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Abstract—In the context of the Industrial Internet of Things
(IIoT), developing an accurate and timely scheduling policy is
essential. Recently, the Age of Incorrect Information (AoII) is
proposed for measuring the timeliness and accuracy of certain
status information for monitoring/controlling purposes. In this
work, we investigate a multi-sensor state updating system in
which AoII is used for quantifying information freshness. We
aim to find an optimal scheduling policy to minimize the system-
wide cost under bandwidth constraint. We first model the
source status updates monitored by sensors as Markov chains
and the scheduling problem as a constrained Markov decision
process (CMDP). It is challenging to solve the formulated CMDP
problem by conventional methods, due to the heterogeneity of
source status updates in IIoT and the bandwidth constraint.
As such, a framework with the aid of deep reinforcement
learning, i.e., Order-Preserving Quantization-Based Constrained
Reinforcement Learning Algorithm with Historical Adjustment
(OPQ-RL HA) is developed. Furthermore, by integrating it with
the Asynchronous Advantage Actor-Critic (A3C) and the Deep
Deterministic Policy Gradient (DDPG), two different algorithms
are proposed, i.e., OPQ-A3C HA and OPQ-DDPG HA. With ex-
tensive numerical validation, it is demonstrated that the proposed
algorithm has a lower average system-wide cost compared to the
benchmark algorithms.

Index Terms—Age of Incorrect Information, Data Freshness,
Deep Reinforcement Learning, Constrained Markov Decision
Process, Industrial Internet of Things

I. INTRODUCTION

In recent years, the Industrial Internet of Things (IIoT) has

become a crucial element of “Industrial 4.0”, and it involves

the deployment of numerous communication devices (such as

sensors, robots, machines, etc) throughout a large area (such as

factories, warehouses, nuclear plants, etc) for remote monitor-

ing and controlling [2]. For instance, the status information of

manufacturing needs to be timely captured by remote monitors

to reduce product defect rates, whilst a real-time delivery of

an alert for any disastrous event (such as fire, earthquake,

flood, etc) can help save lives and protect property. However,

the limited wireless resources pose an important challenge in
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these real-time monitoring systems. Therefore, maintaining the

freshness of task status and performing effective scheduling

under limited resources has become crucial. This is key to

ensuring the efficient operation of the IIoT system.

In the past decade, a new metric, called Age-of-Information

(AoI), has been studied to characterize the freshness in status-

updating systems and applications. It is noted that AoI is

different from traditional communication latency which cor-

responds to the time that an information packet travels on the

transmission, propagation and queuing. Therefore, AoI can

be high (indicating outdated status information), even when

communication latency is low, for instance, if the system

infrequently sends status packets [3]–[5].

However, AoI captures only the freshness of transmitted

packets without considering the content’s accuracy, potentially

leading to unnecessary status updates. Therefore, the Age of

Incorrect Information (AoII) was introduced as a new metric

[6]. This metric considers both the accuracy and freshness

of information from the perspective of the remote server.

Formally, AoII is described as a penalty function whose value

increases over time when the monitor is unable to accurately

estimate the status of local source (i.e., there is a discrepancy

between the remote server’s data and the actual status of

the source). Conversely, the value of the penalty function is

zero when the monitor’s estimation is accurate. Intuitively,

AoII surpasses AoI in efficiency by mitigating unnecessary

data updates. Therefore, AoII is more effective than AoI in

resource-constrained scenarios.

After using AoII to describe whether the status of the remote

server matches the status of the source, it becomes crucial

to strategize on allocating limited wireless resources effec-

tively to support industrial applications. Traditional scheduling

methods often rely on simple priority queues or pre-defined

rules, which may not be efficient and flexible in complex

and dynamic industrial environments [7], [8]. As an advanced

machine learning method, Reinforcement Learning (RL) can

continuously learn from interactions with the environment

and optimize the decision-making process to achieve optimal

task scheduling in a constantly changing environment and

still perform well in the face of unknown situations [9],

[10]. Additionally, given resource limitations, RL’s outputs

might not consistently fulfill certain physical requirements.

Therefore, the RL algorithm needs to be further developed

in this context.

A. Related Works

AoI is mainly used to describe the timeliness of information

in real-time systems. The research on AoI is mainly divided
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into the following three categories: 1) AoI design of update

packages under different access conditions, such as the AoI-

oriented UAV resource management problem when the update

packets can be sampled and generated at any time by the

source node [11]. 2) AoI optimization after the introduction of

other technologies, such as the use of Mobile Edge Computing

(MEC) technology to further reduce AoI [5]. 3) AoI deforma-

tion under different scenario requirements. For example, [12]

introduces a metric known as the Age of Changed Information

(AoCI), which decreases only when a newly received update

packet at the remote server differs from the previous one,

and increases otherwise. [13] introduces the Age of Loop

Information (AoLI), which simultaneously reflects the passage

of time and the changes in transmission rounds during the

uplink and downlink processes in the IIoT.

In the same year, AoII was proposed [6] and the follow-

up works have focused on exploring various methods to

measure the AoII. [14] provides a general expression for AoII,

which can establish AoII expressions for different application

requirements. [15] derives the average AoII expression of

the Hybrid Automatic Repeat request (HARQ) transmission

scheme under the Finite Blocklength (FBL) regime. These

studies promote the application of AoII in practical communi-

cation systems. Given its good balance between accuracy and

information freshness of remote servers, AoII has been widely

used to solve resource-constrained scheduling problems. [16]

investigates the scheduling problem for minimizing AoII in

slot-based systems under channels with random delays. [17]

studies the optimal scheduling problem for minimizing the

AoII in a symmetric/homogeneous binary information source

system. [18] investigates a multi-status Markov source system

with transmission power constraint. This is done by casting the

scheduling problem into a Markov Decision Process (MDP)

where the state space and action space are composed of AoII

and scheduling action, respectively. However, the aforemen-

tioned studies on AoII have only considered single-source

systems with homogeneous statuses. For a real IIoT system

with multiple sensors/sources, heterogeneous status transitions

should be studied [19]. [20] utilizes a threshold strategy to

minimize AoII, thereby achieving optimal scheduling deci-

sions in multi-user scenarios. However, this method strongly

depends on the selection of the threshold. [21] uses AoII as

a metric in semantic communication-based extended reality

(XR) applications, employing an optimal exact linear search

method to obtain the optimal strategy. However, the time

cost of this search algorithm is relatively high. Besides, as

the number of sensors increases, the scheduling action space

grows exponentially (i.e., the curse of dimension), and it

remains a big challenge to find the optimal scheduling policy.

Reinforcement learning can adapt to changes in the envi-

ronment and unknown dynamics, so it is often used in large-

scale complex communication problems in recent years. For

example, in [22], reinforcement learning is used to achieve

resource allocation that minimizes the AoII in a satellite-

based IoT downlink non-orthogonal multiple access (NOMA)

system. In [23], a reinforcement learning algorithm is adopted

to select the optimal cooperative nodes in the underwater IoT

scenario. In reinforcement learning, asynchronous Advantage

Actor-Critic (A3C) and Deep Deterministic Policy Gradient

(DDPG) have been widely used to quickly solve complex

problems in recent years [24]. However, these two algo-

rithms cannot be used to solve constrained problems directly.

To ensure that the output of RL satisfies the constraints,

[25] directly adds a safety layer to the policy, which can

correct each output action. While this method ensures con-

straint adherence, it could potentially hinder RL performance.

[26] proposes the Constrained-Rectified Policy Optimization

method (CRPO), which updates the policy alternatingly be-

tween objective improvement and constraint satisfaction. [27]

introduces the Semi-Infinite Constrained Policy Optimization

(SI-CPO) method, which performs a single step of policy

optimization along the direction of minimizing the value of re-

ward corresponding to the violated constraint, if the constraint

violation exceeds the tolerance. However, these methods suffer

from low learning efficiency, highlighting the needs for further

exploration in efficiently solving CMDP problems with RL.

Building on our previous work [1], which focused on

the unconstrained AoII minimization problem and uses A3C

to obtain the optimal scheduling policy, in this paper, we

take the bandwidth constraint into account and propose more

sophisticated algorithmic solutions.

B. Our Contributions

In this work, we use a multi-sensor monitoring system

where the sources need to deal with heterogeneous status data

and the updating system is subject to a bandwidth constraint.

Considering packet loss, we use ACK/NACK feedback to

reflect whether the remote server has successfully received

the status packet. We adopt AoII as the metric to quantify

the precision and freshness of remote server for the status

of a local source. Our goal is to determine the optimal

scheduling policy to minimize the system-wide cost. The main

contributions of this paper are summarized as follows:

• In solving the scheduling problem of minimizing system-

wide cost under bandwidth constraints, to ensure the

flexibility of scheduling decisions and the balance of

sensor usage, we propose the Constrained Reinforcement

Learning with Historical Adjustment (RL HA) frame-

work. This framework utilizes historical decision out-

comes to adjust the scheduling priorities of sensors.

• Due to the complexity of the CMDP, we use an order pre-

serving quantization (OPQ) method to expand the range

of optional actions and further enhance the decision-

making ability of the model. Combing the OPQ method

with Constrained A3C Algorithm and Constrained DDPG

Algorithm respectively, we obtain two solution algorithms

for the scheduling problem, i.e., OPQ-A3C HA and

OPQ-DDPG HA.

• Numerical results show that our proposed algorithms

can achieve excellent performance (average system-

wide cost) in both status-homogeneous and status-

heterogeneous systems, and also outperform the baseline

algorithm.

The rest of this paper is organized as follows. The system

model and problem formulation are introduced in section II.
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Fig. 1. System model. The left box refers to the wired link between local
scheduler and sensors, and the right box represents the wireless link between
sensors and remote server.

In section III, we propose improved algorithms based on

reinforcement learning to solve the CMDP. In section IV,

the effectiveness of our algorithms is validated, and the two

algorithms are compared through numerical results. Finally,

section V draws the conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

To enhance the processing capability of large-scale systems,

we consider the system as shown in Fig. 1. This system

includes N sensors to monitor changes in the status of the

object/source and transmit update packets to a local scheduler

in a simultaneous manner. Assuming that the local scheduler

has sufficient capacity, and it determines which (and when)

sensors should send update packets to the remote server

through wireless networks to maintain the sensing system

lightweight and efficient1. Besides, the considered system

model can also map to the case that the local scheduler directly

sends all statuses to the remote server.

On one hand, due to the presence of numerous power

sources with ample electricity in actual factories, we consider

connecting sensors and local schedulers via wired links and

disregard the communication delay between them. On the

other hand, wireless links (from sensors to remote server) are

prone to errors, if the remote server receives update packets

successfully, an ACK feedback is sent back to the local

scheduler; Or, the remote server sends an NACK feedback.

A. Single Sensor Scenario

To illustrate our model, we first consider a single-sensor

scenario. For simplicity, let us consider time-slot index t
ranging from 1 to T , where T refers to the total number of

time-slots. Then, we use the generate-at-will model [28] that

the sensor samples the source at the beginning of each time

slot, while the local scheduler acquires the source’s status. Fur-

thermore, we assume that the local source status only changes

at the beginning of certain time-slots. The information process

1The purpose of introducing a local scheduler is to simultaneously obtain
the status of both the sensors side and the remote server side, in order to
characterize the AoII (see Equation (1)).

X(1)

X(Q)

X(2)

pX(1),X(1)

pX(Q),X(Q)

pX(2),X(2)

pX(1),X(Q)

pX(Q),X(1)

pX(2),X(1)

pX(1),X(2)

Fig. 2. The transition probability.

that is sampled by the sensor is classified into Q discrete

statuses, i.e., X(1), X(2), ..., X(Q), and at each time-slot t, the

status indicator is denoted by xl(t) ∈ {X(1), X(2), ..., X(Q)}.
Moreover, as shown in Fig. 2, we assume xl(t) as a dis-

crete Markov chain with Q-status and one-step transition

probability pX(i),X(j) = Pr
(
xl(t+ 1) = X(j)|xl(t) = X(i)

)
.

Meanwhile, let xr(t) represents the remote server’s estimation

at time-slot t.
Under the above context setting, we aim to minimize AoII

(instead of AoI). Sk and S′
k are defined as the time-slot of the

k-th status change of the local and remote server, respectively.

In Fig. 3, we can observe that at time-slot S5, the remote server

differs from the source status, resulting in the value of AoII

increasing to 1. At time-slot S′
5, the remote server matches the

source status, so the value of AoII drops to zero. At time-slot

S6, the remote server becomes incorrect again, causing the

AoII value to increase over time. Without loss of generality,

we consider a step-wise AoII model, where at any time-slot

Sk, k ∈ {0, 1, 2, ...}, if the remote server is incorrect, the value

of AoII increases by 1. Furthermore, the value of AoII resets

to zero immediately when the remote server becomes correct,

i.e., xl(t) = xr(t).
To simplify the model, we make the following three as-

sumptions: 1) at the commencement of a time-slot, the latest

update packet is sent by the sensor, 2) one time-slot is taken up

by each transmission of a update [29], and the transmission

time of ACK/NACK can be disregarded. 3) at the end of a

time-slot, the update packet is received by the remote server.

Upon successful reception of the status packet by the remote

server, the source status is estimated based on the latest update

packet. The probability of successful reception of the update

packet is denoted by εs. Therefore, the probability of failed

transmission is calculated as εf = 1 − εs. Assuming that

the remote server is correct at the beginning of S′
k, it may

be because the source status packet is transmitted correctly,

or the source status just changes at this moment, which is

consistent with the status of the remote server. Therefore, the

remote server incorrectly estimates the status of the source

between the start of slot Sk and the start of slot S′
k, and the

AoII denoted by ∆(t) increases over time. Besides, the remote

server achieves accurate estimation at the beginning of slot S′
k,

and the AoII drops back down to zero.
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(a) The local observation xl(t). The pink and blue shades indicate the
events of receiving an ACK and a NACK, respectively.

 + 1  + 2  + 3  + 4  + 6  + 8 + 5  + 7  + 9

!
"

!
#

!
$

Send

ACK

%& '

time()
*

(,
* (-

*

!
$

Send

NACK

Remote server has 

changed its status
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Fig. 3. An example of AoII.

Assuming the ACK/NACK transmission time is τ , τ ≪ t,
at the end of the slot τ , a recent ACK/NACK feedback is

received by the local scheduler receives. At time-slot t, the

local scheduler knows if the remote server is receiving the

packet accurately at the end of slot τt, i.e. if ACK, xr(t) =
xl(τt). the local scheduler can determine whether the remote

server is providing correct estimates by comparing the value of

xl(t) and xl(τt). At the beginning of the time-slot, we define

the indices of the latest accurate remote server as mr(t) =
max{k|S′

k ≤ t}, and let ml(t) = max{k|Sk ≤ t} to denote

the indices of the latest incorrect remote server. For example,

if time-slot t is between S6 and S′
6, mr(t) = 5, ml(t) = 6,

indicating that the remote server does not estimate the status of

source correctly; if time-slot t is between S′
6 and S7, mr(t) =

6, ml(t) = 6 and the remote server’s estimation is correct.

Consequently, the AoII at time-slot t can be formulated as2:

∆(t) = (t− Sml(t) + 1)1{mr(t) 6=ml(t)}, (1)

2The timeliness of AoI is only reflected in the time between the sensor
sending the packet and the remote server receiving it. AoII adds the consid-
eration of whether the status of the sensor and remote server are consistent.

where 1 denotes the indicator function. We can use the

variable at to indicate whether the sensor is selected to send

status updates (at = 1) or not (at = 0 ). Due to the nature

of the wireless channel, a single transmission attempt may

require more than one time-slot to be successful.

The AoII, source status, and remote server status make up

the system state, which is represented by the vector st =
(∆(t), xl(t), xr(t)). At each time-slot, the local scheduler can

decide whether to transmit by setting the variable at to either

1 or 0. The system state transition probability is defined as

P(st+1|st, at) = Pr(st+1 = s′|st = s, at = 0 or 1), which

indicates that taking an action in state s at time t will result

in a new state s′ at time t+1. We use x′
l to denote the source

status at slot t + 1 and divide the transition probability into

three cases as follows by omitting (t) in ∆(t), xl(t) and xr(t):

1) Case 1: At slot t, the sensor is not scheduled to send an

update packet, at = 0. At slot t+1, the remote server remains

unchanged.

• If x′
l = xr, the AoII at slot t + 1 will be 0 and

Pr((0, xr, xr)|(∆, xl, xr), 0) = pxl,xr
.

• If x′
l 6= xr, the AoII at slot t + 1 will be ∆ + 1 and

Pr((∆ + 1, x′
l, xr)|(∆, xl, xr), 0) = pxl,x

′

l
.

2) Case 2: At slot t, the sensor is scheduled to send an

update packet, at = 1. However, there is a probability εf that

the destination will not receive the packet successfully.

• If x′
l = xr, the AoII at slot t + 1 will be 0 and

Pr((0, xr, xr)|(∆, xl, xr), 1) = εfpxl,xr
.

• If x′
l 6= xr, the AoII at slot t + 1 will be ∆ + 1 and

Pr((∆ + 1, x′
l, xr)|(∆, xl, xr), 1) = εfpxl,x

′

l
.

3) Case 3: At slot t, the sensor is scheduled to send an

update packet, at = 1. And there is a probability εs that the

destination will receive the packet successfully.

• If x′
l = xl, the AoII at slot t + 1 will be 0 and

Pr((0, xl, xl)|(∆, xl, xr), 1) = εspxl,xl
.

• If x′
l 6= xl, the AoII at slot t + 1 will be ∆ + 1 and

Pr((∆ + 1, x′
l, xl)|(∆, xl, xr), 1) = εspxl,x

′

l
.

B. Multi-sensor Scenario and Problem Formulation

This subsection presents a generalized scenario of the

system that involves N sensors. Let c = ρ[c1, c2, ..., cN ]T

be the weighted transmission cost vector, where ρ denotes the

weight and cn ≥ 0 is the transmission cost of sensor n. The

scheduling decision is denoted by at = [a
(1)
t ,a

(2)
t , ...,a

(N)
t ]T ,

where a
(n)
t ∈ {0, 1} decides whether sensor n sends a status

packet at slot t. In addition, to be more applicable to modern

industrial scenarios, we assume that each sensor should occupy

a certain amount of bandwidth to transmit data. We denote

the bandwidth requirement vector as b = [b1, b2, ..., bN ]T , and

the total available bandwidth of the system to transmit the

update packet in each slot is M . In this work, we desire to

obtain an optimal schedule policy to minimize the system-

wide cost [30], i.e., long-term weighted sum of AoII and
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transmission cost under the bandwidth constraint. The problem

can be mathematically expressed as:

Q1 : min
π∈Π

lim
T→∞

1

T
Eπ

(
T∑

t=1

(
‖∆(t)‖1 + cTat

)
)
, (2)

s.t. at · b ≤M, ∀t, (3)

a
(n)
t ∈ {0, 1}, ∀t, ∀n, (4)

where Π is the class of non-anticipated policies, i.e. the

scheduling decisions are made based on the historical and

current data, Eπ[·] represents the expectation with respect to

policy π and ‖ · ‖1 denotes the ℓ1 norm of a vector. The

vector ∆(t) = [∆1(t),∆2(t), ...,∆N (t)]T ∈ N
N denotes the

AoII of all sensors at the beginning of time-slot t. To simplify

the problem, we assume that all sensors and the receiver are

synchronized initially, i.e, ∆(0) = 0.

Due to the bandwidth constraint in (3), there are many

possible scheduling decisions in each time-slot, and it is not

possible to obtained the optimal scheduling policy through

exhausted search method. Additionally, traditional techniques,

such as dynamic programming [31], have difficulty in address-

ing the scheduling problem due to the status-heterogeneous

transitions for each source [19]. In recent years, reinforce-

ment learning has become increasingly popular, which is also

regarded as a potential solution approach to this problem.

However, due to the communication resource constraints, it

is challenging to schedule tasks efficiently in this environment

even with the existing reinforcement learning algorithms, such

as A3C and DDPG. In sections III, we improve the existing

reinforcement learning algorithms and propose two novel

approaches to solve problem Q1 separately.

III. PROPOSED SCHEDULING ALGORITHM BASED ON RL

In deep reinforcement learning, neural networks are used to

approximate the value function without a fixed form. Deep Q-

networks (DQN), double DQN, asynchronous advantage actor-

critic (A3C), and deep deterministic policy gradient (DDPG)

are advanced algorithms that may effectively tackle compli-

cated sequential decision-making problems [32]. Nevertheless,

they may not be directly applicable to our specific prob-

lem, which involves a large sensor network with bandwidth

constraints, due to the extensive action space. Therefore, we

propose an Order-Preserving Quantization-Based Constrained

Reinforcement Learning Algorithm with Historical Adjust-

ment (OPQ-RL HA) framework to address these challenges.

Different from the traditional reinforcement learning algo-

rithm, the core part of the Constrained Reinforcement Learning

Algorithm with Historical Adjustment (RL HA) includes the

following two parts: 1) optimization based on historical deci-

sions, and 2) scheduling decisions based on greedy algorithm.

The implementation process of RL HA is as follows: First, an

initial scheduling decision is obtained using a reinforcement

learning algorithm. Then, the initial decision is adjusted based

on the historical scheduling conditions of each sensor. Next,

a scheduling decision that satisfies the bandwidth constraints

is obtained using a greedy algorithm. Finally, the model is

updated according to the scheduling decisions. In addition,

to address the trade-off between exploration and exploitation,

we introduce an Order-Preserving Quantization (OPQ) [33]

method to generate multiple actions.

This section introduces the CMDP established based on

Q1. It then presents the main principles of the reinforcement

learning algorithm adopted in this study. Following that, a

historical adjustment optimization method is proposed. Finally,

the section describes the method for optimizing the model

using the order-preserving quantization technique.

A. Constrained Markov Decision Process

We reformulate problem Q1 as a constrained Markov deci-

sion process, i.e., 〈S,A,P , r, c〉. Where S, A, P , r and c are

network state space, action space, state transition probability,

reward function and cost function, respectively. At time-slot t,
the state of the environment that the agent senses is denoted as

St. The agent selects an initial action as the output using the

decision policy π. Next, by utilizing the historical adjustment

and the OPQ method, the final output action at is chosen to

satisfy the constrained cost. In the next time-slot, the change of

the environment to a new state St+1, and the agent receives a

reward rt based on at. The interaction between the agent and

environment continues until one of the following conditions is

met: 1) the environment enters a terminal state; 2) the slot t
surpasses the predefined upper bound.

1) State Space: For multi-sensor systems, in time-slot t,
the state of the n-th sensor (stored in the local scheduler)

includes the status of AoII, source and remote server, i.e.,

s
(n)
t = {‖∆(t)‖1,x

(n)
l (t),x

(n)
r (t)}, s

(n)
t ∈ S. Assuming that

the system has N sensors, the state of the system is St =

[s
(1)
t ; s

(2)
t ; ...; s

(N)
t ].

2) Action Space: At time-slot t, according to s
(n)
t and

historical scheduling situation, the scheduling action a
(n)
t

of the n-th sensor is obtained, a
(n)
t ∈ A. For N sensors,

at = [a
(1)
t ,a

(2)
t , ...,a

(N)
t ]T .

3) State Transition Probability: As previously discussed

in II-A, the state transition probability of the n-th sensor is

P
(n)(st+1|st, at) ∈ P . P = [P (1);P (2); ...;P (N)] is defined

as the state transition probability of a system with N sensors.

4) Reward Function: When St and at are given, the one-

step reward can be expressed as follows:

rt = −
(
‖∆(t)‖1 + cTat

)
, (5)

where the negative sign is adopted, because that Q1 is a

minimization problem. Besides, the formula for calculating

the cumulated reward of time-slot t can be expressed as

Rt =
∑∞

k=0 γ
krt+k , where γ ∈ (0, 1] (the discount factor)

denotes the weight of future rewards.

5) Cost Function: Immediate cost ct = at · b is incurred

after the execution of action at at time-slot t. According to

(3), we can get the cost function that satisfies the constraints

as ct ≤M .

In large-scale industrial scenarios, it is very difficult to ob-

tain scheduling actions that satisfy constraints by conventional

methods, such as dynamic programming, genetic algorithms,

etc [34]. Therefore, we use reinforcement learning algorithms

to find the optimal scheduling policy that maximizes the
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expectation of cumulative rewards. In addition, historical

adjustment is used to adjust and optimize the scheduling

decisions, and the OPQ method is introduced to improve the

generalization performance of the model.

B. Reinforcement Learning Algorithm

In this section, we briefly introduce A3C and DDPG algo-

rithms, which perform well in task scheduling problems [35],

[36]. Both of them employ the actor-critic framework, where

the actor is responsible for generating the action and the critic

evaluates the value of the current policy. The difference is that

A3C learns a randomness strategy, improving the explorability

of the model by training multiple agents in parallel with

different copies of the environment. DDPG learns a deter-

ministic strategy and realizes improved policy exploration by

adding a noise component. It employs a training method that

involves randomly sampling historical experiences to enhance

model stability. Therefore, within the same application sce-

nario, the two algorithms may yield different performances.

Furthermore, by using deep neural networks (DNN), actor-

critic methods are able to learn and adapt to complex, high-

dimensional environments more effectively, thereby improving

the generalization performance of the model.

1) A3C: A3C enables asynchronous multiple agents to

interact with their environment in parallel and implement

different exploration policies. Each agent evaluates and op-

timizes its policy according to the value function. In state

St, given the policy π, we define the state and state-action

value function as V (St; θv) and Q(St,at; θ), respectively.

where θv and θ represent the parameters of critic and actor

respectively. V (St; θv) represents the average return, and

Q(St,at; θ) is the expected return after taking action at.

To reduce the variance in the learning process and enhance

strategy effectiveness, the advantage function A(St,at; θ, θv)
replaces Q(St,at; θ) [37]. Assuming that the critic network

is updated after every d actions, and denoting the beginning

steps of each update by tb, the expression for A(St,at; θ, θv)
is as follows:

A(St,at; θ, θv) =Q(St,at; θ)− V (St; θv)

=

tb+d−t−1∑

i=0

γi
art+i + γtb+d−t

a V (Stb+d; θv)

−V (St; θv), (6)

where γa ∈ (0, 1] is the discount factor of the actor. t varies

from tb to tb + d− 1 for each parameter update.

According to (6), given the policy π, the loss function and

parameter update formula for the actor are as follows:

R(a)(θ) =

tb+d−1∑

t=tb

(
A(St,at; θ, θv) log π(at|St; θ)

+βH(π(at|St; θ))

)
, (7)

θ ←θ + α∇θ
′R(a)(θ′), (8)

where β is the weight of the entropy regularization term,

H(π(at|St; θ)) denotes the entropy of the policy π. The

inclusion of entropy in the policy aids in preventing suboptimal

solutions by enhancing the model’s exploration capabilities.

Additionally, α represents the the learning rate of the actor,

and θ′ denotes the parameters of local actors3.

For the critic, its loss function and parameters are updated

as follows:

L(a)(θv) =

tb+d−1∑

t=tb

A2(St,at; θ, θv), (9)

θv ←θv + αv∇θ′

v
L(a)(θ′

v), (10)

where αv represents the learning rate of the critic, and θ′
v

denotes the parameters of local critics

2) DDPG: DDPG is also based on the Actor-Critic frame-

work and comprises both Actor and Critic networks. In ad-

dition, to improve the stability of the learning process, each

network has its corresponding target network. Unlike A3C,

DDPG is a single-threaded algorithm, and obtains determin-

istic actions through the actor. At slot t, given the policy π,

to enhance the ability to explore, an exploration policy π̃ is

constructed by adding noise sampled from a noise process

N to the actor policy π. And we use an Ornstein-Uhlenbeck

process to generate temporally correlated exploration [38].

Assuming that under the policy π̃, the obtained decision action

is ãt.

Critic evaluates the value of state-action pairs in DDPG, i.e.

Q(St, ãt; θq), where θq is the parameter of critic network.

To avoid the negative impact of data correlation on training

accuracy, after the interaction between the agent and the

environment, the transition information (St, ãt, rt,St+1) is

stored in the experience replay pool D. During each training

process, a batch of size L of the transition information is

sampled from D to train the network.

In the DDPG algorithm, the actor’s goal is to find actions

that maximize future returns. Therefore, the loss function and

parameter update for actor are as follows:

R(d)(θa) =
1

L

L∑

i=1

Q(Sr(i),ar(i); θq), (11)

θa ←θa + αa∇θa
R(d)(θa), (12)

where θa are the parameters of the actor, r(i) is the time slot

corresponding to the i-batch of transmission information.

To provide a stable learning goal, the target value is defined

as yt = rt + γdQ
′(St+1, ã

′
t+1; θ

′
q). Where γd is the discount

factor of the critic, ã
′
r(i) is the decision action obtained under

policy π̃′(Sr(i); θ
′
a). Q

′(·) and π̃′(·) are the target networks

with the weights θ′
q and θ′

a, respectively4. The loss function

and parameter updates in the critic are as follows:

L(d)(θq) =
1

L

L∑

i=1

(yi −Q(Sr(i),ar(i); θq))
2, (13)

θq ←θq + αq∇θq
L(d)(θq). (14)

3The A3C algorithm updates the global network parameters asynchronously
in real time based on the interaction information provided by local agents.
Then, synchronize the parameters to the local agent.

4The target network, Q′(·) and π̃′(·), have the same structures as the
original critic network Q(·) and actor network π̃(·).
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The parameters of the target network do not completely

copy the parameters of the original network in each learning,

but gradually track the parameters of the original network

through slow updates. DDPG employs a soft update to modify

the target network’s parameters:

θ′
a ← τθa + (1− τ)θ′

a,

θ′
q ← τθq + (1− τ)θ′

q.
(15)

where the weight τ presents the rate of change and τ ≪ 1
to ensure smooth and gradual updates to the target network’s

parameters.

C. Constrained Reinforcement Learning with Historical Ad-

justment

In section III-B, the actor’s output is not directly suitable

as the final decision action. While A3C produces action prob-

abilities, DDPG generates continuous actions. The following

section introduces the application of historical adjustment in

reinforcement learning to derive discrete action outputs.

To avoid overuse of certain sensors and ensure the balance

of data collection, we assume that the first l scheduling count

is d(l) = [d(l)(1), d(l)(2), ..., d(l)(N)]T , where the scheduling

count d(l)(n) ∈ N for each sensor. At time-slot t, we believe

that the sensors with smaller d(l) are more likely to be

scheduled in the next moment. To characterize this tendency,

we apply an exponential function 0.5d(l) such that d(l) maps to

(0, 1]. This exponentially decaying mapping not only reflects

the preference for sensors that have not been scheduled for

a long time, but also provides a smooth way to adjust the

scheduling priority of sensors. Besides, the choice of l should

be moderate, allowing it to take into account enough historical

information to ensure long-term equilibrium, while being

flexible enough to adapt to recent environmental changes.

However, simply selecting the output action through the

method described above does not guarantee that the action

will always satisfy the bandwidth constraint. To address this

issue, we adopt a greedy algorithm. Specifically, from the

set of potential decision actions selected by the threshold-

based method, this algorithm aims to preserve as much as

possible the characteristics of the original decision strategy

obtained through RL. This approach enables the model to

more effectively learn the features of the constraints, thereby

improving overall performance.

1) A3C HA: Assuming the probability of output under

policy π is ât, and we can define the optimization probability

obtained by using the historical adjustment as a function

below:

π̂(·; θ) : S → R
N ,

π̂(St; θ) = λât + (1− λ)0.5d(l),
(16)

where ât = π(St; θ), π(·; θ) is a function with parameters

θ, mapping from the state space S to the N -dimension

real number space R
N . λ balances the actor’s output and

the exponential mapping of the first l scheduling results. If

λ = 0, the optimization probability is only related to the

historical scheduling decision information. At this time, A3C

does not work, and it is difficult to meet the optimization

goals. By contrast, if λ = 1, the optimization probability is

only related to the output of A3C, which is likely to lead to

overuse of certain sensors. Therefore, in order to let both A3C

and the historical adjustment play approximate weight in the

optimization problem, we set λ = 0.5.

After sampling the local source, sensors can then be sched-

uled to send status packets based on optimization probability.

At time-slot t, the scheduling action can be denoted as āt:

g : π̂(St; θ)→ {āt|āt ∈ {0, 1}
N}, (17)

where g uses the threshold method to map the set RN to the

set {0, 1}N . Nevertheless, since the bandwidth constraint (3),

the action āt may be not valid.

We denote the set Ψ as π̂(St; θ)⊙āt (the probability that the

sensor is scheduled), where ⊙ stands for the Hadamard prod-

uct. We adopt a heuristic method to send status packets while

satisfying the bandwidth constraint: if the total bandwidth of

sensors to be scheduled at time-slot t is less than M , the

actual scheduling action is just āt; otherwise, set the non-zero

minimum element of Ψ to 0 until the bandwidth constraint

is satisfied, and the corresponding scheduling action at this

time is denoted by ǎt = [ǎ
(1)
t , ..., ǎ

(N)
t ]. Besides, ǎ

(n)
t = 1

if n ∈ Ψ, otherwise ǎ
(n)
t = 0. Hence, the actual scheduling

action can be expressed as:

h : {0, 1}N → ⊣,

at = h(āt) =

{
āt, āt · b ≤M,

ǎt, āt · b > M.

(18)

For instance, the Optimization probability vector is

π̂(St; θ) = [0.5, 0.6, 0.2, 0.7, 0.3], the bandwidth vector is

b = [9.5, 7.0, 8.4, 8.5, 5.7] and bandwidth constraints M = 16.

After selecting according to π̂(St; θ), we can get action

vector āt = [1, 1, 0, 1, 0], which violates the bandwidth

constraint. By calculating π̂(St; θ)⊙ āt, we can obtain Ψ =
{0.5, 0.6, 0, 0.7, 0}. Through heuristic algorithm, we can get

at = ǎt = [0, 1, 0, 1, 0]. In consequence, only the second and

the fourth sensors can update their status information.

At this point, three steps are taken in turn to return a

scheduling action and the functions can be composited as:

Fθ : h ◦ g ◦ π̂(·; θ), (19)

where ◦ denotes the composition operation.

2) DDPG HA: The actions generated by the DDPG are

continuous, and ãt ∈ {0, 1}, which can be regarded as the

priority level to be scheduled. According to (16)-(18), first,

the scheduling priority level is optimized using the history

adjustment. Then, the discretized output is obtained by using

the threshold method, such as dividing ãt into two intervals

representing 0 and 1 respectively. Finally, the final output is

obtained by using the heuristic algorithm.

D. Order-Preserving Quantization Based Constrained Rein-

forcement Learning with Historical Adjustment

In section III-C, it may be challenging for deep learning

methods to encompass all valid actions. As a supplementary

mechanism, OPQ can bolster the model’s decision-making
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capabilities by broadening the spectrum of available actions

through similarity search. Consequently, we introduced the

OPQ method in RL HA.

1) OPQ-A3C HA: In A3C HA, the exploration space of

RL HA mainly relies on the output of the actor. According

to equation (16), each entry of the optimization probability is

located in the interval of [0, 1], and we first quantize π̂(St; θ)
to K scheduling actions with binary entry to expand its search

space, where K is an integer. The quantization function can

be expressed as:

gk : π̂(St; θ)→ {āt,k|āt,k ∈ {0, 1}
N}, k = 1, ...,K. (20)

When choosing a large K , the solution quality becomes

better with higher computational complexity. In general, the

value of K is no more than N + 1. Furthermore, K possible

scheduling actions can be generated according to Property 1

of OPQ method [33].

Property 1. The ordering of the entries of quantized actions

are the same as that of π̂(St; θ), which can be represented

as:

ā
(i)
t,k ≥ ā

(j)
t,k, when â

(i)
t ≥ â

(j)
t , ∀i, j ∈ {1, ...N}, (21)

where â
(i)
t and ā

(i)
t,k are the i-th entry of π̂(St; θ) and the i-th

entry of the k-th quantized action, respectively.

Next, we first quantize action π̂(St; θ) to K (we adopt K =
N + 1) binary actions without bandwidth constraint:

1) Given the threshold 0.5, the entry of π̂(St; θ) which is

less than or equal to 0.5 is quantized to 0; otherwise,

the entry is set to 1. That is, ∀i ∈ {1, ..., N},

ā
(i)
t,1 =

{
1, â

(i)
t ≥ 0.5,

0, â
(i)
t < 0.5,

(22)

2) Given the threshold â
(k−1)
t (where k = 2, .., N + 1),

if the entry of π̂(St; θ) is less than the threshold,

or the entry equals the threshold and the threshold is

greater than 0.5, it is set to 0; otherwise, the entry is

approximated to 1. That is, ∀i ∈ {1, ..., N},

ā
(i)
t,k =





1, â
(i)
t > â

(k−1)
t ,

1, â
(i)
t = â

(k−1)
t and â

(k−1)
t ≤ 0.5,

0, â
(i)
t = â

(k−1)
t and â

(k−1)
t > 0.5,

0, â
(i)
t < â

(k−1)
t .

(23)

We now give an example to explain the OPQ method. As-

sume that action π̂(St; θ) = [0.3, 0.3, 0.2, 0.7, 0.8]T , then the

K = N + 1 = 6 quantized actions are āt,1 = [0, 0, 0, 1, 1]T ,

āt,2 = [1, 1, 0, 1, 1]T , āt,3 = [1, 1, 0, 1, 1]T , āt,4 =
[1, 1, 1, 1, 1]T , āt,5 = [0, 0, 0, 0, 1]T , āt,6 = [0, 0, 0, 0, 0]T ,

respectively.

Since sensors with a total bandwidth greater than M cannot

be scheduled to send their update information at the same

time, the actions generated by the OPQ method may not meet

constraint (3), i.e., āt,k /∈ A. Next, we restrict the scheduling

actions from the OPQ method to meet the bandwidth con-

straint.

Property 1 indicates that the ordering of entries of the

quantized actions remains unaltered after quantization. If the

actions contravene constraint (3), i.e., āt,k · b > M , those

sensors meeting the bandwidth constraint in action π̂(St; θ)
will be scheduled to send update packets and the other sensors

will keep silence. Here, the action selection in π̂(St; θ) that

satisfies the bandwidth constraint is consistent with the heuris-

tic in section III-C1. Since the OPQ method may not meet the

bandwidth constraint, we denote the indexed collection that

meets the bandwidth constraint in action π̂(St; θ) as Ω. and

at,0 as the corresponding scheduling action.

As a result, the actions that schedule more than M band-

width are restricted to meet the bandwidth constraint, and the

regenerating function of scheduling actions can be formulated

below:

hk : {0, 1}N → A,

at,k = hk(āt,k) =

{
āt,k, āt,k · b ≤M,

at,0, āt,k · b > M,

(24)

where k ∈ {1, 2, · · · ,K}, and hk’s are the mapping functions

from set {0, 1}N to the feasible region ⊣ of problem Q1. The

scheduling actions transform to at,0, if they do not meet the

constraint. In addition, at,0 = [a
(1)
t,0 , ...,a

(N)
t,0 ]T where a

(n)
t,0 =

1 if n ∈ Ω, otherwise a
(n)
t,0 = 0.

For example, the action probability is π′(St; θ) =
[0.3, 0.3, 0.2, 0.7, 0.8]T , the bandwidth is b =
[9.5, 7.0, 8.4, 8.5, 5.7]T and bandwidth constraints M = 16.

Through the heuristic algorithm, at,0 = [0, 0, 0, 1, 1]T ,

the possible quantized actions that meet the bandwidth

constraint are at,1 = [0, 0, 0, 1, 1]T , at,2 = [0, 0, 0, 1, 1]T ,

at,3 = [0, 0, 0, 1, 1]T , at,4 = [0, 0, 0, 1, 1]T ,

at,5 = [0, 0, 0, 0, 1]T , at,6 = [0, 0, 0, 0, 0]T . Moreover,

there are 3 different scheduling decisions here, i.e., at,1, at,5,

at,6.

At each time-slot, the agent adopts only one action to

interact with the environment. Hence, the further step is

required to select the optimal action from at,1, ..., at,K as:

vt(·; θ, θv) : {at,k} → a∗
t ,

a∗
t = vt(at,1, ...,at,K ; θ, θv)

= argmax
a∈{at,k}

A(St,a; θ, θv),
(25)

where vt is a function that maps K scheduling actions to action

a∗
t with highest A which is estimated by the critic network.

So far, the four steps are taken in turn to return a scheduling

action and we call the composite function of gk and hk as

constrained OPQ (COPQ) method. Furthermore, the actual

scheduling function can be composited as:

Fθ,θv
: vt(·; θ, θv) ◦ hk ◦ gk ◦ π̂(·; θ). (26)

2) OPQ-DDPG HA: The output of actor is discretized by

the threshold method in DDPG HA. However, in complex

spaces, the mapping error from continuous space to discrete

space may be large [39]. Therefore, based on Wolpertinger

strategy, we use the OPQ method to quickly find the discrete

action closest to the continuous action. The specific method is

the similar as the one in Section III-D1.
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Fig. 4. The structure of scheduling policy and agent updating in the proposed OPQ-RL HA.

The structure of scheduling policy to solve problem Q1

and the updating of agent are illustrated in Fig. 4. For OPQ-

A3C HA, we can divide it into the following two parts: 1)

action generation and interaction, 2) the parameters updating

of actor and critic networks.

E. Convergence Analysis

Theorem 1. Convergence of A3C. Under the Assumptions 2.2

and 4.1-4.5 in [40], the policy parameter θ obtained from (8)

converges almost surely to a point in the set of asymptotically

stable equilibria. When the error between the state-action

value function Q and its linear approximation is small, the

convergence point will correspond to a small neighborhood of

a local optimum of the long-term average reward.

In OPQ-A3C HA, the output of the actor in A3C is

primarily enhanced to achieve better decision-making results

while meeting bandwidth constraints. Under the assumptions

of Theorem 1, the proposed OPQ-A3C HA is also convergent.

Theorem 2. Convergence of DQN. Under the Assumptions

4.2 and 4.3 in [41], the state-action value function QπE corre-

sponding to the E-th iteration of training of the sparse neural

network formed by ReLU activation functions can approximate

the optimal state-action value function Q∗ within a specific

error range (the sum of statistical error and algorithmic error).

Among them, the statistical error diminishes as the sample size

in each iteration grows, whereas the algorithmic error decays

to zero geometrically as the number of iterations increases.

Combining with Theorem 1, the optimal state-action value

function Q∗ is substituted into (12) to obtain the optimal result

of policy parameter θa, and thus verifies the convergence of

OPQ-DDPG HA.

IV. NUMERICAL ANALYSIS

In this section, we evaluate the effectiveness of the pro-

posed OPQ-A3C HA and OPQ-DDPG HA algorithms in con-

strained homogeneous/heterogeneous systems by comparing

them with the AoI-optimal, Probabilistic Ranking based AoII

(PR-AoII), A3C HA, DDPG HA, A3C, DDPG algorithms.

In our work, AoI minimization is employed as the bench-

mark method (referring to as the AoI-optimal algorithm). By

definition, a packet with timestamp u is said to have the AoI

of

δn(t) = t− u, (27)

at time t ≥ u, where the investigation is carried out with

no bandwidth constraint. Therefore, the scheduling issue for

a single sensor can be separated from the problem of min-

imization of the AoI for N sensors. If sensor n is sched-

uled at time-slot t, and a
(n)
t = 1, the value of AoI in

the subsequent time-slot is either 1 with probabilityε
(n)
s or

δn(t) + 1 with probability 1 − ε
(n)
s , therefore, we denote

W1 = ε
(n)
s + (δn(t) + 1)(1− ε

(n)
s ) + cn as the one-step cost.
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TABLE I
NETWORK PARAMETERS.

A3C DDPG

Actor Critic Actor Critic

Input (3N, None)

Dense 64

Dense 64

Dense 16

Dense N (Sigmoid)1

Dense 64

Dense 32

Dense 16

Dense 1 (Linear)

Dense 64

Dense 64

Dense 32

Dense N (Tanh)

Lambda(∗ · 0.5 + 0.5)

Dense 64

Dense 32

Dense 16

Dense 1(Linear)

td = 5 τ = 0.05; L = 16; Cbuf 2= 10000

Emax
3= 1000; γ = 0.9; tmax

4= 100

1 If there is no description (·), use ReLU activation function.
2 The capacity of a buffer.
3 The maximum episode.
4 Truncate Q1’s time-slot to tmax to make sure it can be processed.

On the other hand, if a
(n)
t = 0, let W0 = δn(t) + 1 represent

the one-step cost. By comparing W1 and W0, we have

W1 −W0 = wn − δn(t)p
(n)
s , (28)

which is a non-increasing function of δn(t). Therefore, if

δn(t) ≥
cn

ε
(n)
s

, the scheduling decision a
(n)
t = 1 is preferable to

a
(n)
t = 0. That is, if AoI is too large, the sensor should send its

update packets. This scheme is referred to as the AoI-optimal

method and serves as the baseline in our work.

Furthermore, we prioritize the scheduling of sensors based

on their scheduling count. Assuming that sensors with fewer

scheduling occurrences have a higher probability of being

scheduled, we sort the scheduling probabilities in descending

order. The sensors with top probability that also meet the

bandwidth constraints will be scheduled. The above describes

the PR-AoII benchmark method used in this section.

As shown in Table I, all networks have the same input

layer, which includes 3N neurons that hold source statuses,

remote servers, and AoII of N sensors. The outputs of the

actor-network are N results (actions), and the critic network

produces one result (Q value).

In addition, we consider high-bandwidth sensors with dif-

ferent bandwidths, which are distributed randomly in size from

5 to 10 MB/s, with a bandwidth limit of 37.5 MB/s [42]. In

addition, we fixed random seeds to compare the results of

different experiments.

In the following, we first analyze a system with homo-

geneous source statuses without bandwidth constraint, for

both single sensor and multiple sensors scenarios, and we

can derive theoretical results [6]. Next, we introduce the

homogeneous statuses multi-sensor system with bandwidth

constraints. Finally, we explore the multi-sensor system for

heterogeneous statuses, whose theoretical inferences cannot be

drawn.

A. Status-homogeneous Single Sensor System

We take into account the status-homogeneous5 single sensor

system, which has 4 statuses (0 to 3), and a transmission cost

c (zero vector). Below are provided the two alternative status

transition probability matrices R1 and R2:

R1 =




0.7 0.1 0.1 0.1
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7


 and R2 =




0.1 0.3 0.3 0.3
0.3 0.1 0.3 0.3
0.3 0.3 0.1 0.3
0.3 0.3 0.3 0.1


 ,

where the transition probability in R1 are 0.7 and 0.1, re-

spectively (transition probability represents the probability of

each status transferring to another status and itself). Since

0.7 > 0.1, selecting R1 is more likely to result in a trans-

formation to itself from the current status. And the opposite

is held for R2 (i.e., 0.1 ≤ 0.3). According to [6, Theorem 1],

if the transition probability matrix is R1, the transmitter on

the sensor side should send update packets at the beginning

of each time-slot. This includes two cases: when the remote

server’s estimate is accurate, there is no need to send packets

(the AoII value is zero); but when the estimate of remote

server is inaccurate, packets need to be sent (the AoII value

grows with time). On the other hand, if R2 is chosen as the

transition probability matrix, the transmitter on the sensor side

will not send any status update packets. The above is used as

the optimal transmission strategy for this work. In this section,

we assume the initial status of the source and the remote server

are both 0, εs = 0.8, l = 3 for any sensors, and there is no

bandwidth constraint.

The state-action transition sequence in which the agent

moves from some initial state to the final reward state is

known as an episode, and the episode is the most foundational

5In this case, the transition probability matrix is symmetric.
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Fig. 5. Performance comparison of different algorithms.

learning unit in reinforcement learning. As for systems with

transition probability matrices R1 and R2, the results of OPQ-

A3C HA and OPQ-DDPG HA algorithms are illustrated in

Fig. 5. The vertical axis represents the average system-wide

cost to generate the cumulative distribution function (CDF).

According to [6, eq. (15)] and [6, eq. (16)], the expectation

of system-wide cost with transition probability matrices R1

and R2 is 0.58777 and 2.5, respectively. Whether OPQ-

A3C HA algorithm or OPQ-DDPG HA algorithm, the values

of CDF being 0.5 (correspond to average system-wide cost)

are 0.58777 (in Fig.5(a)) and 2.5 (in Fig. 5(b)), respectively.

In other words, both OPQ-A3C HA and OPQ-DDPG HA

can achieve the theoretically best results. Furthermore, as

for transition probability matrix R1 in Fig. 5(a), the AoI-

optimal approach also obtains the average system-wide cost,

with an expectation of 0.58777, since the optimal policy under

transition probability matrix R1 keeps updating. However,

compared to OPQ-A3C HA and OPQ-DDPG HA, the results

of AoI-optimal are significantly greater in Fig. 5(b).

B. Status-homogeneous Multi-sensor System

In this section, we consider a multi-sensor system with 30
sensors, and its transition probability matrix is R1 (15 sensors)

and R2 (another 15 sensors). Assuming εs = 0.8 for any

sensors. When cn = 0, and there is no bandwidth constraint,

consider the optimal scheduling policy in section IV-A, i.e., the

transmitter only sends the update packets with R1. Therefore,

we can obtain the expectation of system-wide cost as 46.3166.

Assuming cn ∈ (0, 1], and considering bandwidth con-

straints, the average system-wide cost using different algo-

rithms are presented in Fig. 6. It is obvious that using the

A3C/DDPG algorithm alone results in slower convergence.

After adding the history adjustment, the convergence perfor-

mance of the algorithm is improved. With the consideration

of OPQ, both the convergence performance and decision-

making results of the algorithm are enhanced. Fig. 7 shows the

values of AoII and transmission cost corresponding to CDF

is 0.5 for each algorithm. Obviously, the AoI-optimal method

results in the highest AoII and transmission cost. The AoII

results obtained using the PR-AoII method are similar to those

of DDPG and DDPG HA. However, the PR-AoII method

incurs higher transmission costs. In addition, DDPG sacrifices

AoII to minimize transmission cost. In OPQ-DDPG HA, there
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Fig. 6. Performance comparison under status-homogeneous system.
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Fig. 8. Performance of OPQ-DDPG HA under different scheduling counts.

is a 50% probability that AoII/transmission cost is below

54.73/3.42, which shows the best performance.

To provide a clearer observation of the experimental results,

in Fig. 8, we only display the average system-wide cost

obtained using OPQ-DDPG HA when l is 0, 1, 3, 5, and 7,

respectively. In comparison to the scenario without historical

adjustment, when l is too small, such as l = 1, the scheduling

result is not good enough. However, when l is too large, one

situation is that the algorithm is unstable. For example, when

l = 5. Another case is that the performance of the algorithm
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Fig. 9. Performance comparison under status-heterogeneous system.

is similar between each other, such as l = 3 and l = 7. In this

case, choosing the adjustment with l = 3 can save computation

resources.

C. Status-heterogeneous Multi-sensor System

The majority of source statuses in an actual IIoT system

are heterogeneous. Therefore, it is essential to study a more

general system. The two heterogeneous transition probability

matrices below are what we leveraged in this section:

R3 =




0.3 0.1 0.2 0.4
0.5 0.2 0.2 0.1
0.2 0.2 0.2 0.4
0.6 0.1 0.2 0.1


 and R4 =




0.4 0.4 0.1 0.1
0.2 0.2 0.3 0.3
0.3 0.4 0.2 0.1
0.7 0.1 0.1 0.1


 .

The system has 30 sensors, including 8 sensors with transition

probability matrix R1, 8 sensors with transition probability

matrix R2, 7 sensors with transition probability matrix R3, and

7 sensors with transition probability matrix R4 respectively.

Fig. 9 shows the average system-wide cost of different

algorithms in a multi-sensor heterogeneous system. Among

them, the performance improvement of A3C using HA and

OPQ methods is not obvious and is similar to the results of the

PR-AoII method. OPQ-DDPG HA has better decision-making

results compared to A3C, and its convergence speed is faster

than traditional DDPG. To further demonstrate the efficiency

of OPQ-DDPG HA, we compared four indicators (transmis-

sion cost, scheduling rate, bandwidth utilization, and AoII) of

DDPG and OPQ-DDPG HA when CDF is 0.5, as shown in

Fig. 10. It is obvious that DDPG and OPQ-DDPG HA have

similar performances in terms of transmission cost, scheduling

rate, and bandwidth utilization. The AoII value of OPQ-

DDPG HA is about 10.81% lower than that of DDPG, i.e., its

convergence performance is better. Furthermore, the system-

wide costs from the OPQ-DDPG HA algorithms are much

less than AoI-optimal method, which again demonstrates that

AoII is a more efficient metric than AoI.

D. Comprehensive Comparison and Analysis

In order to provide a clearer exposition of the efficiency

of the algorithm proposed in this paper for scheduling tasks,

this section will focus on a comprehensive performance
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comparison among different algorithms in homogeneous and

heterogeneous systems.

Fig. 11 illustrates the comparison of different algorithms in

homogeneous and heterogeneous systems with the CDF of 0.5.

Among them, when A3C considers the influence of the histori-

cal adjustment, the average system-wide cost decreases in both

homogeneous and heterogeneous systems. However, with the

addition of the OPQ method, it only yields improved results

in the homogeneous system. Overall, A3C is more sensitive

to HA. For the DDPG algorithm, HA has a negative impact,

but the inclusion of OPQ leads to a significant reduction in

average system-wide costs for DDPG in both homogeneous

and heterogeneous systems, with the lowest values achieved.

Therefore, the combined effect of HA and OPQ has a positive

impact on DDPG. In summary, the performance of OPQ-

DDPG HA is shown as the best.

V. CONCLUSIONS

In this work, we have used DRL to address the problem of

minimizing AoII in IIoT. First, we used CMDP to describe

the multi-sensor scheduling problem, which is subject to

bandwidth constraints. Subsequently, we proposed the OPQ-

RL HA framework to handle the issue of large state and
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action spaces, and conducted experiments using A3C and

DDPG under the framework. According to the numerical

results, the proposed OPQ-DDPG HA algorithm outperforms

the OPQ-A3C HA algorithm. Moreover, compared with the

proposed approach, the traditional method of AoI-optimal is

often ineffective since it disregards the statuses of the source

and the remote server, which can lead to unnecessary updates.
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