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Abstract—The Approximate Computing (AC) model is used
by contemporary real-time systems to balance accuracy and
system resource constraints better while completing a set of time-
sensitive tasks within a deadline. These AC assignments include
both necessary and optional components. To achieve satisfactory
results, the optional components can be carried out entirely or
partially depending on the available resources. Considering a
real-time multiprocessor system, for a set of interconnected AC
tasks with deadlines and an energy budget, creates a workable
schedule to execute the necessary and optional components of
tasks to meet an anticipated quality of service (QoS) level.
However, during execution, if a malware attack or bug affects one
or more processor cores, the system may stop working altogether
after deployment, causing unanticipated power outages or pro-
cessing delays that prevent the system from finishing its task by
the deadline. The goal of our proposed methodology REALITY
is to investigate the possibility of intelligently rescheduling a
set of dependant AC tasks upon detection of any anomalous
situation, running in multi-core systems under system-wide con-
straints to maintain acceptable levels of QoS. During execution,
REALITY monitors the operational behaviour of the processing
cores by collecting Hardware Performance Counters (HPCs) and
identifying any irregularities through an ML-powered anomaly
detection mechanism. Upon detection, it applies remedial actions
by intelligently rescheduling the tasks leveraging the Proximal
Policy Optimisation (PPO)–based Reinforcement Learning (RL)
algorithm while maintaining 70% QoS.

Keywords—Approximate computation (AC), energy-aware
scheduling, quality of service (QoS), Precedence-constrained Task
Graphs (PTGs), Normalised QoS (NQ), Hardware Performance
Counters (HPCs), Graph Attention Networks (GAT), Proximal
Policy Optimisation (PPO).

I. INTRODUCTION

IN real-time systems, it is better to have partially accu-
rate results within a deadline rather than fully accurate

results obtained beyond it. For example, lower-quality frames
acquired before a deadline are better than missing any frames
altogether in video streaming applications [1]. The applications
that are currently operating on these platforms are typically
represented as Precedence-constrained Task Graphs (PTGs)
[2], in which each task is represented as a node, and tasks’
relationships are indicated by edges. Even though real-time
embedded systems typically have limited resources, operate
on battery power, and have restricted energy budgets, they still
need to deliver superior performance and excellent service. [3].
If the system is unable to produce an accurate result on time,
the same can be accomplished by producing an acceptable
approximated result within a deadline leveraging Approximate
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Computing (AC) task model [4]. This method divides a task
into optional and necessary components [1]. All necessary
component execution must be finished by the deadline to
obtain the minimum acceptable quality of service (QoS) level.
The optional component can then be executed entirely or in
part, based on available resources, to improve the accuracy of
the initial output produced by the deadline. The QoS increases
as more execution cycles are used on the optional component.

The challenge of energy-efficient real-time AC task schedul-
ing is to improve performance while respecting underlying
system constraints, which has been the subject of recent
research. Authors in [5] proposed a scheduling mechanism
that, in situations where the energy budget is constrained,
accepts imprecise results and executes additional computa-
tions when there is more energy available. Their research
is restricted to autonomous tasks, though. The authors of
[6] and [7] examined dependent AC tasks and recommended
using dynamic voltage frequency scheduling (DVFS) to create
energy-efficient scheduling strategies. However, when DVFS
reduces the supply voltage and frequency to conserve power,
the system’s soft error and transient fault rates increase sharply
[8], affecting the system’s reliability. A workaround was
proposed by Wang et al. [9] to find a optimal energy frequency
in multi-core processor platforms. Run-time errors frequently
cause faults in modern multiprocessor systems that hinder their
normal operation. Hardware trojan attacks and other intrusions
tend to slow down processor speed, which causes real-time
applications to miss deadlines [10]. In scenarios where the
energy budget is fixed, malware can also lead to intentional
power dissipation, which depletes the system’s energy budget
and makes it unusable [11]. To ensure that system execution
proceeds as intended, it is imperative to incorporate error-
resilient security modules that recognise these anomalies and
take appropriate action in real time to mitigate them. Hence,
Given an AC task graph and a multi-core processor system,
it is a challenging problem to successfully execute all asso-
ciated tasks within the specified deadline while minimising
runtime errors and meeting precedence- and energy-related
constraints.

In this paper, we propose REALITY, consisting of a
reliability-aware intelligent scheduler that ensures the system
maintains desired QoS in the presence of anomalies through
intelligent detection and mitigation procedures through opti-
mal scheduling. The choice of processing cores to schedule
the task execution efficiently while still maintaining the QoS in
the presence of faults varies widely on diverse target platforms
and intent. Intelligent schedulers based on supervised learning



necessitate a reasonable quantity of training data, whereas
another branch of ML namely Reinforcement Learning (RL)
distributes tasks to cores under diverse platforms and con-
straints and is independent of data and any apriori pre-trained
model, which makes it popular in scenarios with limited data
including dynamic scenarios which necessitates adaptation on
the fly. Specifically, RL creates an optimal policy through
continual interaction with the environment.

Few RL-based studies on task allocation for optimal power
and thermal management have shown promising results. They
[12], [13], [14], [15] leverage the well-known Q and deep
Q-learning algorithms for policy optimisation which is a
better fit for their application-specific parameters with discrete
state space. We have chosen a state-of-the-art PPO-based
RL algorithm [16] that matches our use case dealing with
QoS, time, and power measures as continuous parameters for
better performance with continuous state space. We considered
multi-core processor systems and dependent real-time AC
task-graph shown in Fig. 2. REALITY schedules the tasks by
allocating them to appropriate processing cores at specific time
instants. When extra power dissipation during task execution
is detected during runtime, or if a task cannot be completed in
the allotted time, causing a decrease in the desired QoS, the
anomaly detection module is activated. This enables it to detect
anomalies in the system (using a thorough analysis based on
the correlation among multiple observed HPCs), if any, and
marks the associated processing core as faulty. Subsequently,
as illustrated in Fig. 1, a new schedule is generated based
on the available energy budget, remaining execution time,
remaining idle processing cores and task list.

The following highlights our primary contributions:
1) REALITY schedules AC tasks by implementing the nec-

essary components and appropriate optional components
according to the available energy budget, deadline, task
and available processing cores.

2) Our intelligent graph attention network-based runtime
security mechanism correlates multiple observed Hard-
ware Performance Counters (HPCs) of a processing core
to identify abnormalities in processor performance.

3) For an AC task graph in a multiprocessor system,
our proposed RL framework utilises PPO to generate
an optimised task schedule which ensures successful
execution of all associated tasks within a specified time
constraint, minimising any runtime error arising out
of an anomaly while fulfilling energy and precedence-
related constraint achieving a high NQ of 70%.

II. SYSTEM MODELLING AND ASSUMPTIONS

Task modelling: Considering an embedded system platform
with n homogeneous processing cores C = {c1, c2, ..., cn}.
Taking a look at a real-time application (A) represented as a
directed and acyclic PTG (Fig. 2), which is expressed as Gr =
(Tk, Ed). The list of directed edges, Ed = {⟨Tki, Tkj⟩ | 1 ≤
i, j ≤ |Tk|; i ̸= j}, represents the list of tasks, and Tk denotes
a task set (Tk = {Tki | 1 ≤ i ≤ n}), illustrating the precedence
relationships among various task pairs. Task Tkj cannot begin

Fig. 1: REALITY Workflow

execution until Tki has finished, as indicated by an edge
⟨Tki, Tkj⟩, which indicates precedence.

Since this is a real-time application, for the entire applica-
tion (A) to meet its deadline, all associated task nodes must be
executed within the interval. Every task Tki (1 ≤ i ≤ n) was
broken down into two parts: an optional component Oi and a
necessary component Ni. To get a satisfactory outcome, the
required steps must be carried out. The optional component Oi

is only partially or fully executed after the required component
Ni has been finished.

The execution length for each task Tki can be expressed as:

Li = Ni + λ×Oi (1)

where λ, which denotes the percentage of the implemented
optional component, is a number between 0 and 1. As a
result, λ = 1 denotes the completion of all Oi units to yield
the most precise outcome. The quality of service (QoS) or
accuracy of results at the system level is determined by the
total number of Oi component cycles completed for each task.
Additionally, ni distinct task versions Tki are assumed; that
is, Tki = {Tki

1, Tki
2, . . . , Tki

vi}.
On the other hand, additional completion of the optional

part (which makes the task longer) will increase task accuracy,
which will raise the quality of service (QoS) of the system.
The scheduling objective is to run an enhanced version of each
task to maximise QoS.

III. THREAT MODELLING

Usually, threats originate from manufactured or natural
sources. Intruders are the ones who carry out intentional
manual threats; adversaries in the foundry could be an ideal
instance as they could introduce malware in firmware or
introduce hardware-based faults during the fabrication of the
multi-processor system, which could lead to a number of
issues like power draining, execution termination, and delays.
The list of dormant threats is as follows:



Fig. 2: The Task Graph

A. processing core termination

This might occur due to a runtime error or the introduction
of hardware trojan-like malicious software that stops it from
functioning as illustrated in Fig. 3b with the typical scenario
depicted in Fig. 3a.

B. Unexpected delay in task execution

The two potential causes are malware or ageing processor
hardware. This makes it impossible for the real-time system
to finish by the deadline, as Fig. 3c illustrates.

C. Intentional draining of power

Malware that adversaries have implanted typically causes
this. Deliberate malware has power-dissipating circuitry that
operates concurrently with the original circuit, in addition to
unintentional delays that cause extra power draining. Although
they might not have an impact on timing, if they are ignored,
they will cause excessive power consumption and eventually
deplete the energy budget of the system. If the energy budget
runs out in the early or middle phases, the PTG’s lowest-level
tasks won’t have enough energy to finish their tasks. Fig.3d
illustrates the system’s inability to complete the tasks before
the deadline DGr

.

D. Reduced QoS

An anomalous situation is indicated when the measured QoS
falls below a predetermined threshold (which is determined
empirically by conducting experiments for a specific percent-
age of utilisation).

IV. PROPOSED METHODOLOGY

REALITY module is composed of two major design blocks
namely the moniToRing and Anomaly deteCtion (TRAC)
block and the remedial RL-based scheduling block (Fig. 1).
Based on a predetermined regular schedule, REALITY begins
operating (process 1).

Fig. 3: Illustrating the threat Model

TRAC block (process 2) detects the threats by observing
the execution time, power consumption of each processing
core and measured QoS of the complete platform. The system
triggers the anomaly detection module in the TRAC block
if this exceeds the ground-truth documented values (of time
and power) and the observed QoS falls below a predetermined
threshold. If the anomaly is confirmed, the corresponding pro-
cessing core is marked as faulty, and the intelligent scheduler
is called upon to create a new fresh schedule based on the
available healthy processing cores at that moment and the
remaining energy budget (process 3).

A. Anomaly detection and Mitigation Implementation

Anomaly detection and its effects mitigation through appro-
priate scheduling are the two facets of our proposed security
implementation.

1) Alarm for Anomaly: Section III discusses the anomalies
arising from various threats. Three variables are used to
identify abnormal conditions: power, timing, and variations
in QoS.

Timing based alarm:
Intentional delays, ageing, and defects affect the timing pa-

rameter. If the observed execution time exceeds the predefined
time, an alarm is raised to activate the anomaly detection
module (Algorithm 1) TRAC.

Alarm based on Power and QoS: Intentional malware
consumes the system’s energy budget by dissipating exces-
sive power through separate, concurrently operating power-
dissipating processes that run alongside the original circuit.



Algorithm 1: safety precaution: moniToRing and
Anomaly deteCtion (TRAC)

Input: i. Observed execution Time and Power values
obtained from sensors,

ii. A defined QoS.
iii. Predefined Timing and Power information,
iv. Observed QoS.
Output: Labelling the processor core as healthy/faulty

1 for every Task Tki running on Processing core Ci do
2 if (Observed Power value > Predefined Power value) ∨
3 (Observed Timer value > Predefined Timer value) ∨
4 (Observed QoS < Defined QoS) then
5 The anomaly detection module is enabled;
6 if found FAULTY then
7 Processoring core Ci is marked faulty;
8 The proposed scheduler is called to schedule the

remaining tasks on the non-faulty healthy
processing cores;

9 else
10 Go to step 12;

11 else
12 continues to adhere to the established execution

schedule;

When the observed power consumption surpasses the pre-
defined power consumption, the security module detects it
and enables the anomaly detection module, which looks for
faults and marks the related processing core as faulty. The
remaining tasks on the unaffected processing cores are then
scheduled by the scheduler module ensuring execution within
the allocated energy budget and deadline. While scenarios
mentioned in subsection III-D arise, similar steps are repeated
to create a new schedule (Algorithm 1) TRAC. We trained
our graph neural net-based attention model using the virtual
and physical timer values generated at four different privileges
in the processing core during the execution of benchmark
programs. The specifics of this are outside the scope of this
paper.

2) Security Preservation: The scheduler module is rerun
after a processing core is identified as faulty to schedule
the outstanding tasks on the remaining unaffected processing
cores before the deadline and the allocated energy budget.
Figure 4 illustrates an instance of handling the reduction
in power-related threat handling procedure. As demonstrated
excessive power draining triggered an alarm of suspicious
events, activating the anomaly detection block. This block
then labels core 1 as faulty upon detecting an anomaly, which
causes Task 1 to fail to finish by the deadline. Subsequently,
REALITY requests a fresh schedule, which calls for finishing
all necessary tasks and easing the completion of optional ones.
This schedule is intended to schedule the completion of the
remaining tasks on the remaining, healthy processing cores
within the available energy budget and deadline as described
in the next subsection.

B. Proposed Timing and Energy constraint-based intelligent
task scheduling

In this subsection, we will discuss the RL-based scheduling
algorithm leveraged for generating fresh schedules at runtime
for allocating tasks (represented as nodes in the PTG Fig. 2)
at suitable processing cores. The PPO algorithm [16] is then
used to train the RL-based model with appropriate parameters,
which are covered later. These parameters include reward
functions, learning rates, and the number of time steps to
train. The training produces a task execution policy using
a pre-established deterministic emergency action sequence
specific to a domain. Subsequently, the task execution policy
is responsible for assigning the tasks represented as nodes in
the PTG (Fig. 2). While the parent nodes representing tasks
are done with their execution, its child node is allotted to an
idle core depending on the remaining energy budget and the
application deadline at that instance, else the task version with
the lesser optional component O (equation 1) is chosen.

1) RL-training parameters: To train the task set in an RL
environment, we require multiple parameters and functions as
described.

Reward function: A reward function can be defined in a
way that rewards good action selection with a positive reward
and penalises actions that lead to suboptimal states. Below
is a description of the reward function’s various component
equations. Each complete task is characterised by an arrival
time, start time, execution length and the instruction count
given by Tki = (Ai, Si, Li, Ii). The execution length Li for
task i with version vi is expressed as:

Li = Si + (
Ii

IPC
)vi (2)

where IPC is the instructions per cycle. Therefore the dead-
line penalty T for the task i is expressed as:

p(T ) = min(0, Ti − (Si + Li)) (3)

and the power penalty is computed as:

p(P ) = −(Svi,vj + Li(
d

dt
P )vj ) (4)

where the power changing rate of task i with version vj
is given by d

dtP and the energy switching overhead from
task version vi to vj is Svi,vj . The deadline penalty for the
complete application A is given as:

p(TA) = min(0, DGr
−RTki × Li)) (5)

where application deadline is DGr
and RTki are the re-

maining tasks each with length Li.
These penalties are used to define the reward functions

where the model tries to minimise these penalties. The maxi-
mum energy is measured while a processing core is executing
the highest version of a task along with maximum switching
overheads S among versions if any and can be expressed as:

max(Eneg) = Li(
d

dx
P )vmax

+max(S) (6)



We again need to consider three different use cases to
formulate the reward functions. Case 1: where the task list
is empty (i.e. nothing to allocate), Case 2: Chosen core
for task allocation is invalid since it is already busy, and
Case 3: Core is available for chosen task allocation meant
for scheduling. The corresponding reward functions based on
these case studies need to be computed which consist of power
and deadline components of tasks and are expressed as:

Pow = 10(
max(Eneg) + p(P )

max(Eneg)
) (7)

D(T ) = 10(
p(T )

Ti −Ai
) (8)

D(TA) = 10(
p(TA)

D(Gr)−RTki × Li
) (9)

The computed reward functions for the 3 cases are:

Reward =


0, case1

10( Ai−t
Ti−Ai

), 10(
RTki−t

DGr−RTki
) case2

Pow +D(T ) +D(TA), case3

(10)

Learning rate: A hyper-parameter that affects the algo-
rithm’s convergence escalation is the learning rate. Most of
the time, the values are established empirically.

2) Proposed PPO algorithm-based training procedure:
(PPO) is a member of a family of policy optimisation
techniques that performs each policy update over several
stochastic gradient ascent epochs. When the number of states
and potential actions rises, the memory for storing state-
action pairs in traditional reinforcement learning (RL) methods
based on dynamic programming, such as Q-learning, rapidly
grows to enormous values. These algorithms cannot handle
the enormous state-action pair possibilities for instances where
the state space is continuous. Nonetheless, PPO handles these
situations effortlessly since trust-region optimisation is part
of its goal. Moreover, PPO allows for the processing of
gathered data across several epochs, thereby showing a faster
convergence and an increased robustness which motivated us
to utilise it for training.

Fig. 4: Threat handling procedure

Fig. 5: (a) Snapshot of HPC values of a processing core (b)
sudden increase in the loss curve for the reconstruction and

forecasting models upon detecting an anomaly (c)
Normalised QoS (NQ) variation in normal, attack and after

mitigation scenarios against utilisation percentages.

V. EXPERIMENTATION AND RESULTS

We used the autobench application in our study. A num-
ber of benchmark algorithms are included in the popular
automotive application package of the EEMBC benchmark
suite [17]. The applications that make up this application
are programmes, and each programme (referred to as PTG)
is made up of several dependent and independent functions
that we refer to as PTG tasks. Using the task graphs for free
(TGFF) tool, we generated the task graphs [18]. The ARM
MORELLO SoC prototype architecture’s new, experimental,
out-of-order CPU was developed using a homogeneous dual-
core processing cluster environment akin to Neoverse-N1
processors, used for our experiments [19].

A. Proposed RL components implementation

Our RL components consist of the environment, actions,
and reward functions and observations. We utilised the well-
known OpenAI gym framework [20] for generating our custom
gym environment providing all the necessary functionalities
for executing a learning agent. The agents action generate the
fresh schedules based on the number of idle cores, remain-
ing tasks, deadline and energy budget. The observation is
recorded as a (4xn) matrix consisting of the deadline, energy
budget, execution length and arrival time of each task, with n



the number of tasks. Following the training a task execution
policy is obtained which schedules the tasks on the fly.

B. Results

1) Related to anomaly detection: Figure 5(a) displays the
snapshot of HPC values that were obtained on a processing
core during the execution of a set of tasks from a benchmark
program. To create undesirable delays and miss the deadline,
we purposefully introduced a few unwanted programs. Since
it did not come across such a pattern of data from the HPCs
(physical and virtual timer counts) while training, the loss
function of the AI models shows a sudden increase, indicating
that REALITY assessed it as an anomalous instance and
enabled the anomaly detection block, as shown in Fig. 5(b).

2) Related to NQ and utilisation: We have used task graphs
for free (TGFF) [18] to generate task graphs.

Figure 5 illustrates the variation of normalised QoS with
average utilisation. The ratio of the actual QoS achieved
for the PTG to the maximum QoS obtained by executing
the highest versions of every task is known as Normalised
QoS (NQ). The PTG’s entire execution time is expressed as
TPTG, which is the sum of the execution times of all of its
subtasks. The deadline of a particular PTG is indicated by
DPTG. We compute the ratio of the TPTG and DPTG to get
the average utilisation.For example, Ut = TPTG/DPTG. For
our experimentation, assuming a fixed given deadline DPTG,
increasing the utilisation Ut increases the number of tasks
and to accommodate it the optional portion of every task
needs to be reduced, which in turn decreases the QoS (and
the NQ) and vice versa. An attack reduces the system QoS
which REALITY mitigates by generating a fresh schedule as
illustrated in Fig. 5 (c). When the x-axis’s utilisation is varied
between 40 and 90%, the NQ also varies between 70%, to
30% (Fig. 5 (c)).

VI. CONCLUSION

Modern real-time applications, including those in the auto-
motive and industrial sectors, prioritize deadline completion
over precision using imprecise computing. A desired QoS can
be ensured if time and resources permit. When tasks from
an imprecise real-time computing application are transferred
to a multiprocessor machine, vulnerabilities may arise. This
study highlights several threats that impact the power, timing,
and QoS of a computing system. Our proposed real-time
scheduler maximizes Quality of Service (QoS) at 70% tested
on benchmark programs with varying task utilization on a
multiprocessor platform. Furthermore, our anomaly detection
module instantly recognizes vulnerabilities at runtime and
utilises an intelligent RL-based scheduler to guarantee that an
application program is finished before the deadline.
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