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Summary

Owing to the exponential increase in wireless network services and bandwidth re-quirements, sharing the radio 
spectrum among multiple network operators seems inevitable. In wireless networks, enabling efficient spectrum 
sharing for resource allocation is quite challenging due to several random factors, especially in multi-operator 
spectrum sharing. While spectrum sensing can be useful in spectrum-sharing networks, the chance of collision exists 
due to the inherent unreliability of wireless networks, making operators reluctant to use sensing-based mechanisms for 
spectrum sharing. To circumvent these issues, we utilize an alternative approach, whereby we propose an efficient 
spectrum-sharing mechanism leveraging a spec-trum coordinator (SC) in a multi-operator spectrum-sharing scenario 
assisted by deep learning (DL). In our proposed scheme, before the beginning of each timeslot, the base station of each 
operator transmits the number of required resources based on the number of packets in the base station’s queue to SC. In 
addition, base stations also transmit the list of available channels to SC. After gathering information from all base 
stations, SC distributes this collected information to all the base stations. Each base station then utilizes the DL-based 
spectrum-sharing algorithm and computes the number of resources it can use based on the number of packets in its queue 
and the number of packets in the queues of other operators. Furthermore, by leveraging DL, each operator also computes 
the cost it must pay to other operators for using their resources. We evaluate the performance of the proposed network 
through extensive simulations. It is shown that the proposed DL-based spectrum-sharing mechanism outperforms the 
conventional spectrum allocation scheme, thus paving the way for more dynamic and efficient multi-operator spectrum 
sharing.
KEYWORDS:
Shared spectrum, machine learning, deep neural network, cellular networks, resource allocation.

1 INTRODUCTION

The growing number of high-end consumer devices such as mobile phones and tablets running bandwidth-hungry applica-
tions has massively increased the demand for mobile data. It is expected that the mobile data transmission will be around 4.8



zettabytes1. The existing wireless cellular networks should expand their aggregated network capacity. To meet the requirements
of next-generation wireless networks, more efficient radio resource management, and allocation schemes are required. Conven-
tionally, a licensed spectrum band is allocated to a mobile network operator (MNO) and each MNO serves its users through the
licensed spectrum only. The licensed spectrum is sporadically used by the operator and spectrum utilization varies geographi-
cally, ranging from 15% to 85%, on average, with a high variance in time2. This means an operator may have idle resources due
to low demand from its users at any given time instant. These resources can be shared with another operator that does not have
sufficient resources to serve its users.

Since the licensed spectrum is a limited and expensive resource, efficiently sharing the idle spectrum resources with other
wireless networks is highly desirable3. In this context, several research works, such as dynamic spectrum access (DSA)4, cog-
nitive radio (CR)5, and multi-operator spectrum sharing6 have been proposed. In DSA and CR, unlicensed secondary users
can use the idle resources from the licensed spectrum of a primary network operator. To this end, several sensing-based mech-
anisms have been developed to utilize unused resources of the primary network opportunistically7 8, however, collision-free
communication can not be guaranteed. On the other hand, in multi-operator spectrum sharing, multiple MNOs agree to share
their spectrum band, with mutual consent and full or minimal exchange of operator’s information9. Two general schemes are
usually used in multi-operator spectrum sharing i.e. spectrum pooling and mutual renting. In the prior case, an operator selects
resources from a dedicated spectrum pool for information transmission. In the latter case, an MNO (lender) can rent the unused
spectrum to another operator (buyer) and gather additional revenue and enhanced spectrum utilization benefits.

Conventionally, the licensed spectrum resources of an MNO guarantee its wireless access and technological compatibility
requirements while avoiding interference caused by other MNOs. This can give full control to an MNO for utilizing the spectrum
band. However, the exclusive licensed spectrum environment often faces low spectrum utilization10 especially outside of densely
populated areas and peak hours. In this regard, regulatory authorities are globally seeking new solutions for efficient spectrum
utilization leveraging spectrum sharing11 which can allow spectrum sharing among multiple MNOs and can enable MNOs to
access the unused spectrum resources of other MNOs dynamically. However, a dynamic and efficient spectrum-sharing process
in a multi-operator network while maintaining the regulations and performance constraints is a challenging task12. To this end,
in14, the authors proposed a spectrum-sharing mechanism in cellular networks for opportunistic resource allocation based on
the fluctuations of the incoming traffic. Multi-operator spectrum sharing schemes have gained research interest in both academia
and industry13. Table 1 summarizes some of the major related works in multi-operator spectrum sharing networks.

In a multi-operator spectrum sharing architecture, a large number of cellular users, variations in channel quality, and dynamic
spectrum utilization of multiple MNOs can cause adverse effects on the network performance22. Due to the dynamic nature of
spectrum utilization, next-generation networks will require radio access networks for efficient spectrum sharing. To this end, an
open-RAN framework23 for next-generation networks is highly desirable, allowing seamless reconfiguration and optimization
of wireless network entities24. Owing to its high efficiency in dealing with complex calculations and dynamic environments,
deep learning (DL) is regarded as an effective candidate for wireless communication systems25. A DL model can be trained
according to the wireless network environment to enable different services such as power control26, resource allocation27,
spectrum management28 etc. In this context, DL can be used for efficient spectrum sharing and resource allocation. Motivated
by this, we have proposed a DL-based spectrum sharing and resource utilization for a multi-operator spectrum sharing network.
Authors in29 and30 have briefly surveyed the application of DL in wireless networks. Authors in31 proposed an ML-based inter-
operator spectrum sharing in millimeter-wave communication bands to reduce the signaling overhead for information exchange
among multiple operators.

Owing to the increase in demand and the high cost of spectrum resources, spectrum sharing among multiple operators can be a
viable solution. Motivated by the discussions in the previous few paragraphs, we aim to study a multi-operator spectrum-sharing
network, consisting of 𝑁 MNOs. Leveraging the fact that through multi-operator spectrum sharing, MNOs can enhance their
spectrum utilization by lending unused spectrum resources to other operators and vice versa, MNOs agree to share the licensed
spectrum. The proposed spectrum sharing enables dynamic and efficient communication considering the currently available
resources among the participating MNOs. Each MNO has a base station deployed in a coverage area under observation. At the
base station, when the number of radio resources is less than the minimum required radio resources to transmit a certain number
of data packets, the base station then maintains a packet queue where the leftover packets are stored. To enable communication
between multiple MNOs, a spectrum coordinator (SC) is deployed within the coverage area of base stations21. We assume that
each MNO has installed a DL module at the base station which receives the information about the number of packets in the
queue of each base station and then estimates the resource utilization of the MNO for the next timeslot. Based on the estimated
output of the DL module, an MNO selects the resources. Hence, if an MNO requires some extra resources from the spectrum



Table 1 Summary of Existing Literature in Performance Analysis of a multi-operator spectrum sharing network
Ref. System Model Performance Metrics Main Results/Findings Limitations

Ref15 Spectrum sharing among
two licensed operators

Spectrum sharing gain
and capacity

Enhanced spectrum sharing
gain from 10% to 100%

Primarily for
two operators

Ref16 Multiple operators sharing
common pool of resources Throughut Amount of resources to

share increase throughput
Strrong coordination among
operators is required

Ref17 Multi-operator primary
and secondary network

Blocking probability
and cost of secondary
operator

Improved utilization of
spectrum while ensuring
grade of service

Beneficial for temporary
spectrum shortage

Ref18
Operators have dedicated
bands and are sharing a
common pool of resources

Throughput and
Fairness

Fairness among operators
is ensured with an
improved throughput

Impact of wirless channel
is not considered

Ref19
Operators share common
pool and one operator use
spectrum at a time

Cell sum capacity
and fairness

Operators can share the
spectrum improving
capacity and fairness

Strong coordination
is required

Ref20
Operators share common
pool with a strong
centralized coordination

Spectrum efficiency
and user rate

Fair spectrum sharing
improves performance
by 60%

Requires strong coordination
among operators and
impact of wireless channel
is not considered

Ref21
Non-orthogonal spectrum
sharing leveraging game
theory

Social welfare
(bps/Hz)

Spectrum allocation
improve sum rate
(social welfare)

Incentive of sharing
spectrum is not considered

This
work

Dedicated spectrum bands
are opportunistically used
by other operators
when required

Cost paid by buyer,
delay, and throughput

Improved throughput
and reduced delay

of other MNOs, the DL module estimates the number of resources it can use, and the cost it has to pay other MNOs for using
their spectrum resource.

To this end, our goal is to provide an efficient mechanism for spectrum sharing while maintaining fairness among operators.
While most of the works did not consider the impact of channel quality while lending the spectrum to other operators, we also
considered channel quality to ensure maximum throughput for the primary network. The performance of the proposed scheme
is analyzed through simulations and compared with the conventional resource allocation scheme whereby spectrum resources
are not shared and only a dedicated spectrum band is used for communication. The results show that the proposed scheme
outperforms the conventional scheme in terms of improved throughput and reduced delay. The major contributions of this work
are summarized as follows:

1. A DL-based spectrum-sharing mechanism leveraging SC in a multi-operator spectrum-sharing network is proposed
whereby only the information about the number of packets in the queue and channel quality sequence are shared.

2. To provide a wireless communication link between the base stations of multiple operators, SC is deployed which acts as a
relay. The base station of each operator shares the information with SC, which is then relayed to all base stations in the cell.

3. For efficient spectrum sharing with minimal data exchange, a DL module is used at each base station for efficient resource
allocation. DL module estimates the resource utilization and cost estimation of an MNO.

4. Extensive simulations have been conducted and the proposed scheme has been evaluated under different network condi-
tions. Moreover, we have also compared the performance of the proposed scheme with the conventional non-spectrum
sharing scheme.
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Figure 1 System model for the proposed multi-operator spectrum sharing network leveraging spectrum coordinator.

The rest of the paper is organized as follows. In Section 2 we explain the considered network model and explained the proposed
DL-based spectrum sharing scheme. The performance of the proposed scheme is evaluated and compared with the conventional
scheme in Section 3. Lastly, we conclude the paper in Section 4.

2 PROPOSED SCHEME

In this section, we explain the proposed scheme where we consider 𝑁 number of MNOs, and each MNO has its own dedicated
spectrum band. As shown in Fig. 1, base stations of 𝑁 MNOs have been deployed and it is assumed that these MNOs agree to
share their unused spectrum resources. To enable communication among multiple base stations, we introduced a new device,
namely, spectrum coordinator (SC), which is deployed within the vicinity of multiple base stations. SC can be deployed by any
third-party manufacturer that works as a relay among the base stations of multiple MNOs. The third-party manufacturer and
a regulator can enforce policies that protect each operator’s business interests while promoting efficient spectrum utilization.
Moreover, trust can be developed among multiple operators for the sharing of data and operational details for efficient collabo-
ration. All MNOs agree to share their information about their spectrum utilization with the SC. Instead of sensing the spectrum
for opportunistic utilization, each base station transmits its spectrum utilization information to SC which then relays this in-
formation to all other MNOs in the networks. Furthermore, to ensure synchronization among base stations, SC periodically
transmits the synchronization signals to all the base stations in the network. Unlike previous works, such as21, whereby wired
links were utilized, we consider that base stations and SC exchange information through separate channels termed as SC com-
munication channels, to avoid the delay in communication between base stations and SC. The motivation behind this wireless
link is primarily the versatility, flexibility, easy accessibility, and lower maintenance cost.

In the considered network, time is slotted into equal-length intervals and we assume that the transmission of each packet
lasts for one timeslot. Also, the frequency band of each operator is divided into 𝐾𝐶𝐻 number of channels. These 𝐾𝐶𝐻 channels
are licensed to the primary MNO and the MNO communicates with its users according to a synchronous slot structure. In this
paper, each time-frequency block is termed a cellular resource block (CRB). At the beginning of each timeslot, the base station
acquires the channel state information regarding the channels it will utilize from its spectrum band. It, then, arranges channels in
sequence based on channel quality indicator values. The channel sequence here means that the channel numbers are arranged in
descending order based on the channel quality. This method is adopted to ensure the highest quality of service provisioning for
the users of the MNO that is sharing its band with other MNO’s base stations. The packets arrive at each base station following
an independent Poisson arrival process with rate 𝜆. We consider that each base station is equipped with a queue of size, 𝐿𝑄, and
newly arrived packets will stay in the queue if they arrive within a timeslot. It is assumed that each packet occupies one unit of
queue size. In other words, there can be a maximum of 𝐿𝑄 number of packets in the queue. Each packet is being served at the
beginning of the timeslot, following the first-in-first-out principle. Furthermore, a newly arrived packet will be dropped if the
queue is already full.
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Figure 2 An example of resource allocation procedure for spectrum sharing among 𝑁 number of mobile operators.

Each timeslot of the SC communication channel is further divided into three mini-slots. During the first mini-slot, each
base station transmits information about the number of packets in its queue and the channel sequence to the SC through SC
communication channels. Moreover, each base station also shares the channel sequence with the SC. During the second mini-
slot, SC relays the gathered information to all base stations, as shown in Fig. 2. During the third mini-slot, each base station then
estimates its CRB utilization and then schedules users for transmission depending on its number of packets and the number of
packets in its own queue, and the number of packets in the queue of other MNOs.

Despite the conceptual simplicity of the proposed idea, the resulting analysis can become complex, owing to the multiple
operators and wireless channels. Thus, we leverage a DL-based spectrum-sharing algorithm to compute the CRB utilization
and cost to be paid to other operators. DL is used to optimally allocate the resources among multiple MNOs with minimum
communication among MNOs. Base stations share information about the number of packets in the queue and the sequence of
channels, and all MNOs estimate the utilization of resources accordingly.

2.1 Deep learning for resource allocation in multi-operator spectrum sharing scheme
An example of the DL module specifically for the base station of MNO 1 is shown in Fig. 3. All base stations in the considered
network are embedded with a similar DL module. All MNOs use their respective DL modules to make spectrum-sharing deci-
sions, concurrently. The input layer of the DL module consists of 𝑁 neurons. There are three fully connected hidden layers and
one output layer. The input of the DL module consists of a 1D array of 𝑁 elements, 𝑋𝑝𝑘𝑡𝑛 where 𝑛 ∈ {1, 2,⋯ , 𝑁} and 𝑁 is the
total number of MNOs. Each element, 𝑋𝑝𝑘𝑡𝑖 , is the normalized value of the number of packets in the queue of an MNO and it is
normalized using (𝑋𝑝𝑘𝑡𝑖−𝜇)∕𝜎, where 𝜇 and 𝜎 are the mean and variance values, respectively.

The output, 𝑂𝑢𝑡𝑖𝑛 , is a 1D array of 2𝑁 − 1 elements. Here, 𝑂𝑢𝑡𝑖𝑛 = {𝑌𝑢𝑡𝑖1 , 𝑌𝑢𝑡𝑖2 ,⋯ , 𝑌𝑢𝑡𝑖𝑁 , 𝐶𝑢𝑡𝑖𝑖 ,⋯ , 𝐶𝑢𝑡𝑖𝑁 } for 𝑛 ∈ {1, 2,⋯ , 𝑁}
and 𝑖 ∈ {1, 2,⋯ , 𝑁} and 𝑖 ≠ 𝑛. Also, 𝑌𝑢𝑡𝑖𝑖 is the normalized value of the number of CRBs used by an MNO from its own and
other MNOs’ spectrum. As an example, 𝑌𝑢𝑡𝑖1 for MNO1 means the number of packets used by MNO 1 from its band. Also, 𝐶𝑢𝑡𝑖𝑖is the normalized value of the cost paid to other MNOs for using their CRBs. Hereby, 𝐶𝑢𝑡𝑖1 is not considered since we considered
the DL module of MNO 1, and the cost of renting is to be paid to other operators only.
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Figure 3 An MLP model of MNO 1 for spectrum sharing in a multi-operator network consisting of 𝑁 mobile network operators.

Table 2 An example of training data generated for MNO 1 considering that 3 MNOs in the networks.
MLP input (𝑋𝑢𝑡𝑖) MLP Output (𝑂𝑢𝑡𝑖)

𝑋𝑝𝑘𝑡1 𝑋𝑝𝑘𝑡2 𝑋𝑝𝑘𝑡3 𝑌𝑢𝑡𝑖1 𝑌𝑢𝑡𝑖2 𝑌𝑢𝑡𝑖3 𝐶𝑢𝑡𝑖2 𝐶𝑢𝑡𝑖313 9 7 10 0 3 0 24
12 6 14 10 2 0 14 0
2 9 6 2 0 0 0 0
12 13 12 10 0 0 0 0
14 12 7 10 0 1 0 8
17 4 5 10 6 1 30 6

2.1.1 Resource allocation and pricing strategy for data generation
Owing to the usage of supervised DL, data generation is one of the main things for training of DL modules. The data was
generated using a custom-built network simulator, whereby we employed a discrete-event simulator specifically designed for
spectrum-sharing scenarios. To generate this data, we have considered that there are three MNOs in the network willing to share
their spectrum with each other. The main focus of the proposed scheme is to ensure cost-effective resource utilization in a multi-
operator spectrum-sharing scenario based on pre-defined policies. The data is generated based on the discrete-event simulation
results to train the DL module for given values of 𝑋𝑝𝑘𝑡𝑖 for 𝑖 ∈ {1, 2, 3}. For a given input of 𝑋𝑝𝑘𝑡𝑖 , the output is generated in
terms of utilization and cost. Hereby, utilization means the number of resources to be used by another operator, and cost refers
to the amount paid to another operator for utilizing its resources. To this end, we employ certain strategies for efficient spectrum
sharing which each MNO follows:

1. Strategy 1: Enhanced spectrum utilization of an underutilized spectrum of an MNO
• When the number of packets to be transmitted by an MNO is greater than 𝐾𝐶𝐻 , then that MNO checks which other

MNOs have some CRBs available based on their number of packets. If other MNOs have some unused CRBs, then
the MNO, under observation, has to select the CRBs of that MNO with more unused CRBs available.

2. Strategy 2: Meeting the minimum resource requirement criteria
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Figure 4 Training loss and validation of the neural network of MNO 1.

• When two MNOs have the number of packets greater than their 𝐾𝐶𝐻 channels and one MNO has some unused
resources, then the MNO (under observation) will utilize those CRBs only if its resource sharing requirement1 is
less than or equal to the resource-sharing requirement of the other MNO.

Following these two strategies, we have generated the data. An example of input and output data pairs before and after applying
normalization and denormalization, respectively, from the training data set of MNO 1 is shown in Table 2. For simplicity, the
number of channels available for each MNO (𝐾𝐶𝐻 ) is set to 10. First, we generated the number of packets following the Poisson
arrival process and labeled the outputs. These inputs and outputs are then normalized and used for the training of the DL module.
From Table 2, it can be observed that when the number of packets to be transmitted in MNO 1’s queue (i.e., 𝑋𝑝𝑘𝑡1 = 13) is
greater than 𝐾𝐶𝐻 and other MNOs have unused CRBs (i.e., 𝑋𝑝𝑘𝑡2 = 9 and 𝑋𝑝𝑘𝑡3 = 7, as in first row), then MNO 1 first utilizes
the unused CRBs of MNO 3 for the transmission of its packets owing to the higher number of available resources of MNO 3
(following the strategy 1).

For each resource utilization of another MNO, an MNO has to pay the cost. The cost is computed as the number of CRBs
utilized by the borrower MNO multiplied by the number of channels used by the lender MNO plus one2. Following the previous
example, if MNO 1 has 13 packets in its queue and 𝐾𝐶𝐻 is 10, then it requires 3 CRBs from the unused resources of other
MNOs. Furthermore, assuming that MNO 3 has 7 packets in its queue, operator A can use the remaining 3 unused resources of
MNO 3 and pay the price of 3 ⋅ (7 + 1) = 24. This simple pricing strategy is adopted to reduce the complexity and to ensure
the dynamic dependence of the pricing on the number of unused CRBs of other operators. In the case when MNO 1 has to
utilize the unused resources of the rest of the operators (MNO2 and MNO 3) as in the last row of the Table 2, it first utilizes the
resources of that operator which has the least number of packets in the queue to enhance the spectrum utilization of that operator
and added revenue generation. The rest of the packets are transmitted via the resources of MNO 2. Moreover, in the case when
two MNOs have a number of packets higher than 𝐾𝐶𝐻 and the other MNO has idle CRBs, then the MNO that has the least
number of packets among the two, will utilize those idle CRBS (following strategy 2) as in second last row. Hereby MNO 2 has
fewer packets as compared to MNO 1 i.e. 12. Thus first MNO 2 utilizes the two CRBs and the remaining one CRB is used by
MNO 1. Lastly, when all MNOs have the number of packets greater than 𝐾𝐶𝐻 , spectrum sharing is not possible. Similar data is
generated for MNO 2 and MNO 3 and used to train the DL module for each MNO.

1Resource sharing requirement here is the number of packets remaining in the queue of MNO 1 after MNO 1 has transmitted some packets using the CRBs of its own
spectrum band.

2Here one is added to avoid the utilization cost of 0.



2.2 Training of the MLP Model
We have used supervised learning to train the MLP model. The task of supervised learning is to learn a function that maps an
input to an output based on example input-output pairs. To train the MLP model, training data is required. In this paper, we
generate the training data using simulation. For this, we assume that the base station of each MNO has a database generator
module. This module takes the number of packets in the queue of all base stations in the network as input and generates the
output containing information on predicted spectrum utilization and cost based on the predefined spectrum-sharing policies
between MNOs. This data is stored in a local database at the base station. Following the strategies mentioned in the previous
subsection 2.1.1, we generate a dataset of a size of 100,000 samples. The data is labeled and later used for training, validation,
and testing. To this end, 49%, 21%, and 30% of these are randomly selected for training, validation, and testing, respectively.

3 PERFORMANCE EVALUATION

To evaluate the performance of the proposed scheme, we assume that the packets are arriving at each operator following the
Poisson arrival process. In the simulation, the average delay is computed as the difference between the time when a packet
arrives in the queue and when it is transmitted to the user. For performance evaluation, we consider that the base stations of all
MNOs are co-located. It is worth mentioning here that the assumption of co-located base stations is mainly taken into account to
compute the signal-to-noise ratio (SNR) performance. Hereby the impact of interference is not considered as we consider that if a
collision occurs during the concurrent transmissions of multiple operators using the same CRB, packets have to be retransmitted
again. Since the primary focus of this paper is to study the performance of the spectrum-sharing algorithm, the assumption is
that these co-located base stations have minimal effects on this performance metric. Moreover, owing to the massive deployment
of femtocell base stations by different MNOs, the likelihood of their deployment in close vicinity is substantial. Furthermore,
another practical assumption of such a network is to consider SC as a macro base station acting as a relay for the co-located
femto base stations of multiple operators.

Sum throughput (𝑇 ) is calculated using the classical Shannon capacity formula. It is assumed that the channel fading between
the base station and the user follows Rayleigh fading. We have considered a block fading channel model, i.e., channel fading
varies for each timeslot. However, during one timeslot, channel fading remains constant. Each operator knows the channel quality
of the channels to be used for transmission from its spectrum band. In the case of spectrum sharing, where a base station is
utilizing the idle CRBs of other operators, the channel fading between the base station and the user is random. The signal-to-noise
ratio (SNR) (𝛾) between 𝑖𝑡ℎ serving base station and 𝑗𝑡ℎ user can be computed as

𝛾 =
𝑃𝑇𝑋|ℎ𝑖,𝑗|

2

𝑑𝛼
𝑖,𝑗𝑣2

, (1)
where 𝑃𝑇𝑋 is the transmit power of base station, ℎ𝑖,𝑗 and 𝑑𝑖,𝑗 are the Rayleigh fading channel with mean 1 and distance between
𝑖𝑡ℎ base station and 𝑗𝑡ℎ user. 𝛼 is the path loss exponent, and 𝑣2 is the AWGN variance at the receiving antenna. Assuming
that the base stations of multiple operators are co-located and users are uniformly distributed around the base stations with the
coverage area of 𝑅, the distribution of the distance between the base station and a user can be computed as given by32 as

𝑓𝑅(𝑑) =
2𝑑
𝑅2

. (2)
Thus, the average distance (𝑑) between the base station and user is given as

𝑑 = 2𝑅
3
. (3)

The SNR averaged over the distance (𝑑) will be given as
𝛾𝑑 =

𝑃𝑇𝑋|ℎ𝑖,𝑗|
2

𝑑𝛼𝑣2
, (4)

and the sum throughput (𝑇 ) of an operator can be computed as

𝑇 =
𝐾∗

𝐶𝐻
∑

𝑛=1
𝐵 ⋅ log2(1 + 𝛾𝑑), (5)



Table 3 Values of parameters used to obtain simulation results.
Symbol Description Value
𝐾𝐶𝐻 Number of channels 10
𝐿𝑄 Length of the queue 20
𝑃𝑇𝑋 Transmit power of base station 15W33
𝑣2 Noise variance 0.01
𝑅 Radius of coverage area of base station 30m
𝛼 Path loss exponent 2.7
𝐵 Bandwidth of a channel 2.0MHz

Table 4 MLP model architectures for 𝑁 = 3 MNOs

Model Layer
(type)

No. of
nodes

Activation
function Parameters

MLP

Input (dense) 3 - -
Hidden (dense) 50 RELU36 200
Hidden (dense) 50 RELU 2550
Hidden (dense) 50 RELU 2550
Output (dense) 5 - 255

Total parameters 5,555

where 𝐾∗
𝐶𝐻 is the total number of channels used by the base station of an MNO during a timeslot3 and 𝐵 is the bandwidth of

each channel. Unless otherwise specified, the values of parameters used to obtain simulation results are given in Table 3.
The considered DL module for the proposed scheme is implemented using Keras34 version 2.2.4, neural network library, with

Tensorflow35 version 1.15 on a desktop computer having 76T RTX–OPS Turing architecture GPU with a memory speed of 14
Gbps. The architecture of the considered DL module is given in Table 4. Adam optimizer is used to train the MLP algorithm
with a learning rate of 𝜂 = 10−4. The number of epochs is set to 500, with a batch size (𝑀) of 64. Moreover, loss is calculated
using mean-squared-error(MSE), given as

𝑀𝑆𝐸 = 1
𝑀

⋅
𝑀
∑

𝑖=1
(𝑂𝑢𝑡𝑖𝑖 − 𝑂̂𝑢𝑡𝑖𝑖)

2, (6)

where 𝑂𝑢𝑡𝑖𝑖 is the actual output and 𝑂̂𝑢𝑡𝑖𝑖 is the predicted output for a given 𝑖𝑡ℎ input sample. Also, 𝑀 is the batch size. As shown
in Fig. 4, the DL module learns the data patterns efficiently, and the training and validation losses, converge at approximately
25 epochs. The training time of the proposed MLP module is approximately 963𝜇sec per sample and the testing time is 1msec.

Fig. 5 plots the cost that an MNO has to pay to other MNOs for using their unused CRBs. The cost to be paid is a function
of the number of packets in the queue of an operator. As the value of 𝜆 increases during a timeslot, the cost to be paid to other
operators also increases. However, after reaching the maximum value, cost decreases because the number of unused CRBs is
reduced. Since the value of 𝜆 is the same for all operators, the cost to be paid by all MNOs is nearly the same. In real-world
scenarios, the assumption of the same values of 𝜆 usually occurs in normal situations owing to the normal consumer behavior.
Moreover, this result shows the fairness in the spectrum among MNOs when they have the same priority to buy the unused
spectrum of other operators and the arrival process and 𝜆 are the same.

In Fig. 6, the sum throughput and average delay of MNO 1 for proposed and conventional schemes are plotted versus varying
values of arrival rate (𝜆). It can be seen from the figure that as the value of 𝜆 increases, the sum throughput increases. This is
because, for lower 𝜆 values, CRBs are not fully utilized as fewer packets are transmitted. As the value of 𝜆 increases, throughput
also increases. However, more packets have to wait in the queue which increases the average delay. In case of higher 𝜆 values,
operators can share the unused CRBs with each other resulting in an improved sum throughput. This results in improved delay

3The value of 𝐾∗
𝐶𝐻 is the number of channels used by the base station from its own band (𝐾𝐶𝐻 ) plus the number of channels used from the band of other MNOs.
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Figure 6 Sum throughput and average delay of MNO 1 under the condition that all MNOs have the same 𝜆 values.

performance since operators can serve their users using the idle resources of other operators. It is noted, the same value of 𝜆
for all operators yields approximately similar performance in terms of sum throughput and average delay. Therefore, only the
results for MNO 1 are presented in Fig. 6.

Fig. 7 plots the sum throughput of MNO 1 for conventional and proposed schemes with different values of 𝜆 against simulation
time. It can be observed that the proposed scheme outperforms the conventional scheme. Since more packets are transmitted by
an MNO, by using the idle CRBs of other operators, the sum throughput of the MNO 1 increases considerably. However, as the
value of 𝜆 increases, the number of unused CRBs reduces and sharing of the spectrum band also reduces. Thus, the throughput
performance of the proposed scheme and the conventional scheme becomes comparable.

In Fig. 8, the average packet transmission delay MNO 1 is plotted versus timeslots for different values of 𝜆. For 𝜆 = 10,
since other MNOs have some idle CRBs available, MNO 1 can effectively utilize their idle CRBs when it requires, and thus the
packet transmission of MNO 1 observes less delay. However, as the value of 𝜆 is increased, the difference in the performance
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Figure 8 Average delay of MNO 1 under the condition that all MNOs have the same 𝜆 value.

of proposed and conventional schemes reduces. This is because no MNO has idle CRBs to be shared with MNO 1 and hence
resource sharing is limited among multiple MNOs.

To simulate the results for changing values of 𝜆 during simulation for the MNOs, we have assumed that initially, the arrival
rate of all MNOs is the same i.e. 𝜆 = 10. At 50𝑡ℎ timeslot, 𝜆 is changed to 10, 5, and 15 for MNO 1, 2, and 3, respectively.
The sum throughput performance of the proposed scheme is shown in Fig. 9. It can be observed that even when all MNOs have
the same 𝜆 value, the performance of the proposed scheme is slightly better than the conventional scheme. However, as the
values of 𝜆 differ for each MNO, the sum throughput performance of the proposed scheme outperforms the conventional scheme
considerably. Especially for MNO 3, as the number of packets arrived increases, the proposed scheme can efficiently utilize the
unused CRBs of other MNOs for packet transmission of MNO 3. This results in increased sum throughput of MNO 3.

The delay performance of the proposed and conventional scheme, when 𝜆 values change during the simulation time, is plotted
in Fig. 10. It is observed, for the same value of 𝜆 of each MNO, the proposed scheme performs better as compared to the
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Figure 10 Average delay of different MNOs having same arrival rate i.e., 𝜆 = 10 initially and changed to different values of
arrival rates (𝜆1=10, 𝜆2=5, 𝜆3=15) at 50𝑡ℎ timeslot.

conventional scheme in terms of transmission delay. However, as the value of 𝜆 for each MNO changes, the proposed scheme
outperforms the conventional scheme considerably. As the value of the arrival rate of MNO 3, i.e. 𝜆3, increases, the delay of
MNO 3 using the conventional resource allocation scheme also increases considerably. However, compared to the conventional
scheme, the delay performance of MNO 3 in the proposed scheme reduces considerably. This is because, MNO 3 in the proposed
scheme utilizes the unused CRBs of MNO 1 and MNO 2, efficiently. Similarly, the delay of MNO 1 also reduces because it
uses unused CRBs of MNO 2. It can be seen that, initially, the average delay of MNO 3 increases, but then reduces quickly. At
timeslot 50, MNO 1 has fewer packets in the queue as compared to MNO 3, hence, MNO 1 utilizes the resources of MNO 2
first. After that, MNO 3 utilizes the resources of MNO 2 and its performance improves.
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In Fig. 11, we have studied the effects of varying values of 𝐾𝐶𝐻 on the performance of MNO 1. For this, we performed
simulations for 10, 12, 15, and 18 channels. Intuitively, as the value of 𝐾𝐶𝐻 increases, the sum throughput of MNO 1 also
increases. This is because more packets can be transmitted during a timeslot. When the value of 𝐾𝐶𝐻 is 10, the throughput
performance of MNO 1 for the proposed scheme is better than the conventional scheme as MNO 1 can utilize the idle resources
of other operators efficiently. As the value of 𝐾𝐶𝐻 increases, the difference in the throughput performance of proposed and
conventional schemes is reduced. This is because MNO 3 can serve its users using its own spectrum resources and require fewer
resources from other MNOs.

4 CONCLUSION

With the massive increase in high bandwidth requirements, efficient spectrum allocation schemes are required. Spectrum sharing
among multiple MNOs can provide an effective solution for spectrum allocation where multiple MNOs can share the spectrum
band with each other to provide services to their users. In this paper, we proposed an efficient spectrum-sharing scheme for re-
source allocation among multiple MNOs. The base station of each MNO transmits the number of packets in its queue to the
spectrum coordinator (SC) along with the channel sequence based on the channel quality indicator value. SC then relays the
received information to all the base stations in the network. Each base station is equipped with a deep learning (DL) module
based on a multilayer perceptron algorithm. This DL module takes the information about the number of packets as an input
and estimates the resource allocation information and cost to be paid to other MNOs as an output. The performance of the pro-
posed scheme has been evaluated using simulations. The results showed that the proposed scheme outperforms the conventional
spectrum allocation scheme in terms of improved sum throughput and reduced delay.

In the future, we aim to consider other real scenarios, where the distribution of users and wireless channel characteristics can
vary over time. Moreover, the traffic arrival patterns for each operator can vary over time. In addition, base stations of different
MNOs in proximity may cause interference with other MNOs in a shared spectrum scheme. Consequently, for an effective
allocation of spectrum resources, operators may need to deploy further enhanced deep learning strategies, such as online learning
or transfer learning.



ACKNOWLEDGEMENT

This work was supported in part by Samsung Research in Samsung Electronics.

CONFLICT OF INTEREST

There exists no conflict of interest to disclose from all authors on the submission of this manuscript.

References

1. Cisco Annual Internet Report (2018-2023), Cisco, White Paper, 2018. https://www.cisco.com/c/en/us/solutions/
collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

2. Akyildiz IF, Lee WY, Vuran MC, Mohanty S. NeXt generation/dynamic spectrum access/cognitive radio wireless networks:
A survey, Computer Networks Journal (Elsevier) 2006; 50 (13): 2127–2159.

3. Liang L, Ye H, and Li GY. Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning. IEEE
Journal on Selected Areas in Communications 2019; 37 (10): 2282–2292.

4. Chang HH, Song H, Yi Y, J. Zhang, He H, Liu L. Distributive Dynamic Spectrum Access Through Deep Reinforcement
Learning: A Reservoir Computing-Based Approach. IEEE Internet of Things Journal 2019; 6 (2): 1938–1948.

5. Zhang W, Wang CX, Ge X, Chen Y. Enhanced 5G Cognitive Radio Networks Based on Spectrum Sharing and Spectrum
Aggregation. IEEE Transactions on Communications 2018; 66 (12): 6304–6316.

6. Xiao Y, Krunz M, Shu T. Multi-Operator Network Sharing for Massive IoT. IEEE Communications Magazine 2019; 57 (4):
96-101.

7. Cichoń K, Kliks A, Bogucka H. Energy-Efficient Cooperative Spectrum Sensing: A Survey. IEEE Communications Surveys
& Tutorials, 2016; 18 (3): 1861-1886.

8. Awin F., Abdel-Raheem E., Tepe K. Blind Spectrum Sensing Approaches for Interweaved Cognitive Radio System: A
Tutorial and Short Course. IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 238-259, Firstquarter 2019.

9. Shin M, Mughal DM, Park S, Kim S-H, Chung MY. Cellular Licensed Band Sharing Technology Among Mobile Operators:
A Reinforcement Learning Perspective, 2021; 120 (1): 27-47.

10. Valenta V, Maršálek R, Baudoin G, Villegas M, Suarez M, Robert F. Survey on spectrum utilization in Europe: Mea-
surements, analyses and observations. 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented
Wireless Networks and Communications 2010; 1–5.

11. Mustonen M, Matinmikko M, Holland O, Roberson D. Process model for recent spectrum sharing concepts in policy making.
Telecommunications Policy 2017; 41 (5-6), 391-404.

12. Bhattarai S, Park JJ, Gao B, Bian K, Lehr W. An overview of dynamic spectrum sharing: Ongoing initiatives, challenges,
and a roadmap for future research. IEEE Transactions on Cognitive Communications and Networking. 2016; 2 (2): 110–128.

13. Rahman M, Yuksel M, Quint T. A Game-Theoretic Framework to Regulate Freeriding in Inter-Provider Spectrum Sharing.
IEEE Transactions on Wireless Communications 2021; 20 (6): 3941–3957.

14. Aazhang B, Lilleberg J, Middleton G. Spectrum sharing in a cellular system. Eighth IEEE International Symposium on
Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738), Sydney,
NSW, Australia 2004; 355–358.

15. Jorswieck EA, Badia L, Fahidieck T, Karipidis E, Luo J. Spectrum Sharing Improves the Network Efficiency for Cellular
Operators. IEEE Communications Magazine 2014; 52 (3): 129-136.



16. Luoto P, Pirinen P, Bennis M, Samarakoon S, Scott S, Latva-aho M. Co-Primary Multi-Operator Resource Sharing for
Small Cell Networks. IEEE Transactions on Wireless Communications 2015; 14 (6): 3120-3130.

17. Asaduzzaman M, Abozariba R, Patwary M. Dynamic Spectrum Sharing Optimization and Post-Optimization Analysis With
Multiple Operators in Cellular Networks. IEEE Transactions on Wireless Communications 2018; 17 (3): 1589-1603.

18. Luoto P, Bennis M, Pirinen P, Samarakoon S, Latva-Aho M. Enhanced Co-Primary Spectrum Sharing Method for Multi-
Operator Networks. IEEE Transactions on Mobile Computing 2017; 16(12): 3347-3360.

19. Anchora L, Mezzavilla M, Badia L, Zorzi M. A performance evaluation tool for spectrum sharing in multi-operator LTE
networks. Computer Communications 2012; 35: 2218–2226.

20. Wang T and Adve R. Fair Licensed Spectrum Sharing Between Two MNOs Using Resource Optimization in Multi-Cell
Multi-User MIMO Networks. IEEE Transactions on Wireless Communications 2022; 21 (8): 6714-6730.

21. Sanguanpuak T, Guruacharya S, Rajatheva N, Bennis M, Latva-Aho M. Multi-Operator Spectrum Sharing for Small Cell
Networks: A Matching Game Perspective. IEEE Transactions on Wireless Communications 2017; 16 (6): 3761–3774.

22. Tehrani RH, Vahid S, Triantafyllopoulou D, Lee H, Moessner K. Licensed spectrum sharing schemes for mobile operators:
A survey and outlook. IEEE Communications Surveys & Tutorials 2016; 18 (4): 2591–2623.

23. O-RAN Alliance, “White Paper: O-RAN: Towards an Open and Smart RAN,” Tech. Rep., 2018.
24. Bonati L, Polese M, D’Oro S, Basagni S, Melodia T. Open, Programmable, and Virtualized 5G Networks: State-of-the-art

and the Road Ahead. Computer Networks 2020; 182.
25. Wang T, Wen C, Wang H, Gao F, Jiang T, Jin S. Deep learning for wireless physical layer: Opportunities and challenges.

China Communications 2017; 14 (11): 92–111.
26. Jang HS, Lee H, Quek TQS. Deep Learning-Based Power Control for Non-Orthogonal Random Access. IEEE Communi-

cation Letters 2019; 23 (11): 2004–2007.
27. Liang L, Ye H, Yu G, Li GY. Deep-Learning-Based Wireless Resource Allocation With Application to Vehicular Networks.

Proceedings of the IEEE 2020; 108 (2): 341-356.
28. Liu R, Ma Y, Zhang X, Gao Y. Deep Learning-Based Spectrum Sensing in Space-Air-Ground Integrated Networks. Journal

of Communications and Information Networks 2021; 6 (1): 82-90.
29. Chen M, Challita U, Saad W, Yin C, Debbah M. Artificial Neural Networks-Based Machine Learning for Wireless Networks:

A Tutorial, IEEE Communications Surveys & Tutorials 2019; 21 (4): 3039–3071.
30. Zappone A, Renzo MD, Debbah M. Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or

Both?, IEEE Transactions on Communications 2019; 67 (10): 7331–7376.
31. Ghadikolaei HS, Ghauch H, Fodor G, Skoglund M, Fischione C. A Hybrid Model-Based and Data-Driven Approach to

Spectrum Sharing in mmWave Cellular Networks. IEEE Transactions on Cognitive Communications and Networking 2020;
6 (4): 1269–1282.

32. Tabassum H, Siddique U, Hossain E, Hossain MJ. Downlink Performance of Cellular Systems With Base Station Sleeping,
User Association, and Scheduling. IEEE Transactions on Wireless Communications 2014; 13 (10): 5752–5767.

33. TB3hp mini TETRA base station, Online: https://www.securelandcommunications.com/tb3hp-mini-tetra-base-station.
Accessed on: May 31, 2024.

34. Gulli A, Pal S. Deep learning with Keras, Packt Publishing Ltd. 2017.
35. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Kudlur, Tensorflow: A system for large–scale machine

learning, in: Proc. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016, 265–283.
36. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. Haifa 2010: 807–814.

https://www.securelandcommunications.com/tb3hp-mini-tetra-base-station

	cover.pdf
	Research Repository

	IJCS-23-1090_R1_DL_Based_Spectrum_Sharing_Clean_Version.pdf
	Deep Learning-Based Spectrum Sharing in Next Generation Multi-Operator Cellular Networks
	Abstract
	Introduction
	Proposed Scheme
	Deep learning for resource allocation in multi-operator spectrum sharing scheme 
	Resource allocation and pricing strategy for data generation

	Training of the MLP Model

	Performance evaluation
	Conclusion
	Acknowledgement
	Conflict of Interest
	References
	Author Biography





