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Supplementary material for May, K.A. & Zhaoping, L. “Li and Atick’s 

theory of efficient binocular coding: A tutorial and mini-review” 
 

APPENDIX A: Quantifying information 

 

The amount of information that we gain from receiving a signal can be equated to 

how surprising the signal is.  If we were already very sure what the signal would be, and the 

signal confirms our expectations, then we haven’t learnt very much; but if the signal that we 

receive was unlikely, then we are surprised, and have learnt more. Surprise, or information, is 

therefore inversely related to the probability of the signal, P(S).  In information theory, the 

particular function we use is given by 

 

2Surprise log ( )P S  . (A1) 

 

Thus, when P(S) = 1, Surprise = 0 (i.e. we knew what the signal would be, so have gained no 

information by receiving it), and Surprise approaches  as P(S) approaches 0 (i.e. the signal 

was very unlikely, so we have gained a lot of information by receiving it). 

Shannon (1948) defined entropy, H, of a signal as the “expected” amount of surprise, 

i.e. the average surprise over repeated presentations of the signal.  This is given by the sum of 

all the different possible signals, weighted by the probability of each signal: 

 

2( ) ( ) log ( )
S

H S P S P S  . (A2) 

Alternatively, for continuous signals, the entropy is given by 

 

2( ) ( ) log ( )
S

H S p S p S dS  , (A3) 

where ( )p S  is the probability density of S.  For mathematical convenience, we will usually 

take the signal to be continuous. 

Entropy is measured in bits (binary digits).  This is because, if the signal, S, contains n 

binary digits, then there are 2n  possible states, so if each state is equally likely, the 

probability of each state is 1/ 2n
, and the entropy according to Equation (A2) is n , i.e. the 

number of bits in the signal.   

Entropy can be considered to be the amount of information about the signal that we 

lack before receiving it.  If the signal, S, is an external sensory signal, such as a pattern of 

light, the brain does not receive the signal directly; instead, it receives the output, O, of a 

neuron or set of neurons.  Before receiving the neuronal output, O, the amount of information 

about S that we lacked was ( )H S .  After receiving O, the probability of the signal, S, is the 

conditional probability, ( | )p S O ; the amount of information about S that we still expect to 

lack is then given by the conditional entropy, which is defined analogously to ( )H S : 

 

2( | ) ( , ) log ( | )
O S

H S O p O S p S O dSdO   . (A4) 

 

The amount of information about S that we expect to gain by receiving O is given by the 

difference between what we lacked before receiving the signal and what we expect to lack 

after receiving the signal: 
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( ; ) ( ) ( | )I O S H S H S O  . (A5) 

 

( ; )I O S  is called the mutual information: it tells us how much information O provides about 

S.  

 

 

APPENDIX B: Understanding the effect of ( +) and sensitivity ratio g+/g on 

binocularity 

 

 

For a given g g  , binocularity is maximised when ( )K x
 and ( )K x

are in quadrature 

phase, and minimised when their phase difference is 0 or 180 
 

When ( )K x
 and ( )K x

are in quadrature phase, 90     , so cos( ) 0    .  

Thus, from Equations (79) and (80), R LO O , and OBI = 1: The neuron is fully binocular, 

regardless of the value of g g  .  Equations (79) and (80) show that the source of the 

difference between RO  and LO  is the  2 cos( )g g       term, which is positive in one 

equation and negative in the other.  When ( )K x
 and ( )K x

differ in phase by 0 or 180, 

cos( ) 1     , so the magnitude of  2 cos( )g g       is maximised, which maximises 

the difference between RO  and LO .  Thus, the OBI is minimised. 

We can also understand these phenomena visually, by considering the vectors 
+

v , 
v

, 
Lv  and Rv , which represent the sensitivities and phases of the corresponding receptive 

fields.  Figures 3–5 show that, regardless of the value of g g  , when 
+

v  and 
v  are 

orthogonal (indicating that ( )K x
 and ( )K x

are in quadrature phase), their sum and 

difference ( Rv  and 
Lv ) fall on the diagonals of rectangles with identical width and height, 

and are thus equal in length.  Thus, ( )RK x  and ( )LK x  are equal in sensitivity, and the neuron 

is fully binocular.  As 
+

v  and 
v  move away from orthogonality, they begin to point in 

similar or opposite directions.  Thus their sum will increase or decrease in magnitude, while 

their difference does the opposite: One of Rv  and 
Lv  will increase in length while the other 

decreases.  This means that ( )RK x  and ( )LK x  will start to differ in sensitivity, and the 

neuron will not be fully binocular.  The difference between the lengths of Rv  and 
Lv  is 

maximised when 
+

v  and 
v  point in exactly the same or exactly opposite directions (i.e. 

( )K x
 and ( )K x

differ in phase by 0 or 180): at this point, binocularity is minimised. 

 

For a given phase difference,    , binocularity is minimised when 1g g    

 

This is easiest to understand by considering the vectors 
+

v , 
v , 

Lv  and Rv .  As 

noted above, when 
+

v  and 
v  are not orthogonal, they will tend to cancel each other out in 

either their sum ( Rv ) or their difference (
Lv ).  The more similar the lengths of  

+
v  and 

v , 

the more complete this cancellation can be.  The maximum cancellation occurs when they are 

the same length, i.e. 1g g    (Figure 3).   In the extreme, when ( )K x  and ( )K x differ in 
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phase by 0 or 180, 
+

v  and 
v  point in either the same direction or opposite directions, so if 

1g g   , then either Rv  or  
Lv  has zero magnitude, and the neuron is completely 

monocular.  For 1g g   , cancellation can never be complete (e.g. Figures 4 and 5), so the 

neuron would be more binocular. 

Alternatively, we can gain insights into the shape of the curves in Figure 8 by 

considering the equations.  It is easiest to understand the case of 0    .  In this case, 

Equations (79) and (80) simplify to 

 

1RO g g     (B1) 

 

1LO g g   . (B2) 

 

When 1g g   , 0LO  , so the neuron is completely monocular.  A similar argument 

applies in the case of 180     . 

To understand why the curves are symmetrical about the line 1g g    on the log 

axis in Figure 8, let us take RO  and LO  to be functions of q g g  : 

 
2( ) 1 2 cos( )RO q q q         (B3) 

 
2( ) 1 2 cos( )LO q q q       . (B4) 

 

Then we have 

 
2(1 ) (1 ) 1 (2 )cos( ) (1 ) ( )R RO q q q q O q         (B5) 

 
2(1 ) (1 ) 1 (2 )cos( ) (1 ) ( )L LO q q q q O q       . (B6) 

 

The OBI is unaffected if the same multiplier is applied to both RO  and LO , as it will cancel 

out in Equation (76), and so the OBI is identical for g g q    and 1g g q   .  Thus the 

OBI is identical for  log log(1) log( )g g q    , so on log axes, the curves are symmetrical 

about the line 1g g   . 
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