DRL-based techniques focus on refining generated features through in-
formation bottlenecks without considering the distribution gap arising 
from multimodal fusion, making it more likely to produce modally 
irrelevant representations and thereby potentially reducing the validity 
and reliability of multimodal information fusion.

In this context, there is a pressing demand for an efficient and 
trustworthy methodology to evaluate multimodal fusion performance in 
MSA. In this paper, a model evaluation approach centered on disen-
tangled representation, named Disentangled Variational Auto-encoder 
(DVAE), is proposed in Multimodal Sentiment Analysis (MSA). DVAE



qualitatively analyzing multimodal fusion process [33,34]. However,
metrics- and visualization-based evaluation methods are inadequate for
addressing model bias and fairness in multimodal information fusion,
thus making it difficult to provide valid and interpretable performance
evaluation results.

A number of studies have evaluated the performance of multimodal
models by examining the functions and contributions of key components
within these models [35]. For instance, Qinghua Zhao et al. [36]
investigate a distinct approach to handling input items and their weights
by designing a neural structure. This structure not only learns a
discriminative representation of the target task via its encoder but also
concurrently monitors key elements through its localizer. Given the
compatibility between different components and the integrity of the
model, the aforementioned evaluation methods potentially faced with
challenges in assessing the impact of global feature changes on the
overall model performance. Therefore, multimodal feature engineering,
which aims to explore the relationship between feature quality and
model performance, has been developing rapidly. For example, a series
of comparative experiments were conducted in [37] to investigate the
contributions of several common word embeddings to sentiment clas-
sification models. Ao Feng et al. [38] conduct comprehensive experi-
ments on various network components, including different word
embeddings and convolutional kernels, to highlight the significance of
these components in evaluating the model performance.

2.3. Disentangled representation learning in MSA

Disentangled representation learning is an unsupervised technique
that separates each feature into narrowly defined variables with distinct
dimensions [39]. In Multimodal Sentiment Analysis, this method cap-
tures key affective information from complex representations and gen-
erates explainable outputs for handling challenging real-world tasks
[40,41]. For instance, Dingkang Yang et al. [40] proposed a
feature-separated multimodal recognition method that learns common
and private features for each modality by mapping input data to
modality-invariant and modality-specific subspaces. Similarly, Imant
Daunhawer et al. [42] introduced a novel multimodal generative model
designed to capture the joint distribution across multiple modalities.
This model combines modality-specific and shared factors, efficiently
aggregating shared information from any subset of modalities.

Currently, disentangled representation learning is increasingly
employed in Multimodal Sentiment Analysis to investigate interpretable
affective representations [43,44]. For example, Dr. Emotion [45], an
integrated framework implemented by separating and disentangling the
implicitly encoded emotions from the content in latent space, is con-
structed to learn disentangled representations of social media posts (i.e.,
tweets) for emotion analysis. In Multimodal Sentiment Analysis (MSA),
while disentangled representation learning can decouple the fusion
matrix to obtain independent modal components, these components
may struggle to accurately capture the statistical distributional infor-
mation of input data. Additionally, evaluation metrics for individual
modalities may not be able to directly quantify multimodal fusion per-
formance, potentially leading to deviations between evaluation criteria
and actual model performance. Therefore, research on multimodal
sentiment analysis based on disentangled representation learning has
increasingly focused on reducing statistical errors in data decoupling,
intending to enhance the generalization ability of decoupled models.
Yuhao Zhang et al. [46] put forward a disentangled sentiment repre-
sentation adversarial network to mitigate domain shifts of expressive
styles in multimodal cross-domain sentiment analysis, aiming to
improve the adaptability of multimodal models.

evaluation techniques, and disentangled representation learning. In 
Section III, our proposed methodology is presented, including founda-
tion and notation, an overview of DVAE, and a principle analysis of 
disentanglement. Section IV describes the experiment setup such as 
datasets, evaluation metrics, baselines, and evaluation setup in experi-
ments. Then, experimental results and analysis are given in Section V, 
including experiments for evaluating disentangled representations and 
experiments for evaluating multimodal fusion. Finally, a brief conclu-
sion and future work are presented in Section VI.

2. Related work

2.1. Multimodal information fusion

Multimodal information fusion techniques can enhance model per-
formance by capturing consistent correlations among heterogeneous 
multi-granularity features [19]. Consequently, an efficient multimodal 
fusion strategy is essential for multimodal sentiment analysis tasks [20]. 
Typically, multimodal fusion techniques are categorized into three 
types, namely feature-level fusion (early fusion), decision-level fusion 
(late fusion), and model-level fusion (hybrid fusion) [21].

The feature-level fusion approaches focus on directly feeding the 
extracted multimodal discriminating features into classifiers for cate-
gory prediction. For example, Amir Zadeh et al. [22] proposed the 
multi-attention recurrent network for human communication compre-
hension, aiming to discover potential interactions between modalities 
by leveraging discriminated modal dynamics and novel neural compo-
nents. However, concatenating features from different modalities in 
feature-level fusion models typically results in high-dimensional joint 
representations, thereby increasing computational complexity and the 
risk of overfitting [23]. Additionally, the feature-level fusion approach 
struggles with the asynchronous nature of different modal data, leading 
to inaccurate predictor results. In contrast, the decision-level fusion 
approaches achieve superior classification results by reweighting the 
decision vectors of unimodal discriminators. Nevertheless, these models 
are constrained by inadequate cross-modal information interaction, 
diminishing the complementarity of multimodal affective features [23]. 
Model-level fusion methods address these limitations by integrating 
intermediate representations generated by different encoders to 
improve classification accuracy. However, these methods also increase 
model complexity and make the training process more challenging [24].

In addition, advanced mechanisms, including attention-based tech-
niques [25,26] and recurrent cell-based neural networks [27], have 
been employed in multimodal sentiment analysis tasks to investigate 
dependencies among cross-modal features. For example, Xingye Li et al.
[28] proposed an Expectation-maximized Cross-modal Temporal (ECT) 
fusion approach to capture interactions and long-term dependencies in 
visual, audio, and textual data. Changqin Huang et.al [29] presented a 
Text-centered Fusion Network with cross-modal Attention (TeFNA) to 
effectively models unaligned multimodal timing information by incor-
porating cross-modal attention with mutual information.

2.2. Multimodal fusion performance evaluation

Numerous fusion performance assessment techniques in MSA, 
encompassing metric comparisons and data visualization, are undergo-
ing continuous evolution [30]. These tools provide valuable insights into 
multimodal fusion in MSA, guiding model construction and feature se-
lection in multimodal sentiment analysis [31]. For example, Sandeep 
et al. [32] performed a detailed empirical evaluation of modern ap-
proaches, including LSTM, RNN, CNN, and CapsNet, for semantic 
analysis, and then assessed the model performance by utilizing standard 
classification metrics such as precision, recall, accuracy, AUC, and F1 
score. Recently, there has been a gradual increase in the adoption of 
multimodal evaluation strategies employing explainable AI techniques. 
These strategies focus on quantifying model performance and



L max = L ELBO + D KL
(
qϕ(z |x) ‖ p(z |x)

)
(1)

where L ELBO is empirically called the Evidence Lower Bound (ELBO),
which is formally defined as the sum of Eqϕ(z|x)[log(p(x|z)p(z))] and H (z).

Specifically, H (z) = − Eqϕ(z|x)

[
log
(
qϕ(z|x)

)]
. The D KL

(
qϕ(z |x) ‖

p(z |x)
)
is the relative entropy used to measure the difference in distri-

bution between qϕ(z |x) and p(z |x). Due to the non-negative property of
D KL, the inequality L max ≥ L ELBO consistently holds. In addition, the

L ELBO can be rewritten as Eqϕ(z|x)

[
log
[
p(z) /qϕ(z|x)

]
+ log[p(x|z)]

]
, ac-

cording to the conditional probability. Based on the conversion illus-
trated in Eq. (2), the maximum likelihood estimated parameters can be
translated into the output of the neural network.
⎧
⎪⎨

⎪⎩

Eqϕ(z|x)

[

log
qϕ(z|x)
p(z)

]
∑n

i

(
eσi − (1+ σi) + μ2

i
)

Eqϕ(z|x)[log[p(x|z)]] L nn

(2)

where L nn is the loss function of a neural network. μ and σ are the
mathematical expectations and variances of the approximate posterior,
respectively. Numerous VAE-based approaches have been proposed for
implementing disentanglement by incorporating supervised meta-
priors. Therefore, disentanglement can be implemented by utilizing
simple networks, which opens the opportunity to disentangle explain-
able low-dimensional latent representations from coupled joint repre-
sentations fused by multimodal fusion approaches.

3.2. Overview of disentangled variational auto-encoder

The Disentangled Variational Auto-encoder can achieve disentan-
glement of joint representations by generating independent explainable
latent representations that capture the statistical distribution charac-
teristics of a single modality. By generating distinct representations for
each modality from the joint representation, the approach enhances the
clarity and comprehensibility of the fused representation in multimodal
sentiment analysis, preserving the original properties and patterns of
each data type. In particular, DVAE can evaluate the efficacy of multi-
modal fusion by comparing performance variations among disentangled
latent vectors, original joint representations, and reconstructed joint
representations. It evaluates the effectiveness of the fusion model in
fusing multimodal information by quantifying the distinctions among

the unimodal features, joint representations, and reconstructed joint
representations. For example, it can assess the extent to which unimodal
representations of a special modality encapsulate identical information
as the fused representation by calculating the mutual information in-
dicators, as well as the degree of alignment between the reconstructed
representation and the original data through comparing classification
metrics.

The framework structure of the proposed method is shown in Fig. 2,
which consists of a fusion module and a disentanglement module. The
fusion module has three parts: the video inputs with visual frames Iv,
speech utterances Ia, and text subtitles It, the extracted unimodal fea-
tures M a, M v and M t, and a pre-trained multimodal fusion model F a,v,t

with coupled joint representations X J . It is important to highlight that
our objective is to assess the fusion impact of multimodal models in MSA
and investigate the crucial factors influencing this effect. Therefore, the
model structure, hyperparameter settings, and data processing of the
fusion module all utilize existing pre-trained models and parameter
configurations. For the disentanglement module, a disentanglement-
based unsupervised learning network is designed as a fundamental
framework to map joint representations into explainable independent
modality-related vectors with separate dimensions. Specifically, the
three independent encoders ϝa, ϝv and ϝt equipped with distributional
constraints C

a/t/v
Ω are proposed to generate independent modality-

related latent representations from a coupled joint representation X J .
Moreover, the weight-shared decoder ϝ̃a,v,t focus on outputting the
reconstructed representation X ʹ

J based on the concatenated latent
vectors (Z a,Z v,Z t). The disentanglement module serves three primary
purposes: 1. It indirectly evaluates the efficacy of fusing multimodal pre-
trained models by contrasting the performance decay of joint repre-
sentations and hidden-variable representations on the same classifier. 2.
To evaluate the fusion performance of pre-trained fusion models, the
level of multimodal fusion is quantified by calculating the degradation
ratios of the multimodal fusion model with the simple concatenation
method in the MSA classification metrics 3. Based on the disentangle-
ment module, we seek to identify the key factors influencing multimodal
fusion by examining the distribution of features and weight assignments
within this module.

According to the network structure, the objective function of DVAE is
composed of L

a|v|t
M

, L
a|v|t
Z , and L

a,v,t
rec . A detailed description and dis-

cussion of the mathematical principle of this part will be elaborated
later. We assume that the statistical distribution of any isolated unim-
odal feature M a, M v or M t complies with the independent identically
distributed property (M ∗ ∼ N (μ∗, σ∗)). During network training, the
DVAEmodule maps the coupled matrices (i.e. joint representations) into
the independent modality-related vectors, i.e. ϝa(X J )→Z a,
ϝv(X J )→Z v, and ϝt(X J )→Z t. Different from the standard VAE that
fed reconstruction data X J

ʹ to classifiers, the disentangled latent rep-
resentations with independent modality-related vectors Z a,v,t =

concat(Z a, Z v, Z t) and the reconstructed joint representation X J
ʹ

are fed into the classifier Φ( ∗ ) for evaluating the multimodal fusion
performance.

3.3. Principle analysis of disentangled variational auto-encoder

Disentangled representation learning, recognized as an interpretable
learning tool, has found widespread application in machine learning
tasks such as image generation and has demonstrated notable success in
enhancing feature interpretability and reducing data dimensionality.
However, the general AE-based frameworks for achieving disentangle-
ment are limited in the context of multimodal fusion. This limitation
arises from the disparities in distribution that exist between different
modalities within a multimodal domain, which differs from the tradi-
tional application of disentangled representation learning in image-
based interpretable analysis. Thus, we incorporate distributional

3. Methodology

3.1. Formulation and notion

In this section, we present the Variable Auto-Encoder (VAE) as a 
framework to briefly introduce the core concept of disentangled repre-
sentation learning. Assume the latent space variable z is a vector 
following a Gaussian distribution z ∼ N (0, I), which is employed for 
generating the observed X = {x1, x2, xi, ⋯, xn}. The primary goal of 
the VAE-based disentangled representation learning method is to learn 
the parametric encoder p(z |x) for maximizing the log-likelihood of ob-
servations (i.e., p(x) = Ep(z)[p(x|z)]) with introducing the prior p(z) and 
the likelihood p(x|z) of generating x given z. Due to the computational 
complexity of calculating p(x), resulting in an intractable dis-
tribution p(z |x). Thus, the variational inference was introduced to 
address the intractable problem. In other word, an approximate poste-
rior distribution qϕ(z |x) implemented by networks with parameters ϕ is 
employed as an approximation of the intractable true posterior p(z |x). 
Moreover, the sum of the maximized log-likelihood L max = 

∑ 
log[p(x)] 

serves as the optimization objective in VAE, encouraging the network to 
achieve the unbiased reconstruction of inputs. Formally, the log-
likelihood function can be written as following formulas with the 
approximate posterior qϕ(z |x).



constraint terms C
a/t/v
Ω to direct each independent encoder in producing

unimodal latent variables Z a/Z v/Z t that align with the target distri-
bution. To specify the disentanglement module of DVAE, the disentan-
glement and reconstruction of the joint representation are shown in
Fig. 3.

As shown in Fig. 3., the joint representations X J are firstly fed into
the independent encoders ϝa/ϝv/ϝt. Then, each encoder generates the
unimodal latent representations Z a/Z v/Z t consistent with the distri-
bution of original input single modalities M a/M v/M t. Notably, we as-
sume each variable M a/M v/M t follows the Gaussian distribution
M ∗ ∼ N (μ∗, σ∗), which gives the reason that Z a ∼ N (μa, σa)/Z v ∼

N (μv, σv)/Z t ∼ N (μt , σt) shown in Fig. 2. Next, the reconstructed joint
representation X ʹ

J is obtained from the concatenated latent represen-
tation Z a,v,t using the shared decoder ϝ̃a,v,t. Based on the process of
decoupling and reconstructing the data, we illustrate the efficacy of
different modules by comparing the metrics discrepancy across different
representations, and ultimately demonstrate the rationality and effec-
tiveness of the method in fusion performance evaluation: 1. Illustrating
the effectiveness of the DRL in disentangling and reconstructing fused
data by comparing the classification metrics between X J and X ʹ

J on
the MSA task. 2. Demonstrating the capability of the modality constraint

layer in generating specific distributional features through an experi-
mental results comparison of Z a/Z v/Z t with M a/M v/M t . 3. Evalu-
ating the fusion performance of a model by comparing the degradation
ratio (i.e., |

(
Metricupdated − Metricbaseline

)
/Metricbaseline| ∗ 100% %) be-

tween Z a,v,t and X J

In addition, we present a detailed mathematical analysis of DVAE
from the perspective of objective optimization. As shown in Fig. 4, the
optimization objective of a standard VAE includes the inductive bias

L
a|v|t
Z (i.e. D KL

(
qϕ(z |x) ‖ p(z)

)
and signal reconstruction item L

a,v,t
rec (i.

e. Eqϕ(z |x)[log[p(x|z)]]), Considering the distribution discrepancy of each
modality during multimodal feature fusion, the intermediate distribu-
tion constraint term layer is embedded into standard VAE to maintain
consistent statistical distribution between (M a, M v, M t) and (Z a, Z v,

Z t). Thus, the optimization objective of DVAE is updated as an adap-
tive combination of L

a|v|t
Z , L

a,v,t
rec and an augmented constraint item

L
a|v|t
M . Different from the encoding flow in standard VAE that directly

extracts latent factors from original inputs, DVAE generates explainable
modality-related disentangled latent representations consistent with the
distribution of isolated unimodal features by employing distribution
constraint C

a/t/v
Ω , bridging the information distribution gap in multi-

modal fusion analysis.

Fig. 2. The model architecture of DVAE and performance evaluation framework.

Fig. 3. The disentanglement and reconstruction of the joint representation in the disentanglement module.



As embedding the distribution constraint C
a/t/v
Ω , the approximate

posterior qϕ(z |x) and the likelihood p(x|z) of standard VAE are upgraded
to qϕ(z |Ω, x) and p(x|z , Ω), where Ω denotes the intermediate modality
variables. Therefore, the log-likelihood function presented in Eq. (1) can
be extended as:

L max =
∑

log[p(x)] =
1
2

⋅Eqϕ(z |Ω, x)[log[p(x)]] +
1
2

⋅Eqϕ(Ω|x,z)[log[p(x)]] (3)

where the first term can be formulated as:

1
2

⋅Eqϕ(z |Ω, x)[log[p(x)]]

=
1
2

⋅Eqϕ(z |Ω, x)

[

log

[
p(x, Ω, z)

p(z , Ω|x)
⋅
qϕ(z |Ω, x)
qϕ(z |Ω, x)

]]

=
1
2

⋅Eqϕ(z |Ω, x)

[

log
[
qϕ(z |Ω, x)
p(z , Ω|x)

]

+ log

[
p(x, Ω, z)

qϕ(z |Ω, x)

]]

(4)

Similarly,

1
2

⋅Eqϕ(Ω|x,z)[log[p(x)]]

=
1
2

⋅Eqϕ(Ω|x,z)

[

log

[
p(x, Ω, z)

p(z , Ω|x)
⋅
qϕ(Ω|x, z)
qϕ(Ω|x, z)

]]

=
1
2

⋅Eqϕ(Ω|x,z)[log[
qϕ(Ω|x, z)
p(z , Ω|x)

] + log[
p(x, Ω, z)

qϕ(Ω|x, z)
]] (5)

Since,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eqϕ(z |Ω, x)log
[
qϕ(z |Ω, x)
p(z , Ω|x)

]

= D KL
[
qϕ(z |Ω, x)‖ p(z , Ω|x)

]

Eqϕ(Ω|x,z)log
[
qϕ(Ω|x, z)
p(z , Ω|x)

]

= D KL
[
qϕ(Ω|x, z)‖ p(z , Ω|x)

]
(6)

are non-negative constants. Therefore, the maximum log-likelihood
estimation considering the distribution constraint can be expressed as:

L max ≥ Eqϕ(Ω|x,z)

[

log

(
p(z , Ω, x)
qϕ(Ω|x, z)

)]

+ Eqϕ(z |Ω, x)

[

log

(
p(z , Ω, x)
qϕ(z |Ω, x)

)]

(7)

where the polynomial on the right-hand side of the inequality denotes
the improved Evidence Lower Bound (ELBO).

The fundamental concept behind distribution constraint relies on an
inductive bias: Assume that the distributions of the isolated unimodal
features(M a, M v, M t) and disentangled latent variables (Z a, Z v,

Z t) follow the Gaussian distribution p(M a) ∼ N (μa, σa) / p(M v) ∼

N (μv, σv)/p(M t) ∼ N (μt , σt)and p(Z a) ∼ N (0, 1)/p(Z v) ∼ N (0,
1)/p(Z t) ∼ N (0, 1), respectively. Under this assumption, we can
convert the intractable a priori optimization problem into a solvable
parametric optimization by training neural networks to learn all prob-
ability distribution variables in the ELBO.

Based on the principles, we can proceed with further optimization for
variable Ω:

Eqϕ(Ω|x,z)

[

log

(
p(z, Ω, x)
qϕ(Ω|x, z)

)]

= Eqϕ(Ω|x,z)log
(
p(Ω)

/
qϕ(Ω|x, z)

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
(1)

+Eqϕ(Ω|x,z)log(p(z|Ω))
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

(2)

+ Eqϕ(Ω|x,z)log(p(x, z|Ω))
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

(3)

(8)

where① is − D KL

[
qϕ(Ω|x,z) ‖ p(Ω)

]
, and② as well as③measure the

effects of embedding modal distribution constraint layers on generating
modality-related variables (Ω→Z ) and signal reconstruction
(Ω→Z →X ʹ

J ). Since the signal reconstruction includes the latent vari-
able generation (i.e. {Ω→Z } ∈

{
Ω→Z →X ʹ

J

}
), Eq. (8) can be simpli-

fied as:

Eqϕ(Ω|x,z)

[

log

(
p(z , Ω, x)
qϕ(Ω|x, z)

)]

= Eqϕ(Ω|x,z)log

(
p(Ω)

qϕ(Ω|x, z)

)

+ Eqϕ(Ω|x,z)log(p(x, z |Ω)) (9)

Similarly, for latent variable Z :

Eqϕ(z |Ω, x)

[

log

(
p(z , Ω, x)
qϕ(z |Ω, x)

)]

= Eqϕ(z |Ω, x)log

(
p(z)

qϕ(z |Ω, x)

)

+ Eqϕ(z |Ω, x)log(p(Ω|z))

+ Eqϕ(z |Ω, x)log(p(x|z , Ω)) (10)

Specifically, Eqϕ(z |Ω, x)log
(
p(z) /qϕ(z |Ω, x)

)
encourages each

modality-related encoder to output statistical parameters that are
consistent with the distribution of isolated unimodal
features. Eqϕ(z |Ω, x)log(p(x|z , Ω)) is used for evaluating the performance
of data reconstruction of each modality (Ω→Z →X

ʹ
J ). Notably, the flow

of generation from Ω to Z is an irreversible process because the
reconstruction is directly decoded by the latent representations without
considering the reconstruction processZ →Ω, i.e., Eqϕ(z |Ω, x)log(p(Ω|z)) =

log[p(Ω)] = C.
Thus, Eq. (10) can be simplified as the sum of the two remaining

items − D KL

[
qϕ(z |Ω, x) ‖ p(z)

]
and Eqϕ(z |Ω, x)log(p(x|z , Ω)), which are

consistent with that of standard VAE. The complete ELBO of maximizing
the log-likelihood of observed X J is denoted as:

Fig. 4. Mathematical analysis of the Disentangled Variational Auto-encoder.



L ELBO = − D KL
[
qϕ(z |Ω, x)‖ p(z)

]
+ Eqϕ(z |Ω, x)log(p(x|z , Ω))

− D KL
[
qϕ(Ω|x, z)‖ p(Ω)

]
+ Eqϕ(Ω|x,z)log(p(x|z , Ω)) (11)

Since L ELBO determines the lower bound of L max, the total objective
optimization L max can be degraded to parameter estimation of the
L ELBO. Furthermore, it is noteworthy that there exists a connection be-
tween maximum likelihood estimation and neural network optimiza-
tion, as depicted in Eq. (2). Thus, we can theoretically determine the
optimal estimation parameters with the remarkable nonlinear fitting
capability of neural networks. The optimization items can be converted
to the combination of loss functions following the mapped rule illus-
trated in Eq.12 and Eq.13,
⎧
⎪⎨

⎪⎩

D KL
[
qϕ(z |Ω, x)‖ p(z)

]
⇌

1
2
(
logσ2 −

(
μ2 + σ2)+ 1

)

s.t. qϕ(z |Ω, x) ∼ N (μ1, σ1), p(z) ∼ N (0, 1)
(12)

⎧
⎪⎨

⎪⎩

D KL
[
qϕ(Ω|x, z)‖ p(Ω)

]
⇌

1
2

(

log
σ2
1

σ2
2
−

σ2
1

σ2
2
−

(
μ2
1 − μ2

2
σ2
2

)

+ 1
)

s.t. qϕ(Ω|x, z) ∼ N (μ2, σ2), p(z) ∼ N (μ1, σ1)

(13)

The top formula is the inductive bias of latent variables, which aims
to measure the similarity between the estimated distribution qϕ(z |Ω, x)
using neural networks and the true distribution of latent variables p(z).
Likewise, the bottom one is used to calculate the similarity of qϕ(Ω|x, z)
and p(Ω). Notably, the intermediate variable p(Ω) is an unbiased esti-
mate obtained by computing the statistics of each isolating input mo-
dality while qϕ(Ω|x, z) is an estimated value fitted by neural networks.
The remaining terms Eqϕ(z |Ω, x)log(p(x|z , Ω)) and Eqϕ(Ω|x,z)log(p(x|z , Ω)),
which represents the comprehensive encoding (X J →Ω→Z ) and
decoding (Ω→Z →X

ʹ
J ) of the complete process (X J →X

ʹ
J ) in DVAE,

can be formally defined as L
a,v,t
rec , following the definition of standard

VAE. Therefore, the objective function L total of DVAE can be viewed as
an optimization of the standard VAE function L VAE under the constraint
of the function L

a|v|t
M ,

L total = L
a|v|t
M + L VAE (14)

where L
a|v|t
M is the distribution constraint loss for assessing the distri-

bution similarity, which can be implemented by calculating the KL
divergence. L VAE is the objective function of standard VAE, which in-
cludes L

a|v|t
Z and L

a,v,t
rec .

4. Experimental studies

To investigate the viability of assessing model performance through
the proposed method and to explore the fundamental factors that govern
the efficacy of multimodal fusion, we empirically conducted several
comparative experiments on MSA by utilizing the popular benchmark
datasets, namely CMU Multimodal Opinion Sentiment and Emotion In-
tensity (CMU-MOSEI) [47], CMU Multimodal Corpus of Sentiment In-
tensity (CMU-MOSI) [48], The Interactive Emotional Dyadic Motion
Capture Database (IEMOCAP) [49] and The CHinese SIngle- and
Multimodal Sentiment analysis dataset (CH-SIMS) [50]. Furthermore,
several advanced techniques, including memory modules, attention
mechanisms, and recurrent cell-based components, serve as compara-
tive approaches to demonstrate the exceptional capability of DVAE in
generating disentangled and explainable representations, as well as in
evaluating the effects of multimodal fusion.

4.1. Datasets

The Multimodal Corpus of Sentiment Intensity (CMU-MOSI) dataset
comprises 2199 opinion video clips, each accompanied by sentiment
annotations within the [− 3, 3] range. This dataset undergoes meticulous

annotation, encompassing subjectivity, sentiment intensity, as well as
per-frame and per-opinion annotated visual features, along with audio
features annotated at the per-millisecond level. The CMU Multimodal
Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset is the
largest dataset of multimodal sentiment analysis and emotion recogni-
tion to date. This gender-balanced dataset comprises over 23,500 sen-
tence utterance videos randomly selected from various topics and
monologue videos, featuring more than 1000 online YouTube speakers.
During the experiments, all the utterances are divided into training
(16265 samples), validating (1869 samples), and test sets (4693 sam-
ples) where each utterance is labeled with a ratio score from − 3 (highly
negative) to 3 (highly positive). The Interactive Emotional Dyadic Mo-
tion Capture Database (IEMOCAP) comprises 151 recorded dialogue
videos, totaling 302 videos. Each clip is labeled with nine emotions
(anger, excitement, fear, sadness, surprise, frustration, happiness,
disappointment, and neutral), as well as potency, arousal, and domi-
nance. The CHinese SIngle- and Multimodal Sentiment analysis dataset
(CH-SIMS) contains 60 videos with 2281 discourses gathered from
movies, TV series, and variety shows. The average length of each
discourse is 3.67 s, and each video retains only the speaker’s facial
image. Each discourse is assigned one multimodal label and three
unimodal labels per video. The labels in this dataset are: positive, weak
positive, neutral, weak negative, and negative.

4.2. Metrics

Motivated by the evaluation work in [51], several evaluation metrics
for illustrating the feasibility of disentanglement and the effectiveness of
multimodal fusion are chosen on benchmark datasets: Binary accuracy:
A cc2, which determines the sentiment polarity based on positive and
negative values. Moreover, we adopted the Multiple Classification Accu-
racy: A cc7 to evaluate the sentiment intensity within a range of [-3,3],
with values of -3 and 3 representing extreme negatives and positives
respectively. Furthermore, the F1 score: F 1 and theMean Absolute Error:
M ae are used for error analysis while Pearson’s correlation: R measures
the information relationship between predictions and ground truth la-
bels. Specifically, we adopted the ‖ x‖1 to measure the distribution
discrepancy between original unimodal inputs and disentangled latent
modality-related vectors in all experiments. In addition, we measure the
fusion performance of the multimodal model by calculating the perfor-
mance degradation ratios.

4.3. Baselines

Based on the sophisticated fundamental structures such as attention
mechanism and contextual awareness function, these advanced models
are categorized broadly into the following categories:

Attention-based methods (Abm): The utilization of attention mecha-
nism components for fusing multimodal representations is prominently
observed in the following advanced attention-based techniques: Multi-
modal Transformer network Multi-Transformer (MulT) [52], Multi--
attention Recurrent Network (MARN) [22], and Recurrent Attended
Variation Embedding Network (RAVEN) [53]. Through several stacked
attention components, these models combine the most relevant multi-
modal dynamics to provide a joint representation for category predic-
tion in MSA.

Recurrent unit-based models (Rubm): By utilizing stacked recurrent
unit-based components, Recurrent Neural Networks (RNNs) can effec-
tively aggregate multimodal sentiment information throughout the
specified time series. Based on the proposed performance evaluating
strategy, this study investigates various multimodal fusion models based
on the recurrent unit, namely Early-Fusion LSTM (EF-LSTM) [54],
Late-fusion LSTM (LF-LSTM) [54], Recurrent Multistage Fusion Network
(RMFN) [55], as well as Long-Short Term Hybrid Memory (LSTHM) [22],
to evaluate feasibility of disentanglement and assess the fusion effec-
tiveness of the recurrent unit-based approaches in MSA.



In addition, several innovative DNN-based models have become
essential components in multimodal fusion, which rely on the charac-
terization of special data structures, such asMemory-based Fusion (MFN)
[56], Late Fusion using DNN (LF-DNN) [57], Low-rank Multimodal Fusion
(LMF) [58], and Modality-Invariant and -Specific Representations for
Multimodal Sentiment Analysis (MISA) [59]. Specifically, MFN is a
memory fusion network consisting of several multimodal gated memory
components, which can output multimodal sentence representations by
building loops between the memory units, hidden state units, and output
units of the LSTMs. LF-DNN is a sequence learning method that utilizes
input-level feature fusion and bi-directional long short-term memory
(BLSTM) deep neural networks (DNNs). It is designed to identify the
sentiment type and intensity of multimodal data at the input level;
Low-rank multimodal fusion (LMF) is a method to make multimodal
fusion efficient without compromising performance using a low-rank
power tensor; MISA is a multimodal sentiment analysis model utilizing
domain adaptive learning, which projects each modality into both
modality-invariant and modality-specific subspaces. This approach aims
to learn common information shared across multimodal data while
capturing the unique features of each modality.

4.4. Evaluation setup

Our architecture consists of three modules: multimodal fusion
models, the disentanglement module, and the simple classifier (e.g., the
MLP). Following the operation flow from multimodal fusion models to
the classifier, we aim to explore the feasibility of multimodal disentan-
glement in the case of optimal performance of each module. Firstly, we
trained the various multimodal fusion approaches and froze the optimal
architecture configuration and network parameters, which ensured that
each multimodal fusion model could generate high-quality joint repre-
sentations with relatively advanced performance in MSA. Secondly, a
network embedding of representation disentanglement is implemented
by concatenating DVAE to the output layer of the pre-trained model,
aiming to generate the independent modality-related vectors and dis-
entangled latent representations. Similarly, we linked a simple but
efficient network MLP as the common classifier after freezing the pre-
trained combined network (multimodal fusion models with embedded
disentanglement modules) to predict the sentiment values in the range
of [− 3, 3].

Additionally, the Early Stopping Strategy is employed to prevent
model over-fitting and the Stochastic Gradient Descent technique (e.g. the
Adam optimizer) is used to update model parameters. Notably, we freeze
the optimal model parameters of pre-trained multimodal fusion net-
works before disentanglement and reconstruction to reduce the risk of
parameter interference that may exist during multiple model training.
To avoid over-fitting the network training, the default training epoch is
100 with early stop patience setting patience=20. For the benchmark
data, all data parameters and environment configurations are consistent
with that in [51]. We trained all models in the PyTorch framework with
a learning rate of 0.001, batch size of 256, and 100 epochs on a hardware
cluster equipped with an NVIDIA GeForce GTX 1660Ti GPU and an Intel
(R) Core (TM) i7–9750H CPU, achieving the best performance on the
benchmark datasets. The training, validation, and testing sets are
derived from the same sampling and segmentation strategy to ensure
comparability and conformity. We consistently use a straightforward
single-layer perception model (MLP) as the unique classifier. The output
structure of the fusion model was finely fine-tuned to additionally
output the latent representations produced by the fusion process, which
is subsequently fed into DVAE. Since the loss term in DVAE encompasses
distinct sub-loss terms with disparate functions, the Automatic Weighted
Loss technique proposed in [57] is employed for optimizing losses at
each epoch.

5. Results and discussion

Within this section, our attention is directed toward two experiments
and the subsequent analysis of experimental findings—the experiment
on evaluating disentangled representations and assessing multimodal
fusion. Notably, the evaluating experiment of disentanglement aims to
verify that the performance of the joint representation and its recon-
structed outcome in the MSA task remains essentially identical within
acceptable error limits, providing a basis for further evaluation and
analysis of the fusion performance.

5.1. Experiments for evaluating disentangled representations

Our primary objective is to demonstrate the feasibility of using dis-
entangled representation learning for multimodal model performance
evaluation. In this section, we experimentally demonstrate the feasi-
bility of decoupled representation learning from two perspectives: 1.
Classification Comparison Experiments. We demonstrate the effective-
ness of the proposed disentangled variational auto-encoder for disen-
tangling and reconstructing joint representations by comparing the
performance similarity between joint and decoupled representations on
sentiment classification tasks; 2. Convergence Analysis Experiments. We
demonstrate the stability of the decoupled variational auto-encoder
model by visualizing the loss function trend. Notably, all parameters
and running environments of the multimodal fusion model are consis-
tent with the settings in [51].

Classification Comparison Experiments: We quantified the
disparity between the reconstructed representations and the joint rep-
resentations on CMU-MOSEI and CMU-MOSI benchmark datasets. The
comparative results on the CMU-MOSEI dataset are presented in Table 1.
We’ve organized the baselines into distinct categories based on the
model’s core mechanism for result comparison. It’s important to
mention that " Rubm* " denotes a variant of the Recurrent unit-based
models (Rubm). We can see that RMFN exhibits superior performance
in A cc2: 78.61 % / 72.51 %, A cc7: 46.16 % / 48.48 %, F 1: 77.10 % /
59.55 %, and R : 0.600 for both joint representations and reconstruc-
tion representations. For M ae, RAVEN reports the optimal value of
0.666 in terms of joint representations, as compared to 0.646 for RMFN.
Then, the classification results on the CMU-MOSI dataset are illustrated
in Table 2. The RAVEN demonstrates superior classification perfor-
mance on the CMU-MOSI benchmark dataset, with accuracy scores of
76.64 % / 73.97 % for A cc2, 32.22 % / 31.63 % for A cc7, the lowest
value of 1.014/1.020 for M ae, the strongest correlation of 0.617 for R ,
and a precision-recall trade-off value of 74.39 % / 73.73 %. The
experimental results reveal that the classification performance of the
joint representation is very similar to that of the reconstructed

Table 1
Classification results on the CMU-MOSEI dataset (Joint Representations /
Reconstructed Representations).

Method Type A cc2( %) A cc7(
%)

F 1( %) M ae R

EF-
LSTM

Rubm 69.07/
71.03

45.34/
41.37

70.29/
59.00

0.696/
0.841

0.542/
0.005

LF-
LSTM

Rubm 66.42/
70.98

44.76/
41.37

67.91/
59.02

0.774/
0.838

0.527/
0.060

RMFN Rubm 78.61/
72.51

46.16/
48.48

77.10/
59.55

0.670/
0.646

0.600/
0.040

LSTHM Rubm 64.81/
71.05

45.55/
41.35

66.44/
59.00

0.712/
0.837

0.528/
0.040

MulT Abm 71.06/
71.03

42.21/
41.37

70.85/
59.00

0.768/
0.841

0.384/
0.005

MARN Abm 77.80/
71.03

46.00/
41.37

76.28/
59.0

0.677/
0.838

0.576/
0.044

RAVEN Abm 77.13/
71.03

47.83/
41.37

76.54/
59.00

0.666/
0.842

0.590/
0.005

MFN Rubm* 77.23/
71.03

48.30/
41.37

76.83/
59.00

0.674/
0.838

0.576/
0.008



representation, particularly in terms of accuracy. This similarity sug-
gests that the proposed model can generate reconstructed representa-
tions with performance comparable to joint representations, indirectly
demonstrating the effectiveness of DVAE in disentangling and recon-
structing joint representations. It is also worth noting that the differ-
ences between the two representations in terms of correlation metrics R

are quite pronounced, as we will continue to analyze in Section: Exper-
iments for Evaluating Multimodal Fusion.

Convergence Analysis Experiments: We conducted random
comparative experiments on the benchmark datasets and visualized the
network loss changes during model training and validation. The visu-
alization results are shown in Fig. 4 and Fig. 5, respectively. Fig. 6

The experimental findings shown in Tables 1 and 2 demonstrate a
slight degradation in the classification performance of the mentioned
models on MSA when embedding DVAE into the multimodal fusion
approach. A plausible explanation is that the extra distribution
constraint item L

a|v|t
M results in a higher convergence lower bound.

Embedding DVAE into the multimodal fusion models results in a
modification of the loss item fromL

a|v|t
vae (i.e.,L VAE, the sum of the latent

loss and the reconstruction loss) to L
a|v|t
M + L

a|v|t
vae (i.e., L total, the total

loss), where L
a|v|t
M (i.e., the modality loss) is a positive semi-definite

variable.
We can observe that the model-based loss curves of validation pro-

cesses gradually stabilize and reach a minimum value. The small dif-
ference in magnitude between L total and L

a|v|t
vae is likely attributed to the

introduced loss item generated by the modality constraint layer. More-
over, the trend and magnitude of the modal loss term exhibited
considerable variation across different datasets but remained consistent
within each specific dataset. The likelihood of this phenomenon is
influenced by both the dataset size and the richness of the provided
features. It is noteworthy that in the CMU-MOSI dataset, the modal loss
increases until it reaches a convergence point and then stabilizes. As the
latent loss and the reconstruction loss exert a more significant influence
on the overall loss during network training than the modal loss, the
automatic weight assignment technique allocates substantial weights to
data with high uncertainty and may lead to under-training of the modal
loss function in the pre-training stage. Despite this, the convergence of
the neural network total loss function is not significantly hindered by the
modal loss function. Therefore, DVAE proves the efficacy of employing
disentangled representation learning to decouple multimodal joint
representations and generate reconstructed joint representations in
multimodal fusion in multimodal sentiment analysis tasks, as evidenced
by both the comparison of classification results and the analysis of loss
function convergence.

5.2. Experiments for evaluating multimodal fusion

To quantify the effectiveness of different fusion strategies in fusing
multimodal data, we measure the degradation ratios of classification
metrics on benchmark datasets between the concatenated fusion and
other state-of-the-art fusion methods. Then, we identify the dominant
factors influencing the fusion effectiveness by visualizing the correlation
between latent and joint representations. The fundamental concept of
the DVE model involves substituting the original unimodal inputs with
disentangled unimodal representations, as well as replacing the original
joint representation with the disentangled joint representation. The
objective is to assess the fusion impact of multimodal models by
comparing the classification disparities between the original represen-
tations and disentangled representations in MSA. Thus, before reas-
sessing the fusion experiments, we conducted two ablation experiments
to eliminate potential interference from other variables on the experi-
mental outcomes.

Original unimodal representation VS. Disentangled unimodal
representations: To demonstrate the consistency between the unim-
odal latent representations produced by the modal constraint layer and
the original input unimodal representations, we individually predicted
the classification results for various unimodal inputs. Fig. 7 displays the
result distributions of different unimodal representations from various
fusion methods across diverse classification metrics. The figure reveals a
subtle distinction in the distribution of classification outcomes between
the decoupled unimodal representation and the original unimodal
representation.

The prediction outcomes relying on unimodal representations
exhibit superior classification accuracy in the CMU-MOSEI dataset
compared to the CMU-MOSI dataset, which can be intuitively derived
from the color comparisons of the accuracy metrics in the two datasets.
Additionally, the MAE errors observed in the CMU-MOSEI dataset are
lower than those observed in the CMU-MOSI dataset. The experimental
results on the CMU-MOSEI dataset indicate that the classification per-
formance of partially disentangled unimodal representations out-
performs that of the original unimodal representations, with this
improvement being especially notable in the textual modalities. Detailed
discussions on the causes of this phenomenon will be provided in Sec-
tion: Experiments for Evaluating Multimodal Fusion. For the CMU-MOSI
dataset, it is evident that the classification performance of the disen-
tangled unimodal representations closely matches that of the original
unimodal representations in the MSA task. This observation demon-
strates the effectiveness of the modal constraint layer in guiding the
network to generate disentangled unimodal representations that align
well with the distribution of the original unimodal representations.
Based on the results analysis above, it can be demonstrated that disen-
tangled unimodal representations can substitute the original unimodal
inputs in prediction without compromising classification accuracy.

Unimodal latent representations VS. Concatenated latent rep-
resentations: Besides the proposed classifier-based metrics for indi-
rectly evaluating the quality of disentangled representations, theMutual
Information Gap Score (MIG Score) [60] has been suggested for evalu-
ating the degree of disentanglement in representations during network
training, thereby establishing the utility of disentangled representations
to improve performance on downstream tasks.

Following the work using the MIG score to isolate the independent
factors of variation [61], we quantified the information correlation be-
tween the explainable disentangled latent vectors and coupled joint
matrices using the fine-turned MIG Score. Instead of calculating the
Mutual Information of ground truth factors in the implemented MIG
score [60], the fine-turned MIG Score utilizes information entropy as a
proxy of Mutual Information used in the original MIG Score, which is
more consistent with the calculation of entropy of ground truth factors
mentioned in MIG Score and more suitable for entropy calculation of
multimodal heterogeneous data. As described in [61], the empirical
mutual information between a latent variable and a ground truth factor

Method Type A cc2( %) A cc7( %) F 1( %) M ae R

EF-
LSTM

Rubm 73.03/
72.59

30.76/
30.17

73.10/
72.67

1.049/
1.069

0.592/
0.030

LF-
LSTM

Rubm 72.89/
72.74

30.03/
28.57

72.93/
72.79

1.052/
1.062

0.584/
0.049

RMFN Rubm 73.18/
73.76

30.90/
29.88

73.07/
73.62

1.022/
1.034

0.604/
0.017

LSTHM Rubm 70.41/
70.99

26.38/
27.55

70.36/
70.96

1.129/
1.150

0.534/
0.058

MulT Abm 60.50/
59.62

24.49/
24.34

59.40/
58.37

1.352/
1.339

0.343/
0.034

MARN Abm 72.01/
71.87

31.63/
33.24

71.90/
71.78

1.074/
1.080

0.574/
0.031

RAVEN Abm 74.64/
73.97

32.22/
31.63

74.39/
73.73

1.014/
1.020

0.617/
0.023

MFN Rubm* 72.30/
72.01

30.90/
31.20

72.39/
72.00

1.042/
1.057

0.591/
0.013

Table 2
Classification results on the CMU-MOSI dataset (Original Representations /
Reconstructed Representations).



Fig. 5. Variation curves for each loss term of different models in the CMU-MOSEI dataset.



Fig. 6. Variation curves for each loss term of different models in the CMU-MOSI dataset.



can be estimated by utilizing the joint distribution. Therefore, we
illustrate the slight effect of representation concatenation on the
experimental results by quantifying the relative proportion of each
modality-related latent vector within ground truth matrices (i.e. the
joint representation). The results are shown in Fig. 8 and Fig. 9. Notably,
different colored areas represent the MIG Score-based proportion be-
tween the individual latent variable (i.e. Z a/Z v/Z t/Z a,v,t) and the
ground truth matrices (i.e. X ʹ

J ). The MIG scores of LF-LSTM, EF-LSTM,
MulT, and MARN are denoted as A-D, respectively. Audio/-
Visual/Textual LR represents Z a/Z v/Z t. LR represents X ʹ

J . Notably,
the MIG scores corresponding to each iteration are averaged over 100

epochs and all MIG Scores are smoothed by the signal-processing
function.

Since current fusion algorithms are mainly based on the recurrent
cell and attention mechanisms, we choose EF-LSTM, LF-LSTM, MulT,
and MARN as examples of the recurrent cell-based method, the
attention-based model, and the combination of the two, respectively. As
visualization results presented in Fig. 8 and Fig. 9, it is clear that theMIG
score ratios of disentangled latent variables are essentially equivalent to
the sum of that of the modality-related latent variables, observing from
the comparison of Below LR and the stacked area of Below Audio/Visual/
Textual LR. From the visualization of the MIG Score on the CMU-MOSI

Fig. 7. Comparison of classification results between disentangled latent representations and original unimodal representations on the benchmark datasets. The DVR/
DAR/DTR represent disentangled audio/video/textual representations, respectively. On the other hand, OVR/ OAR/OTR denote original video/audio/textual rep-
resentations, respectively. Notably, we normalize all metrics to a range of integers to facilitate the presentation of results.

Fig. 8. Visualization of the MIG Score on the CMU-MOSI dataset.



dataset, we note that the MIG scores of the recurrent cell-based multi-
modal fusion approach such as EF-LSTM outperform that of the
attention-based approach across various fusion strategies. On the one
hand, the recurrent unit-based methods are more suitable for analyzing
temporal dependencies between unimodal features in multimodal
learning tasks, decoupling joint representations, fused by LSTM-based
methods, facilitates the acquisition of superior unimodal representa-
tions. On the other hand, attention mechanism-based methods prove
more adept at probing correlations among cross-modal features. How-
ever, the condition that assumes the independence of individual modal
vectors during the learning of disentangled representations might
compromise the effectiveness of the attentional mechanism. This
weakening effect contributes to distinctions in the MIG scores between
the two methods. From the results shown in Fig. 9, the MIG scores of all
methods are higher than the results on CMU-MOSI. This could be
attributed to the CMU-MOSEI offering more comprehensive and high-
dimensional features of each modality. Additionally, the comparison
of methods based on the recurrent unit-based models demonstrates that
feature-oriented fusion surpasses decision-oriented fusion in generating
high-quality disentangled latent variables, as observed from the
comparative results between EF-LSTM and LF-LSTM.

In terms of the proportion of independent modes, no matter what the
dataset is, each independent mode contributes to the generation of a
complementary and complete joint representation and the contribution
of each modality is almost equal. This uniform contribution underscores
the distributional constraint layer’s effectiveness in resolving the modal
bias issue. As for the proportion of concatenated representations, the
MIG scores associated with the concatenation operation nearly equal the
sum of the scores from the three independent modes, which indicates the
concatenation operation solely establishes a structural connection
among unimodal representations. This observation suggests that, in this
experiment, the concatenation operation aims to facilitate the

exploration of model input complementarity without interfering with
the results of the model fusion performance evaluation in the subsequent
model fusion

Effectiveness Analysis. The disentangled latent representations
generated by the disentangled variational autoencoder encapsulate
sentiment information from various independent modalities. To eval-
uate the multimodal information fusion capability of the sentiment
analysis model, we compare the performance difference between the
concatenated disentangled latent representations and the joint repre-
sentations. The change in the performance degradation ratios γ(% %)

reflects the model’s ability to fuse multimodal information. The specific
details of the experiments are as follows.

1. We conduct fusion performance evaluation experiments on the EF-
LSTM, LF-LSTM, RMFN, LSTHM, MulT, MARN, RAVEN, and MFN
models using the CMU-MOSEI and CMU-MOSEI datasets. The
experimental results are shown in Tables 3 and 4, where J ∼ A cc ∗(
%) and D ∼ A cc∗( %) denote the accuracy results based on the joint
representation and the corresponding tandem decoupled implicit
representation, respectively.

2. To explore the information fusion capability of multimodal senti-
ment analysis models across different sentiment types, we conducted
a single classification comparison experiment based on the data
structure attributes of the IEMOCAP dataset. This experiment
compared the performance of the EF-LSTM, LF-LSTM, RMFN,
LSTHM, MulT, MARN, RAVEN, and MFN models on individual
sentiment categories. The results are presented in Table 6, where S ∼

∗ and DS ∼ ∗ denote the performance based on independent input
modal features and the corresponding independent modal decoupled
implicit representation, respectively.

3. To investigate the information fusion capability of multimodal
sentiment analysis models across various language datasets, we

Fig. 9. Visualization of the MIG Score on the CMU-MOSEI dataset.



additionally compared the performance of the LF-DNN, MCTN, LMF,
and MISA models on the CH-SIMS dataset. The experimental results
are presented in Table 7, where J ∼ A cc ∗( %) and D ∼ A cc ∗( %)
denote the accuracy results based on the joint representation and the
corresponding tandem decoupled implicit representation,
respectively.

From the accuracy shown in Table 3, we observe a notable decline in
experimental performance when employing disentangled latent repre-
sentations compared to predictions based on joint representations in the
CMU-MOSI dataset, but the classification results in the CMU-MOSEI
dataset remain essentially unchanged. The MulT represents the ex-
hibits minimum degradation ratio among all comparison algorithms in
benchmark datasets. Since the multimodal baselines exhibit large vari-
ations in making classification predictions with latent and joint repre-
sentations on the CMU-MOSI dataset, we conduct a randomized
experiment on this dataset and calculate the degradation ratios for all
metrics. Table 4 illustrates the relative degradation ratios of multimodal
fusion approaches between the joint representations and disentangled
latent representations. Particularly, we found that the MulT model has
much less performance gap in accuracy (A cc2 = 29.94 % and A cc7 =

36.52 %) and error (M ae = 11.05 %) metrics than other methods,
indicating the MulT exhibits a relatively smaller network degradation.

Table 5 reveals that models relying on a single mechanism consis-
tently exhibit superior performance across all metrics. For instance, in
the CMU-MOSI dataset, both the recurrent cell-based (i.e., EF-LSTM and
LF-LSTM) and attention-based models (i.e., MulT) outperform the

combined model, as evident in the degradation ratios of the class of
methods. This discrepancy may stem from the optimization problem of
multi-mechanism loss functions. Specifically, the LSTM-based method
excels in addressing temporal feature-dependent issues related to modal
features, while the attention-based mechanism is more adept at
extracting strongly correlated cross-modal features. When multiple
mechanisms are trained in parallel in the combined model, balancing
the different error losses and parameter updates to achieve optimal re-
sults is more painstaking, thus leading to slight performance
degradation.

Additionally, the classification results of the multimodal sentiment
analysis model across different sentiment types indicate a tendency of
the model to categorize specific sentiment types more accurately. The
results are presented in Table 6: the multimodal sentiment analysis
model exhibits the lowest performance degradation ratio for the senti-
ment type labeled ’sad’ (A cc2( %): [0.83 %~5.77 %], F 1( %): [1.28 %
~12.96 %]), and the highest performance decay rate for the sentiment
type labeled ’neutral’ (A cc2( %): 34.9 %, F 1( %): 65.27 %). Therefore,
sentiment type significantly affects the information fusion ability of
multimodal sentiment analysis models.

The results of the comparison experiments using different language
datasets are shown in Table 7. The experimental results indicate that the
multimodal sentiment analysis model experiences significant perfor-
mance degradation across various language datasets. Specifically, the
LF-DNN obtains the minimum performance degradation ratio in the
CMU-MOSI dataset, i.e., A cc2( %): 27.67 %, A cc7( %): 55.93 %.The LF-
DNN and MISA have the lowest performance decay rates in the CH-SIMS
dataset, i.e., LF-SNN~A cc2( %): 59.54 %, MISA~A cc5( %): 59.88,
respectively. Furthermore, the trend of the experimental results reveals
that as the complexity of the model structure increases (LF-DNN → LMF
→ MISA), the performance degradation ratio of the multimodal senti-
ment analysis model also gradually increases.

Analysis of feature distribution. We introduced the evaluating
metrics (MIG score) to quantify the similarity between the latent and
joint variables. Taking the LF-LSTM model as an example, we show the
correlation visualizations between independent modality-related vec-
tors (the disentangled key factors) and coupled joint matrices (the
ground truth data), which can be seen in Fig. 10.

In terms of the overall correlation distribution shown in Fig. 10:

Type Dataset CMU-MOSEI

Method J ∼ A cc2( %) D ∼ A cc2( %) γ( %) J ∼ A cc7 D ∼ A cc7( %) γ( %)

Rubm EF-LSTM 69.07 70.98 2.765 45.34 41.37 8.756
Rubm LF-LSTM 66.42 70.96 6.835 44.76 41.37 5.945
Rubm RMFN 78.61 71.05 9.617 46.16 41.37 10.38
Rubm LSTHM 64.81 70.90 9.350 45.55 41.37 9.177
Abm MulT 71.06 70.34 1.013 42.21 41.37 1.990
Abm MARN 77.80 71.05 8.676 46.00 41.37 10.07
Abm RAVEN 77.13 70.96 7.999 47.83 41.37 13.51
Rubm* MFN 77.23 70.83 8.286 48.30 41.37 14.35

Table 4
The Accuracy Degradation Ratios of Methods on CMU-MOSI Datasets.

Type Dataset CMU-MOSI

Method J ∼ A cc2( %) D ∼ A cc2( %) γ( %) J ∼ A cc7 D ∼ A cc7( %) γ( %)

Rubm EF-LSTM 73.03 46.50 36.33 30.76 17.34 43.63
Rubm LF-LSTM 72.89 46.36 36.39 30.03 16.34 45.52
Rubm RMFN 73.18 44.90 38.64 30.90 18.22 41.03
Rubm LSTHM 70.41 44.17 37.27 26.38 15.45 41.43
Abm MulT 60.50 44.75 26.03 24.49 15.45 36.91
Abm MARN 72.01 44.90 37.65 31.63 14.43 54.38
Abm RAVEN 74.64 43.88 41.25 32.22 13.84 57.05
Rubm* MFN 72.30 45.77 36.69 30.90 15.45 50.00

Table 5
The Degradation Ratios of Each PerformanceMetric on the CMU-MOSEI Dataset.

Method Type γA cc2
( %) γA cc7

( %) γF 1(% %) γM ae ( %)

EF-LSTM Rubm 36.27 42.81 45.80 39.45
LF-LSTM Rubm 35.94 42.53 38.99 38.63
RMFN Rubm 39.13 39.02 54.52 54.16
LSTHM Rubm 37.78 43.92 54.2 36.70
MulT Abm 29.94 36.52 52.6 11.05
MARN Abm 37.53 56.59 60.66 40.65
RAVEN Abm 40.98 56.54 56.67 46.37
MFN Rubm* 36.44 49.55 48.31 44.94

Table 3
The Accuracy Degradation Ratios of Methods on CMU-MOSEI Datasets.



Correlation Distribution (All Latent Representation), we can see that the
latent variables of the textual modality exhibit a relatively uniform
correlation distribution, in contrast to the other modes that display a
noticeably sparse correlation distribution. An explicable rationale lies in
the context-dependent nature of textual modality, which fosters se-
mantic correlation among textual features across various periods. This
characteristic enables a substantial contribution of most representations
to downstream tasks. In contrast, other modalities determine the senti-
ment polarity depending on a salient representation.

Another significant distribution characteristic observed from the
heat maps is that the key factors contributing to the joint representation
are more concentrated in the middle and latter parts of the modality-
related latent representations, i.e. the dark blue rectangles indicating
high correlations are more densely distributed in the middle and the
right side of the figure. This was probably caused by the emotional cu-
mulative effect, which gradually increased the emotional intensity over
time. Thus, some concluding points with strong emotional tendencies
usually appear at the end of the dialogue or monologue. An interesting
phenomenon can be found in the correlation distribution visualization
of independent modalities, as shown in Fig. 10: Correlation Distribution

of textual, visual, and audio latent representations. We found that the
complementary information distribution between different modalities in
multimodal fusion was the key to improving the performance of multi-
modal fusion strategies in downstream tasks. The positions of the dark
blue rectangles in different modalities heat-maps are complimentary,
indicating that the latent representations representing sentiment infor-
mation among different modalities are complementary.

We offer detailed visual representations that highlight the issue of
imbalanced distribution characteristics in joint representations. Specif-
ically, we depict the distributions of ground truth labels, network pre-
dictions, joint representations, and unimodal latent representations
using feature scatter plots. While each mode generates complementary
feature distributions with an equal number of generated feature points,
the feature coupling in multimodal fusion results in a significant
reduction in the number of feature points within certain modal ranges in
the joint characterization. These can be observed from the comparison
of joint features shown in Fig. 11(A) and each unimodal feature shown in
Fig. 11(D)-(F). The values of the joint representation exhibit higher
density within the range of [0.4, 1.0] and lower density within the range
of [0, 0.4], according to the distribution results shown in Fig. 10(A),

Table 6
Performance Degradation Rations of Different Models on the IEMOCAP Dataset for Classification of Individual Sentiment Types.

Method Label S ∼ A cc2

( %)
DS ∼ A cc2

( %)
γ( %) S ∼ F 1

( %)
DS ∼ F 1
( %)

γ( %)

EF-LSTM Neutral 69.51 55.07 20.77 69.38 39.12 43.61
Happy 86.78 93.75 8.03 83.93 90.73 8.10
Sad 84.97 80.07 5.77 84.11 71.21 15.34
Angry 86.88 81.25 6.48 87.11 72.84 16.38

LF-LSTM Neutral 40.83 55.08 34.90 23.67 39.12 65.27
Happy 85.61 93.75 9.51 78.96 90.72 14.89
Sad 79.42 80.08 0.83 70.31 71.21 1.28
Angry 75.80 81.25 7.19 65.36 72.84 11.44

RMFN Neutral 51.70 55.08 6.54 50.50 39.12 22.53
Happy 85.61 93.75 9.51 78.96 90.72 14.89
Sad 79.42 80.07 0.82 70.32 71.22 1.28
Angry 75.80 81.25 7.19 65.37 72.84 11.43

LSTHM Neutral 40.83 55.08 34.90 23.67 39.12 65.27
Happy 85.61 93.75 9.51 78.96 90.72 14.89
Sad 79.42 80.08 0.83 70.31 71.21 1.28
Angry 75.80 81.25 7.19 65.36 72.84 11.44

MulT Neutral 61.30 44.92 26.72 61.58 27.85 54.77
Happy 86.35 93.75 8.57 82.97 90.73 9.35
Sad 78.47 80.07 2.04 73.01 71.22 2.45
Angry 82.41 81.25 1.41 81.36 72.84 10.47

MARN Neutral 68.12 44.92 34.06 67.09 27.85 58.49
Happy 85.93 93.75 9.10 82.29 90.72 10.24
Sad 81.56 80.08 1.81 81.81 71.21 12.96
Angry 86.35 81.25 5.91 85.98 72.84 15.28

RAVEN Neutral 64.61 44.92 30.48 64.32 27.84 56.72
Happy 84.75 93.75 10.62 81.04 90.72 11.94
Sad 82.08 80.07 2.45 80.78 71.22 11.83
Angry 81.34 81.25 0.11 78.81 72.84 7.58

MFN Neutral 44.88 55.08 22.73 37.82 39.12 3.44
Happy 85.60 93.75 9.52 78.96 90.72 14.89
Sad 79.42 80.07 0.82 70.31 71.22 1.29
Angry 75.80 81.25 7.19 65.37 72.84 11.43

Table 7
The Performance Degradation Ratios of Complex Models on CMU-MOSI and CH-SIMS Datasets.

Dataset CMU-MOSI

Method J ∼ A cc2( %) D ∼ A cc2( %) γ( %) J ∼ A cc7( %) D ∼ A cc7( %) γ( %)

LF-DNN 76.39 55.25 27.67 35.06 15.45 55.93
LMF 77.55 44.75 42.30 41.69 15.45 62.94
MISA 77.84 44.75 42.51 35.28 15.45 56.21
Dataset CH-SIMS
Method J ∼ A cc2( %) D ∼ A cc2( %) γ( %) J ∼ A cc5( %) D ∼ A cc5( %) γ( %)
LF-DNN 75.71 30.63 59.54 41.58 15.1 63.68
LMF 73.96 30.63 58.59 38.29 15.1 60.56
MISA 78.77 30.63 61.11 37.64 15.1 59.88



which indicates that the text and visual modalities exhibit a higher
contribution to the joint representation compared to speech modalities.
From the phenomenon, we can conclude that the contribution of
different modalities to the joint representation is imbalance (i.e. the
modality imbalance caused by feature coupling), which provides a
comprehensive explanation for why some unimodal-based sentiment
analysis models (e.g., text-based modality) outperform multimodal
fusion approaches in MSA.

Correlation coefficient analysis: We briefly examine the crucial
factors that could influence multimodal fusion in terms of data corre-
lation and statistical distribution. Firstly, we find that the strength of the
correlation between the joint representation and the ground labels is not
a conclusive factor in determining the effectiveness of model fusion
performance. As evident from the classification accuracy metrics pre-
sented in Table 1, both joint and reconstructed joint representations
exhibit similar performance in the MSA task. However, notable dispar-
ities are observed in Pearson’s correlation metric between the two rep-
resentations. To provide a more detailed illustration of the relationship
between the statistical distributions of various representations and data
labels, we visualized the statistical distributions of these representa-
tions. The results are presented in Fig. 12. All values depicted in the
figure have been normalized.

While the joint representation distributions of certain models may

align more closely with the true label distributions, their classification
accuracies are not exceptional, as evidenced by the EF-LSTM and LF-
LSTM models in Fig 12. Upon comparing the label distributions of the
two datasets, it is observed that the CMU-MOSI data demonstrates a
multi-peak distribution, as illustrated in Fig. 12(b) − 2 (label distribu-
tion). This observation might explain the sharp decay in accuracy shown
in Table 3 (CMU-MOSI dataset). The multi-peak distribution frequently
results in complex decision boundaries. During network training, it is
difficult for the multimodal fusion model to update parameters and
generalize patterns based on data labels. In particular, when the
multimodal features are unbalanced it will lead to the prediction results
being biased towards a certain peak and result in lower model recall.

For multimodal fusion models, those relying on a single mechanism
are more straightforward to train and generalize compared to models
based on the combination of multiple mechanisms, but the latter ex-
hibits a higher performance ceiling than the former. Therefore, striking a
balance between the two is crucial for achieving concise and efficient
multimodal models. In addition, there is no necessity for generating
representations that align closely with the distribution of data labels to
boost the classification performance of multimodal models, and ground
labels with unimodal distributions are more useful for improving the
performance of multimodal models

Fig. 10. Correlation Distribution between LF-LSTM Latent and Joint Representations. The index of latent representation is incremented from top to bottom. Different
index ranges indicate different modality representations in correlation distribution (all latent representations), i.e., LR1–50: Textual modality, LR51–100: visual
modality, LR101–150: audio modality.



6. Conclusion and future research

To comprehensively evaluate the fusion performance of state-of-the-
art multimodal fusion methods and investigate the key factors that
contribute to facilitating multimodal fusion in Multimodal Sentiment
Analysis, this paper presented a Disentanglement-based Variable Auto-
Encoder (DVAE). Specifically, the distribution constraint component
was first proposed to generate modality-related latent representations
by decoupling multimodal joint representation. Then, the modified
combined loss term was designed in DVAE to facilitate the optimization
of neural network weights and parameters by integrating inductive bias,

signal reconstruction, and distribution constraint items. With the pro-
vided evaluation method, we can evaluate the fusion performance of
multimodal models by contrasting the classification degradation ratios
obtained from disentangled latent representations and the joint repre-
sentation. The results from the disentanglement evaluation experiments
confirm that DVAE can effectively facilitate the decoupling and recon-
figuration of the joint representation without significantly compro-
mising the model performance. The performance evaluation results on
the CMU-MOSI and the CMU-MOSEI benchmark datasets indicate the
proposedmethod can serve as an effective assessment tool for evaluating
the information fusion capability of multimodal sentiment analysis

Fig. 11. Unbalanced distribution of modal features. Prediction: distribution of the LF-LSTM model. Target: data label distribution. Latent: distribution of latent
representations generated by the distribution constraint layer. Visual/Audio/Text: distribution of visual/audio/textual modalities. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Violin diagrams for statistical distributions. The values 0, 1, and 2 represent the reconstructed joint representations, fused joint representations, and ground
labels, respectively.
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models. Compared with 8 state-of-the-art methods employing different 
fusion mechanisms, it becomes evident that the distributional consis-
tency between the fused features and the ground labels alone cannot 
determine the fusion effect of the multimodal model. Instead, the 
equalization effect among various fusion mechanisms in multimodal 
sentiment analysis, along with the single-peak characteristic of the 
ground label distribution, proves to be crucial in multimodal data 
fusion.

Our study introduces a novel methodology in disentangled repre-
sentation learning, particularly in crafting disentangled representation 
learning models with generative constraints. This contributes to 
advancing the theoretical understanding of effectively segregating and 
rearranging various modal representations, offering insights into po-
tential mechanisms for multimodal data fusion. Additionally, the dis-
entangled variational auto-encoder model offers a pathway for 
practitioners to build enhanced and precise multimodal sentiment 
analysis systems. This advancement holds the potential to significantly 
enhance the performance of applications across domains such as social 
media analysis, customer feedback systems, and sentiment detection in 
multimedia content.

While DVAE demonstrates excellence in evaluating multimodal 
model performance and achieving feature decoupling, it demands sub-
stantial hardware resources to support model training, particularly 
when handling large-scale multimodal datasets. This is primarily 
attributed to the resource-intensive nature of training dedicated en-
coders for different modalities to achieve feature decoupling and 
generate hidden variables, which imposes a demand on memory re-
sources. Our future work will be devoted to model lightweight and 
exploring how the proposed approach can be used for real-time content 
understanding generation and transformation between speech and sign 
language modalities, as well as deployed in other practical applications 
of interpretable AI.
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