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A B S T R A C T

Motivated by the challenge of achieving precise 3D outdoor localisation for unmanned aerial vehicles
(UAVs) in global navigation satellite system (GNSS)-denied environments, this paper introduces
an innovative technique. Integrating crowd-sensed data fusion to counter inertial navigation system
(INS) drift during GNSS signal outages, the proposed method exploits diverse estimators to enhance
its efficacy. A micro lightweight frequency modulated continuous wave (FMCW) radar mounted
on the UAV captures ground scatterer reflections, processed via fast Fourier transform (FFT) to
generate a range-Doppler map. This map facilitates forward velocity estimation during GNSS signal
loss. This approach employs adaptive thresholding, image binarisation, and connected components-
based techniques for target detection from a computer vision standpoint. The derived radar-based
velocity fuses with magnetometer, barometer, and inertial measurement unit (IMU) data using
diverse estimators like extended Kalman filter (EKF) and particle filter (PF). Real-time flight data
evaluation and simulated outage periods using EKF and PF validate the outdoor localisation system.
Experimental analyses demonstrate substantial improvements, enhancing 3D positioning accuracy
by 99.89% and 99.83% for the initial and subsequent flights, respectively, leveraging PF to fortify the
standalone INS mode during GNSS signal loss. This approach significantly enhances UAV localisation
precision, particularly in challenging GNSS-denied scenarios, showcasing the potential for real-world
applications.

1. Introduction1

In recent years, there has been a substantial increase in2

the demand for unmanned aerial vehicles (UAVs), spanning3

various sectors, including both military and civilian appli-4

cations [1]. These demands stem from the diverse range5

of functions these vehicles serve, including reconnaissance,6

disaster management, first aid delivery, firefighting, and bat-7

tlefield support [2, 3]. Despite their utilities, UAVs encounter8

challenges, particularly in maintaining accurate positioning9

when operating in adverse environments, leading to disrup-10

tions in global navigation satellite system (GNSS) signals.11

Navigating GNSS-denied environments poses a signif-12

icant challenge for UAVs. While light detection and rang-13

ing (LiDAR) systems are often utilised as supplementary14

sensors, their drawbacks render them unsuitable for smaller15

UAVs [3]. Camera-based systems, offering advantages like16

compact size and low power consumption, face challenges17
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related to lighting conditions and featureless areas. Monoc- 18

ular visual odometry (VO) suffers from scale ambiguity, re- 19

sulting in navigation drift over time, but stereo-fixed cameras 20

help mitigate this issue. Precise calibration of the lever arm 21

and bore sight parameters is essential for accurate naviga- 22

tion configurations [4]. Integrating the inertial measurement 23

unit (IMU) with VO helps mitigate errors and scale issues. 24

Radar beacons and the signal of opportunity (SoP) method 25

offer alternative approaches for GNSS-denied navigation, 26

but practical usage is limited by installation challenges and 27

the need to create signal strength-based maps [5]. In recent 28

years, radar-based vehicle dynamic estimation has emerged 29

as a promising approach for navigation tasks. Previous stud- 30

ies have addressed the limitations of radar-aided navigation 31

solutions reliant on Doppler measurements. However, tra- 32

ditional radars’ size, weight, cost, and power consumption 33

pose significant challenges, particularly for small UAVs in 34

navigation. 35

Given the reliance of UAVs on GNSS/inertial navigation 36

system (INS) integrated measurements for localisation, the 37

susceptibility of GNSS signals to blockage or interference 38

introduces potential errors in the INS measurements [5, 6]. 39

Instances, where GNSS signals become inaccessible, neces- 40

sitate sole reliance on INS measurements for positioning, 41
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thereby exacerbating the risk of rapid degradation in the nav-1

igation solution due to INS drift [6]. Integrating supplemen-2

tary sensors becomes imperative to address and mitigate INS3

drift errors arising from GNSS signal unavailability. Conse-4

quently, this research presents a robust outdoor localisation5

system that harnesses crowd-sensing data fusion alongside6

diverse nonlinear estimators tailored for a small quadcopter7

operating in environments lacking GNSS signals, see Fig.8

1. The outcomes and efficacy of the proposed system are9

supported by real-time flight data analysis.10

1.1. Contributions11

The following summarises the contributions of the pro-12

posed system:13

1. Enhanced precision in GNSS-denied environments:14

Introducing an outdoor localisation system that offers15

heightened accuracy and reliability even in environ-16

ments lacking GNSS signals.17

2. Utilisation of crowd-sensing data fusion and nonlin-18

ear estimators: The methodology involves strategi-19

cally integrating crowd-sensing data fusion alongside20

multiple nonlinear estimators. This integration aims to21

elevate the efficacy of outdoor localisation solutions22

across diverse typical manoeuvring scenarios.23

3. Real-time functionality and natural ground scatterer24

utilisation: The suggested approach boasts a rapid25

target detection processing time of approximately 126

millisecond, emphasizing real-time functionality. Un-27

like prior artificial reflector-based radar localisation28

techniques, this proposed algorithm leverages natural29

ground scatterers such as trees and asphalt to enhance30

outdoor localisation accuracy in GNSS signal-denied31

situations.32

4. Addressing MEMS IMU drift and demonstrated per-33

formance: Demonstrating the system’s effectiveness34

in mitigating low-cost micro-electro-mechanical sys-35

tems (MEMS) IMU drift issues using actual flight36

data. Furthermore, the proposed outdoor localisation37

solution undergoes testing under a 2-minute GNSS38

signal loss interval across two real flights, showcasing39

a maximum error of 8.15 meters in 3D positioning.40

1.2. Use Cases and Potential Applications41

The integration of advanced wireless communication42

systems, such as 6G, with UAVs offers significant potential43

across various domains. In the realm of secure vehicular44

communication, the enhancement provided by 6G technol-45

ogy and UAVs facilitates improved traffic monitoring and46

information exchange. UAVs equipped with IMUs, radar47

systems, and cameras enable secure and efficient real-time48

traffic analysis. This advancement leads to several key ben-49

efits. For example, precise UAV localisation significantly50

improves traffic pattern analysis, which in turn reduces con-51

gestion and enhances transportation efficiency. Real-time52

data from UAVs supports adaptive routing, allowing vehi-53

cles to navigate based on current traffic conditions. Accurate54

Figure 1: GNSS signal outage: Mission abort scenario.

localisation also bolsters reliable communication channels 55

for traffic alerts and safety notifications, while UAVs pro- 56

vide crucial real-time hazard data that enhances roadway 57

safety through collision avoidance systems. Additionally, the 58

data obtained enables dynamic adjustments to traffic signals 59

and regulations, optimising traffic flow. Figure 2 illustrates 60

the envisioned system architecture for UAV-assisted secure 61

vehicular communication, underscoring the critical role of 62

high-precision UAV localisation in these applications. 63

Beyond vehicular communication, the proposed method- 64

ology has broad implications for various sectors. In smart 65

city infrastructure, UAVs contribute significantly to disas- 66

ter management, surveillance, and emergency coordination. 67

They play a vital role in extending network coverage and 68

improving connectivity in areas with limited ground infras- 69

tructure, thus enhancing network optimisation. In disaster 70

response, UAVs facilitate real-time monitoring, search and 71

rescue operations, and data collection in hazardous environ- 72

ments. Furthermore, in precision agriculture, UAVs offer 73

detailed agricultural data, which aids in improving crop 74

management and promoting sustainable farming practices. 75

Lastly, UAVs support environmental monitoring by tracking 76

air quality, wildlife, and ecosystems, thereby contributing to 77

conservation efforts and maintaining ecological balance. 78

The paper’s structure includes the following: Section 2 79

reviews the current state-of-the-art, Section 3 discusses the 80

system architecture in detail, Section 4 presents experimen- 81

tal results, and Section 5 summarises findings, conclusions, 82

and implications of the proposed system and its application. 83

2. Related Works 84

Navigating UAVs in GNSS-denied outdoor environ- 85

ments presents a notable challenge during mission execu- 86

tion. Extensive exploration of diverse sensors and method- 87

ologies has been conducted to enhance navigation solutions 88

in GNSS-denied settings. Among these, the incorporation 89
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Figure 2: Envisioned system architecture for UAV-assisted secure vehicular communication.

of LiDAR equipment has been observed in select outdoor1

localisation systems designed for UAVs operating in envi-2

ronments where GNSS signals are lost [7, 8].3

LiDAR systems serve as aiding sensors in GNSS-denied4

environments. However, their suitability for micro and minia-5

ture UAVs is limited by their weight, size, and substantial6

power consumption. Moreover, environmental conditions7

such as rain and fog can adversely affect the accuracy8

of laser beam readings. Visual sensors have emerged as9

viable components in GNSS-denied outdoor localisation10

systems for UAVs [9]. Onboard cameras offer advantages in11

compact size, lightweight nature, low power consumption,12

and capacity to yield valuable imagery, thereby enhancing13

positioning accuracy during GNSS signal disruptions. How-14

ever, varying brightness, illumination discrepancies, and15

featureless regions can influence the quality of camera-based16

imaging measures. Both monocular and stereo approaches17

are prominent within the domain of VO. Due to its cost-18

effectiveness and compact design, Monocular VO holds19

appeal across diverse applications [10, 11]. Nevertheless,20

monocular VO is prone to a scale ambiguity issue that can21

accelerate navigation solution drift over time [12, 13, 14]. To22

address this limitation, the utilisation of stereo-fixed cameras23

featuring overlapping fields of view has been explored24

[15, 16, 17].25

Other research endeavours have combined IMUs with26

VO to address INS drift errors and counteract the scale27

ambiguity issue [18]. In environments lacking GNSS sig-28

nals, radar beacons emerge as an alternative method for29

outdoor localisation. These beacons possess predetermined30

locations that act as reference points across the localisa-31

tion area [19]. While offering high accuracy in outdoor32

localisation, installing radar beacons across large regions33

presents challenges, limiting their applicability in GNSS-34

denied environments. Conversely, certain GNSS-denied out-35

door localisation systems adopt an SOP approach, utilising36

available signals such as AM radio [20], Wi-Fi [21], digital,37

and analogue television to compute localisation solutions.38

However, SOP primarily relies on mapping the area based39

on the strength of received signals [22, 23, 24].40

The SOP-based approach entails mapping areas while 41

GNSS signals are accessible, utilising this map for sub- 42

sequent outdoor localisation during GNSS signal outages. 43

However, a significant drawback of the SOP method is its 44

inability to provide localisation solutions in unmapped areas. 45

An alternative technique for outdoor localisation in GNSS- 46

denied environments is the traditional multi-trilateration ap- 47

proach. This method necessitates knowledge of signal source 48

positions and signal time of arrival (TOA). Yet, a notable 49

drawback lies in the necessity to pre-survey transmitter 50

positions, which may pose challenges in areas that need to 51

be prepared for outdoor localisation applications [25]. 52

Over the past decades, constraints related to size, weight, 53

cost, and power consumption have impeded the widespread 54

application of radars in outdoor localisation, especially con- 55

cerning small UAVs [26]. However, advancements in radar 56

technologies have led to the development of new iterations 57

that address the limitations of their predecessors, rendering 58

them more compatible with diverse mobile mapping and 59

localisation functions on miniature UAVs. Examples include 60

synthetic aperture radar (SAR) systems tailored for such 61

applications [27]. 62

Furthermore, radar-based navigation systems exhibit re- 63

silience against environmental disruptions like rain, dust, 64

and fog. Kauffman et al. [27] conducted simulations of an 65

aerial navigation system employing ultra-wideband orthog- 66

onal frequency division multiplexed (UWB-OFDM) radar 67

in GNSS-denied environments. Target detection utilised the 68

M/N detector algorithm while tracking used the global near- 69

est neighbour (GNN) tracker. An outdoor localisation solu- 70

tion was formulated by integrating INS data with radar range 71

measurements through an extended Kalman filter (EKF). 72

Addressing GNSS-denied settings for small UAVs, Quist et 73

al. [28] proposed an RO/INS integrated navigation system. 74

The system incorporated a side-looking SAR atop the UAV 75

for ground target identification. Employing the Hough trans- 76

form [29], hyperbolic objects in the radar range-compressed 77

image were located. These identified targets were utilised to 78

determine along-track and cross-track velocities and altitude 79

above ground. Diverse estimators fused predicted velocities 80

and altitudes from the radar imagery. 81
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Gamal et al. [30] introduced a methodology that inte-1

grates IMU and Wi-Fi-based received signal strength indi-2

cator (RSSI) measurements. This approach employs sensor3

fusion, Wi-Fi fingerprinting, and dead reckoning techniques4

to enhance indoor localisation accuracy. The methodology5

was evaluated by experimentally comparing estimated paths6

with predefined reference paths. In reference [31], Kaur7

et al. utilised a grid approach with channel state informa-8

tion (CSI) fingerprinting and machine learning methods9

to improve indoor localisation by determining the location10

of a mobile device, and compared the accuracy of this11

method, based on RSSI and channel phase response, against12

heuristic approaches like DOA estimation through experi-13

ments conducted in a standard indoor setting. Tariq et al. in14

[32] extended the work introduced in [31] by investigating15

the effect of integrating reconfigurable intelligent surfaces16

(RIS) to improve the RSSI in each position, enhancing17

the localisation accuracy. A comprehensive experimental18

analysis is conducted, evaluating the accuracy of various19

machine learning algorithms under different RIS states, an-20

tenna types, and communication setups. This demonstrates21

that incorporating RIS can significantly enhance localisation22

accuracy, achieving an 82.4% success rate.23

Karunanithy in [33] proposed a reliable data collection24

mechanism (RDCM) using six directional antennas to create25

an omnidirectional radiation pattern for node localisation26

and data collection in wireless sensor networks (WSNs),27

utilising received signal strength (RSS), angle of arrival28

(AoA), and coordinate values from a single anchor node, and29

implemented a local sink (LS)-based information collection30

mechanism with modified geographic routing, demonstrat-31

ing superior performance in packet delivery ratio, energy32

consumption, and end-to-end delay compared to traditional33

approaches. Kong et al. [34] proposed a hybrid indoor posi-34

tioning method that combines Bluetooth low energy (BLE)35

and pedestrian dead reckoning (PDR) using adaptive feed-36

back extended Kalman filter (AFEKF). This method fuses37

BLE position, orientation, and range measurement data with38

PDR localisation results to enhance positioning accuracy in39

scenarios with low access point (AP) deployment density.40

Its effectiveness was demonstrated through experiments con-41

ducted in large underground parking lots.42

3. System and Scheme Modeling43

This section comprehensively discusses the system ar-44

chitecture and the proposed method in detail.45

3.1. System Architecture46

The designed for the proposed localisation system in-47

volves demonstrating the data flow, processing steps, and48

decision-making. The following outlines the interactions49

between different layers:50

1. Sensor data processing flow: Following are the vari-51

ous data processing types involved in this step:52

(a) IMU data processing (proc_imu): This process53

begins with the calibration step designed to com-54

pensate for inherent sensor errors such as biases,55

scale factors, and misalignments. Noise filtering 56

techniques, including Kalman filters or low-pass 57

filters, are applied to minimize noise from ac- 58

celerometer and gyroscope measurements. Ad- 59

ditionally, algorithms for bias compensation are 60

implemented to remove systematic errors. Fu- 61

sion with other sensors, like GNSS or barometer 62

data, is performed using advanced fusion algo- 63

rithms like the EKF or PF to enhance accuracy 64

and reliability. 65

(b) GNSS data processing (proc_gnss): This pro- 66

cess initiates with signal reception mechanisms 67

that involve acquiring and tracking satellite sig- 68

nals, evaluating signal strength, and assessing 69

signal quality. Signal processing algorithms ex- 70

tract critical information such as position, ve- 71

locity, and timing from received GNSS signals, 72

incorporating techniques to estimate and correct 73

various error sources like multipath effects, and 74

ionospheric or tropospheric delays, ensuring ac- 75

curate navigation solutions. 76

(c) Barometer and radar data processing (proc_baro): 77

This process involves algorithms converting at- 78

mospheric pressure readings into altitude esti- 79

mates, employing barometric formulas or mod- 80

els. Compensatory techniques may account for 81

temperature effects on pressure measurements 82

if necessary. Radar data processing focuses on 83

deriving range and velocity information from 84

received radar signals, utilising sophisticated 85

algorithms to reduce clutter and noise through 86

techniques like constant false alarm rate (CFAR) 87

or fast Fourier transform (FFT), ensuring accu- 88

rate target detection and tracking in challenging 89

environments. 90

2. Data processing layer (process_rad): This layer com- 91

prises different processes described as follows: 92

(a) Signal processing blocks: For each sensor, there 93

are specific signal processing algorithms to ex- 94

tract relevant information from raw sensor data. 95

(b) Sensor fusion algorithms (sens_fuse): Employed 96

to combine information from multiple sensors 97

to produce a more accurate estimation of the 98

vehicle’s state. 99

(c) Object detection and tracking: Algorithms to 100

detect and track objects using radar or other 101

sensing modalities. 102

3. Localisation and estimation layer (loc_map): 103

(a) EKF/PF: Used for state estimation and sensor 104

fusion. They incorporate sensor data, system 105

dynamics, and error models to estimate the ve- 106

hicle’s state. 107

(b) Localisation Algorithms: Combining GNSS, IMU, 108

and other sensor data for precise localisation. 109

(c) Environment Modeling: Mapping and localisa- 110

tion techniques to represent the surrounding en- 111

vironment. 112
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Algorithm 1 System Operations
1: Initialise Variables and System Parameters
2: Init_sys()
3: while sys_run do
4: Sensor Data Processing
5: 𝑖𝑚𝑢← 𝑝𝑟𝑜𝑐_𝑖𝑚𝑢(𝑟𝑎𝑤_𝑖𝑚𝑢)
6: 𝑔𝑛𝑠𝑠← 𝑝𝑟𝑜𝑐_𝑔𝑛𝑠𝑠(𝑟𝑎𝑤_𝑔𝑛𝑠𝑠)
7: 𝑏𝑎𝑟𝑜← 𝑝𝑟𝑜𝑐_𝑏𝑎𝑟𝑜(𝑟𝑎𝑤_𝑏𝑎𝑟𝑜)
8: 𝑟𝑎𝑑 ← 𝑝𝑟𝑜𝑐_𝑟𝑎𝑑(𝑟𝑎𝑤_𝑟𝑎𝑑)
9: Sensor Fusion and Localisation

10: 𝑓𝑢𝑠𝑒𝑑 ← 𝑠𝑒𝑛𝑠_𝑓𝑢𝑠𝑒(𝑖𝑚𝑢, 𝑔𝑛𝑠𝑠, 𝑏𝑎𝑟𝑜, 𝑟𝑎𝑑)
11: 𝑒𝑠𝑡_𝑠𝑡𝑎𝑡𝑒 ← 𝑙𝑜𝑐_𝑚𝑎𝑝(𝑓𝑢𝑠𝑒𝑑)
12: Control and Decision-Making
13: 𝑐𝑡𝑟𝑙_𝑐𝑚𝑑𝑠← 𝑚𝑎𝑘𝑒_𝑐𝑡𝑟𝑙(𝑒𝑠𝑡_𝑠𝑡𝑎𝑡𝑒)
14: exec_cmds(ctrl_cmds)
15: Safety and Redundancy Checks
16: check_safe_redun(est_state, sens_data)
17: Communication and Interface
18: trans_data(est_state)
19: recv_cmds()
20: upd_vis(est_state)
21: end while

where Init_sys: Initialise the System; sys_run: System Running; imu: IMU Data;
proc_imu: Process IMU Data; raw_imu: Raw Data from the IMU; gnss: GNSS
Data; proc_gnss: Process GNSS Data; raw_gnss: Raw Signals from the GNSS; baro:
Barometer Data; proc_baro: Process Barometer Data; raw_baro: Raw Readings from
the Barometer; rad: Radar Data; proc_rad: Process Radar Data; raw_rad: Raw
Signals from the Radar; sens_fuse: Sensor Fusion; fused: Fused Data; est_state:
Estimated State; loc_map: Localisation and Mapping; ctrl: Control; cmds: Com-
mands; exec_cmds: Execute Commands; Redun: Redundancy; check_safe_redun:
Check Safety and Redundancy; Comm: Communication; trans_data: Transmit Data;
recv_cmds: Receive Commands; upd_vis: Update Visualisation

4. Control and decision layer (make_ctrl): This layer1

comprises the following algorithms.2

(a) Path planning: Algorithms for planning optimal3

paths based on localisation data and mission4

objectives.5

(b) Control systems: responsible for controlling the6

vehicle based on the estimated state, such as an7

autopilot or guidance system.8

(c) Decision-making logic (exec_cmds): Processing9

of localisation data to make decisions, such as10

avoiding obstacles or maintaining a specific tra-11

jectory.12

5. Communication layer: This layer involves these steps.13

(a) Interfacing and communication (trans_data):14

Handling the exchange of data between different15

modules within the system.16

(b) Interface with external systems (recv_cmds):17

Connection points for communication with ground18

stations or external control systems.19

6. Visualisation and user interface (upd_vis): Involves20

data display and user-friendly interfaces for monitor-21

ing, configuring, and interacting with the system.22

7. Redundancy and safety measures (check_safe_redun):23

Includes duplicate components or sensors for fault tol-24

erance and safety protocols for emergencies or system25

failures.26

Algorithm (1) illustrates the sequential steps involved in the27

proposed system.28

3.2. Scheme Modelling29

The proposed method aims to enhance the 3D out-30

door localisation precision of UAVs in GNSS-denied en-31

vironments through frequency-modulated continuous wave32

Figure 3: The block diagram of the proposed method.

(FMCW) radio odometry (RO) technology. This system 33

enhances reliability and accuracy in the absence of GNSS 34

signals. Utilising FMCW RO, the outdoor localisation sys- 35

tem integrates data from barometers and magnetometers, 36

commonly present on UAVs, as additional assisting sensors. 37

The process involves fusing the estimated longitudinal ve- 38

locity component with IMU and magnetometer measure- 39

ments using nonlinear estimators like EKF and PF. Fig. 3 40

illustrates the system block diagram, comprising key stages: 41

data capture, target identification, velocity extraction, and 42

integration of RO/INS/magnetometer/barometer data into 43

various types of nonlinear estimators. 44

The EKF is advantageous for its computational effi- 45

ciency and optimal performance under linear and Gaus- 46

sian assumptions, making it suitable for low-dimensional 47

state spaces commonly encountered in UAV applications. 48

However, it has limitations in handling strong nonlineari- 49

ties and non-Gaussian noise. Conversely, the PF excels in 50

managing highly nonlinear systems and non-Gaussian noise 51

through its ability to represent multimodal distributions, 52

though it requires higher computational resources. The de- 53

cision between EKF and PF hinges on the specific charac- 54

teristics of the system dynamics, measurement models, and 55

available computational resources. For our application, the 56

EKF is employed where nonlinearities are mild, and the 57

PF is used in scenarios with significant nonlinearities and 58

non-Gaussian noise, such as highly manoeuvring UAVs or 59

GNSS-denied environments. 60

3.2.1. Radar Data Acquisition 61

In order to obtain range and velocity measurements, the 62

proposed system initially processes internal radar signals 63

through a micro FMCW radar. This radar emits frequency- 64

modulated chirps (𝑓𝑅𝐹𝑇𝑋) with a sawtooth-shaped fre- 65

quency modulation during flights over an uncharted area. 66
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These signals interact with ground objects, get reflected, and1

are received by the radar. The Doppler effect, caused by the2

movement of objects, induces a frequency shift between the3

transmitted and received signals, allowing estimation of the4

target’s radial velocity. The time delay between transmission5

and reception is also used to estimate the target’s range. The6

radar module internally processes these signals to extract7

range and velocity data, which are then transmitted to a8

ground station for further processing and fusion with data9

from other sensors. The 𝑓𝑅𝐹𝑇𝑋 can be formulated as10

𝑓𝑅𝐹𝑇𝑋 = 𝑓0 +𝐾𝑓 𝑡, 0 ≤ 𝑡 < 𝑇 (1)

where 𝑓0 is the initial transmitted frequency, 𝐾𝑓 represents11

the sweep rate, and 𝑇 is the frequency sweep time. The12

frequency sweep rate in (1) can be expressed as:13

𝐾𝑓 = 𝐵𝑊
𝑇

(2)

where the transmitted signal bandwidth is denoted as BW.14

The radio frequency (RF) signals experience a slight fre-15

quency Doppler shift Δ𝑓 and a round-trip propagation delay16

timeΔ𝑡 as the radar signal travels to the scatterers and returns17

to the radar’s reception antennas. These effects, caused by18

range propagation, lead to these time delays and frequency19

shifts. For each reflector 𝑖, the difference in time between the20

transmitted and received signals can be described as:21

Δ𝑡 = 2
𝑟𝑖
𝑐

(3)

where 𝑟𝑖 signifies the distance between the radar antenna22

and each scatterer within the radar’s beam width. The range23

is defined as the cumulative distance encompassing the24

radar antenna and the individual scatterers, and 𝑐 symbolises25

the speed of light. The frequency of the receiving signal26

(𝑓𝑅𝐹𝑅𝑋) is altered in proportion to the time delay Δ𝑡, and27

can be expressed as:28

𝑓𝑅𝐹𝑅𝑋 = 𝑓0 +𝐾𝑓 (𝑡 − Δ𝑡), Δ𝑡 ≤ 𝑡 < 𝑇 + Δ𝑡 (4)

The integration of the transmitted and received signals29

yields a mixed signal. This mixed signal undergoes low-30

pass filtering to extract the video signal 𝑥(𝑡). This signal,31

characterized by a low rate of change, is referred to as the32

beat frequency 𝑓𝑏, and its expression is given by:33

𝑓𝑏 = 𝐾𝑓Δ𝑡 (5)

By substituting (3) in (5), 𝑓𝑏 can be rewritten as:34

𝑓𝑏 =
𝐵𝑊
𝑇

⋅ 2
𝑟𝑖
𝑐

(6)

3.3. Target Detection and Velocity Extraction 35

CFAR is a pivotal radar signal processing method em- 36

ployed in identifying targets within cluttered environments, 37

ensuring a minimized false alarm rate [36]. Its fundamental 38

objective lies in dynamically computing threshold power 39

levels to ascertain the presence of a target within a desig- 40

nated cell. CFAR operates by comparing the signal power 41

within the cell under test (CUT) against neighbouring cell 42

power levels within a local neighbourhood, thereby facili- 43

tating target detection. Distinct CFAR methodologies such 44

as cell averaging (CA), greatest-of-cell averaging (GOCA), 45

smallest-of-cell averaging (SOCA), and ordered statistics 46

CFAR (OS-CFAR) diverge in their approaches to estimate 47

threshold power levels based on neighbouring cell power 48

measurements [37]. In CA-CFAR, the threshold is derived 49

from the average power of adjacent cells, while GOCA 50

identifies the threshold from the maximum power among 51

neighboring cells. In contrast, SOCA determines the thresh- 52

old from adjacent cells’ minimum power, and OS-CFAR 53

uses statistical techniques to order neighboring cell power 54

levels to set the threshold accordingly [38]. The CFAR adap- 55

tive thresholding, contingent upon neighboring cell power 56

levels, enables the differentiation between target signals and 57

environmental clutter. Consequently, CFAR emerges as an 58

indispensable tool across diverse radar applications [39]. 59

Upon receiving the radar signal, the Doppler frequency 60

𝑓𝐷𝑜𝑝𝑝𝑙𝑒𝑟 is extracted from the signal’s phase changes, offer- 61

ing insight into the object’s velocity relative to the radar. 62

Two-dimensional (2D) signal processing techniques are em- 63

ployed on the spectrum of the extracted signal to derive 64

range and velocity details for each scatterer. This involves 65

utilising methods like FFT to construct a range-Doppler 66

map (RDM), displaying signal strength from diverse earth 67

scatterers across different ranges and velocities. In the con- 68

text of the radar system described, the RDM is crafted by 69

employing 256 samples per chirp, sampled at a rate of 264 70

nanoseconds, and processing the signals received through 71

three receiving antennas. The resultant RDM is obtained 72

by averaging the RDM data from all antennas, generating a 73

256 × 256 pixel map with a 32-bit amplitude value assigned 74

to each pixel. This visualization showcases detected targets 75

and their velocities, with the horizontal axis denoting speed 76

measurements and the vertical axis representing range mea- 77

surements. Each pixel within the RDM carries a 32-bit value 78

indicative of the received signal strength from various earth 79

scatterers. Subsequently, the RDM image serves as the basis 80

for target detection and velocity extraction. This can involve 81

thresholding, clustering, or template matching tailored to 82

specific application needs and requirements [40, 41]. 83

The experimental analysis identifies targets through 84

CFAR in the RDM image depicted in Fig. 4, with the 85

outcomes presented in Fig. 5. However, the detection process 86

captures only a portion of the reflected arc from ground 87

targets, leaving the remainder undetected. Furthermore, 88

CFAR erroneously identifies a false alarm (noise) exhibiting 89

a power level distinct from its adjacent cells. One of the en- 90

countered challenges involves estimating the power level of 91
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Figure 4: The RDM picture of the ground reflected signals.

Figure 5: Identifying targets in RDM images using CFAR.

the CUT concerning its background, particularly in regions1

hosting clustered real ground scatterers. In such scenarios,2

the CFAR algorithm encounters difficulty in detecting all3

targets due to the similarity in power intensity between4

the CUT and its neighboring cells, creating challenges in5

differentiation.6

The second issue associated with CFAR involves po-7

tential false alarms arising from radar measurement noise,8

which might exhibit relatively higher power levels than9

their neighboring cells. In environments with low signal-to-10

noise ratio (SNR), distinguishing between noise and genuine11

targets within the RDM image can pose challenges. To12

mitigate this concern, an alternative solution involving an13

adaptive global thresholding technique has been proposed.14

This technique entails computing a global histogram for the15

entire RDM image and leveraging it to estimate the threshold16

level for each epoch. The adaptive threshold is determined17

based on a specified confidence level derived from the dis-18

tribution’s mean value. This approach is designed to improve19

target detection accuracy while reducing noise-induced false20

alarms in low SNR environments.21

To create a binary image for target detection, an adaptive 22

threshold is computed using a confidence level set at seven 23

times the standard deviation of the histogram analysis, see 24

Fig. 6(a). This adaptive threshold facilitates differentiation 25

between robust ground scatterers surpassing the threshold 26

and the cluttered or noisy background within the image. Pix- 27

els above this adaptive threshold are assigned a value of “1” 28

in the binary image, while all other values are designated as 29

“0”, see Fig. 6(b). A connected component-based approach 30

is adopted to accumulate neighboring pixels with values of 31

“1” into certain areas, deviating from a local maxima-based 32

method, see Fig. 6(c). Subsequently, the centroid of each 33

region is determined by averaging its surrounding pixels 34

along both the X and Y axes. The resulting X-axis of the bi- 35

narized RDM displays the radial velocity for each identified 36

target. Meanwhile, the averaging method yields the drone’s 37

resultant longitudinal velocity in the body frame. Fig. 6 38

shows the conclusive images obtained from this technique. 39

3.4. Multi-Sensors Data Fusion 40

This section presents the fusion process of crowd-sensing 41

data derived from diverse sensors, including INS, magne- 42

tometers, barometers, radar, and GPS. Nonlinear estimators 43

such as EKF and PF are employed for this fusion process. Lo- 44

calisation states, portrayed within the localisation (𝑛-frame), 45

are acquired by processing raw data from the IMU using the 46

aforementioned nonlinear estimators. These estimators use 47

a state vector represented as 48

𝑥 =
[

𝛿𝑟𝑛1×3 𝛿𝑣𝑛1×3 𝜀𝑛1×3 𝑏1×3 𝑑1×3 𝑠𝑎1×3 𝑠𝑔1×3
]

(7)

where 𝛿𝑟𝑛, 𝛿𝑣𝑛, and 𝜖𝑛 represent INS error states in the 49

location, velocity, and attitude, respectively. Meanwhile, 𝑏 50

and 𝑑 represent the estimated bias in both accelerometers 51

and gyros, respectively. Finally, the accelerometer and gyro- 52

scope scale factors are represented by 𝑠𝑎 and 𝑠𝑔 . The fusion 53

of different sensors is performed in a loosely coupled fashion 54

through two sequential procedures within the nonlinear esti- 55

mators. The initial phase entails predicting navigation states 56

based on IMU measurements, followed by subsequent stages 57

involving measurements and observations. The upcoming 58

subsections elaborate on the specific procedures within this 59

process. 60

3.4.1. Prediction Model 61

The formulation of the error states within the INS over 62

time can be expressed as follows: 63

𝑥̄𝑘+1 = Φ𝑘𝑥̂𝑘 + 𝐺𝑘𝑤𝑘 (8)

where Φ𝑘, 𝑥𝑘, 𝐺𝑘, and 𝑤𝑘 represent the state transition 64

matrix, the error vector, the matrix containing the noise coef- 65

ficient, and the system noise, respectively. The utilisation of 66

first-order Gauss-Markov characterizes the representation of 67

INS stochastic errors. Therefore, the prediction of 𝑃𝑘 at any 68

epoch can be expressed as: 69
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Figure 6: Adaptive thresholding technique for target detection in low SNR environments.

𝑃𝑘+1 = Φ𝑘𝑃𝑘Φ𝑇
𝑘 + 𝐺̄𝑘𝑄𝑘𝐺̄𝑇𝑘 (9)

where 𝑃𝑘+1 is the predicted error covariance matrix at the1

time step (𝑘+1) 𝑃𝑘, and𝑄𝑘 are the error covariance matrix,2

and the covariance matrix of the process noise at time step3

𝑘, respectively.4

3.4.2. Crowd-Sensing Measurements5

The INS state estimation undergoes an update process6

leveraging the positional information provided by the GNSS7

signal, denoted as 𝑃 𝑛𝑒𝑑𝐺𝑁𝑆𝑆 . This information pertains to the8

North-East-Down (NED) coordinates derived from GNSS9

positioning and is described as follows:10

𝑃 𝑛𝑒𝑑𝐺𝑁𝑆𝑆 = [ 𝑃𝑛,𝐺𝑁𝑆𝑆 𝑃𝑒,𝐺𝑁𝑆𝑆 ℎ𝐺𝑁𝑆𝑆 ] (10)

where 𝑃(𝑛,𝐺𝑁𝑆𝑆) and 𝑃(𝑒,𝐺𝑁𝑆𝑆) refer to the North and East11

position components, respectively, while ℎ𝐺𝑁𝑆𝑆 denotes the12

ellipsoidal height. The barometer contributes to the height13

update (ℎ𝑏𝑎𝑟𝑜), and in conjunction with raw magnetometer14

measurements, aids in updating the heading angle (𝜓𝑚𝑎𝑔) as15

follows:16

𝜓𝑚𝑎𝑔 = tan−1
( −𝑀𝑦 cos𝜙 +𝑀𝑧 sin𝜙
𝑀𝑥 cos 𝜃 + (𝑀𝑦 sin𝜙 +𝑀𝑧 cos𝜙) sin 𝜃

)

+𝛿𝑚𝑎𝑔
(11)

where the vector [ M𝑥 M𝑦 M𝑧 ] denotes the magnetic17

field measurements observed within the body-frame. The18

variables 𝜙 and 𝜃 correspond to the roll and pitch angles,19

respectively. Additionally, 𝛿𝑚𝑎𝑔 signifies the magnetic devi-20

ation with respect to the true north.21

3.4.3. Observation Model 22

In the process of updating the nonlinear estimators with 23

measurements, the disparity between INS and GNSS mea- 24

surements within the navigation frame is computed. How- 25

ever, due to the lever-arm effect resulting from the differing 26

positions of the GNSS antenna and the onboard IMU, it 27

is crucial to rectify this effect before updating the nonlin- 28

ear estimators. This rectification involves aligning the IMU 29

center with the GNSS antenna center via a compensatory 30

procedure, represented as follows: 31

𝑃 𝑛𝑒𝑑𝐺𝑁𝑆𝑆 = 𝑃 𝑛𝑒𝑑𝐼𝑀𝑈 +𝐷−1𝐶 𝑙𝑏𝑙
𝑏
𝐺𝑁𝑆𝑆 (12)

𝐷−1 =

⎡

⎢

⎢

⎢

⎣

1
𝑅𝑀+ℎ 0 0

0 1
(𝑅𝑁+ℎ) cos𝜙 0

0 0 −1

⎤

⎥

⎥

⎥

⎦

(13)

𝑅𝑀 =
𝑅
(

1 − 𝑒2
)

(

1 − 𝑒2 sin2 𝜙
)3∕2

(14)

𝑅𝑁 = 𝑅
(

1 − 𝑒2 sin2 𝜙
)1∕2

(15)

where 𝑃 𝑛𝑒𝑑𝐺𝑁𝑆𝑆 and 𝑃 𝑛𝑒𝑑𝐼𝑀𝑈 represent the positions of the 32

GNSS antenna and IMU in the body frame, respectively, 33

calculated based on their respective center positions. The 34

lever arm connecting the GNSS antenna and IMU is denoted 35

by 𝑙𝑏𝐺𝑁𝑆𝑆 . The rotation matrix transforming the body frame 36

to the local level frame is denoted as 𝐶 𝑙𝑏. Within this context, 37
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the Earth’s radius is symbolized by 𝑅, the eccentricity of1

the elliptical planet by 𝑒, and the latitude by 𝜙. The GNSS2

position measurements are expressed as follows:3

𝑃 𝑛𝑒𝑑𝐺𝑁𝑆𝑆 = 𝑃 𝑛𝑒𝑑𝐺𝑁𝑆𝑆 +𝐷−1𝑒𝑃 (16)

where 𝑒𝑃 represents the positioning error resulting from4

GNSS measurements, while the attitude errors are denoted5

by 𝜑. These attitude errors are encapsulated in a skew-6

symmetric matrix, formulated as follows:7

𝜑 =
⎡

⎢

⎢

⎣

0 −𝜖𝑑 𝜖𝑒
𝜖𝑑 0 −𝜖𝑛
−𝜖𝑒 𝜖𝑛 0

⎤

⎥

⎥

⎦

(17)

where 𝜖𝑛, 𝜖𝑒, and 𝜖𝑑 represent the attitude mistakes in the8

directions of North, East, and Down. Thus, the positioning9

measurements utilised for an EKF update derived from (16)10

and (17) can be formulated as:11

𝑧𝐺𝑁𝑆𝑆 = 𝐷
(

𝑃 𝑛𝑒𝑑𝐺𝑁𝑆𝑆 − 𝑃 𝑛𝑒𝑑𝐺𝑁𝑆𝑆
)

=
[

𝐼3×3 ⋮ 03×3 ⋮ 𝐶 𝑙𝑏𝑙
𝑏
𝐺𝑁𝑆𝑆 ⋮ 03×12

]

𝑥 − 𝑒𝑃
(18)

After obtaining the measurement update 𝑧𝐺𝑁𝑆𝑆 from12

the differences between the estimated and true GNSS posi-13

tions, the next stage involves utilising the computed residuals14

𝛿𝑧𝑘 and the corresponding design matrices 𝐻𝑘 associated15

with the onboard sensors. These residuals represent the16

discrepancies between predicted and actual measurements.17

The design matrices encapsulate the linearisation of the18

measurement model for the nonlinear estimator. Leveraging19

these residuals and design matrices, the nonlinear estimators20

gain 𝐾𝑘 is computed, facilitating the refinement of the state21

estimate 𝑥̂+𝑘 and its covariance matrix 𝑃+
𝑘 . The gain 𝐾𝑘 de-22

notes the optimal weight applied to the measurement update23

𝑧𝐺𝑁𝑆𝑆 in the estimation process. It enables the correction24

of the state estimate, enhancing its accuracy considering the25

available sensor information.26

𝐾𝑘 = 𝑃−
𝑘 𝐻

𝑇
𝑘
(

𝐻𝑘𝑃
−
𝑘 𝐻

𝑇
𝑘 + 𝑅𝑘

)−1 (19)

𝑥̂+𝑘 = 𝑥̂−𝑘 +𝐾𝑘𝛿𝑧𝑘 (20)

𝑃+
𝑘 =

(

𝐼 −𝐾𝑘𝐻𝑘
)

𝑃−
𝑘 (21)

where 𝐾𝑘 is calculated using the predicted state estimation27

error covariance matrix 𝑃−
𝑘 and the transpose of the design28

matrix 𝐻𝑘 associated with sensor measurements, and the29

measurement noise covariance 𝑅𝑘. The updated state es-30

timation at time step 𝑘, represented by 𝑥̂+𝑘 , emerges from31

the addition of the predicted state estimation 𝑥̂−𝑘 and the32

Kalman gain 𝐾𝑘 multiplied by the residuals 𝛿𝑧𝑘, which33

reflect the differences between predicted and actual mea- 34

surements. Additionally, the updated state estimation error 35

covariance matrix 𝑃+
𝑘 is determined through the adjustment 36

of the predicted covariance 𝑃−
𝑘 by the Kalman gain 𝐾𝑘 and 37

the design matrix𝐻𝑘, resulting in a refined estimation of the 38

state and its associated uncertainty at time step 𝑘. 39

4. Experimental Results and Discussion 40

This section discusses the experimental parameters and 41

analytical methodologies employed to validate the effective- 42

ness of the proposed approach. 43

4.1. Experimental Overview 44

The implemented system operates using fused simulated 45

data, adhering strictly to flight parameters, encompassing 46

straight, level flight at consistent velocities over flat ter- 47

rain. Measurements of velocity, altitude, azimuth angle, and 48

turn rate are utilised to update various nonlinear estima- 49

tors, including the EKF and PF. Performance assessment 50

involves simulated trajectories with diverse manoeuvring 51

angles. Practical testing is conducted in a GNSS-denied 52

environment over a 60-second duration, leveraging an af- 53

fordable navigation-grade IMU to enhance the precision of 54

the proposed outdoor localisation system. This flight test 55

involved affixing a SAR to a Cessna aircraft to collect rel- 56

evant data. To gauge system performance using consumer- 57

grade IMUs typical in small UAVs, the deliberate introduc- 58

tion of random noises and biases into IMU measurements 59

is undertaken. Evaluation of matched points is achieved 60

through M-estimator sample consensus (MSAC), employing 61

a two-step iterative process involving hypothesis generation 62

and computation. Initially, MSAC randomly selects a subset 63

of data and computes model parameters from this sample. 64

Subsequently, data exhibiting errors within a predefined 65

threshold from a hypothesis are identified as inlier candi- 66

dates for object detection and tracking. The proposed out- 67

door localisation solution integrates altitude above ground, 68

digital compass heading, range to scatterers, and turn rate 69

data with a navigation-grade IMU, employing EKF and PF 70

methodologies. 71

The application of the CFAR algorithm [35] facilitates 72

target detection, while the multiple-target tracker (MTT) 73

leverages the GNN algorithm to track these identified tar- 74

gets. Extracting the vehicle’s relative translation and rotation 75

is achieved by analyzing the tracked targets through the 76

stratifying singular value decomposition (SVD) algorithm. 77

Altitude information is derived by vertically projecting the 78

first ground echo at a tilting angle. The proposed system 79

adopts both loosely and tightly coupled techniques for RO 80

and INS integration. The former estimates heading and 81

pose variation using RO, updating the EKF and PF. While 82

the latter employs track range and bearing as measurement 83

updates. System evaluation spans two flights conducted in 84

distinct areas. The first flight involves a forward-looking 85

radar, while the second flight employs a pitched radar angle 86

of 20 degrees, navigating through various objects like cars. 87
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Figure 7: The integrated 3DR Solo quadcopter within the
experimental configuration.

Fig. 7 shows the 3DR Solo quadcopter integral to the1

proposed system. This quadcopter is primarily governed by2

a Pixhawk-2 autopilot and features a suite of sensors, in-3

cluding an InvenSense MPU-6000 MEMS IMU, an MS56114

barometer, and a U-blox GPS. These sensors relay critical5

information on attitude, altitude, and position to the autopi-6

lot, ensuring stability and facilitating navigation to specified7

destinations. Additionally, the quadcopter incorporates a8

micro-FMCW radar specifically tailored to enhance outdoor9

localisation capabilities in GNSS-denied environments. The10

equipment and devices in this setup are specifically em-11

ployed to optimise the performance of the 3DR Solo quad-12

copter when operating in areas with limited GNSS signal13

availability.14

The FMCW radar operates at a frequency of 24 GHz15

and includes one transmitter and one receiver, each equipped16

with three microstrip patch antennas. With a resolution17

of 0.1 degrees, it covers ±10 degrees in the Elevation-18

plane and ±15 degrees in the Azimuth-plane. This radar,19

boasting a one-meter resolution, detects vehicles up to 30020

meters away and individuals up to 100 meters away. Its21

reliability surpasses visual sensors, offering resistance to22

environmental factors like rain, fog, dust, and featureless23

terrain. Additionally, its compact size, lightweight, and low24

power consumption render it suitable for installation on25

small UAVs, enabling diverse mobile mapping and locali-26

sation applications.27

In the experimental analysis, factors such as attenuation,28

scattering, signal distortion, Doppler effect, and antenna29

performance can impact the range, sensitivity, accuracy, and30

target tracking capabilities of a radar system. In adverse31

weather conditions like rain, fog, or wind, these factors32

can lead to decreased signal strength, increased background33

noise or clutter, distorted measurements, and difficulties in34

distinguishing between desired targets and false detections.35

To address these challenges and ensure reliable and accu-36

rate radar operations in various weather conditions, careful37

calibration, signal processing techniques, and algorithms38

are employed. The main advantage of the 24-GHz micro-39

FMCW radar by RFbeam lies in its immunity to changes in40

illumination and environmental conditions. Additionally, the41

Figure 8: The waypoints of the first flight trajectory.

radar system is calibrated before experimentation, employs 42

an advanced signal processing method, and operates under 43

appropriate conditions to achieve the desired results. 44

The experimental trials spanned across two days, cov- 45

ering distinct paths while inclining the radar at a 60-degree 46

vertical angle from the quadcopter body. Furthermore, two 47

real flights were conducted in separate locations to evaluate 48

the efficacy of the proposed methodology. The following 49

outlines the two trials of the executed experiment. 50

4.2. The First Experimental Trial 51

In this experimental trial, a flight is conducted utilising 52

the 3DR Solo quadcopter equipped with a micro-FMCW 53

radar. The flight path comprises two laps encompassing ten 54

waypoints, maintaining a maximum speed of 5 m/s and last- 55

ing a total duration of 155 seconds, depicted in Fig. 8. During 56

the flight, data is collected concerning the quadcopter’s 57

forward velocity. This observed velocity is then compared 58

with the computed velocity derived from radar data using 59

the proposed method. Fig. 9 illustrates the validation process 60

for the suggested approach in computing velocity through 61

micro-FMCW radar. The comparison results demonstrate 62

a notable alignment between the observed and computed 63

velocities. 64

Based on the available data, the proposed RO system 65

demonstrates an ability to estimate a root mean square 66

error (RMSE) of 1.2 m/s for forward vehicle velocity, as 67

depicted in previous figures. To further assess the system’s 68

performance, five scenarios of GNSS signal outages are 69

executed, varying in duration from 45 to 135 seconds. The 70

initial outage lasted for 45 seconds. Fig. 10 and 11 present 71

the differentiation between the computed 2D flight path 72

during the initial flight’s outage segments, as determined 73

by the proposed system, and the ground truth obtained 74

through GNSS/INS fusion. Specifically, Fig. 10 presents 75

the comparison during a 45-second GNSS signal outage, 76

while Fig. 11 illustrates the comparison during a 135-second 77

outage. These comparative analyses serve to evaluate the 78

precision and reliability of the suggested RO system for 79

Mostafa M. Ahmed et al.: Preprint submitted to Elsevier Page 10 of 18

https://www.sciencedirect.com/journal/physical-communication


Physical Communication

Figure 9: Comparison between the reference acquired velocity
by the (GNSS/INS) fusion, and computed velocity by the
proposed system.

Figure 10: Comparison between the reference acquired velocity
by the (GNSS/INS) fusion, and computed velocity by the
proposed system.

outdoor localisation, especially when navigating trajectories1

during periods of GNSS signal loss.2

Fig. 12 shows the capability of the proposed RO system3

in mitigating INS drift during GNSS signal loss, resulting4

in a maximum error of 7.97 m within a 135-second outage5

period and a 3D Root RMSE of 5.81 m. These outcomes6

underscore the system’s proficiency in offering accurate7

and dependable outdoor localisation solutions, even in the8

absence of GNSS signals. Moreover, Fig. 13 contrasts the9

ground truth flight path estimated through GNSS/INS fusion10

Figure 11: Comparison between the reference acquired velocity
by the (GNSS/INS) fusion, and computed velocity by the
proposed system.

with the trajectory derived solely from INS data during a 11

135-second GNSS signal outage. This comparison aimed to 12

gauge the accuracy and reliability of INS in computing flight 13

trajectories in the absence of GNSS signals. Additionally, 14

Fig. 14 delineates the North and East errors computed by 15

the standalone INS over a 135-second GNSS signal outage, 16

offering insights into the accuracy and reliability of INS in 17

estimating the quadcopter’s position during GNSS signal 18

loss. Lastly, Fig. 15 presents a comparative analysis of the 19

outdoor localisation system employing the RO system across 20

various outage durations, providing a comprehensive view 21

of its performance under different signal loss scenarios. 22

Table 1 presents a comparative analysis of the RMSE 23

values obtained from the INS in the standalone mode and 24

the RO outdoor localisation system across varying durations 25

of GNSS signal loss. This table offers a comprehensive sum- 26

mary of both systems’ performance in accurately estimating 27

the quadcopter’s position throughout GNSS signal loss sce- 28

narios. Furthermore, the errors in 3D positioning due to INS 29

drift, as well as the errors in standalone mode, are notably 30

reduced by the proposed RO-assisted outdoor localisation 31

technique. Specifically, leveraging the EKF reduced errors 32

to 1.19% over 45 seconds and 0.152% over 135 seconds, 33

while employing the PF resulted in errors reduced to 1.05% 34

over 45 seconds and 0.11% over 135 seconds. These findings 35

indicate the effectiveness of the RO system in mitigating 36

INS drift and minimizing outdoor localisation errors during 37

periods of GNSS signal loss 38
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Table 1
Comparison among the RMSE worths for the location states that are recorded from the INS and RO outdoor localisation system
and the worths obtained from the ground truth.

RMSE Symbol Initial Trip Outage
(45 sec) (135 sec)

North direction (m)
INS Only 142.97 ± 22.7309 142.97 ± 21.0045

Crowd-sensing System Using EKF 1.69 ± 0.255 3.59 ± 0.524135
Using PF 0.86 ± 0.134597 1.73 ± 0.2538

East direction (m)
INS Only 141.56 ± 22.5956 141.56 ± 20.8453

Crowd-sensing
System

Using EKF 2.17 ± 0.3167 3.90 ± 0.5753
Using PF 1.45 ± 0.214 1.74 ± 0.2542

Height direction (m)
INS Only 221.47 ± 35.0946 221.47 ± 31.5603

Crowd-sensing
System

Using EKF 2.25 ± 0.337 2.37 ± 0.3831
Using PF 1.21 ± 0.1894 1.67 ± 0.2453

3D Position (m)
INS Only 298.19 ± 44.8904 298.19 ± 44.2602

Crowd-sensing
System

Using EKF 3.60 ± 0.53314 5.90 ± 0.9539
Using PF 1.89 ± 0.2939 3.87 ± 0.583679

Improvement percent-
ages from INS (%)

Crowd-sensing
System

Using EKF 98.81 ± 15.8513 99.848 ± 14.3052
Using PF 98.95 ± 15.8032 99.89 ± 14.7816

Figure 12: The North and East errors recorded by the RO-aided
outdoor Localisation system during a 135-second GNSS signal
loss.

4.3. The Second Experimental Trial1

In the second experiment, the quadcopter traversed a2

diamond-shaped path encompassing thirteen waypoints over3

a total flight duration of 155 seconds, as depicted in Fig. 16.4

Fig. 17 illustrates a comparison between the reference for-5

ward velocity and the velocity computed by the RO system.6

The results indicated that the proposed RO outdoor locali-7

sation system effectively computed forward velocity for the8

quadcopter, yielding an RMSE of 2.13 m/s. Furthermore, to9

assess the system’s resilience in mitigating GNSS signal loss10

effects, the performance of the RO system is evaluated in five11

additional outage scenarios during the second experiment.12

These scenarios entailed outage periods ranging from 4513

seconds to 120 seconds, aimed at enhancing the robustness14

Figure 13: The differentiation between the 2D flight path
loss components computed by GNSS/INS fusion versus the
proposed RO integrated system in standalone mode over a
135-second duration.

of the proposed outdoor localisation system against GNSS 15

signal loss. 16

Fig. 18 and 19 depict the differentiation between the 17

computed 2D flight path segments obtained from both the 18

GNSS/INS fusion and the RO-aided outdoor localisation 19

system during the second flight. Furthermore, Fig. 20 shows 20

the proposed system’s validation process across different 21

GNSS signal loss periods, resulting in improved outdoor 22

localisation solutions and a 3D RMSE of 8.14 meters within 23

120 seconds. Additionally, Fig. 21 presents a differentia- 24

tion of the computed 2D flight path segments from the 25

GNSS/INS fusion, while Fig. 22 illustrates the INS errors in 26

the north and east directions. Finally, Fig. 23 highlights the 27

variance in RMSE values for 3D positioning achieved by the 28

RO system across various periods of GNSS signal loss. 29
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Table 2
Differenation among the RMSE worths for the location states that are recorded from the INS and RO outdoor localisation system
and the worths obtained from the ground truth.

RMS Error (m) Symbol Second Trip Outage
(45 sec) (120 sec)

North direction (m)
INS Only 142.97 ± 22.7281 158.98 ± 25.5574

Crowd-sensing
System

Using EKF 2.60 ± 0.3981 3.16 ± 0.4552
Using PF 1.48 ± 0.2241 1.84 ± 0.2712

East direction (m)
INS Only 141.56 ± 22.3374 127.01 ± 18.4686

Crowd-sensing
System

Using EKF 3.30 ± 0.4858 6.79 ± 1.0008
Using PF 1.85 ± 0.2922 3.96 ± 0.5622

Height direction (m)
INS Only 221.47 ± 32.2202 202.01 ± 28.956

Crowd-sensing
System

Using EKF 3.10 ± 0.4767 3.15 ± 0.4554
Using PF 1.63 ± 0.2614 1.82 ± 0.282

3D Position (m)
INS Only 298.19 ± 43.423 287.01 ± 46.033

Crowd-sensing
System

Using EKF 5.20 ± 0.7434 8.13 ± 1.2115
Using PF 2.86 ± 0.4445 5.11 ± 0.7899

Improvements percent-
age from INS (%)

Crowd-sensing
System

Using EKF 98.18 ± 14.6156 99.67 ± 14.7921
Using PF 98.45 ± 15.85 99.83 ± 14.5648

Figure 14: The North and East errors recorded by the INS in
standalone mode during a 135-second interval of GNSS signal
loss.

Table 2 provides a comparative analysis of the RMSE1

values obtained from the INS in standalone mode and the2

RO outdoor localisation system across various durations of3

GNSS signal loss. This comprehensive table offers insights4

into the performance of both systems concerning their ca-5

pability to estimate the quadcopter’s position during GNSS6

signal loss. Moreover, the proposed RO-assisted outdoor7

localisation technique significantly reduced 3D positioning8

errors attributed to INS drift and errors in standalone mode.9

Specifically, employing the EKF reduced errors to 1.82%10

over 45 seconds and 0.33% over 120 seconds, while utilising11

the PF resulted in errors reduced to 1.55% over 45 seconds12

and 0.17% over 120 seconds. These findings underscore the13

effectiveness of the RO system in mitigating INS drift and14

minimizing outdoor localisation errors during periods of15

GNSS signal loss.16

45 60 85 120 135

4

5

6

3.56

4.28

4.75

5.34

5.81

Outage Period (seconds)

R
M

SE
(m

)

Figure 15: The RMSE of the 3D positioning measured by
RO across different outage periods in an outdoor localisation
system.

Figure 16: The waypoints of the second flight trajectory.
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Figure 17: Comparison between the reference acquired velocity
by the (GNSS/INS) fusion, and computed velocity by the
proposed system.

Figure 18: Differenation among the ground truth path VS the
proposed RO system for 45 seconds outage.

5. Conclusions1

This paper introduces a pioneering strategy leveraging2

RO to significantly enhance the precision and reliability3

of outdoor localisation systems for UAVs during GNSS4

outages. The proposed system integrates an FMCW radar,5

crucial for capturing ground object range-Doppler maps to6

derive scatterers’ radial velocities, forming the backbone of7

data capture, target identification, and velocity extraction8

processes. Employing linked component methods and adap-9

tive thresholding, the target detection technique enhances10

accuracy and dependability during GNSS signal failures.11

Figure 19: Differenation among the ground truth path VS the
proposed RO system for 120 seconds outage.

Figure 20: The North and East errors recorded by the RO-
assisted outdoor localisation system during a 120-second GNSS
outage period.

Integration of forward velocity from fused crowd-sensing 12

measurements with INS data using nonlinear estimators 13

like EKF and PF further boosts localisation precision and 14

reliability during GNSS signal losses. Notably, this ap- 15

proach operates in real-time, without relying on artificial 16

reflectors, utilising natural scatterers. It accounts for ob- 17

ject reflectance variations, considers sensor-vehicle frame 18

disparities, and addresses IMU measurement uncertainties. 19

Evaluation through flights featuring various manoeuvres, 20

including deliberate GNSS outages, demonstrates signifi- 21

cant INS precision improvements, averaging 99.89% in 3D 22

positioning for the initial trip and 99.83% for the second 23

trip when using PF. These outcomes underscore the ef- 24

fectiveness of the RO-assisted method in enhancing UAV 25
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Figure 21: The differentiation between the 2D flight path
loss components computed by GNSS/INS fusion versus the
proposed RO integrated system in standalone mode over a
120-second duration.

Figure 22: The North and East errors recorded by the INS in
standalone mode during a 135-second interval of GNSS signal
loss.

outdoor localisation reliability and accuracy, particularly1

under challenging GNSS signal loss scenarios facilitated by2

the application of nonlinear estimators like EKF and PF. This3

method showcases promise for real-world application in4

UAV localisation, showcasing considerable improvements5

in precision and reliability, which is pivotal for navigating6

GNSS-challenged environments.7

45 60 85 100 120
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5.19 5.19 5.22
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Figure 23: The RMSE of the 3D positioning measured by
RO across different outage periods in an outdoor localisation
system.
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