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A B S T R A C T

The timing of the transition between endodormancy and ecodormancy remains uncertain. However, with ad
vancements in phenology modelling, we can now fit models which allow for variable transitions between chilling 
and forcing models. Previous studies have primarily focused on single-cultivar parameterisation, and few have 
explored multi-cultivar comparative modelling. In this paper, we address this gap by evaluating three parame
terisation approaches based on the recently developed PhenoFlex framework using a large flowering time dataset 
of twenty-six apple cultivars collected at the same location in England. The three parameterisation approaches 
were: cultivar-specific, group-specific with the groups derived using the K-means algorithm on mean bloom and 
variation of bloom dates, and a common model (for all twenty-six cultivars). The three PhenoFlex models fitted 
to each of three groups of cultivars based on their flowering time and the common model fitted to all cultivars 
achieved similar predictive performance, better than predictions using the average bloom date of each cultivar. 
The best approach to apply would depend on the amount of data present. The common model works best with 
large number of cultivars with small datasets (~10 years), the mean flowering date grouped works best with 
medium numbers of datasets (~20 years) and the cultivar-specific model should only be used when each cultivar 
has at least 30 years of data, however, it is more biased, so it is likely to predict bloom dates later than the 
observed bloom dates. Finally, the PhenoFlex model was shown to perform better than the StepChill model, 
where no overlapping is allowed between chilling and heat models. The result of this study indicates that the 
PhenoFlex model can be used to determine apple flowering time at the species level.

1. Introduction

Apple tree dormancy is regulated by temperature (Heide and Pre
strud, 2005; Rea and Eccel, 2006). Low temperatures slow plant pro
cesses so that young meristems such as leaf and flower buds are 
protected against harsh environments. There are two types of dor
mancies which affect the flowering period: endodormancy and eco
dormancy. Endodormancy is the state when the trees stop their growth 
in response to chilling conditions. Following this, ecodormancy sets in, 
signifying that chilling requirements have been met but the plants are 
awaiting warm temperatures to resume growth. Specifically, the chilling 
requirement refers to the duration and intensity of chilling temperatures 
needed to complete endodormancy and likewise, the heat requirement 
refers to the duration and intensity of warm temperatures needed to 
overcome ecodormancy. Both the chilling and heat requirements are 
species-specific (Perry, 1971). Flowering signals the end of dormancy.

Apples (Malus domestica (Suckow) Borkh.) have been cultivated for 
several thousand years, dating back to 1000 BCE (Janick, 2005) and 
while only about 100 cultivars are grown commercially, there are over 
7500 unique cultivars (Shultz, 2003). Predicting the timing of apple 
flowering time is important for variety selection and crop management. 
Phenology models aim to explain the realities of biology with mathe
matical representations. Many phenology models have been developed 
to predict flowering time but there is no consensus to the best phenology 
model for apple (Carsten et al., 2022; Chuine, 2000; Darbyshire et al., 
2016; Landsberg, 1974). A complete flowering time model comprises of 
two sub-models: the first models chilling accumulation and the second 
models heat accumulation. Chilling models estimate completion of 
endodormancy whereas forcing models represent the hypothetical 
relationship between warm temperatures and plant development.

Chilling models include the Chilling Hours, Utah and Dynamic 
models. The Chilling Hours model is a long-established chilling model 
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and takes the cumulative number of hours below a certain temperature 
threshold (Luedeling and Brown, 2011). However, it does not consider 
the negative effects of chill accumulation by high temperatures unlike 
the Utah model and the Dynamic model. The Utah model calculates 
chilling accumulation by giving each hour a positive, negative, or no 
chilling value (Richardson, 1974). As the Utah model results in negative 
chilling units in tropical and subtropical climates, this model is only 
appropriate for temperate climates (Melke, 2015). The Dynamic model 
is the only known empirical chilling model that utilises bud break ex
periments to formulate the model, which is why this paper will focus on 
this chilling model (Campoy et al., 2011; Erez and Couvillon, 1987; 
Hauagge and Cummins, 1991; Shaltout and Unrath, 1983). The Dynamic 
model calculates chilling accumulation in two steps. The first step ac
cumulates a pseudo product called precursor to the dormancy-breaking 
factor (PDBF) which is created in chilling temperatures but destroyed in 
warm temperatures. Both the formation and destruction follow Arrhe
nius law, describing the effect of temperature on the rate of chemical 
reactions in an exponential relationship. The PDBF fluctuating in 
response to temperature allows the model to adapt to warmer regions, 
since longer periods of warm temperatures will not result in negative 
chilling. Additional chilling activates the second step, the irreversible 
conversion of the PDBF to a chill portion after a critical amount of 
chilling is reached. Chill portions cannot be destroyed by heat.

The most widely used forcing model is the Growing Degree Hour 
(GDH) model (Anderson et al., 1985). The GDH model is the hourly 
variation of the growing degree days model, which takes the average 
temperature of the day rather than the hour (Anderson et al., 1985; 
Réaumur, 1735). A GDH model sums the temperatures suitable for 
growth (temperatures above a threshold temperature) and each degree 
is weighted based on its proximity to the optimal growing temperature. 
The date when the GDH units reach the heat requirement is predicted as 
the flowering date.

The boundary between endodormancy and ecodormancy is unclear 
due to a lack of measurable physiological changes. Thus, recent 
phenology models were developed to integrate chilling and forcing 
models into a single framework for predictive purposes. To ensure a 
flexible modelling approach, several forms of transitions from chilling to 
forcing have been studied, including (1) treating chilling and heat ac
cumulations completely sequentially and separately (chilling must be 
completed before heat accumulation starts), (2) assuming a complete 
overlap (chilling and heat accumulation is simultaneous), and (3) 
assuming a partial overlap between the chilling and heat accumulation 
phases (heat accumulation can start before chilling is completed but not 
before the initiation of chilling).

The Parallel model assumes that chilling and forcing units accumu
late at the same time (Landsberg, 1974). However, we know that a chill 
requirement must be met before forcing units can accrue because any 
response to heat before chilling satisfaction may lead to flowering in 
unsuitable conditions (Campoy et al., 2011; Erez, 2000; Petri and Leite, 
2003; Pope et al., 2014). In contrast to parallel accumulations of chilling 
and heat, the Sequential and Unified models both assume independent 
phases for chilling and heat accumulation (Ashcroft et al., 1977; Chuine, 
2000). The difference between the Sequential and Unified models is that 
the Sequential model uses user-chosen chilling and forcing models, 
whereas the Unified model chooses the chilling and forcing models 
based on the data. The shape of the adjustable function within the 
Unified model can follow the shape for Triangular Chilling, Chilling 
Days, Sigmoidal and Growing Degree Days models and anything in be
tween for chilling and forcing. These models are commonly used in older 
combination models. The parameters determine the shape of the model, 
so it does not prematurely constrain the data to fit a particular model 
(Chuine, 2000). The StepChill model is a simpler variation of the Unified 
model. It showed similar predictive performance in a recent compara
tive study in predicting bud break in major forest tree species compared 
to the full Unified model despite the use of fewer parameters (Asse et al., 
2020; Luedeling et al., 2021).

Later models were developed with the concept of an overlap existing 
between the chilling and heat phases and, moreover, they consider a 
beneficial effect on heat accumulation through additional chilling after 
chilling requirements have been reached (Erez and Couvillon, 1987; 
Guerriero et al., 1985; Naor et al., 2003). The Chill Overlap model at
tempts to model an overlap between the chilling and heat models. This 
model is based on the idea that once endodormancy is satisfied, addi
tional exposure to chilling temperatures will reduce the heat require
ment (Cannell and Smith, 1983; Darbyshire et al., 2016; Pope et al., 
2014). The PhenoFlex model was developed in 2021 and was used to 
predict apple and pear flowering time (Luedeling et al., 2021). This 
model integrates the Dynamic and GDH models as the chilling and 
forcing models. The difference is that while the Chill Overlap model 
requires a preset overlap value, the PhenoFlex model allows for no 
overlap, various degrees of overlap or complete overlap between the 
chilling and forcing models.

Previously, apple flowering time of different cultivars has been 
predicted with a range of different approaches. The recent studies have 
used parameterisation to minimise the root mean square error (RMSE) to 
get the highest level of predictive accuracy. A typical sequential model 
combination is the Dynamic and GDH model combination. This com
bination resulted in fairly good predictions in validation datasets for 
Boskoop (4.2 days), Cox’s Orange (5.7 days), Golden Delicious (5.12 
days) and Jonagold (4.57 days) apples in Belgium (Drepper et al., 2020) 
but poor predictions for Crispps Pink apples in Australia (RMSE of 14.7 
days) (Darbyshire et al., 2016). A chill overlap model was developed for 
Cripps Pink apples grown in Australia with a RMSE value of 5.9 days 
(Darbyshire et al., 2016). A StepChill model resulted in a RMSE of 7.68 
days for Boskoop apple trees in Germany, but a PhenoFlex model 
improved these results, reducing the RMSE to 3.82 days (Luedeling 
et al., 2021). These few studies on a limited number of apple cultivars 
indicated that the overlapping modelling framework for predicting 
apple flowering time may be better than a completely sequential model 
and that apple cultivars may differ significantly in the exact model 
formulation as well as in parameter values within the same model 
formulation.

A study in apricots (Andreini et al., 2014) shows that while applying 
flowering data from many cultivars to a crop does not result in accurate 
predictions, consolidating cultivars based on their flowering group can 
improve model accuracy. Apple cultivars are classified into flowering 
groups (based on similar flowering times), but it would be interesting to 
see if a naïve clustering method can be used to classify cultivars into 
groups that are used to generate parameters suitable for the PhenoFlex 
model.

Previous research has focused on parameterisation for individual 
cultivars separately, thus in the present study we explore comparative 
modelling of multiple cultivars based on the PhenoFlex modelling 
framework. Specifically, the present study focuses on estimation of 
PhenoFlex model parameters for (1) individual cultivars separately 
(cultivar-specific), (2) cultivar groups derived from K-means clustering 
of mean flowering dates and their variation across years (mean flow
ering time), and (3) a common model fitted to all cultivars (common 
model). We evaluated the three approaches for their accuracies in pre
dicting flowering dates. The cultivar-specific approach follows conven
tional protocols when fitting a phenology model. The common model 
approach is to explore whether a large dataset from combining all 
different apple cultivars improves model performance. The K-means 
approach is an intermediate between the cultivar-specific and common 
model approaches and is used to determine if cultivars can be grouped 
together using a naïve clustering method based on pattern similarities in 
their mean flowering dates. We hypothesise that the cultivar-specific 
approach will prove to be the most accurate in predicting flowering 
dates, followed by K-means grouped and the common approach. Finally, 
we use the best of the three approaches and compare it to the StepChill 
model to assess if the PhenoFlex model can achieve comparative results.
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2. Materials and methods

2.1. Flowering data

The flowering time of twenty-six apple cultivars have been recorded 
from East Malling, United Kingdom, over the last eighty-five years. The 
flowering data collected for each cultivar ranged between eighteen to 
eighty-five years. Some records are shorter than others as some cultivars 
may have been recorded earlier than others, discontinued or are newer 
cultivars. Due to the apples being monitored from one site, we can limit 
the environmental variation within our dataset and directly determine 
the variation between apple cultivars. The specific years are indicated in 
Table 1 and depicted in Fig. 1. For each cultivar, their date of the first 
flower (BBCH 60, according to the BBCH-scale for fruit phenology 
(Meier et al., 1994)), will be used for modelling purposes as the first 
flowers are less affected by environmental conditions other than tem
perature (Darbyshire et al., 2016; Pope et al., 2014). The flowering dates 
are either an average of four trees of the same cultivar or an individual 
tree, depending on the data availability. The number of trees are 
recorded in Table 1. The cultivars are grown on sixteen different root
stocks, which have not been used as a factor in the analysis as we assume 
flowering behaviour is determined by the scion.

2.2. Temperature data

Temperature records were obtained from the East Malling weather 
station (51.2876◦N, 0.4486◦E, 33 m above mean sea level), an official 
UK Meteorological Office Station. The orchards were located within 
0.75 miles east and 0.31 miles north, 0.21 miles west, 0.18 miles south of 
the weather station. Fluctuations in hourly temperatures in a day follow 
typical patterns between maximum and minimum daily temperatures. 

These patterns can be modelled by a sine function for daytime warming 
and logarithmic decay for nighttime cooling, respective to a specific 
geographical latitude. A simulated approach following these patterns 
was used to generate missing hourly temperature values (Luedeling 
et al., 2021; Luedeling and Fernandez, 2022). Data from 1935 to 1999 
are recorded as daily maximum and minimum temperatures so the 
simulated approach was used to generate hourly temperatures for all 
hourly observations between 1935 and 1999. These generated hourly 
temperatures were also used to fill in missing hourly datapoints from 
2000 to 2021. Overall, 72.15 % of the data was formed by the simulated 
approach, 27.84 % was of real data values. The remaining 0.011 % is 
due to the inability to simulate hourly temperatures due to missing daily 
minimum and maximum temperatures. In total this accounts to three 
days and five hours of data which is unlikely to significantly affect model 
predictions. The hourly data from 2000 to 2021 was mostly complete. It 
consists of 99.8 % of real temperature values, 0.24 % in simulated data 
and a negligible amount in missing temperatures (28 hours).

2.3. Model formulation

2.3.1. PhenoFlex model
The PhenoFlex model, implemented in the PhenoFlex_GDHwrapper 

() function from the chillR package, integrates the framework from the 
Dynamic model and the GDH model (Luedeling and Fernandez, 2022). 
The PhenoFlex model (Luedeling et al., 2021) is fitted with twelve pa
rameters, with the parameters for the chilling requirement (yc), the heat 
requirement (zc) and slope (s1) linking the Dynamic and GDH models.

The heat accumulated at any point in time (t) is calculated by the 
PhenoFlex model equation, incorporating the total heat accumulated so 
far (z) and a portion of the GDH function over the elapsed time and 
temperature (T) (Luedeling et al., 2021). Py(y) is a function following a 

Table 1 
Summary of the range of flowering time data available from East Malling, the total number of years and number of datapoints used to train and test each model for each 
of the twenty-six cultivars. The table is split by K-means clustering on mean flowering dates and variation across years. The last column represents the standard 
deviation of flowering.

Cultivar Starting 
year

Ending 
year

Total 
years

Tree 
(n)

Number of years 
(training)

Number of years 
(testing)

Standard deviation of flowering 
dates

Group 1

Beauty of Bath 1948 1965 18 5 13 5 9.89
Crispin 1970 2021 51 5 36 15 9.75
Egremont Russet 1970 2021 52 5 36 16 10.53
Greensleeves 1984 2021 38 3 27 11 9.89
Idared 1984 2021 34 4 24 10 10.27
James Grieve 1972 2021 49 5 34 15 9.35
Jonagold 1984 2021 38 5 27 11 9.12

Group 2

Edw7 1946 1969 24 13 17 7 7.27
Howgate Wonder 1960 2019 54 3 38 16 7.74
Lanes Prince Albert 1960 2021 62 3 43 19 8.30
Laxton’s Superb 1950 1980 25 3 18 7 7.35
Tydeman’s early 

Worcester
1950 1987 31 5 22 9 7.55

Tydeman’s late Orange 1950 1980 26 5 18 8 6.85
Worcester Pearmain 1944 2021 70 11 49 21 8.16

Group 3

Bramley’s Seedling 1936 2021 81 9 57 24 8.90
Cox’s Orange Pippin 1936 2021 85 17 59 26 9.19
Discovery 1970 2021 50 5 35 15 8.84
Elstar 1991 2021 29 1 20 9 7.88
Fiesta 1991 2021 31 2 22 9 8.16
Gala Mondial 1991 2021 30 2 21 9 7.64
Golden Delicious 1970 2020 51 4 36 15 9.17
Jupiter 1988 2021 34 1 24 10 7.95
Katy 1984 2021 37 2 26 11 8.67
Malling Kent 1972 2021 50 5 35 15 8.98
Spartan 1984 2020 36 2 25 11 8.82
Suntan 1973 2021 49 6 34 15 9.52
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sigmoidal pattern which determines the proportion or size (s) of heat 
that can be accumulated, as a function of the accumulated chill (y) 
(Luedeling et al., 2021). The inflection point is determined by the crit
ical chilling threshold (yc) and the slope of the transition is determined 
by the parameter s1. Large values of s1 indicates lower levels of overlap 
and vice versa.

Six of the twelve PhenoFlex parameters are associated with the Dy
namic model. The hypothetical process to form and destroy the pre
cursor to the dormancy-breaking factor (PDBF) follows Arrhenius law. 
E0 and E1 represent the time-independent activation energy, and A0 and 
A1 refer to the amplitude of the function. E0 and A0 contribute to PDBF 
formation, while E1 and A1 are involved in PDBF destruction. When x 
reaches 1, a portion of the PDBF is converted to a stable chilling portion 
where it cannot be destroyed by warm temperatures (Erez and Cou
villon, 1987). The pseudo-intermediate (x) is calculated as a function 
over time, where t is the new time and tj is the level of x at time j. The 
portion converted is determined by a sigmoidal function with the in
flection point at Tf and slope governed by the slope parameter (Erez and 
Couvillon, 1987).

Three parameters are associated with the GDH model. The contri
bution to heat accumulation is dictated by the optimal temperature (Tu), 
the upper temperature limit (Tc) and the lower temperature limit (Tb) 
(Anderson et al., 1985). The difference between optimal and lower 
temperatures are multiplied with a function which determines the 
effectiveness of GDH in driving the biological process under consider
ation (Anderson et al., 1985).

2.3.2. StepChill model
The five-parameter StepChill model was fitted with the StepChill_

Wrapper() function from the chillR package (Luedeling and Fernandez, 
2022). The first parameter is the chilling threshold (Tc). Any tempera
ture lower than Tc does not contribute to chilling function (CF); tem
peratures above Tc contributes 1 to the CF (Eq. 1). 

CF(T) =
{

0
1

T ≤ Tc
T > Tc

(1) 

Chilling hours accumulate until it reaches the chilling requirement 
(C☆), the second parameter of this model. The heat (forcing) model then 
begins and is represented by Eq. 2. This function determines the amount 
of heat contributed by the temperature (x). In the simplified version of 
the Unified model, the StepChill function sets parameter a to 0. The third 
and fourth parameters, b and c, affect whether the sigmoidal curve starts 
positive and shifts to negative or vice versa and at what temperature this 
shift occurs. The fifth coefficient F☆ represents the heat requirement 

and budbreak occurs when the heat accumulated reaches F☆ (Chuine, 
2000; Luedeling and Fernandez, 2022). 

Heat(T) =
1

1 + ea(x− c)2+b(x− c)
(2) 

2.4. Model optimisation and performance evaluation

The flowering data was split into a training dataset and a test dataset 
by randomly selecting 70 % of the years for each cultivar and leaving the 
last 30 % of the unselected data for the test dataset. This split was done 
for each cultivar then the split was maintained for subsequent model 
fitting and comparisons between approaches.

Specific models were fitted to the corresponding training data with a 
simulated annealing algorithm, wrapped in the phenologyFitter() 
function from the chillR package (Luedeling and Fernandez, 2022). The 
simulated annealing mechanism generates model parameters for the 
model chosen, then aims to reduce the residual sum of squares (RSS) by 
choosing a new set of model parameters. This process is repeated up to 
1000 times or until there are no improvements after 250 iterations. The 
best fit model was then bootstrapped 99 times with the function boot
strap.phenologyFit() in the chillR package (Carsten et al., 2022; Lued
eling and Fernandez, 2022). The standard errors for the parameters were 
calculated on the 99 bootstrap values and the original set of fitted 
parameter values. This process was repeated at least seven times using 
different starting parameters as the PhenoFlex model results can be 
sensitive to the initial parameters. The reported results were from the 
run with the smallest residual sum of squares (RSS).

Fitted models were evaluated with Akaike information criterion 
(AIC) (Burnham and Anderson, 2003), model efficiency (EFF) (Nash and 
Sutcliffe, 1970) and RMSE for both the training and test datasets. AIC is a 
measure of model goodness of fit that considers the number of param
eters in the fitted model. The function AICc contains a penalty term 
adjusting for small sample sizes (Eq. 3). 

AICc = 2k+ nlog
(

RSS
n

)

+
2k2 + 2k
n − k − 1

(3) 

The number of parameters is represented by the letter k, the number 
of samples, n, and the residual sum of squares, RSS. AICc will be used to 
assess the fitted models and their parameters and determine the model 
that minimises information loss. AICc values are relative to each other, 
the smaller the AICc value, the better.

The model efficiency (EFF) compares models that were fitted to the 
same training dataset. The efficiency is the ratio between the residual 
sum of squares and the squared sum of the differences between the 

Fig. 1. Year range for each of the twenty-six cultivars, shown as black bars. The data highlighted in grey indicate simulated temperatures using latitude and 
maximum and minimum daily temperatures. The unhighlighted area represents temperature data from real recorded hourly temperatures, supplemented with 
simulated data where there are missing hourly values. The dashed lines indicate the specific years in which the three days and five hours of missing data occurs.
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observed values and the mean (Eq. 4). 

EFF =
RSS

∑
(ti − t)2 (4) 

Root mean squared error (RMSE) is a commonly used metric of 
prediction accuracy. AIC and EFF can only be used to compare between 
models fitted with the same dataset, while RMSE can be used to compare 
between models. This is why RMSE is used to evaluate our test dataset.

Due to differences in the amount of flowering data for each cultivar, 
the Ratio of Performance to InterQuartile distance (RPIQ) was used to 
standardise the prediction errors against the variation of the observed 
flowering dates.

2.5. Comparative modelling

2.5.1. Comparing PhenoFlex models between apple cultivars
Firstly, PhenoFlex models were fitted to individual cultivars, and 

thus the model was fitted to twenty-six test datasets (one for each 
cultivar). Next, K means clustering was applied on mean flowering dates 
and their variation across years to determine flowering groups. K-means 
clustering is an unsupervised method which assigns each observation 
into a group based on their similarities with other observations in the 
same group. Principal Component Analysis (PCA) of standardised Z 
scores were used for interpretability and visualisation. PhenoFlex 
models were then fitted to each flowering group of cultivars as identified 
by the K-means clustering. Finally, a single PhenoFlex model was fitted 
to all twenty-six cultivars. Model performance, particularly for the test 
datasets, was then evaluated and compared among the three sets of 
models.

2.5.2. Comparing PhenoFlex and StepChill models using common 
parameters

In addition to the common PhenoFlex model, a common StepChill 
model was fitted to the pooled training data of all twenty-six cultivars. 
The common PhenoFlex and StepChill models were then assessed for the 
performance.

2.5.3. R version
The analysis was run on R version 4.3.2 (2023–10–31 ucrt). Model 

fitting and bootstrapping was run on a high throughput computer 

running R version 4.2.3 (2023–03–15).

3. Results

3.1. PhenoFlex models fitted to individual cultivars

Cultivar-specific parameter estimates for the PhenoFlex model 
(Table S1) were used to predict flowering dates for individual cultivars. 
The parameters were derived from running the model 10 times with 
different starting parameters. The parameters were selected from the 
runs with the lowest RSS for each cultivar. The average RSS was 1194.15 
± 103.69 for the specific model.

The PhenoFlex model fitted well to the individual training datasets of 
twenty-six cultivars, resulting in an average RMSE of 6.15 ± 0.22 days 
and an R2 value of 0.99 (Table S2 and Fig. 2A). A decline in model 
performance (RMSE 13.8 ± 0.53 days) was observed when the fitted 
model was used to predict flowering date on the test datasets (Fig. 2B). 
The resulting R2 value was negative (-3.93), indicating a poor model fit. 
Poor model performance was particularly apparent for ten cultivars: 
Cox’s Orange Pippin, Egremont Russet, Fiesta, Golden Delicious, 
Greensleeves, Katy, Malling Kent, Spartan, Tydeman’s Early Worcester, 
and Worcester Pearmain, with RMSEs above 13 days. When these ten 
cultivars were excluded, the R2 value of the test data improved to 0.43.

Linear regression with forwards and backwards selection were used 
to determine which of the twelve PhenoFlex parameters are correlated 
with high RMSEs. There were no significant correlations between high 
RMSE and any of the twelve parameters.

Of the twenty-six cultivars, seven cultivars – Egremont Russet (5.12 
± 1.26 days), Gala Mondial (4.54 ± 1.58 days), Howgate Wonder (4.49 
± 1.25 days), Jupiter (4.95 ± 1.34 days), Katy (6.42 ± 1.88 days), 
Lane’s Prince Albert (5.44 ± 1.22 days) and Malling Kent (4.42 ± 1.16 
days) – resulted in test data RMSEs smaller than the standard deviation 
of flowering dates between years. The RPIQ of the cultivar-specific 
PhenoFlex model was 1.64 for the training data but only 0.75 in the 
test data (Table S2).

3.2. PhenoFlex models fitted to groups of cultivars as identified by mean 
flowering dates and variation across years

The cultivars separated well in the first two dimensions of the PCA 

Fig. 2. A comparison of the mean observed and predicted bloom dates using cultivar-specific parameters on the PhenoFlex model on A) training data and B) test 
data. The dashed line represents the line of equality or the y = x relationship between the x and y coordinates. The square points in B represent cultivars which have 
RMSEs greater than 13 days.
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scores (Fig. 3A), with three clusters identified using the silhouette 
method (Fig. 3B). Group one contained 7 cultivars with 280 flowering 
dates, group 2 contained 7 cultivars with 292 flowering dates and group 
3 contained 12 cultivars with 563 flowering dates (Table 1). We applied 
K-means on mean flowering dates and variation across years to divide 
the cultivars by their flowering behaviours. The variance of flowering 
patterns in group 1 were the highest at 9.48 days, followed by group 3 at 
8.96 days and lastly group 2 at 5.36 days. The cultivars from group 1 
contains the least genetic variability with a total of 32 trees, followed by 
group 2 with 43 trees and group 3 with 56 trees (Table 1).

We fitted PhenoFlex models for three groups of cultivars identified 
via K-means clustering of the means and variations of flowering dates 
(Fig. 4A). The model was run 10 times, each with different initial pa
rameters. The average RSS identified from the 10 runs on the mean 
flowering time groups were 19507.29 ± 201.39, 5661.96 ± 111.61 and 
2911.12 ± 209.45 for groups 1, 2 and 3, respectively. Group 1 consists 
mostly of cultivars which bloom earlier in the season, group 3 consists of 
cultivars blooming late in the season, and group 2 contains cultivars 
which bloom sometime in between. As the groups were split by their 
mean flowering dates, R2 values are not that relevant, but were reported 
to be 0.51, 0.58 and 0.33 on the training data and 0.54, 0.74 and -0.06 
for the test data for groups 1, 2 and 3, respectively. Evaluation against 
the test datasets showed the best model performance among the three 
model approaches. The RMSE for groups 1,2 and 3 were 9.68 ± 0.69, 
4.98 ± 0.35 and 8.42 ± 0.43 days on the training data, respectively. The 
RMSE remains consistent on the test dataset, at 5.46 ± 0.60, 4.34 ± 0.47 
and 5.50 ± 0.42 days for groups 1, 2 and 3, respectively (Fig. 4). The 
average RMSE for the three groups were all less than the standard de
viation of the interannual flowering dates, so these model parameters 
identified were significantly better than taking the average flowering 

date of each cultivar. The mean flowering date approach is a significant 
improvement on the predictive accuracy of flowering dates compared to 
using cultivar-specific parameters. The RPIQ of the mean flowering time 
groups 1, 2 and 3 were 1.06, 1.60 and 1.11, respectively (Table S2). 
Their RPIQs improved when applied to the test dataset (group1 = 1.75, 
group 2 = 1.86 and group 3 = 1.55). Overall, the mean flowering date 
clustered groups performed better than the cultivar-specific model.

The mean flowering clustered groups performs well but are out
performed by the cultivar-specific model predictions on four cultivars 
(Beauty of Bath, Edw7, Greensleeves and Katy) on the training data 
(Fig. 6A). In the test dataset, the mean flowering clustered group out
performed both the cultivar-specific and common model approaches in 
all but Beauty of Bath (Fig. 6B).

3.3. A common PhenoFlex model fitted to all cultivars

The common model was run 7 times with various initial parameters. 
The average RSS identified across the seven runs was 60431.79 ±
785.74. The standard error is higher than the previous approaches, 
likely because the model needs to allow for larger errors to fit a more 
generalised model with more cultivars. The common model perfor
mance on the training data was 8.62 ± 0.31 days, with an R2 value of 
0.44 (Fig. 5). Its performance on the test data yielded a RMSE of 5.64 ±
0.30 days and R2 of 0.53, which was better than cultivar-specific model 
performance. Unlike the specific model, which predicts bloom dates 
later than the observed bloom date, the common model predicts flow
ering time around the observed flowering date (Fig. 5). The RPIQ 
observed for the common model was 1.16 for the training data and 1.67 
for the test data. This RPIQ is on par with the RPIQ observed using 
clustered mean flowering dates. The common model produced smaller 

Fig. 3. A) K-means clustering presented in a PCA plot for mean flowering time and flowering variation across years for the twenty-six cultivars. B) Silhouette plot 
indicating three optimal clusters.
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RMSE than the standard deviation of flowering time for all cultivars, 
suggesting that model predictions are better than taking the average 
bloom date for each cultivar.

The cultivar-specific model was able to more accurately predict 
bloom dates better on the training data (Fig. 6A), but the common model 
predictions outperformed the cultivar-specific model predictions or 
were the same between model approach predictions in the test dataset 
(Fig. 6B). The common model approach was outperformed by the mean 
flowering cluster approach on Greensleeves and Laxton’s Superb 
(Fig. 6B).

When there are large numbers of data per cultivar (more than 30 
years), the cultivar-specific approach does well in predicting bloom 
dates. When there are around 20 years of data, the mean bloom date 
cluster performs well since this method increases the number of data
points by including more cultivars. When there are only few numbers of 
years per cultivar (approximately 10 years), but many cultivars are 

present, it is better to apply the common approach (Table S3).

3.4. Comparison of the common PhenoFlex and StepChill models

Fitting the training the data with the StepChill model resulted in an 
average RMSE of 9.60 ± 0.34 days and an R2 of 0.52 (Fig. 7A). The 
common StepChill model did not predict bloom dates well for the test 
data, resulting in a RMSE of 32.4 ± 0.46 days and R2 of -30.86. All 
predicted flowering dates were later than the observed bloom date 
(Fig. 7B). Overall, the PhenoFlex model predicted flowering dates 
82.59 % more accurately than the StepChill model. This agrees with the 
observed RPIQ values. The common StepChill model produced smaller 
RPIQ (0.29) on the test dataset compared to the common PhenoFlex 
model (Table S2).

AICc model selection was used to select between possible models 
which were trained on the same dataset and the Nash-Sutcliffe efficiency 

Fig. 4. A comparison of the observed and predicted bloom dates of cultivars grouped by K-means clustering on mean flowering and variation on the PhenoFlex model 
for A) training data and B) test data. The dashed line represents the line of equality or the y = x relationship between the x and y coordinates.

Fig. 5. A comparison of the observed and predicted bloom dates using common parameters on the PhenoFlex model on A) training data and B) test data. The dashed 
line represents the line of equality or the y = x relationship between the x and y coordinates.
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of the model was used to quantify the predictive effectiveness of a 
model, with a good efficiency being close to 1. The common PhenoFlex 
model with twelve parameters was deemed to be better than the Step
Chill model with five parameters as PhenoFlex model AICc (3438.53 ±
5.29) was lower than StepChill model AICc (3611.21 ± 4.65), and the 
PhenoFlex model efficiency (0.27 ± 0.003) was higher than StepChill 
model efficiency (0.08 ± 0.004).

The common PhenoFlex model was more reliable as it was able to 
predict bloom dates for all the years, but the common StepChill model 
was unable to predict 2 datapoints from 1950 on the test dataset.

4. Discussion

In this study, we used a large collection of flowering dates of twenty- 
six apple cultivars at East Malling, Kent, England to fit PhenoFlex models 
to predict flowering time, and to compare the PhenoFlex and StepChill 
models that were fitted to the training data of all twenty-six cultivars.

Predictive performance of cultivar-specific approach is the worst of 
the three modelling approaches, with large RMSEs (13.8 ± 0.53 days). 

Most predictions were worse than taking the average bloom dates of 
each cultivar as the predicted bloom date. Flowering predictions for 
seven of twenty-six cultivars were better than taking the average flow
ering date. The groups identified by applying K-means on mean flow
ering dates and their variation were significantly better than using the 
cultivar-specific model. The model predictions were better than taking 
the average bloom dates for each cultivar. The common model per
formed as well as the second approach, with similar RMSEs and RPIQ.

We can speculate that the difference in model performance results 
from model overfitting on training data of smaller datasets, excessive 
model complexity and noisy training data, with more emphasis placed 
on the first two factors. Cultivar-specific models tended to do well when 
the dataset is large (approximately 30 years or more of training data per 
cultivar), the mean flowering date grouped model did well with at least 
20 years of training data per cultivar and the common model does well 
with even less training data per cultivar. Small datasets can restrict the 
optimisation functions’ performance, increasing the chance that the 
model parameters converge at a local minimum rather than the global 
minimum. In the present study, flowering data were only available for a 

Fig. 6. Comparison of RMSE of the cultivar-specific, mean flowering grouped and common models for A) the training data and B) the test data. The graphs are 
separated by whether the specific (S), grouped by mean flowering date (M) or common (C) models perform better. When two of the approaches perform equally well, 
two letters are shows (M&S and C&M) or whether there is no difference between approaches (All).
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limited number of years for several cultivars and for some, flowering 
dates were only observed for a limited number of trees, thus limiting the 
genetic influence on flowering time. Another reason could be the large 
variability in flowering dates between years for some cultivars or vari
ability in flowering dates between cultivars in the same year, which 
could make parameter convergence difficult in model optimisation. 
Problems associated with small datasets are further exacerbated when 
complex models are fitted.

The common PhenoFlex model performs as well as previous litera
ture since its average RMSE (5.64 ± 0.30 days) is comparable to pre
vious results predicting flowering dates for Boskoop (RMSE = 4.2 days), 
Cox’s Orange (RMSE = 5.7 days), Golden Delicious (RMSE = 5.12 days), 
Jonagold apples (RMSE = 4.57 days) (Drepper et al., 2020) and Crispps 
Pink apples (RMSE = 14.7 days) (Darbyshire et al., 2016) using the 
Dynamic and GDH models sequentially. However, previous application 
of the PhenoFlex model on a single cultivar (Boskoop apples with RMSE 
= 3.82 days) (Luedeling et al., 2021) attained better predictive accuracy 
than our grouped and common models. As discussed above, the size of 
available data and number of individual trees are key factors affecting 
model predictive performance. A potential improvement for the com
mon model would be to retain the CR and HR of the individual models 
but identify a common set of parameters for the other 10 parameters. In 
theory, this would be the best common model as previous studies agree 
that CR and HR are species specific (Perry, 1971).

Present modelling suggested that cultivars differ in the exact Phe
noFlex model parameter estimates, although grouped by mean flower
ing date and variation of bloom dates and common PhenoFlex model led 
to more accurate predictions than the cultivar-specific model. Pre
dictions given by both approaches were more or less balanced (namely 
varying around the observed dates). In contrast, cultivar-specific models 
predicted flowering later than the observed. Consistent large over
predictions (bias) may suggest model under-fitting. Small datasets may 
be the cause of poor predictive performance of cultivar-specific models. 
Under-fitting is more likely due to the fact that the data do not contain 
sufficient information on the generic feature due to large differences in 
the generic features between cultivars.

We grouped cultivars together based on their mean flowering date 
and variation of bloom dates. A previous study attempted a similar 
modelling approach with several phenology models to predict apricot 
flowering time, but they did not find good predictive results from 
modelling at the species level (common model approach) (Andreini 
et al., 2014). They found good results when split into smaller precocity 
groups for early, intermediate and late flowering, which is similar to 
what we observe in our current study. We speculate that our common 
model works well because our data originates from one site, thus 

reducing the generic variability and difference in response to different 
conditions.

Drepper et al. (2020) identified much larger chilling and heat re
quirements for Coxs Orange Pippin (CR = 79.6 and HR = 4430), Golden 
Delicious (CR = 59.84 and HR = 4980), Jonagold (CR = 60.66 and HR =
4980) and Boskoop (CR = 59.16 and HR = 4430). This agrees with the 
chilling (45) and heat (8500) requirements used by Darbyshire et al., 
(2016) on Boskoop apples. Using a combined chilling and heat model 
which can adjust for the overlap between the models appears to lower 
the chill and heat requirements for flowering by 2- to 3-fold. Luedeling 
et al., (2021) identified parameters very similar (CR = 25.4 ± 3.2 and 
HR = 348 ± 31) to the parameters identified in our common model 
(Table 2) as well as similar levels of overlap as shown by their s1 value of 
1 ± 22. The common model implements a large overlap between the 
chilling and heat models, as indicated by the smaller s1 parameter (0.55 
± 0.08). The present model is more likely to have a greater level of 
overlap as the s1 parameter estimate has a much smaller standard error 
than in Luedeling et al. (2021).

The common PhenoFlex model had much better predictive perfor
mance than the StepChill model. Although both models had similar 
goodness of fit for the training dataset, the StepChill model had much 
worse predictive performance, predicting flowering dates much later 
than observed. Moreover, for 1950, it failed to predict flowering time. 
The large bias in predictions indicated a model underfitting, suggesting 
that the model formulation does not capture much of the generic re
sponses of apple flowering development in response to temperature.

In our study, we generated over 70 % of hourly temperature data 
using the recorded daily maximum and minimum temperatures 
following a sine curve for warming and logarithmic decay for cooling 
temperatures in our data prior to year 2000 as temperatures were only 
recorded as daily maximum and minimum values. In doing so, we must 
assume that temperatures more or less follow these trends for warming 
and cooling. Since our models are parameterised on our data, our models 
are only as good as our simulated data. In this current study, we are 
comparing the effectiveness of the three approaches in predicting 
flowering date, and since the hourly temperatures are the same for all 
approaches, this would unlikely impact the comparisons between 
models. Nevertheless, it would be informative to repeat this experiment 
with non-simulated hourly temperatures to understand the impact of 
using simulated hourly data on model fitting and performance.

5. Conclusion

The present research showed that the PhenoFlex model approach is 
an improved approach over the StepChill model to predict apple 

Fig. 7. A comparison of the observed and predicted bloom dates using common parameters on the StepChill model on A) training data and B) test data. The dashed 
line represents the line of equality or the y = x relationship between the x and y coordinates.
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flowering development in relation to temperature, as concluded from 
higher EFF and lower AICc and RMSE values. Moreover, the common 
PhenoFlex model had no failed predictions. Contrary to our hypothesis, 
we find that the common PhenoFlex model and cultivars grouped by 
mean flowering time results in the best predictive accuracy and highest 
RPIQ compared to the cultivar-specific approach. Grouping cultivars by 
similar flowering dates can be used to adjust for low numbers of data in 
individual cultivars or grouping all data of a species from one region will 
yield better results than modelling each cultivar independently. Much of 
the poor model performance may be associated with small data sizes for 
fitting a complex model such as the PhenoFlex model with 12 parame
ters. In future, we should develop PhenoFlex models with a much- 
increased dataset through merging data from different locations as 
well as formulate specific CR and HR for each cultivar whilst having 
common values for the other 10 parameters.
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1735, 545–576.

Richardson, E.A., 1974. A model for estimating the completion of rest for ’Redhaven’ and 
’Elberta’ peach trees. HortScience 9, 331–332. https://doi.org/10.21273/ 
hortsci.9.4.331.

Shaltout, A.D., Unrath, C.R., 1983. Rest completion prediction model for ‘Starkrimson 
Delicious’ apples. J. Am. Soc. Hortic. Sci. 108, 957–961. https://doi.org/10.21273/ 
jashs.108.6.957.

Shultz, S., 2003. Apples. J. Agric. Food Inf. 5, 77–84. https://doi.org/10.1300/ 
J108v05n04_08.

H. Tang et al.                                                                                                                                                                                                                                    European Journal of Agronomy 160 (2024) 127319 

11 

https://doi.org/10.1093/treephys/25.1.109
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref15
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref15
https://doi.org/10.1093/oxfordjournals.aob.a084891
https://doi.org/10.1093/oxfordjournals.aob.a084891
https://doi.org/10.1007/s00484-010-0352-y
https://doi.org/10.1007/s00484-010-0352-y
https://doi.org/10.1016/j.agrformet.2021.108491
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref19
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref19
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref19
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref19
https://doi.org/10.5539/jps.v4n2p110
https://doi.org/10.21273/jashs.128.5.0636
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1126/science.171.3966.29
https://doi.org/10.17660/actahortic.2004.662.4
https://doi.org/10.17660/actahortic.2004.662.4
https://doi.org/10.1016/j.agrformet.2014.07.009
https://doi.org/10.1007/s00484-006-0043-x
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref27
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref27
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref27
http://refhub.elsevier.com/S1161-0301(24)00240-5/sbref27
https://doi.org/10.21273/hortsci.9.4.331
https://doi.org/10.21273/hortsci.9.4.331
https://doi.org/10.21273/jashs.108.6.957
https://doi.org/10.21273/jashs.108.6.957
https://doi.org/10.1300/J108v05n04_08
https://doi.org/10.1300/J108v05n04_08

	Evaluating the performance of models predicting the flowering times of twenty-six apple cultivars in England
	1 Introduction
	2 Materials and methods
	2.1 Flowering data
	2.2 Temperature data
	2.3 Model formulation
	2.3.1 PhenoFlex model
	2.3.2 StepChill model

	2.4 Model optimisation and performance evaluation
	2.5 Comparative modelling
	2.5.1 Comparing PhenoFlex models between apple cultivars
	2.5.2 Comparing PhenoFlex and StepChill models using common parameters
	2.5.3 R version


	3 Results
	3.1 PhenoFlex models fitted to individual cultivars
	3.2 PhenoFlex models fitted to groups of cultivars as identified by mean flowering dates and variation across years
	3.3 A common PhenoFlex model fitted to all cultivars
	3.4 Comparison of the common PhenoFlex and StepChill models

	4 Discussion
	5 Conclusion
	Formatting of funding sources
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	Appendix A Supporting information
	References


