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Li and Atick’s theory of efficient binocular coding: A tutorial and 1 

mini-review 2 

 3 

Keith May and Li Zhaoping 4 
 5 

Abstract 6 
 7 

Li and Atick (1994) presented a theory of efficient binocular encoding that explains a 8 

number of experimental findings.  A binocular neuron is conventionally described in terms of 9 

two channels: the left and right eyes.  Li and Atick’s theory instead describes the neuron in 10 

terms of two alternative channels: the binocular sum and difference.  The advantage of the 11 

latter description is that, unlike the left and right eye channels, the summation and 12 

differencing channels are uncorrelated; this means that each channel can be optimised 13 

independently of the other.  The theory shows how to derive optimal receptive fields for the 14 

binocular summation and differencing channels; from these, it is easy to derive the neuron’s 15 

optimal left and right eye receptive fields.  The functional reality of the summation and 16 

differencing channels is demonstrated by a series of adaptation studies that confirm some 17 

counterintuitive predictions of the theory.  Here we provide an accessible account of the 18 

theory, and review the evidence supporting it. 19 

 20 

1 A generic linear neuronal model 21 
 22 

1.1 The standard linear model of a binocular neuron 23 

 24 

The standard linear model of a binocular simple cell (e.g. Ohzawa & Freeman, 1986) 25 

has two receptive fields, ( )LK x  and ( )RK x  for, respectively, the left and right eyes, where x 26 

is spatial position.  These receptive fields give the sensitivity of the neuron as functions of 27 

spatial position in the two retinal images.  If the left and right eye images (as functions of 28 

spatial position) are ( )LS x  and ( )RS x , then the output, O, of the linear neuron is given by 29 

 30 

( ) ( ) ( ) ( )R R L L

x

O K x S x K x S x  . (1) 31 

 32 

Positive and negative regions of the receptive fields represent, respectively, “on” and “off” 33 

regions; positive and negative regions of the image signals represent, respectively, 34 

luminances above and below the mean.  O in Equation (1) represents the output of the linear 35 

spatial summation process carried out by the cell, which can be positive or negative.  To 36 

obtain the overt spike rate from O, we subtract a threshold  0, and then set all negative 37 

values to zero (Ohzawa & Freeman, 1986).  For mathematical simplicity, in this article we 38 

only work with O, the linear part of the neuron’s response. 39 

 40 

1.2 A different description of the same standard model neuron 41 

 42 

We now present a different description of the same model neuron; this description is 43 

equivalent to the previous one – each description can be derived from the other.  Instead of 44 

describing the neuron in terms of its sensitivity to the left and right eye images, we can 45 

describe it in terms of its sensitivity to the sum of the left and right images ( S
) and the 46 

difference between the left and right images ( S ), where 47 
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 48 

( ) ( )
( )

2

R LS x S x
S x


  (2) 49 

 50 

( ) ( )
( )

2

R LS x S x
S x


 . (3) 51 

 52 

The division by 2  is just to keep the total signal power of S
 and S  the same as that for 53 

LS  and 
RS .  We can define receptive field profiles ( )K x

 and ( )K x
 that allow us to 54 

determine the neuron’s output from the sum and difference images: 55 

 56 

( ) ( ) ( ) ( )
x

O K x S x K x S x     . (4) 57 

 58 

We are not proposing that the visual system necessarily adds and subtracts the two eyes’ 59 

images to produce signals ( )S x
 and ( )S x

 before applying receptive fields ( )K x
 and 60 

( )K x
.  Equations (1) and (4) both describe exactly the same model neuron, each providing a 61 

different, but equally valid way of calculating its output.  Equation (1) comes closer to 62 

describing how this model would actually be implemented in the brain; Equation (4) gives an 63 

alternative way to calculate the model neuron’s response, which turns out to be more useful 64 

when deriving the optimal receptive fields.  We can ensure that Equation (4) gives the same 65 

output as Equation (1) by starting with the premise that the outputs from the two equations 66 

are equal and then deriving ( )K x
 and ( )K x

 from that premise.  Using Equations (2) and 67 

(3) to substitute for ( )S x
 and ( )S x

 in Equation (4), and then rearranging, we have 68 

 69 

( ) ( ) ( ) ( )
( ) ( )

2 2
R L

x

K x K x K x K x
O S x S x    
  . (5) 70 

 71 

Equation (5) has the same form as Equation (1), with 72 

 73 

( ) ( )
( )

2
R

K x K x
K x  

  (6) 74 

 75 

( ) ( )
( )

2
L

K x K x
K x  

 . (7) 76 

 77 

Equation (4) describes the neuron’s output in terms of its sensitivity to two 78 

“channels”: a binocular summation channel and a binocular differencing channel.  79 

Alternatively, Equation (1) describes the same neuron’s response in more conventional terms, 80 

i.e. in terms of its sensitivity to the left and right eyes’ images.  To derive the optimal 81 

binocular code, we derive the optimal receptive field profiles for the summation and 82 

differencing channels, and then use Equations (6) and (7) to obtain the optimal receptive field 83 

profiles for the left and right eyes. 84 

 85 

 86 
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2 Deriving the optimal binocular code 87 
 88 

Deriving the optimal binocular code involves finding the best trade-off between cost 89 

(energy usage) and benefit (information transfer).  The measure of information that we use is 90 

“mutual information”, the information about the external sensory signal contained in the 91 

neuronal signal.  Supplementary Appendix A explains how mutual information is defined and 92 

quantified, but the rest of this article can be understood without referring to this appendix. 93 

 94 

2.1 Encoding the sensory signal 95 

 96 

Instead of considering the signal to be a whole 2-dimensional (2D) image in each eye, 97 

we will begin by considering a single point at the same location in each eye.  This will allow 98 

us to determine the optimal sensitivity to each eye’s signal, but ignores the spatial aspects of 99 

the receptive field.  We will then extend the exposition to full 2D images and receptive fields 100 

in Section 3.  As a further simplification, we will consider only luminance, not wavelength.  101 

So the sensory input signal is represented by two values, 
LS  and 

RS , the luminances of a pair 102 

of points with the same location in the left and right eye retinal images.  For mathematical 103 

simplicity, we assume that all signals and noise have zero-mean Gaussian distributions; thus, 104 

the luminance signal is normalised by subtracting the mean, so the signal can take positive or 105 

negative values. 106 

We will often find it convenient to represent the sensory input signal using a column 107 

vector, S, given by 108 

 109 

L

R

S

S

 
  
 

S . (8) 110 

 111 

In the text, we will sometimes write S as ( , )T

L RS S , and similarly for other vectors; the 112 

superscript T means “transpose”, which converts the row vector to a column vector.  We use 113 

this for notational convenience because, although S is a column vector, row vectors take up 114 

less space in the text. 115 

We assume that this sensory signal is corrupted by additive sensory noise, N, given by 116 

 117 

L

R

N

N

 
  
 

N , (9) 118 

 119 

to give a noisy sensory signal, S : 120 

 121 

L L L

R R
R

S N S

S N S

  
      
     

S S N . (10) 122 

 123 

To maintain the information in this 2-element vector, we need to encode it using at 124 

least two output channels, whose values are labelled 1O  and 
2O : 125 

 126 
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1

2

O

O

 
  
 

O . (11) 127 

 128 

We assume that the output of each channel, iO , is a linear function of the two eyes’ noisy 129 

sensory signals, plus added noise.  The response of channel 1 is given by 130 

 131 

1 1 1 1( )L L R R OO K S K S N    , (12) 132 

 133 

where 1LK  and 1RK  are the sensitivities of channel 1 to the left and right eyes’ signals, 134 

respectively (Zhaoping, 2014, Equation 3.103); 
1( )ON  is a noise sample added to the output 135 

of channel 1, due to noise in the encoding process.  Similarly,  136 

 137 

2 2 2 2( )L L R R OO K S K S N    . (13) 138 

 139 

Equations (12) and (13) are analogous to Equation (1), except that the images and receptive 140 

fields have been reduced from 2D images to single, scalar numbers, and encoding noise has 141 

been added to the output. 142 

Equations (12) and (13) can be expressed in matrix form as follows (Zhaoping, 2014, 143 

Equation 3.102): 144 

 145 

11 1 1

22 2 2

( )

( )

OL R L

OL R
R

NO K K S

NO K K S

      
       
       

, (14) 146 

 147 

or more compactly: 148 

 149 

O
 O S NK . (15) 150 

 151 

The goal of efficient coding is to find an encoding matrix, K, that gives the best trade-off 152 

between information and cost. 153 

 154 

2.2 Finding the optimal encoding matrix 155 

 156 

Zhaoping (2014) uses the output variance as the measure of cost, because the energy 157 

usage will increase with increasing variance (Zhaoping, 2014, Section 3.2.2.3).  Because we 158 

assume the signals to have zero mean, the variance of output i is simply 2

iO , where y  is 159 

the mean of y.  The optimal matrix, K, is the one that minimises the loss function, 160 

 161 

2

1,2

( ) ( ; )i

i

E O I


 
  
 
 O SK  (16) 162 

 163 

where ( ; )I O S  is the mutual information between the sensory input signal, S, and the 164 

neuronal output, O.  Good encoding matrices will be those that give a low total energy 165 

consumption, 
2

1,2

i

i

O


 , or a high mutual information, or both.  The free parameter, , 166 
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quantifies the importance of information relative to energy usage: it tells us the maximum 167 

amount of energy we are prepared to expend per bit of information. 168 

In general, the two elements of the sensory input signal ( , )T

L RS SS  are correlated, 169 

because the left eye’s image is similar to the right eye’s image (as in the top-left panel of 170 

Figure 1): Each eye’s signal carries information about the other.  This makes it difficult to 171 

minimise the loss function, because any change in the sensitivity to one eye’s signal can 172 

influence the amount of additional information provided by the other eye.  Imagine that, 173 

instead, we had a signal 
1 2( , )TS SS  in which 1S  and 2S  were uncorrelated; and imagine 174 

further that 1O  provided information only about 1S , and 
2O  provided information only about 175 

2S .  Then 1O  provides 
1 1( ; )I O S  bits of information about the signal and 

2O  provides 176 

2 2( ; )I O S  bits about the signal.  Because there is no overlap between the information 177 

provided by 1O  and 
2O , the total information given by 1O  and 

2O  together is simply the sum 178 

of the information that each provides individually:  179 

 180 

1,2

( ; ) ( ; )i i

i

I I O S


O S . (17) 181 

 182 

Using Equation (17) to substitute for ( ; )I O S  in Equation (16), we have 183 

 184 

1,2

( ) ( )i

i

E E


K K . (18) 185 

 186 

where 187 

 188 
2( ) ( ; )i i i iE O I O S K . (19) 189 

 190 

( )E K  is therefore a sum of terms, ( )iE K , one for each output channel.  Each channel’s 191 

output, iO , carries information only about the corresponding input element iS , and no 192 

information about the other input element; because of this, any change that we make to one 193 

channel has no effect on the other channel’s ( )iE K  term, so we can minimise ( )E K  by 194 

minimising each channel’s ( )iE K  term independently of the others; this makes the process 195 

quite straightforward.  Thus, the first step in finding the optimal K is to apply an information-196 

preserving linear transformation (matrix OK  – Equation (21)) that transforms the correlated 197 

sensory input signal, ( , )T

L RS S , into a decorrelated signal, 1 2( , )TS S ; then the loss function 198 

can be written in the form given in Equation (18).  The second step is to find a linear 199 

transformation that minimises each channel’s term in the loss function; because each channel 200 

is being optimised independently of the other, and the signals are single scalar values, this 201 

linear transformation is a simple gain control in each channel (matrix g – Equation (28)).  202 

Finally, there is a third step in which 1O  and 
2O  are multiplexed across two further channels 203 

to produce an encoding scheme that is equally optimal in terms of the loss function, but can 204 

reduce the amount of neural wiring required to implement it.  Conceptually, the process 205 

consists of three linear transformations, as just described.  However, there is no need for these 206 

three stages to be carried out separately in the brain: they could all be cascaded into a single 207 

linear transformation.  In the next three subsections, we outline these three stages. 208 

 209 
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 210 
Figure 1.  Idealised distributions of signal values in the left and right eyes.  In the left column, each point 211 

plots the luminance of a point in the left eye (
LS ) against the luminance at the same location in the right 212 

eye (
RS ); each eye’s signal is a Gaussian distribution with the same variance.  In the top row, the 213 

correlation between the left and right eyes is 0.9; in the bottom row, the correlation is zero.  The right 214 

column shows the same distributions, but plotted on axes representing the binocular sum ( S
) and 215 

difference ( S ) , which are rotated by 45 with respect to the 
LS  and 

RS  axes.  When the two eyes’ 216 

signals are correlated (top row), 
2 2S S  ; when the two eyes’ signals are uncorrelated (bottom 217 

row), 
2 2S S  .  In both cases, the S

 and S  signals are uncorrelated. 218 

 219 

2.2.1 Step 1: Decorrelation 220 

 221 

Assuming the inputs to the two eyes have the same variance, so 2 2

L RS S , we can 222 

decorrelate the signals by rotating the coordinate axes by 45 (positive angles give 223 

anticlockwise rotations; negative angles give clockwise rotations) – see Figure 1.  Rotating 224 

the axes by  is equivalent to rotating the points about the origin by .  This can be achieved 225 

by multiplying the signal vector by a standard rotation matrix, 226 

 227 

cos( ) sin( ) cos( ) sin( )

sin( ) cos( ) sin( ) cos( )

   

   

     
   

     
. (20) 228 

 229 

With  = 45, we call this matrix OK : 230 

 231 
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cos(45) sin(45) 1 11

sin(45) cos(45) 1 12

   
    

    
OK . (21) 232 

 233 

Using OK , we can transform the noisy sensory signal ( , )T

L RS S  S  to a decorrelated signal 234 

( , )TS S 
  : 235 

 236 

1 1 1

2 2 2

L R L R L R L

R L R L
R R L

S S S S S S N N S N

S S N N S NS S S S

  

 


                 
                 
                       

OK237 

 (22) 238 

 239 

where 240 

 241 

( ) 2R LS S S    (23) 242 

( ) 2R LS S S    (24) 243 

( ) 2R LN N N    (25) 244 

( ) 2R LN N N   . (26) 245 

 246 

Note that we use the subscripts + and  to refer to the decorrelated signals, rather than the 247 

more general subscripts 1 and 2 in the previous sections.  This is because, in this particular 248 

case, the decorrelation transform creates a summation channel, S
, which adds the two eye’s 249 

sensory signals together, and a differencing channel, S , which subtracts one eye’s signal 250 

from the other.  The effect of this rotation of the coordinate axes is illustrated in Figure 1.  In 251 

these new coordinate axes, the signals are now decorrelated. 252 

Transforming the correlated signal ( , )T

L RS S   to the decorrelated signal ( , )TS S 
   253 

does not change the amount of information that we have about the original sensory signal, 254 

( , )T

L RS S .  This is because the transformation is completely reversible – given ( , )TS S 
  , we 255 

can rotate the axes back to find ( , )T

L RS S  , and vice-versa, so ( , )T

L RS S   and ( , )TS S 
   are 256 

equally informative about the original sensory signal, ( , )T

L RS S .  More formally, we can say 257 

that the mutual information between ( , )T

L RS S  and ( , )T

L RS S   is the same as the mutual 258 

information between ( , )T

L RS S  and ( , )TS S 
  : 259 

 260 

(( , ) ;( , ) ) (( , ) ;( , ) )T T T T

L R L R L RI S S S S I S S S S 
    . (27) 261 

 262 

So, if ( , )T

L RS S   or ( , )TS S 
   were the output, O, then the second term in the loss function 263 

(Equation (16)), i.e. ( ; )I O S , would be unchanged by this decorrelation.  Furthermore, the 264 

first term in the loss function is the sum of the variances of the output neurons, and it can be 265 

shown that this, too, is unchanged by the rotation of the coordinate axes (Zhaoping, 2014, p. 266 

99).  Thus, neither term in the loss function is changed by the rotation, and so the ( , )TS S 
   267 

encoding scheme is no more efficient by this measure than the ( , )T

L RS S   scheme.  It is true 268 
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that ( , )TS S 
   is less redundant than ( , )T

L RS S   (Attneave, 1954; Barlow, 1961, 2001), 269 

because, unlike ( , )T

L RS S  , there is no overlap in the information in the two elements of 270 

( , )TS S 
  .  However, in Li and Atick’s theory, the decorrelation itself does not increase the 271 

efficiency – it merely provides a conceptual stage that allows straightforward derivation of 272 

the optimal K through simple gain control in each channel: Because the channels are 273 

uncorrelated, the optimal gain in each channel can be derived independently of the other 274 

channel.  275 

 276 

2.2.2 Step 2: Gain control 277 

 278 

We can apply gain control to the transformed signal, ( , )TS S 
  , by applying a 279 

diagonal gain control matrix, g, given by 280 

 281 

0

0

g

g





 
  
 

g  . (28) 282 

 283 

When the gain values, g
 and g

, have been optimised, the optimal encoding matrix, K, is 284 

given by 285 

 286 

1

2

g g

g g

 

 

 
   

 
OK gK . (29) 287 

 288 

Then, by expanding Equation (15), we have 289 

 290 

( )1

( )2

OL L

OR R

NO g g S N

NO g g S N

  

  

      
       

       
 (30) 291 

 292 

( ) ( )
( )

2

( ) ( )
( )

2

R L R L
O

R L R L
O

g S S g N N
N

g S S g N N
N

 


 


   
 

 
   

 
 

 (31) 293 

 294 

( )

( )

O

O

g S g N N

g S g N N

    

    

  
  

  
. (32) 295 

 296 

We now show how to calculate the optimal gain in each channel.  Let us assume that 297 

the sensory noise samples, LN  and 
RN , are uncorrelated and both sampled from a Gaussian 298 

distribution with mean zero and variance 2N : Then it can be shown that noise samples N  299 

and N  are also uncorrelated, and sampled from the same distribution (Zhaoping, 2014, 300 

Equation 3.111).  We also assume that the encoding noise samples, ( )ON   and ( )ON  , are 301 

both sampled from a zero-mean Gaussian distribution with variance 2

ON .  Thus, each 302 
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output, iO , is the sum of three independent Gaussian random variables.  Since the variances 303 

of summed independent signals add, the output variance, 2

O , is given by  304 

 305 

  2 2 2 2 2 2

O i i i OO g S N N     , (33) 306 

 307 

Similarly, the total noise variance, 2

N , for each channel is given by 308 

 309 
2 2 2 2

N i Og N N   . (34) 310 

 311 

For Gaussian-distributed signals and noise, the mutual information between the input and 312 

output is given by (Zhaoping, 2014, Equation 3.25) 313 

 314 

2( ; ) log O
i i

N

I O S



  , (35) 315 

2

2 2

1
log

2

O

N




  (36) 316 

 2 2 2 2

2 2 2 2

1
log

2

i i O

i O

g S N N

g N N

 



. (37) 317 

 318 

Using Equations (33) and (37) to substitute for 2

iO  and ( ; )i iI O S in Equation (19), we have 319 

 320 

 
 2 2 2 2

2 2 2 2

2 2 2 2
( ) log

2

i i O

i i i O

i O

g S N N
E g S N N

g N N

  
   


K . (38) 321 

 322 

For each channel, i, the optimal gain, ig , is that which minimises ( )iE K .  This is found by 323 

differentiating Equation (38) with respect to 2

ig , setting the result to zero, and solving for 324 
2

ig .  The derivative of ( )iE K  is given by 325 

 326 

2 2

2

( )

( )

i
i

i

dE
S N

d g
  

K
 327 

   

2 2

2
2 2 2 2 2 2 2 2 2 2

1

2ln 2 ( ) 2

O i

i i i O i O

N S

g N S N g N S N N




   
.    (39) 328 

 329 

Setting 2( ) ( )i idE d gK  to zero gives 330 

 331 
2 2 2( ) 0i ia g bg c   , (40) 332 

 333 

where  334 

 335 
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 2 2 2

ia N S N    (41) 336 

 2 2 22O ib N S N    (42) 337 

 

2 2
2

2

2 22ln 2

O i

O

i

N S
c N

S N


 


 . (43) 338 

 339 

Using the quadratic formula to solve Equation (40) for 2

ig , we find that the optimal gain is 340 

given by 341 

 342 

 
2

2

smoothing decorrelation2
1

O

i

N
g F F

N
   , (44) 343 

 344 

where  345 

 346 
1

2

smoothing 2
1

i

N
F

S



 
  
 
 

 (45) 347 

2

decorrelation 2 2

1 1 2
1

2 2 ln 2O i

N
F

N S


    . (46) 348 

 349 

Note that, when  is low, Equation (44) can produce negative, i.e. impossible, values for 2

ig ; 350 

in this case, the optimal achievable value for 2

ig will be zero, indicating that any of the 351 

information in the sensory signal would cost more in energy terms than we are prepared to 352 

pay.  Equations (44) to (46) are plotted in Figure 2, each panel plotting a different set of 353 

parameter values.  smoothingF  increases with increasing ratio of signal to sensory noise, 354 

2 2

iS N , while 
decorrelationF  does the opposite.  At high signal-to-noise ratios (SNRs), 355 

smoothingF  asymptotes to 1, so the gain is dominated by 
decorrelationF : In this situation, the optimal 356 

gain varies inversely with the SNR; this approximately has the effect of whitening, i.e. 357 

making all outputs equally strong, which decorrelates the outputs (see the bottom row of 358 

Figure 1), hence the name, 
decorrelationF ).  At low SNRs, smoothingF  and 

decorrelationF  change in 359 

opposite directions with SNR, but smoothingF  is steeper, so the optimal gain follows smoothingF , 360 

increasing with the SNR; this has the effect of suppressing weak, noisy signals, i.e. 361 

smoothing out the noise, hence the name smoothingF . 362 

 363 

 364 
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 365 
 366 

Figure 2. Optimal gain.  Each panel shows 
decorrelationF , smoothingF  and the optimal 

2g  for a different 367 

combination of parameters  and 
2

ON .  
2g , 

2N  and 
2

ON  are specified in units of sensory noise 368 

variance, so 
2 1N   by definition.  The red curve shows smoothingF , which is the same in each panel. 369 

The blue curve shows 
decorrelationF ; this increases in height with increasing  , and decreases in height with 370 

increasing 
2

ON .  Panels on the same diagonal (top left to bottom right) have the same 
decorrelationF , 371 

because within a diagonal, 
2

ON  is constant.  The optimal 
2g  is given by Equation (44). 372 

 373 

2.2.3 Step 3: Multiplexing 374 

 375 

After steps 1 and 2, we have two channels: the summation channel, O , which tells us 376 

about the sum of the two eyes’ images, and the differencing channel, O , which tells us about 377 

the difference between them; the gain on each channel can be adjusted to optimise coding 378 

efficiency.  The encoding process could stop there.  However, the optimal code is not unique.  379 

In Section 2.2.1, we noted that rotating the coordinate axes of the encoding scheme had no 380 

effect on either the total information or the sum of variances of the outputs, so both terms of 381 
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the loss function (Equation (16)) are unchanged.  This is equally true after gain control: The 382 

coordinate axes can subsequently be rotated through any angle, to produce a new encoding 383 

scheme that is just as optimal as the one found in step 2.  This can be achieved by multiplying 384 

by a further rotation matrix, ( )U , to rotate the axes about an angle : 385 

 386 

cos sin
( )

sin cos

 


 

 
  

 
U . (47) 387 

 388 

The full encoding matrix, K, is then given by  389 

 390 

0cos sin 1 11
( )

0sin cos 1 12

g

g

 


 





    
      

     
OK U gK , (48) 391 

 392 

with  a free parameter, and the optimal g
and g

 determined by Equation (44).  For all 393 

values of  except integer multiples of 90, the summation and differencing channels are 394 

multiplexed across the two output channels (so both channels carry information about the 395 

sum and difference signals, S
 and S ). 396 

Although any value of  is equally optimal in minimising the loss function (Equation 397 

(16)), Li and Atick (1994) assume a value of  = 45.  In this case, ( )U  is the inverse of 398 

OK , as it rotates the axes 45 in the opposite direction to OK .  Li and Atick (1994) note that 399 

this results in the smallest overall change to the input, i.e. it minimises 2( )i ii
O S   (see 400 

Zhaoping, 2014, Box 3.1).  This may minimise the amount of neural wiring involved in 401 

transforming the signal, conferring an additional advantage that is not taken into account by 402 

the loss function of Equation (16).  With  = 45, Equation (48) simplifies to 403 

 404 

1

2

g g g g

g g g g

   

   

  
  

  
K . (49) 405 

 406 

If the two eyes’ signals are already uncorrelated, then the binocular summation and 407 

differencing channels will have the same signal strength as each other (see Figure 1), and thus 408 

the same optimal gain; in this case, we can let g g g   , giving 409 

 410 

1 0

0 1
g
 

  
 

K . (50) 411 

 412 

Using Equation (50) to substitute for K in Equation (15), we have 413 

 414 

11

22

( )

( )

OL

O
R

NO S
g

NO S

    
     
     

. (51) 415 

 416 

In this case, the optimal transform does nothing except change the gain.  Multiplexing the 417 

summation and differencing channels using ( 45 ) U  is particularly beneficial in this case, as 418 
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it results in each output channel receiving its input from just one eye, eliminating the need for 419 

neural connections from both eyes. 420 

In the more general case of g g  , the output is found by using Equation (49) to 421 

substitute for K in Equation (15): 422 

 423 

   

   

11

22

( )1

( )2

L R O

O
L R

g g S g g S NO

NO g g S g g S

   

   

       
     
        

. (52) 424 

 425 

Carrying out the matrix operations defined in Equation (52), we obtain 426 

 427 

1 1( )
2 2

L R O

g g g g
O S S N         (53) 428 

 429 

2 2( )
2 2

L R O

g g g g
O S S N        . (54) 430 

 431 

Equations (53) and (54) tell us how to calculate the outputs of channels 1 and 2 from 432 

the left and right eye inputs.  Each channel has the same pair of ocular sensitivities, i.e. 433 

  2g g    and   2g g  , but they differ in which eye has which sensitivity. 434 

It will be useful to present alternative equations that tell us how to calculate the 435 

channel outputs from the noisy sum and difference signals, S
  and S

 .  From Equation (22)436 

, we obtain  437 

 438 

2
R

S S
S  

    (55) 439 

2
L

S S
S  

   . (56) 440 

 441 

Using Equations (55) and (56) to substitute for 
LS   and 

RS   in Equations (53) and (54), we 442 

obtain 443 

 444 

1 1( )
2 2

O

g g
O S S N 

 
     (57) 445 

2 2( )
2 2

O

g g
O S S N 

 
    . (58) 446 

 447 

Equations (57) and (58) are not presenting a different model from Equations (53) and (54): 448 

Instead, Equations (57) and (58) give us, the researchers, an alternative way to calculate the 449 

model’s responses.  The brain would still calculate the outputs from the left and right eye 450 

signals, as made explicit in Equations (53) and (54).  Equations (57) and (58) show that using 451 

( 45 ) U  in the multiplexing step divides the summation and differencing channels equally 452 

between the two output channels: The two output channels both have a sensitivity of   453 
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2g  to the summation signal, and both have a sensitivity of 2g  to the difference 454 

signal. 455 

 456 

2.3 Summary so far 457 

 458 

This is a good point to take stock of what we have done, before moving on.  The 459 

sensory input signal is a two-element vector, ( , )T

L RS SS .  During the transduction process, 460 

this signal gets corrupted by additive sensory noise, to give a noisy sensory signal,  461 

( , )T

L L R RS N S N   S  (Equation (10)).  In transforming S  to an efficient code, O, the 462 

visual system applies a linear transformation to give an output signal, 
O

 O S NK  463 

(Equation (15)), where 
ON  is encoding noise (a different source of noise from the sensory 464 

noise).  The optimal encoding matrix, K, is given by Equation (49), with the gain values, g
 465 

and g
, determined by Equation (44).  This linear transformation can be conceptually divided 466 

into a series of three steps, represented by the three matrices in Equation (48): (1) a 467 

decorrelation that converts the left and right eye signals to binocular sum and difference 468 

signals; (2) gain control, which finds the optimal trade-off between energy usage and 469 

information transfer within the summation channel and within the differencing channel; (3) 470 

multiplexing the summation and differencing channels across the two output channels; this 471 

transformation preserves both energy consumption and information, and is therefore just as 472 

optimal as the encoding scheme obtained in step 2.  The purpose of the decorrelation in step 1 473 

is to ensure that the two channels do not share information, so that, in step 2, the whole 474 

system can be optimised by optimising each channel independently of the other.  Step 3 475 

minimises the difference between the input and output signals, which can reduce the amount 476 

of neural wiring needed to implement the process.  Step 3 delivers two output channels, each 477 

of which has sensitivity 2g  to the summation signal and sensitivity 2g  to the 478 

difference signal (Equations (57) and (58)). 479 

 480 

3 Deriving the receptive field profiles for a neuron 481 
 482 

So far, we have ignored the spatial aspects of the stimuli, just deriving each output 483 

channel’s sensitivity.  We will now expand our analysis to include the spatial receptive fields.  484 

We will consider the output channel to be a linear neuron, as defined in Section 1.  To begin 485 

with, we extend Equation (4) to include both sensory and encoding noise: 486 

 487 

( ) ( ) ( ) ( ) O

x

O K x S x K x S x N   

 
    

 
  (59) 488 

 489 

We will take ( )K x
 and ( )K x

 to be Gabor functions, whose 1-dimensional cross-490 

section is given by 491 

 492 

( ) ( )cos(2 )K x sG x fx   , (60) 493 

 494 

where s is the sensitivity, f is the neuron’s preferred spatial frequency,  is the carrier phase, 495 

and ( )G x  is a Gaussian envelope, given by  496 

 497 
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2

2
( ) exp

2

x
G x



 
  

 
. (61) 498 

 499 

 is the standard deviation of the Gaussian envelope, which controls its width.  The centre of 500 

the envelope is defined as spatial position x = 0.  501 

As noted above, the neuron’s sensitivity to the binocular sum and binocular difference 502 

are 2g  and 2g , respectively.  This gives the following receptive fields: 503 

 504 

( ) ( ) cos(2 )
2

g
K x G x fx 

    (62) 505 

 506 

( ) ( ) cos(2 )
2

g
K x G x fx 

   . (63) 507 

 508 

  and   can be freely chosen to suit the computation at hand: All pairs of   and   are 509 

equally optimal1.  However, we will soon see that, although the phases of ( )K x
 and ( )K x

 510 

can be freely chosen, the phase disparity between ( )LK x  and ( )RK x  is constrained by the 511 

sensitivity ratio, g g  . 512 

We can represent the sensitivity and phase of each receptive field using a 2-513 

dimensional vector, where the length of the vector represents the sensitivity, and the direction 514 

of the vector represents the phase (see the examples in Figure 3, Figure 4 and Figure 5).  So 515 

let us define vector 
+

v , for the summation channel, which has length 2g  and angle  , 516 

and define vector 
v , for the differencing channel, which has length 2g  and angle  . 517 

Having defined ( )K x
 and ( )K x

, we can obtain the neuron’s right and left eye 518 

receptive fields.  Using Equations (62) and (63) to substitute for ( )K x
 and ( )K x

 in 519 

Equation (6), we have 520 

 521 

1
( ) ( ) cos(2 ) cos(2 )

2 2 2
R

g g
K x G x fx fx    

 

 
    

 
. (64) 522 

 523 

When adding together two sine waves of the same frequency, the result is a sine wave with 524 

the same frequency, but with amplitude and phase given by a vector that is the sum of the 525 

vectors representing the amplitudes and phases of the two sine waves being added together.  526 

Thus, we have 527 

 528 

( ) ( ) cos(2 )
2

R
R R

g
K x G x fx   , (65) 529 

 530 

where Rg  and R  are the length and angle of vector 
R  

+
v v v .  These are given by 531 

 532 

                                                 
1 An explanation of this is beyond the scope of this article: It is possible to derive the full spatial 

receptive field using methods analogous to the derivation of the optimal ocular gains, and the free choice of 

phase values   and   comes from a multiplexing step in which there is a range of equally optimal solutions. 
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2 2 2 cos( )

2
R

g g g g
g

        
  (66) 533 

 534 

 atan2 sin sin , cos cosR g g g g              . (67) 535 

 536 

Similarly, using Equations (62) and (63) to substitute for ( )K x
 and ( )K x

 in Equation (7), 537 

we have 538 

 539 

( ) ( ) cos(2 )
2

L
L L

g
K x G x fx   , (68) 540 

 541 

where 
Lg  and L  are the length and angle of vector 

L  
+

v v v , i.e. 542 

 543 
2 2 2 cos( )

2
L

g g g g
g

        
  (69) 544 

 545 

 atan2 sin sin , cos cosL g g g g              . (70) 546 

 547 

The magnitude of the neuron’s binocular phase disparity, L R  , can be calculated from 548 

Equations (67) and (70), or alternatively from 549 

 550 

 

     

2

1

2
2 2 2

1
cos

1 4 cos

L R

g g

g g g g

 

 

 

     

 
 

   
     

  

. (71) 551 

 552 

The sensitivities of the neuron’s right and left eye receptive fields are given by 2Rg  and 553 

2Lg , respectively.  Figure 3, Figure 4 and Figure 5 illustrate ( )K x
, ( )K x

, ( )LK x  and 554 

( )RK x  of some example model neurons, along with the corresponding vectors, 
+

v , 
v , 

Lv  555 

and Rv . 556 

As noted earlier, to fully represent the information in the two eyes, we need two 557 

output channels.  Equations (57) and (58) show that these two channels are identical apart 558 

from the sign of the multiplier applied to the difference signal.  The neuron outlined above 559 

implements one of these channels; to implement the other channel, we need a neuron with 560 

receptive fields ( )K x
  and ( )K x

 given by 561 

 562 

( ) ( )K x K x 
   (72) 563 

 564 

( ) ( )K x K x 
   . (73) 565 

 566 

Using Equations (6) and (7), we can show that this second neuron’s right and left eye 567 

receptive fields, ( )RK x  and ( )LK x , are given by 568 

 569 
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( ) ( )R LK x K x   (74) 570 

 571 

( ) ( )L RK x K x  . (75) 572 

 573 

In summary, we can have a range of equally optimal neurons with different   and  ; 574 

however, for each of these neurons, there needs to be another neuron with the same   and 575 

 , but with the receptive fields swapped between the eyes. 576 

 577 

 578 

Figure 3.  Representations of the receptive fields with 1g g   .  Each column shows a different phase 579 

disparity,    ,  between the summation and differencing channels.  In these examples,   is always 580 

zero.  The top row shows ( )K x
 in red, and ( )K x

 in green; the middle row shows ( )RK x  in yellow, 581 

and ( )LK x  in blue.  The bottom row shows the vector representation of these receptive fields.  Each 582 

vector is coloured to match the colour of the corresponding receptive field profile in the rows above.  The 583 
angle of each vector represents the phase of the corresponding receptive field (measured anticlockwise 584 

from 3 o’clock).  The lengths of the vectors 
+

v  and 
v  represent 2g  and 2g , respectively.  585 

The lengths of the vectors 
Lv  and Rv  represent 

Lg  and Rg , respectively.  Thus, the lengths of 
+

v  and 586 

v  give the neuron’s sensitivities to the summation and difference images, whereas the lengths of 
Lv  and 587 

Rv  are larger than the neuron’s sensitivities to the left and right eye images, by a factor of 2 .  Rv  is 588 

the sum of vectors 
+

v  and 
v , while  

Lv  is the difference, +v v .  When 1g g   , as in this figure,  589 

+
v  and 

v  are the same length.  Because of this, the parallelograms formed by the vector addition and 590 

subtraction are identical rhombuses, so the diagonals (on which 
Lv  and Rv  lie) are orthogonal.  This 591 

forces the magnitude of the neuron’s preferred binocular phase disparity, L R  , to be equal to 90 in 592 

all cases, regardless of the values of   or  , apart from the degenerate cases of     = 0 or 180, 593 

when the neuron is completely monocular, so the binocular phase disparity cannot be defined. 594 
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 595 
Figure 4.  The same as Figure 3, but with 1/ 2g g   .  The longer 

v  vector pulls 
Lv  and Rv  away 596 

from each other, so that the magnitude of the neuron’s preferred binocular phase disparity, L R  , is 597 

greater than 90 in all cases, regardless of the values of   or  . 598 

 599 
Figure 5.  The same as Figure 3, but with 2g g   .  The longer 

v  vector pulls 
Lv  and Rv  towards 600 

each other, so that the magnitude of the neuron’s preferred binocular phase disparity, L R  , is less 601 

than 90 in all cases, regardless of the values of   or  . 602 
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 603 
 604 

Figure 6.  This figure shows how the neuron’s preferred binocular disparity, L R  , is affected by the 605 

sensitivity ratio, g g  , and the phase difference,    , of the summation and differencing channels.  606 

Binocular disparity was calculated using Equations (67) and (70).  Figure 4 illustrates parameter values 607 

that lie on the blue line ( 1/ 2g g   );  Figure 3 illustrates parameter values that lie on the green line (608 

1g g   ); Figure 5 illustrates parameter values that lie on the yellow line ( 2g g   ).  Note, for this 609 

neuron, positive values of     tune the neuron to near disparities, while negative values of   610 

tune the neuron to far disparities; if we had instead used the neuron defined by Equations (72) to (75), 611 
then the receptive fields would have been swapped between the eyes, and all the signs of the binocular 612 
disparities in this figure would have been reversed. 613 

 614 

4 Relationships between neuronal parameters 615 
 616 

The linear neuronal receptive field model outlined in the previous section gives rise to 617 

several relationships between the different neuronal parameters.  These relationships can help 618 

us to use Li and Atick’s theory to explain various physiological findings, and to make 619 

predictions that have not yet been tested. 620 

 621 

 622 

 623 

 624 

 625 
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4.1 Effect of ( +) and sensitivity ratio g g   on the neuron’s preferred binocular 626 

disparity 627 

 628 

Figure 3, Figure 4 and Figure 5 illustrate how the relative sensitivity of ( )K x
 versus 629 

( )K x
 (i.e. g g  ) constrains the neuron’s preferred binocular disparity, L R  , i.e. the 630 

phase difference between ( )LK x  and ( )RK x : 631 

1. When 1g g    (Figure 3), the left and right eye kernels have a phase 632 

disparity of exactly 90; this is because in this case, the identical 633 

parallelograms formed by the vector addition and subtraction are rhombuses, 634 

so the diagonals (on which 
Lv  and Rv  lie) are orthogonal. 635 

2. When 1g g    (Figure 4), the left and right eye kernels have a phase 636 

disparity > 90; this is because the longer 
v  vector pulls 

Lv  and Rv  away 637 

from each other. 638 

3. When 1g g    (Figure 5), the left and right eye kernels have a phase 639 

disparity < 90. ; this is because the longer 
v  vector pulls 

Lv  and Rv  640 

towards each other. 641 

These constraints apply regardless of the phase values   and  .  Figure 6 shows how 642 

L R   varies with     for several different values of g g  .  Although g g   is 643 

imposed on the system by the signal and noise levels,   and   can be freely chosen; Figure 644 

6 shows that, within the constraints outlined above, there is some scope to vary   and   to 645 

yield a range of binocular phase disparities. 646 

An alternative visualisation is given in Figure 7.  The shaded regions indicate the 647 

possible combinations of g g   and binocular disparity magnitude, L R  : For 1g g   , 648 

only binocular disparities greater than 90 are possible, while for 1g g   , only binocular 649 

disparities less than 90 are possible.  The colour at each point in Figure 7 indicates how 650 

much     deviates from 90 (quadrature phase): the black end of the colour scale 651 

indicates that ( )K x
 and ( )K x

 are in quadrature phase ( 90 0      ), while the 652 

yellow end of the scale indicates that ( )K x
 and ( )K x

 are either exactly in phase or exactly 653 

out of phase ( 90 90       ).  The curved boundaries of the shaded regions are lined 654 

with black, indicating that, as ( )K x
 and ( )K x

 approach quadrature phase, L R   gets as 655 

close as possible to 90.  As ( )K x
 and ( )K x

 deviate from quadrature phase (i.e. become 656 

either in or out of phase), the left and right eye kernels become more out of phase for 657 

1g g   , and become more in phase for 1g g   .  The central point where the two 658 

shaded regions in Figure 7 meet (corresponding to 1g g   ) represents the degenerate case 659 

where the left and right eye kernels are always in quadrature phase, i.e. 90L R    , 660 

regardless of the values of   and  . 661 

 662 

 663 
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 664 
 665 

Figure 7.  The shaded areas show the possible combinations of g g   and preferred binocular disparity 666 

magnitude, L R  .  This figure allows us to see at a glance that low g g   causes the neuron to be 667 

tuned to high binocular disparity, and high g g   causes preference for low binocular disparity.  The 668 

colour at each shaded point indicates how much     deviates from 90 (quadrature phase).  669 

Equation (71)  was rearranged to find the value of     at each point. 670 

 671 

4.2 Effect of ( +) and sensitivity ratio g g   on binocularity 672 

 673 

Both the sensitivity ratio, g g  , and the phase difference,    , of the summation 674 

and differencing channels will affect the neuron’s binocularity, i.e. the extent to which it is 675 

similarly sensitive to the two eyes.  Binocularity can be assessed by presenting each eye with 676 

the optimal sine wave grating stimulus for that eye’s receptive field, and then measuring the 677 

neuron’s outputs, LO  and RO , in response to left and right eye monocular stimulation, 678 

respectively.  Binocularity can then be quantified using the Ocular Balance Index (OBI): 679 

 680 

1 R L

R L

O O
OBI

O O


 


. (76) 681 

 682 

The OBI varies from 0 (totally monocular – the neuron only responds to stimulation in one 683 

eye) to 1 (totally binocular – the neuron responds with equal strength to stimulation in either 684 

eye). 685 

We can derive an analytical expression that gives the OBI as a function of g g  , and 686 

   .  To simplify the mathematics, instead of using Gabor receptive fields with a 687 

Gaussian envelope, we will assume the envelope to be rectangular, with width equal to a 688 

whole number of cycles of the carrier.  We have carried out numerical modelling with 689 

biologically plausible Gabor functions, and found that using a rectangular envelope instead of 690 

a Gaussian makes a negligible difference to the predicted OBI. 691 
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If each receptive field is a whole number of cycles of a sine wave, then the neuron’s 692 

response to the optimal sine wave stimulus will simply be proportional to the receptive field’s 693 

sensitivity, so we have 694 

 695 

R RO g  (77) 696 

 697 

L LO g . (78) 698 

 699 

The actual constant of proportionality does not matter, since it will cancel out in Equation 700 

(76).  If we choose the constant of proportionality to be 2 g , then, using Equations (66) 701 

and (69) to substitute for Rg  and 
Lg  in (77) and (78), we have 702 

 703 

   
2

1 2 cos( )RO g g g g             (79) 704 

 705 

   
2

1 2 cos( )LO g g g g            (80) 706 

 707 

Figure 8 plots the OBI as a function of g g   with RO  and LO  given by Equations (79) and 708 

(80).  This figure illustrates two key effects: 709 

1. For a given g g  , binocularity is maximised when ( )K x
 and ( )K x

are in 710 

quadrature phase  ( 90 0      ), and minimised when their phase 711 

difference is 0 or 180  ( 90 90       ).  To understand why this 712 

happens, first consider the case of ( )K x
 and ( )K x

 perfectly in phase (a 713 

phase difference of 0); this case maximises the amplitude of their sum, and 714 

minimises the amplitude of their difference, so ( )RK x  and ( )LK x  are 715 

maximally different in sensitivity. Alternatively, a phase difference of 180 716 

between ( )K x
 and ( )K x

 minimises the amplitude of their sum, and 717 

maximises the amplitude of their difference, so ( )RK x  and ( )LK x  are again 718 

maximally different in sensitivity.  Halfway between these two extremes 719 

(quadrature phase), the difference between ( )RK x  and ( )LK x  is minimised. 720 

2. For a given phase difference,    , binocularity is minimised when 721 

1g g   .  This is because, when 1g g   , ( )K x
 and ( )K x

 have the 722 

same amplitude, allowing for more complete cancellation when they are added 723 

or subtracted (depending on their phase difference); this minimises the 724 

sensitivity of either ( )RK x  or ( )LK x , making the neuron as monocular as 725 

possible. 726 

For further insights into these effects, see Supplementary Appendix B. 727 

 728 

 729 

 730 
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 731 
 732 

Figure 8. Ocular Balance Index (OBI) plotted as a function of g g  , for several different values of 733 

   .  The OBI is calculated using Equation (76) with RO  and LO  given by Equations (79) and (80). 734 

 735 

Each point in Figure 7 gives rise to a single value for each of g g  and 736 

90     , and thus a single OBI value (since the OBI is determined only by these two 737 

values – see Figure 8).  These OBI values are plotted in Figure 9.  The OBI is highest when 738 

L R   is as close as possible to 90, because that is when 90     (see Figure 7) 739 

which gives OBI = 1 in all cases.  The OBI is also high when g g   takes an extreme (low or 740 

high) value. 741 

The predicted OBI values in Figure 8 and Figure 9 are calculated assuming that the 742 

neuron is completely linear, as in Equation (1).  As noted earlier, to obtain the spike rate from 743 

a real neuron, the calculation of Equation (1) is followed by subtraction of a threshold  0, 744 

and then all negative values are set to zero (half wave rectification).  The half wave 745 

rectification on its own makes no difference to the OBI because, for monocular stimulation 746 

with each eye’s optimally positioned sine wave grating stimulus, Equation (1) will always 747 

produce a positive number.  However, the subtraction of a threshold in combination with half 748 

wave rectification can make the neuron appear much more monocular than it really is, and 749 

this would reduce the measured OBI.  Ohzawa and Freeman (1986) showed that some 750 

neurons appeared very monocular when tested with monocular stimulation in each eye, but 751 

nevertheless showed strong interactions between the two eyes’ stimuli when stimulated 752 

binocularly; they showed that this behaviour could be explained by including subtraction of a 753 

threshold in the linear model.  An asymmetry between on responses and off responses could 754 

also reduce the OBI, particularly in cells with g g  .  For more discussion of the effects of 755 

nonlinearities on the predictions of Li and Atick’s theory, see Zhaoping (2014), Section 756 

3.5.7.1.  757 

 758 
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 759 

 760 
Figure 9. Similar to Figure 7, except that the colour of each point gives the OBI corresponding to each 761 

combination of g g   and L R  . 762 

 763 

5 Evaluating the predictions of the theory 764 
 765 

The core of Li and Atick’s theory is the predicted effect of SNR on the gains on the 766 

summation and differencing channels.  We can therefore test the theory by looking at 767 

different situations that would be expected to affect the channel gains, and seeing whether we 768 

get the predicted effects. 769 

 770 

5.1 Predicted effects of interocular correlation on binocularity 771 

 772 

Figure 1 illustrates that, when the interocular correlation is zero, the signal strength is 773 

identical in the summation and differencing channels, i.e. 2 2S S  ; since the optimal gain 774 

on each channel is determined by the SNR, a zero interocular correlation gives the same 775 

optimal gain on each channel, i.e. 1g g   .  When the interocular correlation is above zero, 776 

we have 2 2S S  .  Although a pair of different SNRs can give rise to the same optimal 777 

gain on each channel, it is generally the case that different SNRs will give rise to different 778 

gains (see Figure 2).  Thus, in general, Li and Atick’s theory predicts that, as the interocular 779 

correlation decreases, g g   will get closer to 1, and this in turn will make the neurons more 780 

monocular (as shown in Figure 8); conversely, when the interocular correlation increases, 781 

g g   will move away from 1, and the neurons will be more binocular.  The following 782 

subsections examine various factors that affect the interocular correlation, and show how they 783 

lead to the predicted effects on binocularity. 784 

 785 
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5.1.1 Strabismus (squint) 786 

 787 

In strabismus, the eyes are not correctly aligned.  This gives rise to a lower interocular 788 

correlation than normal, so Li and Atick’s theory predicts a higher-than-normal level of 789 

monocularity.  This prediction was confirmed by Hubel and Wiesel’s (1965) finding that, in 790 

primary visual cortex of kittens raised with artificially induced strabismus, 79% of the 791 

neurons (302 of 384) were monocular, compared with 20% (44 of 223) in normally reared 792 

kittens (a significant difference in proportion: 2 = 199.8, p = 2.3 × 1045). 793 

 794 

5.1.2 Alternating monocular occlusion 795 

 796 

Strabismus reduces the interocular correlation, but does not abolish it completely.  In 797 

addition to their experiments on artificially induced strabismus, Hubel and Wiesel (1965) 798 

raised kittens with daily alternating monocular occlusion, so that on each day, one eye was 799 

occluded with an opaque occluder, and the other eye was normal; the occluder was swapped 800 

between the eyes each day.  In this setup, the occluded eye never had a signal – only noise – 801 

so the interocular correlation was zero at all times.  Li and Atick’s theory would therefore 802 

predict an even larger proportion of monocular cells than in strabismic animals; Hubel and 803 

Wiesel (1965) found that this was indeed the case: 91% of the neurons (176 of 194) that they 804 

recorded were monocular, a significantly higher proportion than for strabismic animals (2 = 805 

13.14, p = 0.00029). 806 

 807 

5.1.3 Interocular distance 808 

 809 

Most primates have ocular dominance columns (ODCs), in which neurons are 810 

clustered according to which eye elicits the highest response (for review, see Adams & 811 

Horton, 2009).  A strong ODC structure cannot occur without the existence of highly 812 

monocular neurons, i.e. those that respond mainly to one eye.  ODCs are less readily 813 

observed in smaller primate species such as the owl monkey (Kaas, Ling, & Casagrande, 814 

1976; Livingstone, 1996; Rowe, Benevento, & Rezak, 1978) squirrel monkey (Adams & 815 

Horton, 2003; Livingstone, 1996) and marmoset (Spatz, 1989).  Although some studies have 816 

shown ODCs in these species (Adams & Horton, 2003; Chappert-Piquemal, Fonta, Malecaze, 817 

& Imbert, 2001; Takahata, Miyashita, Tanaka, & Kaas, 2014), the mixed findings suggest 818 

that these smaller species of primate show a weaker ocular dominance structure than shown 819 

by larger primates, such as macaques and humans.  This is predicted by Li and Atick’s 820 

theory, because the smaller primates have a shorter interocular distance (McCrea & Gdowski, 821 

2003; Solomon & Rosa, 2014), leading to an increased interocular correlation; this should 822 

make the neurons less monocular, leading to a weaker ODC structure.  Li and Atick’s theory 823 

would predict that ODCs could be induced in these animals by introducing an artificial 824 

strabismus, thereby reducing the interocular correlation, and making the neurons more 825 

monocular; this prediction has been confirmed in both the owl monkey and squirrel monkey 826 

(Livingstone, 1996). 827 

 828 

5.1.4 Correlated electrical stimulation 829 

 830 

Stryker and Strickland (1984) (see also Stryker (1986, 1989)) silenced the retinal 831 

ganglion cells of kittens by injecting tetrodotoxin into both eyes.  Then, between the ages of 2 832 

and 6-8 weeks, they applied electrical stimulation using a chronically implanted electrode in 833 

the optic tract; because the optic tract contains ganglion cell axons from both eyes, this 834 

created a very high correlation in the activity of cortical inputs from the two eyes.  As 835 
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predicted by Li and Atick’s theory, this high interocular correlation resulted in more strongly 836 

binocular cells than in normally raised kittens. 837 

 838 

5.1.5 Orientation 839 

 840 

Because the two eyes are displaced horizontally rather than vertically, the binocular 841 

disparities are mainly horizontal shifts between the eyes.  For a neuron with left and right eye 842 

receptive fields, the horizontal image components within the two receptive fields will differ 843 

less between the two eyes than the vertical image components.  This causes the interocular 844 

correlation to be higher for horizontally than vertically oriented components (Li & Atick, 845 

1994).  Li and Atick’s theory would therefore predict that horizontally tuned neurons should 846 

be more binocular than vertically tuned neurons.  This prediction has been confirmed 847 

experimentally (see Zhaoping, 2014, Figure 3.14). 848 

 849 

5.2 Predicted effects of binocular adaptation 850 

 851 

Viewing a distant scene will result in a high interocular correlation, while viewing 852 

objects at very close range will result in a lower interocular correlation.  Thus, the optimal 853 

gains on the summation and differencing channels will change from moment to moment as 854 

we look around the visual environment.  The system would therefore be expected to adapt 855 

quickly to changes in the prevailing interocular correlations.  The next subsections review 856 

experiments that we have carried out to investigate the effects of adaptation on the gains of 857 

the summation and differencing channels. 858 

 859 

5.2.1 A psychophysical paradigm that detects changes in gain ratio, g g   860 

 861 

The evidence outlined in Section 5.1 used indirect measurements of the ratio g g  : 862 

instead of measuring g g   directly, we looked at the level of binocularity, and used that to 863 

infer which condition had g g   closer to 1.  About ten years ago, we devised a novel 864 

psychophysical paradigm to measure effects on g g   more directly.  The basic idea is to 865 

create a dichoptic test stimulus that delivers identifiably different stimuli to the summation 866 

and differencing channels – for example, the two channels could receive different directions 867 

of motion (May, Zhaoping, & Hibbard, 2012), different orientations (May & Zhaoping, 868 

2016), or even different face images (May & Zhaoping, 2019).  So the summation channel 869 

receives one stimulus, S
, and the differencing channel receives a different stimulus, S .  On 870 

each trial, we ask the participant to report whether they saw S
 or S .  The proportion of 871 

times they report S
 is an index of the size of the ratio g g  . 872 

To make the dichoptic test stimuli, it is easiest to begin with the desired S
 and S , 873 

which could each be any spatiotemporal stimuli.  Then we make one eye’s stimulus (say the 874 

right eye)   2RS S S    , and the other eye’s stimulus (say the left eye) 875 

  2LS S S    , where  and  are scalar multipliers that control the image contrast.  876 

The two eyes’ stimuli then add together to give S 
 and subtract to give S  .  In one study 877 

(May & Zhaoping, 2016), we had  = ; in others (May & Zhaoping, 2019; May et al., 878 

2012), we usually had    to compensate for a bias to perceive the binocular sum with 879 

foveal fixation (Zhaoping, 2017); this bias is thought to be nothing to do with gain control or 880 
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efficient coding, instead being a bias in interpretation of the low-level signals by the 881 

subsequent perceptual decoding stage (see Zhaoping, 2017, for details). 882 

To change the gain on each binocular channel, we present high-contrast adaptation 883 

stimuli that will strongly adapt either the summation channel or the differencing channel.  To 884 

adapt the summation channel, we present the same adaptation stimulus in each eye 885 

(correlated adaptation), which gives a strong summation signal and a zero difference signal; 886 

to adapt the differencing channel, we reverse the contrast of the adaptation stimulus between 887 

the eyes (anticorrelated adaptation), so the difference signal is strong and the sum is zero.  888 

Because the adaptation stimuli are high-contrast (giving a high SNR), the predicted gains will 889 

vary inversely with the signal strength (see Figure 2): Anticorrelated adaptation should 890 

reduce sensitivity g
 to the binocular difference image, S , whereas correlated adaptation 891 

should reduce sensitivity g
 to the binocular sum, S

.  As predicted, we find that 892 

participants report seeing S
more frequently after anticorrelated than correlated adaptation 893 

(May & Zhaoping, 2016, 2019; May et al., 2012). 894 

In our first study with this paradigm (May et al., 2012), our dichoptic stimulus was 895 

based on that of Shadlen and Carney (1986).  Each eye received a counterphase flickering 896 

grating; the binocular sum, S
, was a grating drifting smoothly in one direction, and the 897 

binocular difference, S , was a grating drifting in the opposite direction.  In our second study 898 

(May & Zhaoping, 2016), the two eyes’ stimuli were plaids, formed from the sum of two sine 899 

wave gratings tilted clockwise or anticlockwise of vertical; S
 was a grating tilted in one 900 

direction, and S  was a grating tilted in the opposite direction.  There is a formal equivalence 901 

between these two studies because a moving grating is tilted in space-time (Adelson & 902 

Bergen, 1985), and each eye’s plaid stimulus in our second study is essentially a space-time 903 

plot of the counterphase grating that we used in the first study. 904 

These experiments deliberately did not adapt the perceptual dimension being tested.  905 

When participants were asked to judge the direction of motion of the test stimulus (May et 906 

al., 2012), the adaptation stimuli were stationary.  When participants were asked to judge the 907 

grating tilt (May & Zhaoping, 2016) or face identity (May & Zhaoping, 2019), the adaptation 908 

stimuli were untilted noise.  Thus, the adaptation effects must have resulted from adaptation 909 

of the binocular channels, not adaptation of the perceptual mechanisms on which the 910 

judgements were being based. 911 

Many studies of perceptual aftereffects of adaptation are plagued by a fundamental 912 

difficulty: Response bias can have effects indistinguishable from a genuine perceptual bias 913 

(Morgan, Dillenburger, Raphael, & Solomon, 2012).  This is particularly problematic when 914 

the participant can see which adaptation condition they are currently in, and may be able to 915 

guess which response the experimenter is expecting them to make on each trial.  Our 916 

paradigm does not suffer this problem.  To understand why, consider our first study (May et 917 

al., 2012).  Within each session, there were two types of trials, randomly interleaved: On one 918 

type of trial, S
 had upward motion and S  had downward motion; on the other type of trial, 919 

it was the other way round.  This meant that any bias to respond “upward” or “downward” 920 

would have pushed performance towards chance, weakening the measured effect of 921 

adaptation.  In summary, we could be certain that any measured effects of adaptation in our 922 

paradigm were due to adaptation of the binocular channels, and not a response bias or 923 

adaptation of the mechanisms on which the perceptual judgements were being based. 924 

Because these adaptation effects were unequivocally due to adaptation of the 925 

binocular channels, we were able to use this paradigm to answer a long-standing question 926 

about whether face adaptation inherits adaptation from earlier stages in the processing stream, 927 

as argued by some researchers (Dickinson & Badcock, 2013; Dickinson, Almeida, Bell, & 928 
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Badcock, 2010; Dickinson, Mighall, Almeida, Bell, & Badcock, 2012).  This had always 929 

been a plausible idea, but the evidence for it was uncertain because all existing face 930 

aftereffects could conceivably had resulted from selective adaptation of the face processing 931 

mechanisms themselves (see May & Zhaoping, 2019 for a discussion of these issues).  In our 932 

most recent study using this paradigm (May & Zhaoping, 2019), the S
 and S  stimuli were 933 

face images.  For example, in one experiment, half the trials had Brad Pitt as the S
 stimulus 934 

and Matt Damon as the S  stimulus; on the other half of trials, it was the other way round.  935 

We found that we could bias which face the participant perceived by selectively adapting the 936 

binocular channels using random noise stimuli that could not conceivably have selectively 937 

adapted the face processing mechanisms.  This therefore provided the first completely 938 

conclusive evidence that face adaptation can inherit adaptation from earlier processing stages. 939 

 940 

5.2.2 Effects of adaptation on perceived depth 941 

 942 

Elsewhere in this Special Issue, Kingdom, Yared, Hibbard, and May (2020) report the 943 

effects of correlated and anticorrelated adaptation on perceived depth.  As shown in Figure 6 944 

and Figure 7, the neuron’s preferred binocular disparity decreases as g g  increases.  Thus, 945 

after correlated adaptation (which reduces g g  ), neurons would be tuned to larger 946 

disparities than normal, whereas, after anticorrelated adaptation (which increases g g  ), 947 

neurons would be tuned to smaller disparities than normal.  If the change in the neuron’s 948 

preferred binocular disparity were the only effect of adaptation, one might expect perceived 949 

depth to be decreased after correlated adaptation because, post-adaptation, the neuron best 950 

tuned to the test stimulus disparity would be one that normally prefers smaller disparities; 951 

conversely one might expect perceived depth to be increased after anticorrelated adaptation 952 

because post-adaptation, the neuron best tuned to the test stimulus disparity would be one that 953 

normally prefers larger disparities.  However, there is another effect at play.  Correlated 954 

adaptation tends to reduce the sensitivity of neurons tuned to small disparities (since they are 955 

dominated by the summation channel), whereas anticorrelated adaptation tends to reduce the 956 

sensitivity of neurons tuned to large disparities (since they are dominated by the differencing 957 

channel).  Thus, after correlated adaptation, the neurons tuned to large disparities would be 958 

more sensitive than those tuned to small disparities, which would tend to increase perceived 959 

depth; conversely, after anticorrelated adaptation, the neurons tuned to small disparities 960 

would be more sensitive than those tuned to large disparities, which would tend to decrease 961 

perceived depth.  In summary, binocular adaptation has predicted effects on sensitivity and 962 

disparity tuning that work in opposite directions for depth perception.  Kingdom et al. (2020) 963 

carried out modelling that showed that the effects on sensitivity would dominate; as predicted 964 

by the modelling, they found that perceived depth is increased after correlated binocular 965 

adaptation and reduced after anticorrelated adaptation. 966 

 967 

6 Discussion 968 
 969 

It is important to understand that Li and Atick’s theory does not propose a novel 970 

neuronal architecture: The neuronal model that it uses, outlined in Equation (1), is the 971 

standard model of a linear binocular simple cell, which has considerable empirical support 972 

(Ohzawa & Freeman, 1986).  The novelty is in how this model is described, or 973 

conceptualised.  It is conventional to describe the neuron in terms of its left and right eye 974 

receptive fields, ( )LK x  and ( )RK x , so that we can calculate its response directly from the 975 

left and right eye images (as in Equation (1)); Li and Atick instead describe the neuron in 976 



29 

 

terms of its binocular sum and difference receptive fields, ( )K x
 and ( )K x

, so that we can 977 

calculate its response directly from the sum and difference of the left and right eye images (as 978 

in Equation (4)).  This is analogous to the way in which we can switch between describing a 979 

simple cell in terms of its receptive field and describing it in terms of its spatial frequency 980 

tuning function (i.e., the Fourier transform of the receptive field): Again, these are just two 981 

different descriptions of the same model, and if we know one description, we can derive the 982 

other (see Figure 9 of Movshon, Thompson, & Tolhurst, 1978). This is a strong analogy 983 

because, for a particular point, x, in the image, the ordered pair  ( ), ( )K x K x  is the discrete 984 

Fourier transform of  ( ), ( )L RK x K x .  Thus, the relationship between  ( ), ( )K x K x   and 985 

 ( ), ( )L RK x K x  is the same as the relationship between the spatial frequency tuning function 986 

and the receptive field (in both cases, one is the Fourier transform of the other). 987 

The reason for describing the neuron in terms of ( )K x
 and ( )K x

 is that it helps us 988 

to understand how the parameters of the neuronal model are optimised.  By conceptually 989 

switching from left and right eye channels to binocular summation and differencing channels, 990 

we move from a pair of (usually) correlated channels to a pair of uncorrelated channels.  This 991 

greatly simplifies the optimisation process, because the optimal gains of the summation and 992 

differencing channels ( g
 and g

, respectively) can be calculated independently of each 993 

other (using Equation (44)).  Once the optimal gains have been applied to the summation and 994 

differencing channels, Li and Atick propose a further transformation to produce two output 995 

channels that both have the same sensitivity to the binocular sum, and both have the same 996 

sensitivity to the binocular difference (the two output channels differ only in the sign of their 997 

response to the binocular difference – see Equations (57) and (58)).  There are therefore three 998 

conceptually separate steps: decorrelation, gain control, and multiplexing. 999 

To implement this process, the three steps can be cascaded into a single linear 1000 

transformation that gives the sensitivity of each output channel to the binocular sum and 1001 

difference (Equations (57) and (58)).  Each of the two output channels would be implemented 1002 

by a neuron.  The amplitudes of its ( )K x
 and ( )K x

 receptive fields are determined by 1003 

Equation (57) or (58); the phases of ( )K x
 and ( )K x

 (  and  )  can be freely chosen to 1004 

suit the task that the neuron will be used for.  The neuron’s right and left eye receptive fields 1005 

are found simply by adding and subtracting ( )K x
 and ( )K x

 (see Equations (6) and (7)).  1006 

As mentioned above, there are two output channels.  They are implemented with two neurons 1007 

with identical ( )K x
 but opposite-sign ( )K x

; the two neurons have the same pair of left 1008 

and right eye receptive fields, but they differ in terms of which eye has which receptive field. 1009 

We have presented the theory as involving just a single pair neurons, because that is 1010 

what is needed to represent the signals coming from the same retinal position in two eyes.  In 1011 

reality, there would be a whole range of different pairs of neurons, with different retinal 1012 

positions, and also different receptive field characteristics, such as spatial frequency tuning 1013 

and phases,   and  .  To allow accurate decoding of stimulus properties such as spatial 1014 

frequency or binocular disparity, we need a population of neurons tuned to different values of 1015 

these properties (Jazayeri & Movshon, 2006; Kingdom et al., 2020; May & Solomon, 2015). 1016 

A neuron’s preferred binocular disparity and level of binocularity are both functions 1017 

of just two variables: the gain ratio g g  , and the extent to which     differs from 90 1018 

(see Figure 7 and Figure 8).  Since   and   can be freely chosen, Li and Atick’s theory 1019 

cannot make strong predictions that depend on    ; the core of the theory is the predicted 1020 

gain values, g
 and g

. 1021 
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Figure 1 shows that, when the interocular correlation is low, the binocular summation 1022 

and differencing channels will have similar SNR.  Since the optimal gain is a function of the 1023 

SNR, Li and Atick’s theory predicts that, as the interocular correlation approaches zero, the 1024 

gain ratio g g   approaches 1, and the neurons will become as monocular as possible (see 1025 

Figure 8).  In Section 5.1, we describe several examples where a manipulation of interocular 1026 

correlation has been shown to result in the predicted effect on binocularity. 1027 

It is less easy to predict binocular disparity tuning.  When the interocular correlation 1028 

is low, g g   is close to 1, and in this vicinity, the theory predicts that the preferred 1029 

binocular disparity can take any value (see Figure 7 or Figure 9).  When the interocular 1030 

correlation is high, the optimal g
 and g

 will usually differ substantially, but g g   may 1031 

be above or below 1, depending on the SNR; thus, the predicted preferred binocular disparity 1032 

may be low or high. 1033 

For much of this article, we have presented the binocular summation and differencing 1034 

channels as abstract, conceptual devices that allow us to derive the optimal binocular coding 1035 

strategy.  In general, these channels are not separated into different neuronal pathways: Most 1036 

neurons will carry signals from both channels (multiplexing).  Theoretically, these channels 1037 

should act like classical psychophysical channels, in the sense of functionally independent 1038 

mechanisms that process different aspects of the stimulus and are selectively adaptable 1039 

(Mollon, 1974).  To maintain optimal coding, the channels should adapt as the interocular 1040 

correlation or luminance level changes, as these changes will both affect the optimal channel 1041 

gains.  Since the two channels are in general multiplexed on a single neuron, selective 1042 

adaptation of one channel will affect not just the neuron’s sensitivity, but also its receptive 1043 

field structure and its preferred binocular disparity (see Figure 1 of Kingdom et al., 2020). 1044 

Empirically, we have shown that these channels are indeed selectively adaptable.  In 1045 

our adaptation experiments, we used binocular adaptation stimuli that selectively stimulated 1046 

either the summation or differencing channel, but could not cause selective adaptation of the 1047 

perceptual dimension being tested: Perceived motion direction was affected by adaptation to 1048 

static stimuli (May et al., 2012), perceived tilt direction was affected by adaptation to untilted 1049 

stimuli (May & Zhaoping, 2016), perceived depth was affected by adaptation to stimuli 1050 

containing no depth (Kingdom et al., 2020), and perceived human face was affected by 1051 

adaptation to random noise (May & Zhaoping, 2019).  Since our adaptation effects cannot be 1052 

explained by adaptation of the mechanisms processing the perceptual dimension being tested, 1053 

that leaves selective adaptation of the binocular summation or differencing channel as the 1054 

only explanation of these counterintuitive adaptation effects. 1055 
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