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Abstract—Embedded systems are increasingly susceptible to
attack from malicious software, posing a significant threat to
critical infrastructure and data. Various shreds of evidence reveal
the unknown nature of attacks. In this manuscript, we propose
a novel abnormal behaviour monitoring and detection system
by designing a self-supervised hardware-based Self-Organizing
Map (SOM) algorithm which continuously monitors the execution
status of an embedded program and the behaviour of the
entire platform as a whole. Our design boasts low resource
utilization, high speed, effectiveness, and broad compatibility,
making it suitable for real-time detection of malicious behaviour
in resource-constrained embedded systems. Experimental trials
were conducted on the Piccolo RISC-V processor being proto-
typed on an FPGA, which achieved an impressive 96% accuracy
in detecting malicious programs, at the cost of a marginal 10%
increase in resource consumption in comparison to its vanilla
counterpart.

Index Terms—Embedded system security, abnormal behaviour
detection, feature extract, self-organising map (SOM), Continu-
ous Collection Module (CCM).

I. INTRODUCTION

Embedded systems play a pivotal role across a wide spec-
trum of applications, spanning control systems, data man-
agement, and transmission to name a few. Their significance
comes from the ability to execute real-time control tasks in
various devices, handle critical tasks including data acquisi-
tion and process information efficiently with reduced power
consumption and cost. Embedded systems typically consist
of a microcontroller, along with integrated peripherals and
associated software in a single device. The microcontroller
primarily receives data from the sensor and drives another
controller by changing the status of the I/O port in the device.
Benefiting from its formidable capabilities it finds widespread
use in various sectors like automotive, finance, aerospace, and
healthcare, where personal safety is paramount [1]. However,
with the rise of IoT devices, embedded systems face an
increasing number of security threats [2].

In spite of various attempts security remains a primary
concern for embedded systems [3], [4]. Despite their traits
of low power and high energy efficiency, the complexity of
modern embedded systems is still increasing with numerous
powerful peripherals like DMA and CAN driver [5], [6].
Currently, to ensure data reliability, security systems often
apply for comprehensive protection throughout the whole data
chain including receiving, processing and transmission, lead-
ing to increased power consumption and shorter battery life,

especially in battery-operated systems. Moreover, the simple
structure of most embedded devices leaves the core processor
vulnerable in physical structure to various attacks, such as
tampering and side-channel attacks, resulting in unpredictable
behaviours. Furthermore, unlike desktop processors equipped
with memory management units and Address Space Layout
Randomization (ASLR), embedded systems always operate
with fixed memory addresses for each instruction, increasing
the risk of program tampering [7], [8].

To address these challenges, Zhai et al. [9] proposed to
detect abnormal behaviour by tracking the Cycles per in-
struction (CPI) during program execution, as different CPI
characteristics emerge during abnormal program execution
with Self-Organizing Map (SOM) based feature classifier
achieving over 98.4% anomaly detection accuracy imple-
mented on Keil MCBSTM32F200. Muhamed Fauzi Bin Abbas
et al. [10] designed a Hardware-Performance-Counter (HPC)
based runtime anomaly detection software leveraging Support
Vector Machine classifiers. Similarly, Bourdon et al [11], in-
troduced another HPC-based anomaly detection methodology
for monitoring smart industry devices, eliminating the need for
modelling onboard software applications. The authors in [12]
proposed SEQ-TSD, a Sequential Time Series-based detection
framework for identifying Malware on unconstrained devices
using a single HPC. Simultaneously, the paper [13] proposed a
framework CARE, which enables HPC-based malware detec-
tion models resilient to resource competition among programs.

These proposed solutions have shown the huge potential of
classifier-based program monitoring algorithms at the software
level. However, the majority of these software-based solutions
rely on a debug trace interface that is constrained by band-
width limitations, especially when transmitting HPC data as
additional debugging information. The software-based anal-
ysis algorithms also restrict the hardware processing speed,
presenting a significant challenge in achieving high-speed real-
time anomaly detection in embedded systems.

Based on the architecture of the software-level monitoring
system for CPI analysis and software SOM [9], we proposed
an abnormal behaviour detection system by employing a
dedicated feature extractor together with an optimal hardware
design of SOM classifier module, which enables the proposed
solution to provide a real-time anomaly detection capability
in embedded systems with RISC-V processor. The primary
contributions of this paper are summarised as follows:
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Fig. 1: Overall Workflow for abnormal behavior detection

• We proposed a feature extractor module based on the
behavioural characteristics of the RISC-V processor on
an embedded system that eliminates the need for HPC
information to detect abnormal behaviours of the system
while executing embedded programs by introducing real-
time feature analysis in fundamental debug information.
This workflow enables the proposed solution to become
a non-invasive module for real-time abnormal detection
on the embedded systems using a RISC-V processor.

• We streamline the computational requirements of the
SOM algorithm, which reduces the resource utilization of
feature classification on the hardware together with the
feature extractor module providing a resource-efficient
analysis in embedded systems.

• The propose a hardware-based abnormal behaviour detec-
tion system implemented in the ZCU104 evaluation board
achieves a detection accuracy of 96%, requiring only
1/10 of the resources and 6% of the power consumption
compared to the Piccolo RISC-V core itself.

II. THREAT MODEL

A prevalent method for executing malicious code on an em-
bedded system is through code injection attacks [1]. Attackers
exploit vulnerabilities in exposed privileged communication
interfaces or side channels to manipulate memory, thereby
leading embedded processing to execute abnormal commands
and access sensitive data. In these attacks, attackers typically
modify some regions of the memory in the system, leading
the processor to execute some commands out of the range of
the program.

However, due to the simple hardware architecture of the
embedded processor, embedded programs always have similar
structures, thereby leading to predictable memory and be-
havioural patterns [14], [15]. This feature enables us to protect
the embedded processor by identifying the unique features of
the specific programs which can be regarded as the signature
of the program. Any modification to the program will lead to
changes in the features of the program, which can be used to
protect it from tampering.

III. PROPOSED METHODOLOGY

Embedded programs typically follow a standardized struc-
ture, beginning with peripheral initialization. Following this,
various algorithms are called by an infinite loop in the top
level or triggered by interrupts. The function thus emerges as
the fundamental scheduling unit to run the algorithm within
the program’s execution framework [15]. As illustrated in Fig.
1, a typical embedded program comprises three distinct levels
of code logic:

• Function Call Level: This level corresponds to the main
loop and the top function for each algorithm. It involves
organizing the algorithm’s structure around top-level
function calls. Typically, high-level programs generate
long-distance jumps when calling algorithm functions.
This feature can be utilized for identifying switches
among algorithms.

• Internal Control Level: Algorithm’s internal control flow,
including state machines and various loops within each
sub-function. It organizes the detailed execution flow
within functions.

• Sequential Instruction Level: This basic block of compu-
tation involves the sequential execution of code without
any branch or jump instructions. It includes a significant
number of computational instructions that are critical to
the execution of the algorithm.

An embedded program has a long instruction sequence that
includes many different types of instructions. It would require
more hardware resources to get better processing performance
when performing real-time analysis on all the instructions in
sequence. To accurately capture the features of algorithms
while significantly minimizing hardware resource utilization
and performance requirements, we’ve chosen to focus on
analyzing certain types of instructions to compress the original
debug data. Two fundamental types of instructions are chosen
as the analysis target, memory input/output (IO) operations and
unconditional jumps, since they are always used frequently and
exist in almost all programs.

Specifically, memory access instruction is a fundamental
operation which provides the processor with the ability to
access memory and peripherals. This operation is essential for
embedded processors and is unavoidable in any program. In
addition, an unconditional jump is also a fundamental oper-
ation that provides the ability to control flow statements that
make the program execution immediately jump to another part
of the code. Therefore, memory input/output (IO) operations
and unconditional jumps carry critical information about the
program execution, which can be used to analyse and identify
program features.

In the following sections, we introduce the proposed abnor-
mal behaviour detection system. The proposed system consists
of three main components: Continuous Collection Module
(CCM), Feature Extractor which includes two instruction
filters, and SOM classifier as the schematic overview depicted
in Fig .1. These components are responsible for extracting
processor debug data, extracting features, and training the
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Fig. 2: Workflow for feature extractor

identification model, respectively. Data collected from the pro-
cessor only comprises the most fundamental debugging infor-
mation: the Program Counter (PC) and the current instruction.
This minimalist approach ensures compatibility with various
debugging interfaces. In this paper, RISC-V architecture is
selected as the proposed target platform due to its clear ISA
design.

A. Continuous Collection Module (CCM)

The CCM is an integral component connected to the debug
port of the processor, designed to continually gather PC and
current instruction values by decoding the various types of
debug ports and transforming the debug data stream to the
format of input of the feature extractor. An independent clock
counter is also integrated within the CCM to provide the
function of tracing the timeline of one executing program.
This component will transmit the current instruction, PC, and
clock count since reset to the next module in the form of a
non-blocking data frame to be further processed in the feature
extractor.

B. Feature Extractor

In an embedded platform, processors always run at a high
frequency to improve performance, which would generate a
dense debug information data stream that exceeds the classi-
fier’s processing capability. Therefore, it is necessary to use
a feature extractor to distil the sparse and unique features of
each algorithm from the real-time data stream. We proposed
some steps to process the data stream as shown in Fig. 2. In
this module, two features, address and invocation interval, are
extracted from each instruction type. The address denotes the
memory location of the currently executing instruction. Since
embedded programs are rarely dynamic changes, the location
of specific instructions contains important program features.
The invocation interval indicates the time gap between two
invocations of a particular instruction type, also contributing
to the program’s distinctive feature. A total of four features
from the two instruction types will be extracted in this module.
We’ll then introduce the specific extraction process.

In the initial step, the data stream is divided into many
distinct windows at fixed intervals determined based on the
clock count in each frame. All valid data in each window
are captured within the respective time span. Subsequently,
frames of the specified instruction type (Memory IO and Jump)
are then selected in each clock window. The next step is
to calculate the PC range of the selected frames (i.e. PC
range = maximum PC values - minimum PC values) in each
clock window to identify the top-level long-distance jumps
executed by the top-level scheduler which are the sign of
the algorithm switch. If the PC range of selected frames
exceeds the threshold (i.e. the new function starts processing),
all frames in the corresponding clock window are discarded.
Finally, the average PC values and the average time interval
of two neighbouring selected frames in all retained clock
windows are computed as features of this function. Each type
of instruction has two features (i.e. the average PC and the
average time interval), which are abstracted as a sample point
in the four-dimensional hyperplane as shown in Fig. 3.

C. Self-Organized Map (SOM)-based classifier

Features extracted in the feature extractor module have
transformed from dense debug data streams into sparse and
unique features. Once all normal program features are ex-
tracted, the next step is to use SOM to learn these features
and construct a model capable of rapid inference. The training
of supervised neural networks like CNNs introduces higher
parameter counts, extensive computational resources, pro-
longed training periods, and low inference efficiency, making it
unsuitable for deployment on resource-constrained embedded
devices. Machine learning algorithms such as SOM excel in
classifying multidimensional data through similarity analysis,
resulting in feature reduction. SOM has ultra-fast search
speeds, making it the preferred choice for deployment on
embedded devices.

SOM is an unsupervised artificial neural network that uti-
lizes competitive learning strategies to acquire features of
a dataset [16], [17]. It can segment large amounts of data
based on the relationships among them, making it particularly
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Fig. 3: Workflow for SOM-based Classifier

suitable for adaptive learning of program features with high
data throughput. Compared to Convolutional Neural Networks
(CNN), SOM has fewer parameters, and lower inference
latency, suitable for running in embedded platforms with
minimal degradation in accuracy. However, the algorithm pro-
totype of SOM uses a lot of time-consuming computationally
intensive operations such as square roots, significantly limiting
its processing speed on the hardware.

In hardware design, to save training time and use fewer
resources, various optimization methods are applied to the
training process to eliminate most of the time-consuming
operations. Fig.3 illustrates the process flow of the SOM-based
Classifier at the High-Level Synthesis (HLS) stage. We applied
UNROLL and PIPELINE optimizations to various processes
in the SOM module. For operations requiring enumeration
during training, all source data is synthesised into independent
parallel processes to enable partial parallel optimization and
acceleration, which is achieved by the unroll optimization
in HLS. During inference, the calculations are typically di-
vided into multiple steps, each taking several cycles to find
the nearest group of the unclassified sample. By building
a data pipeline, intermediate steps can also be concurrently
calculated, thereby reducing input latency. Furthermore, some
optimizations are carried out in several steps in SOM to reduce
resource consumption and simplify the computation during the
hardware implementation.

1) Training: The first step of training is initialising a set
of neurons with uniform and dispersed weights, which are
the random values with the same dimensions as the input
dataset. Typically, the number of neurons must be greater than
the expected total number of algorithms to be classified to
provide some necessary redundancy. If too few point numbers
are selected, it will degrade the robustness of the training.
Otherwise, if the number of initialized points is too high, it
will cost too much time and resources to train. In the hardware
design of this module, the number of initialized weight points
is twice the expected number of features to ensure a balance
between resources and efficiency. Similarly, the number of
iterations during the training process is also a parameter to
consider. After experimenting, it was found that doubling the
number of iterations of the training data leads to better results
with a balance between time and accuracy.

During training, one random input element in the training
dataset is first selected as the training point, and the distance

is computed between this point and each neuron. In hardware
design, the distance computation uses the Manhattan distance
which is the sum of the absolute values of the differences in
each dimension to replace the Euclidean distance to avoid the
resource-consuming multiplication and square root operations.

Dj =

N∑
l=1

|Kl − wjl| (1)

Dj,target = argmin(Dj) (2)

where Dj represents the distance of the j-th neuron relative
to the given data, and wjl represents the weight of the j-
th neuron on the l-th dimension. Then we need to find the
neuron with the lowest distance related to the given data point,
denoted as Dj,target. After this step, it is necessary to compute
the distances between all neurons, which can also be referred
to as the distance Matrix, to apply subsequent weight diffusion.
When calculating distances, the L1 norm is still used to save
resources and time.

Mij =

N∑
l=1

|wil − wjl| (3)

Mij represents the distance between the i-th and j-th
neurons. After completing the distance-related calculations,
the weights of the neurons can be updated accordingly.

wil = wil − µ0µ1(Kl − wil) (4)

µ0 is a hyperparameter that decays over time, decreasing
from a specified maximum value as training progresses. µ1 is
a distance decay parameter computed based on the distance
matrix, used to update the weights of other points around the
target neuron.
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Fig. 4: Learning rate decay in training

To reduce the resources required when computing learning
rate decay in hardware design, step-based decay functions are
used for both learning rates. An exponential decay function
is used for the decay process between neuron distances,
which helps to avoid clustering among neurons. Compared to
linear decay in each epoch of training, this approach can be
optimized to store the value of the learning rate in the lookup
table (LUT) to avoid division operations, which significantly
reduces resource usage. Fig. 4 describes the trend of µ0 and



µ1 across 400 training epochs with dynamically decaying
learning rates. In Fig. 4. (a), the learning rate for µ0 follows
an eight-segment linear decay pattern from 0.5 to 0 as training
progresses. Fig. 4. (b) illustrates the learning rate µ1, which
reduces exponentially across four segments from 1 to 0 based
on the distance between neurons. These attenuation approaches
allow for achieving high accuracy while optimizing resource
utilization. At this point, after repeating the above process
several times, the training of all neurons is complete, and the
neurons are ready to be used in inference.

2) Verification: Upon completion of model training, the
neuron’s weights can be efficiently utilized to perform high-
speed classification inference by the enhancement of the
pipelined process. Data inference involves executing only
two steps of the training process: data distance calculation
and identifying the nearest neuron by finding the minimum
distance. Taking into account the FPGA’s pipeline, the infer-
ence process typically requires 5 clock cycles and shares the
resource used in training to execute the entire operation.

IV. EXPERIMENTATION AND RESULTS

The abnormal behaviour detection system and its target
processor, Piccolo, have been prototyped on FPGA to evaluate
its resource utilization and accuracy. CHERI Piccolo RISC-V
processor is a high-performance embedded processor design
with a Verifier Debug Interface to trace the execution [18].
ZCU104 is a ZYNQ Ultrascale+ FPGA platform with both
general-purpose ARM processor (PS) and programmable logic
(PL) used to prototype the proposed system, including proces-
sor and classifier.

A. Dataset Used

TABLE I: Details of Benchmark

Benchmarks Description ITERATION COUNT
a2time Angle to Time Conversion 400-1200
rspeed Road Speed Calculation 5-15
bitmnp Bit Manipulation 700-2100
idctrn Inverse Discrete Cosine Transform 2-6
puwmod Pulse Width Modulation 2-6
tblook Table lookup and interpolation 25-105
ttsprk Tooth to Spark 500-1500

Seven algorithms from widely recognized EEMBC’s Auto-
Bench 2.0 Benchmark are selected to train the SOM classifier
[19]. As they have almost the same dataset and similar
workflow that makes it harder to identify each. In order to
simulate the randomness, their parameter is also randomly
selected. Referring Table. I, ITERATION COUNT is the key
parameter that represents the number of times an algorithm is
executed repeatedly which controls the algorithm’s run time.
In order to generate a continuous dataset, seven algorithms are
re-ordered and mixed with different parameters to form a new
program. Each algorithm is treated as a separate function call
scheduled by the main loop.

In the evaluation, according to the settings of the compi-
lation script, 1-4 algorithms with parameters are randomly
selected in each round of compilation, and then executed in

Piccolo processor. After several rounds of compilation and
execution, a total of 257 debug data from seven different
algorithms are generated following this workflow, and then
processed by the feature extractor to generate the offline data
set of the run-time debug data feature. By using simulations,
we’ve achieved results that match the hardware implementa-
tion of SOM. Using these simulated results, a series of tests
are performed to evaluate the classification accuracy. Also, the
entire hardware design is verified on FPGA to gather the area
and resource utilization.

B. System Implementation

During the evaluation, the metrics primarily include the
correct recognition rate (true positives (Tp) and true negatives
(Tn)), the rate of misclassified samples (false positives (Fp)),
and the rate of samples incorrectly classified as unknown (false
negatives (Fn)). Using these metrics, we can compute the
accuracy, precision, and recall rates for the proposed system.
The performance of classification is shown in Table II.

TABLE II: Performance results for the benchmarks

Benchmark Accuracy (%) Precision (%) Recall (%)
a2time 94.88 90.45 85.49
rspeed 93.25 79.90 82.60
bitmnp 96.24 94.35 88.63
idctrn 95.47 85.85 88.00
tblook 96.33 63.04 86.56
ttsprk 95.81 76.41 77.14
puwmod 98.63 93.93 83.78
Average 95.80 83.42 84.60

Accuracy: This represents the proportion of correctly la-
belled samples, computed by the ratio of (Tp + Tn) to the
total number of samples.

Precision: It indicates the proportion of positively labelled
samples to the correct labels, measuring the classifier’s resis-
tance to malicious attacks. It’s computed by Tp/(Tp + Fp).

Recall: This signifies the proportion of samples that should
have been positively labelled and were correctly labelled as
such, measuring the classifier’s resistance to false negatives.
It’s computed as Tp/(Tp + Fn).

C. Hardware resource utilization

TABLE III: Resource utilization on ZCU104 at 100MHz

Component LUT (utilization %) FF (utilization %)
Piccolo 34411 (87.18%) 15013 (82.70%)
Feature Extractor 1474 (3.73%) 1172 (6.45%)
SOM 3567 (9.03%) 1768 (9.73%)
CCM 18 (0.04%) 200 (1.10%)
Total 39470 (100%) 18153 (100%)

Hardware validation for anomaly behaviour detection is
prototyped on the ZCU104 Ultrascale+ Zynq validation board,
consisting of both Programmable Logic (PL) and ARM A53
core (PS). This setup enables the concurrent validation of a
random program generator and the system on its platform,
facilitating uninterrupted data transmission and testing pro-
grams through the AXI interface. To modify the program
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TABLE IV: Power Consumption on ZCU104 at 100MHz

Platform Static Power Dynamic Power
Piccolo 0.596W 0.481W
Piccolo & NIRVANA 0.596W 0.51W

executed by the Piccolo, an additional component is also
integrated into the hardware. Fig. 5 and Table. III prove that
abnormal behaviour detection systems designed for embedding
onboard the proposed anomaly detection module (Feature
Extractor, SOM and CCM modules) can efficiently execute
a range of non-invasive detection tasks with only approx
12 − 16% resource utilization of the entire system. Table
IV illustrates that NIRVANA requires only a 6% (0.481W
V.S. 0.51W) increase in dynamic power consumption to ac-
curately perform feature extraction and classification tasks.
Its exceptional compatibility demonstrates that the anomaly
detection system can be inserted and integrated into most
types of embedded processors, enabling effective monitoring
and diagnosis of abnormal behaviour while incurring minimal
resource overhead.

V. CONCLUSION

This paper presents a SOM-based anomalous behaviour de-
tection system that can analyse instruction-related data of the
Piccolo RISC-V processor in real time to protect the embedded
system from the threat of malicious attacks. The system uses
an optimised SOM algorithm for hardware implementation,
ensuring efficient classification of program features. Only 10%
of total resource overhead is introduced when integrated with
the Piccolo processor. The entire system runs in real-time
on the ZCU104 platform and achieves an impressive 96%
detection accuracy.
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