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Melanoma of the skin is the 17th most common cancer worldwide. Early detection of suspicious skin
lesions (melanoma) can increase 5-year survival rates by 20%. The 7-point checklist (7PCL) has been
extensively used to suggest urgent referrals for patients with a possible melanoma. However, the
7PCL method only considers seven meta-features to calculate a risk score and is only relevant for
patients with suspected melanoma. There are limited studies on the extensive use of patient metadata
for the detection of all skin cancer subtypes. This study investigates artificial intelligence (Al) models
that utilise patient metadata consisting of 23 attributes for suspicious skin lesion detection. We have
identified a new set of most important risk factors, namely “C4C risk factors”, which is not just for
melanoma, but for all types of skin cancer. The performance of the C4C risk factors for suspicious

skin lesion detection is compared to that of the 7PCL and the Williams risk factors that predict the
lifetime risk of melanoma. Our proposed Al framework ensembles five machine learning models and
identifies seven new skin cancer risk factors: lesion pink, lesion size, lesion colour, lesion inflamed,
lesion shape, lesion age, and natural hair colour, which achieved a sensitivity of 80.46 + 2.50% and a
specificity of 62.09 + 1.90% in detecting suspicious skin lesions when evaluated using the metadata of
53,601 skin lesions collected from different skin cancer diagnostic clinics across the UK, significantly
outperforming the 7PCL-based method (sensitivity 68.09 & 2.10%, specificity 61.07 & 0.90%) and

the Williams risk factors (sensitivity 66.32 & 1.90%, specificity 61.71 £+ 0.6%). Furthermore, through
weighting the seven new risk factors we came up with a new risk score, namely “C4C risk score”,

which alone achieved a sensitivity of 76.09 + 1.20% and a specificity of 61.71 £ 0.50%, significantly
outperforming the 7PCL-based risk score (sensitivity 73.91 & 1.10%, specificity 49.49 £ 0.50%) and the
Williams risk score (sensitivity 60.68 % 1.30%, specificity 60.87 £ 0.80%). Finally, fusing the C4C risk
factors with the 7PCL and Williams risk factors achieved the best performance, with a sensitivity of
85.24 £ 2.20% and a specificity of 61.12 £ 0.90%. We believe that fusing these newly found risk factors
and new risk score with image data will further boost the Al model performance for suspicious skin
lesion detection. Hence, the new set of skin cancer risk factors has the potential to be used to modify
current skin cancer referral guidelines for all skin cancer subtypes, including melanoma.

Malignant melanoma is solely responsible for 80% of all skin cancer deaths'. Delays in early detection of mela-
noma decrease 5-year survival rates by 20% as reported in the previous study?, which included the United
Kingdom (UK) population. The UK follows a 2-week wait pathway system, where skin lesions suspicious of
melanoma or squamous cell carcinoma (SCC) are seen by a specialist within 2 weeks. The referrals for this
2-week pathway have increased dramatically in recent years (159,430 patients in 2009/2010 to 506,456 patients
in 2019/2020), significantly contributing to building up healthcare access pressure and challenges to deliver
timely assessment and diagnosis®. Moreover, for non-urgent referrals for suspected basal cell carcinoma (BCC),
the current waiting time is 18 weeks and only 80% of the patients were seen within this target time frame during
2019/2020* Furthermore, COVID-19 contributed to an increased backlog of non-urgent cases due to cancella-
tions or accommodating 2-week urgent patients, resulting in an estimated 17% shift to a later stage of melanoma
in Europe during the post-lockdown period®. Skin cancer referrals are expected to increase in the coming years
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due to the ageing population in the UK®. Therefore, there is a need to develop new methods that can be used as
a decision aid for the classification of suspicious or non-suspicious skin lesions during teledermatology triage.

The 7-point checklist (7PCL) method is recommended by the English National Institute for Health Care Excel-
lence (NICE) to select patients with pigmented lesions and possible melanoma for urgent referral’. NICE also
recommends the use of the ABCDE rule for identifying specific melanoma signs®. Another standard approach
known as the Williams score’ is also used to estimate the lifetime risk of melanoma, the most lethal form of
skin cancer. In recent years, there have been praiseworthy advancements in artificial intelligence (AI) technol-
ogy, which proved to be cost-effective and secured their utilisation in support of healthcare applications. AI
techniques have advanced the application of deep learning (DL)'*!! and vision-based attention models'? in skin
cancer detection using image data. However, the majority of skin cancer classification research has focused on
image data and DL models, with relatively little work being done on skin cancer detection using metadata alone.
Moreover, the performance of the standard methods used is not satisfactory as reflected by their low sensitivity
scores, such as the 7PCL (sensitivity 68 &= 2.10%) and the Williams score (sensitivity 67 & 1.90%). In an attempt
to fill the mentioned research gaps and to further improve skin cancer detection performance through utilising
patient metadata alone, we devised an AI framework consisting of skin lesion metadata collection, identifica-
tion of a new list of skin cancer risk factors, and proposal of a new risk score. The Al framework ensembles five
AT models for skin lesion classification into suspicious and non-suspicious classes. The new list of seven skin
cancer risk factors identified by the AI framework outperforms the 7PCL and Williams risk factors in suspicious
skin lesion detection and can be fused with the 7PCL and Williams risk factors, leading to significantly higher
sensitivity (85.24 &= 2.20%). This research work has made the following major contributions:

1. Collection of metadata of 53,601 skin lesions from 25,105 patients across a national network of private UK
skin diagnostic clinics.

2. Identification of a new list of risk factors named “C4C risk factors” from a pool of 22 meta-features responsi-
ble for the development of all skin cancer subtypes (melanoma, SCC, BCC) through an ensemble of five AI
models, which significantly outperforms the existing 7PCL and Williams methods with a balanced accuracy
of 71.27 £ 1.10% and sensitivity of 80.46 % 2.50%.

3. Proposal of a new skin cancer risk score named “C4C risk score”, which is based on the weighting of “C4C
risk factors” with weights determined by intelligent data analysis. Using the C4C risk score alone achieves
68.90% balanced accuracy and 76.09 £ 1.20% sensitivity in classifying suspicious and non-suspicious skin
lesions, significantly higher than the exiting 7PCL risk score and Williams risk score.

4. Fusion of the “C4C risk factors” with the 7PCL and Williams risk factors to find the best feature combination,
which achieves the highest overall performance with a balanced accuracy of 73.18 & 2.10% and a sensitivity
of 85.24 + 2.20%.

Seminal works

Due to significant advancements in Al technology, researchers now use dermoscopic images for skin cancer
detection'®. Al-based early skin cancer detection is an active area of research and has achieved the state of the art
performance!®. However, skin cancer detection solely based on patient metadata has been hardly explored. This
study aims to unlock the potential of patient metadata in skin cancer detection and hence our literature survey
is limited to those that only utilised patient metadata. In clinical settings, skin cancer was usually diagnosed
using standard techniques such as the ABCDE rule® and the 7PCL method'* until computer vision techniques
were used in skin cancer diagnosis. The ABCDE checklist is used for assessing cancer-like characteristics such as
lesion shape, asymmetry, border irregularity, colour variegation, lesion diameter, and lesion evolution over time.
The 7PCL method considers seven risk factors, i.e., change of lesion size, shape, colour, lesion > 7 mm, inflamed,
oozing, and itching, to identify patients with features suspicious of melanoma and to recommend urgent refer-
ral. On the other hand, the Williams method’ is based on a validated scoring system that includes seven risk
factors: patient age, gender, sunburn history, natural hair colour, density of freckles on arms, number of moles,
and prior non-melanoma history. It can be pointed out that both the 7PCL and Williams methods consider a
limited set of risk factors to calculate the respective risk scores. In the literature, we found only the 7PCL and
Williams scoring methods are purely based on patient metadata for suspicious skin lesion detection and focus
on suspicious melanoma. To the best of our knowledge, there is limited published work on the extensive use of
patient metadata for detecting all skin cancer subtypes.

In recent years, open-source resources such as the International Skin Imaging Collaboration (ISIC) datasets
and DL-based models have facilitated assessing skin lesion images for skin cancer detection. Esteva et al."®
compared the performance of DL models versus 21 board-certified dermatologists, indicating that DL models
achieved a dermatologist-level performance. Conversely, the study in'® emphasised the importance of patient’s
clinical information such as age, gender and lesion location, and found an overall 7% increase in balanced accu-
racy by the inclusion of clinical information in the analysis. Similarly, the work in'” evaluated all combinations
of dermoscopic, macroscopic, and clinical metadata (age, gender, and anatomic location) and observed that
combining all three achieved the highest overall AUC of 88.80%. The study in'® evaluated the use of the clinical
information alone (age, gender, BMI, ethnicity, hypertension, heart disease, and diabetes status), which was based
on the National Health Interview Survey (NHIS) data from 450,000 patients between 1997 and 2015, to classify
non-melanoma skin cancers against the “never-cancer” skin diseases. They employed a basic feed-forward neural
network and achieved an AUC of 81%, with a sensitivity of 86.2% and a specificity of 62.7%.

The studies in'®'® included a limited set of metadata (age, gender, and anatomic location). However, these
studies used metadata along with image data, and there is no mention of the performance of their models using
metadata alone.
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Data and methods

Metadata collection

We collected and analysed the metadata of 53,601 skin lesions from 25,105 patients who attended Check4Can-
cer (C4C)’s private skin cancer diagnosis clinics in the UK between 2015 and 2022. The patients were informed
that collected data might be used for research and the data was de-identified to ensure confidentiality. Informed
consent was obtained from the patients. Following the approval from the University of Essex Research Ethics
Committee on 8th February 2023 (Ref. No: ETH2223-0619), anonymised clinical metadata were transferred to
C4C’s server for AI model development. C4C is a private healthcare company registered in the UK that pro-
vides cancer screening and diagnostic services for skin cancer patients. C4C has permission to use the collected
metadata and holds ISO 27001 and Cyber Essentials certification, as they are accustomed to handling personal
and medical (special category) data. C4C is fully compliant with UK data protection legislation and the duty of
confidentiality and has followed the guidelines provided with the ethical approval.

This was a multi-centre study, however, clinical data was collected according to protocol by centrally trained
nurses, with central reporting of all skin lesions by a central team of skin cancer specialists. All patients who
attended the skin cancer diagnosis clinic from 2015 to 2022 were included in the study. The lesions were eligible
to be assessed if they are: (1) located in adults > 18 years, (2) between 1 and 3 suspicious lesions which are not
larger than the dermatoscopic lens (< 15 mm). For each lesion, we included 23 meta-features, as shown in Table 1:
7PCL (lesion size, lesion shape, lesion colour, lesion > 7 mm, lesion inflamed, lesion oozing, and lesion itching),
lesion score based on the 7PCL, Williams risk factors (patient age, patient gender, hair colour, moles, sunburn,
freckles, prior non-melanoma skin cancer), the overall Williams score, Williams group, prior melanoma, prior
family history of skin cancer, lesion location, lesion age and whether this was a predominantly non-pigmented
pink lesion. All the features except for lesion rating were considered candidate features for identifying the new
risk factor sets to classify skin lesions into suspicious versus non-suspicious categories.

The meta-features listed in Table 1 are self-explanatory except for the lesion location feature that comprises
seven values according to the anatomic location of the lesion, such as (1) Head and Neck, (2) Trunk waist up
(front or back), (3) Groin/Buttocks/Genitals, (4) Hand, (5) Foot, (6) Left/Right Leg (ankle up), and (7) Left/Right
Arm (wrist up). The Williams score is calculated based on the method explained in the study® and summarised
in Table 2, where age, gender, sunburns, natural hair colour, the density of freckles on arms, number of moles,
and prior non-melanoma history features are included to estimate the final Williams score. The lesion score is
estimated based on a weighted 7PCL as mentioned in the study' using the following equation:

S.no. | Meta-feature Description Type Range
1 Lesion size Change in size (yes/no) Categorical | 0-1
2 Lesion shape Change in shape (yes/no) Categorical | 0-1
3 Lesion colour Change in colour (yes/no) Categorical | 0-1
4 Lesion > 7 mm Diameter 7mm or more? (yes/no) Categorical | 0-1
5 Lesion inflamed Is it inflamed? (yes/no) Categorical | 0-1
6 Lesion oozing Is it oozing? (yes/no) Categorical | 0-1
7 Lesion itching Is it itchy? (yes/no) Categorical | 0-1
8 Lesion score 7-point weighted checklist score based on'* Numeric 0-10
9 Age Patients’ age in years Numeric 0-92
10 Gender Patients’ gender at birth (M/F) Categorical | 0-1
11 Hair Colour Natural hair colour (black, red, blonde, brown) Categorical | 1-4
12 Mole Number of moles (1, 2, 3 or more, none) Categorical | 1-4
13 Sunburn Number of sunburns (0, 1-4, 5-9, > 10 burns) Categorical | 1-4
14 Freckle The density of freckles on arms (a few, several, a lot, none) Categorical | 1-4
15 Prior skin cancer Any prior history of non-melanoma skin cancer (yes/no) Categorical | 0-1
16 Williams score Williams score calculated based on® Numeric 0-67
17 Williams group Williams group (< 25 = average risk; 25+ = high risk) Categorical | 0-1
18 Prior melanoma Any prior history of melanoma (yes/no) Categorical | 0-1
19 Prior family history | Prior family history of skin cancer (yes/no) Categorical | 0-1
20 Lesion location Location on body- Head Neck, Hand, Foot, ... Categorical | 0-6
21 Lesion age Has it been present < 6 months? (yes/no) Categorical | 0-1
22 Lesion pink It is pink? (yes/no) Categorical | 0-1
23 Lesion rating Target variable whether lesion is suspicious or non-suspicious | Categorical | 0-1

Table 1. List of 23 clinical meta-features: a total of 53,601 skin lesions metadata from 25,105 patients were
collected.
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Table 2. Calculation of Williams score based on the risk factors described in the study®.

3 4

Lesion Score = ZZM,- + ZNi (1)
im1 =1

where M is a set of major lesion features (lesion size, lesion shape, lesion colour) and N is a set of minor features
(lesion>7mm, lesion inflamed, lesion 0ozing, lesion itching).

The 7PCL was first formulated by Mackie et al."”. They used seven equally weighted lesion characteristics
(change in size, shape, colour, inflammation, oozing, itching, and diameter > 7 mm) to prioritise pigmented skin
lesions for urgent referral. Walter et al.'* achieved better results with a revised version, which separated lesion
features into two groups: (1) major features (change in size, shape, and colour), each having a weight of 2, and
(2) minor features (inflammation, oozing, itching, and diameter > 7 mm) with a weight of 1, as shown in Eq.
(1). Consequently, lesions with a lesion score > 3 were sent for a specialist opinion. Finally, the target variable,
with a lesion rating as suspicious or non-suspicious, was assessed by the in-house skin cancer specialists. The
experts classified pigmented lesions with atypical features in size, shape, colour, or dermatoscopic appearance of
melanoma as suspicious. Furthermore, skin lesions suspicious of either BCC, SCC or potentially pre-malignant
Actinic Keratoses were also rated as suspicious. Biopsy results were also available. However, we have a limited
number of lesions that went for biopsy (only 10% of lesions undergo biopsy). If we use biopsy results as the target
variable, the data size will reduce significantly (90%). As a result, the lesion rating was used here as the target
variable rather than the biopsy results. The ultimate goal is to use Al as a clinical decision aid for the classification
of suspicious or non-suspicious skin lesions during teledermatology triage.

Statistical data analysis

Patient metadata consists of meta-features with categorical/text values, such as patient gender-taking values
of male and female. There was a need to convert these categorical values into numerical as most AI models
work well with numerical data rather than categorical data. We encoded all the non-numerical meta-features
to convert them into numerical features using a one-hot encoding approach as summarised in Table 3 for an
illustrative purpose.

An effort was made to analyse the collected meta-features through explanatory data analysis. We examined
all the meta-features and highlighted the findings using lesion pink and age risk factors for illustrative purposes.
First, we analysed the lesion score meta-feature (range 0-10) using a bar plot and showed a difference between
suspicious and non-suspicious cases using a statistical ¢ test. Almost 50% of the lesions with a lesion score of
10 belong to the suspicious category. In contrast, only 5% of lesions with a score of 0 belong to the suspicious
group, as highlighted in Fig. 1. Therefore, it can be inferred that lesion score and outcome variable, i.e., lesion
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Table 3. Metadata.
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Fig. 1. Comparison of lesion score and Williams score for suspicious and non-suspicious cases.

rating, are highly correlated and the probability of a skin lesion being suspicious is likely to increase for higher
values of the lesion score (p value < 0.01). For a Williams score between 56 and 61, around 60% of cases belong
to the suspicious category, whereas only around 7% of cases belong to the suspicious group with Williams scores
between 0-6, as shown using a bar plot in Fig. 1. It is highly likely that the higher the Williams score the higher
the chance that the skin lesion is suspicious.

We analysed another meta-feature of potential importance: “lesion pink”. Its statistics is shown using a bar
plot in Fig. 2. We observed that about 83% of skin lesions with lesion pink value ‘no’ belong to the non-suspicious
group as compared to only about 17% skin lesions with lesion pink value ‘yes. Therefore, it can be ascertained
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Fig. 2. Comparison of meta-feature lesion pink for suspicious and non-suspicious cases.
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that there is a low probability of being a suspicious lesion if the lesion pink value is ‘no. Conversely, there is a
comparatively higher chance (54%) for a skin lesion to be suspicious if it is a pink lesion, as shown in Fig. 2.
Another meta-feature we analysed is “patient age”. Its distributions for suspicious and non-suspicious cases are
compared in Fig. 3. We noted that the average age of patients with suspicious skin lesions is 52, markedly higher
than the average age of 41 for patients with non-suspicious skin lesions (p value < 0.01).

Identification of new risk factors

For achieving reliable results, we adopted an ensemble of five machine learning (ML) models for identifying a
new set of effective risk factors from a pool of 22 skin lesion meta-features, the first 22 attributes as shown in
Table 1. An overview of the proposed Al framework for identifying a new set of risk factors for skin lesion clas-
sification into suspicious or non-suspicious class is shown in Fig. 4. The motivation behind classifying skin lesions
into suspicious versus non-suspicious categories instead of traditional melanoma versus benign classes has
emerged from the fact that early suspicious skin lesion detection could substantially increase 5-year survival

rates by 20%. We used the combination formula: ( Z ) ="Ck = ﬁlk)' for feature subset generation and pro-

posed to generate four potential feature subsets of different sizes: Setl, Set2, Set3, and Set4, with 7, 10, 15, and
20 meta-features, respectively. Firstly, by applying combination theory we generated various combinations of 7
meta-features out of 22, resulting in a total of 170,544 combinations for Setl. We repeated feature subsets genera-
tion using the combination theory for Set2, Set3, and Set4, respectively. The best meta-feature combinations for
these four sets were selected based on their overall performances of the ML models.
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Fig. 3. Comparison of patient age distributions for suspicious and non-suspicious cases.
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Fig. 4. The proposed Al framework to identify a set of new risk factors for skin lesion classification.
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Naive Bayes (NB) classifier

This is a candid and compelling model for the classification task based on the Bayes theorem?. The class with
the highest probability is considered as the predicted class for the given data tuple. NB classifiers assume that all
attributes are conditionally independent of the given class label. The goal of this classifier is to learn a representa-
tive function from a given labelled training dataset. The conditional probability p(Y|X) of the target variable Y
is calculated as follows:

() pX | Y)
p(Y X = B R ®)

where p(Y) is the prior probability of class Y, p(X|Y) is the conditional probability of data X given a particular
class, and p(X) is the evidence or probability of data X regardless of its target class (suspicious or non-suspicious
in our study).

Support vector machine (SVM)

This is one of the most popular supervised ML models, more frequently used for classification in various indus-
tries such as healthcare applications®’. SVM finds a hyperplane to maximise the margin between the groups by
utilising the Lagrangian optimisation technique®?. One of the fundamental advantages of SVM is that if the data
is linearly separable, then there is a unique global maximum value of the margin. In cases of non-linear distribu-
tion of the data, where a hyperplane cannot separate the data, SVM uses a kernel function that transforms the
data into a higher dimensional feature space where the data’s linear separation is possible.

Logistic regression (LR)

This is a statistical method, in which log-odds of the probability of an event are linear combinations of independ-
ent variables®. Although the model outputs the probability of an event, it can be used for the classification task
by applying a threshold. The logistic regression approach’s outcome is binary, such as positive or 1 (suspicious)
and negative or 0 (non-suspicious). In our study, the LR was implemented to represent a relationship (function)
between the meta-features and outcome variables by finding the best descriptive fitting model. Two different
approaches were available for learning this function. A discriminating model learns the function directly to
compute class posterior while a generative model learns the conditional class probability and class prior by
applying the Bayes rule?. We used a modified alternative to discriminative and generative models to merge
probability altogether to learn the discriminative function, which directly maps meta-feature input to output
target variable as follows:

PYVIX) = exp(Bo + Zf:] Bixi)
14 exp(Bo + SF_, Bixi)

where p(Y]X) is the probability of a skin lesion being suspicious (Y = 1) given a meta-feature vector X, B is the
intercept, B, ..., Bp are the coeflicients, and P is the total number of meta-features.

3)

Random forest

It employs an ensembling technique that generates multiple random decision trees and combines the outcomes of
the decision trees given a test sample based on majority voting or averaging®. In our study, the decision trees were
built upon a bootstrap sample of the data. RF adds more randomness in selecting a subset of predictors compared
to a standard decision tree, where each node is split using the best variable selected based on a node splitting
criterion—gini or entropy. This randomness in selecting features makes the RF classifier more accurate and robust
compared to other classifiers such as SVM, discriminative analysis, and neural networks?. In our experiment,
the RF model was optimised by finding the best hyper-parameters (number of trees, 500, max depth, 40, split-
ting criterion, gini, bootstrap, true) for classifying skin lesions into suspicious and non-suspicious categories.

Multi-layer perceptron (MLP)
This is one of the dominant predictive models used in ML applications?’. MLP consists of an input and output
layer and a hidden layer (in most cases) to transform input into some form of internal representation that the
next layer can use. An MLP helps find a pattern or feature extraction from data that is considered complicated
or laborious for a human. The success of neural network approaches such as MLP is due to a technique known as
“backpropagation’, which allows changing the weights of the hidden layer if there are any errors. The fundamental
advantage of MLP is that it does not require in-depth knowledge about the relationship between meta-feature
input and output target variables. Instead, it tries to recognise patterns in the dataset and store those patterns in
the form of weights for later use for the test cases. In our implementation, an MLP with three hidden layers (32,
16, 8 neurons) was adopted, with a rectified linear activation function (ReLU), and trained using the adaptive
moment estimation (Adam) optimizer.

In this study, majority voting was adopted for decision-making by combining the outcomes of NB, LR, SVM,
RE, and MLP. In the stacking approach, we stacked NB, LR, SVM, and RF as feature extractors and MLP as meta-
learners to classify input metadata into suspicious and non-suspicious classes.

A new skin cancer risk score
An overview of the proposed Al framework for deriving a new skin cancer risk score for suspicious versus
non-suspicious skin lesion detection is illustrated in Fig. 5. We used an LR model to rank the identified new

Scientific Reports |

(2024) 14:20842 | https://doi.org/10.1038/s41598-024-71244-2 nature portfolio



www.nature.com/scientificreports/

Patient
Metadata

e

Model Fusion ‘'

New Risk Factor

[ Seti ] [ Set2 ]
7 Features 10 Features ) : ,:

Feature Ranking
&
Weighting

A New Risk
Score

i Set3 [ Setd ]
it (15 Features 20 Features | :

Peformance
Evaluation

Fig. 5. An overview of the proposed Al framework using patient metadata to identify a set of new risk factors
followed by ranking and weighting those risk factors to deduce a new risk score for skin lesion classification.

risk factors. Feature ranking helps to find the most important features and provides an interpretation of the AI
model on why certain features are more important than others and therefore can discard those features having
the lowest/no correlation with the outcome variables. Furthermore, it can facilitate the reduction of the data
collection burden in the future (e.g., instead of collecting 23 meta-features, data collection can be reduced to 7
meta-features only), as well as reduce model complexity and training time.

In our experiment, a set of N training samples were used, with each sample represented in the form of (X, Y),
where X is a meta-feature vector and Y is the corresponding output (i.e., the target class). A classification rule
is formulated using the training data to assign a class label, suspicious (Y5 = 1) or non-suspicious (Y = 0),
to a new test input Xy, by minimising the probability of error. Typically, a feature is deemed relevant if it aids
in distinguishing between classes and is not redundant with other relevant features. As shown in Eq. (3), the LR
model produces posterior probabilities through a linear function of elements in the meta-feature vector X, ensur-
ing that the probabilities sum to one and remain within the range of [0, 1]. The LR comes with a set of diagnostic
tools that allows us to quantify the goodness-of-fit of the proposed model and select the features accordingly.
The performance of the model is evaluated based on the maximum value of the log-likelihood (LL) achieved for
each feature from X using the deviance D defined below:

D = —2(LL of the current model — LL of the saturated model). 4)

The saturated model is the one with the number of parameters equal to the sample size, the likelihood of which
is one. Low deviance values indicate a good fit, or equivalently, a high predictive value of the corresponding
features. The deviance is useful for comparing two models with different numbers of features. The reduction in

the deviance by adding a new feature is identical to the likelihood-ratio statistic, which has a Chi-squared (x2)
distribution, provided that the sample size N is large*. Hence, we can use the likelihood-ratio test to include
the features sequentially in a forward-selection procedure. If the difference in the deviance of the models before
and after adding a new feature is at or above the critical value, then the new feature is significant in predicting
the target class, otherwise not.

Although we have investigated four new sets of risk factors where Setl, Set2, Set3, and Set4 consist of 7, 10,
15, and 20 risk factors, respectively, we wanted to benchmark the AI models’ performance using our proposed
CA4C risk score along with the 7PCL-based lesion score and Williams score. Therefore, to develop the C4C risk
score, we only used the 7 risk factors from Set1. We believe that the use of 7 risk factors to develop our proposed
C4C risk score facilitates us to do a fair comparison with the 7PCL-based lesion score (included 7 risk factors),
and Williams score (included 7 risk factors). The 7 risk factors from Setl were ranked based on their coefficient
values obtained using the LR model. The highest-ranked risk factor was assigned the highest weight, and con-
sequently, lower-ranked risk factors were assigned lower weights to calculate the weighted sum of the seven risk
factors, leading to our proposed C4C risk score.

Data split and evaluation metrics

The metadata for 53,601 skin lesions was divided into training and test datasets, comprising 80% and 20% of
the data, respectively. To prevent data leakage during the split, all metadata corresponding to each patient was
exclusively assigned to either the training or testing dataset. During the training, a tenfold cross-validation (CV)
method was employed to construct the models. These models were optimised by adjusting hyperparameters, and
the most effective models were chosen based on their tenfold CV results using the training data. Subsequently, the
selected models were assessed using the test dataset. Using a tenfold CV for model development on the training
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dataset only while keeping the test dataset completely independent from model development reduces the risk of
overfitting. The performance of the developed Al framework was assessed using the following evaluation metrics:

Sensitivity (Sen) = P 5
ensitivity (Sen) = LN %)
Specificity (Spc) = ————
pecificty (5p© FP + TN (6)
S S
Balanced Accuracy (Bal. Acc.) = Q @
AUC = p(Score(TP) > Score(TN)) ®)

where TP, TN, FP, FN refer to true positive (suspicious classified as suspicious), true negative (non-suspicious
classified as non-suspicious), false positive (non-suspicious misclassified as suspicious), and false negative (sus-
picious misclassified as non-suspicious) instances, respectively. The area under the curve (AUC) of a classifier is
the probability that a randomly chosen TP case will be ranked higher than a randomly chosen TN case.

Results and discussion

Firstly, by applying combination theory we generated various combinations of 7 meta-features out of 22, result-
ing in a total of 170,544 combinations. Among these, the 7 meta-features listed as Set 1 in Table 4 exhibited the
highest balanced accuracy and sensitivity, which are lesion colour, size, shape, inflammation, natural hair colour,
lesion age, and pinkness. Similarly, we replicated the experiment for identifying risk factor sets 2, 3, and 4. Table 4
shows the best meta-features in sets 2, 3, and 4, comprising 10, 15, and 20 features, respectively. The performances
of the identified sets of risk factors for skin lesion classification (suspicious vs. non-suspicious) were evaluated
by training and testing the developed ML models. The performances of the four sets of skin cancer risk factors
are also presented in Table 4. Using risk factor setl with 7 meta-features only, the best-ensembled ML model
achieved a balanced accuracy of 71.27 & 1.10%, a sensitivity of 80.46 =+ 2.50%, and a specificity of 62.09 & 1.90%.
The balanced accuracy and sensitivity were notably improved to 73.01% and 84.51%, respectively, when the risk
factor set3 was used. However, using the larger risk factor set4 with further meta-features added did not enhance
the model’s performance, as shown in Table 4.

Risk factor Setl

Risk factor Set2

Risk factor Set3

Risk factor Set4

Lesion Colour

Lesion Colour

Lesion Colour

Lesion Colour

Lesion Size

Lesion: Inflamed Lesion: Oozing

Lesion: > 7 mm

Lesion Size

Lesion Shape

Lesion: Itch

lesion: Inflamed

Lesion Shape

Lesion Inflamed

Prior Melanoma

Lesion: Oozing

Lesion: > 7 mm

Hair Colour Family History Lesion: Itch Lesion: Inflamed
Lesion Age Lesion Age Patient Gender Lesion: Oozing
Lesion Pink Lesion Pink Moles Lesion: Itch
Prior Skin Cancer Freckles Patient Gender
Patient Gender Prior Melanoma Moles
Family History Freckles
Williams Group Sunburn
Lesion Age Hair Colour

Lesion Pink

Williams Group

Lesion Body

Prior Melanoma

Patient Age

Family History

Williams Risk Group

Lesion Age

Lesion Pink

Lesion Body

Patient Age

Bal. Acc.: 71.27%

Bal. Acc.: 71.51%

Bal. Acc.: 73.01%

Bal. Acc.: 72.18%

Sensitivity: 80.46%

Sensitivity: 80.67%

Sensitivity: 84.51%

Sensitivity: 84.20%

Specificity: 62.09%

Specificity: 62.36%

Specificity: 61.51%

Specificity: 60.16%

AUC:70.13%

AUC: 71.30%

AUC: 72.95%

AUC: 72.16%

Table 4. The list of new risk factor sets identified through applying AI-based model fusion. Significant values

are in bold.
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An attempt was made to benchmark the newly proposed C4C risk factors with the 7PCL and Williams risk
factors. The performance of the C4C risk factors for skin lesion classification into suspicious or not suspicious
is presented and compared with that of the 7PCL and Williams risk factors in Table 5 where we showed that our
approach outperformed the 7PCL and Williams method in terms of balanced accuracy and sensitivity scores (p
value < 0.01). It is interesting to note that lesion age, lesion pink and hair colour are risk factors for all skin cancer
subtypes, which are not among the 7PCL since it is supposed to be only relevant for melanoma, the pigmented
type of skin cancer. Finally, we evaluated the performance gain from feature fusion, with results also shown in
Table 5. It is noteworthy that the highest performance with a balanced accuracy of 73.18 & 2.10%, a sensitivity
of 85.24 4 2.20% and a specificity of 61.12 & 0.90% was achieved when the C4C risk factors were fused with
the 7PCL and Williams risk factors, which forms a set of 18 meta-features. We investigated the performance
gain for each feature from the 7PCL and Williams risk factors. The feature subset generator as mentioned in
Sect. 3 was used to find the optimal feature set, which shortlisted 11 external risk factors (patient age, patient
gender, Williams score, Williams group, sunburn, freckles, moles, lesion body, lesion itch, lesion > 7 mm, and
lesion oozing). Fusing them with the C4C risk factors can achieve better performance with the developed ML
models, but it is at the price of collecting much more metadata. Finally, the performance of the C4C risk score is
compared with that of the 7PCL lesion score and Williams score in Table 6. The C4C risk score alone achieved a
sensitivity of 76.09 & 1.20% and a specificity of 61.71 & 0.6%, significantly outperforming the 7PCL-based risk
score (sensitivity 73.91 & 1.10%, specificity 49.49 & 0.50%) and Williams risk score (sensitivity 60.68 & 2.10%,
specificity 60.87 & 0.80%).

It is noted that the study in'® included patient metadata such as patient age, gender, lesion location, lesion
bleeding, and lesion pain along with patient skin images and they reported a 7% performance improvement due
to the addition of metadata to image assessment. However, they did not report the contribution of metadata
alone in detecting skin cancer. Another study?®, which won the Kaggle 2020 melanoma challenge, included more
limited patient metadata, such as age, gender and lesion location, and observed that combining metadata along
with lesion images did not improve their model performance.

Method Risk factor Sensitivity | specificity Bal. Acc. | AUC

—

. Lesion Size, 2. Lesion Colour,

. Lesion Shape, 4. Lesion > 7mm,

7PCL 68.09% 61.07 £ 0.90% | 64.58% 64.20%

. Lesion Itch

3
5. Lesion Inflamed, 6. Lesion Oozing,
7
1

. Patient Gender, 2. Patient Age,

. Sunburn, 4. Hair Colour,

. Moles, 6. Freckles,

Williams 66.32% 61.71% 64.01% 66.23%

. Prior Skin Cancer

. Lesion Colour, 2. Lesion Shape,

. Lesion Size, 4. Lesion Inflamed,

C4C 80.46% 62.09% 71.27% 70.13%

. Hair Colour, 6. Lesion Age,

. Lesion Pink

Fusion:

7PCL

. Lesion Size, 2. Lesion Colour,

. Lesion Shape, 4. Lesion >7mm,

. Lesion Inflamed, 6. Lesion Oozing,

. Lesion Itch, 8. Patient Gender,
79.10% 59.42% 69.76% 70.45%

3
5
7
1
3
5
7
1
3
5
7
9

. Patient Age, 10. Sunburn,

Williams
11. Hair Colour,

12. Moles, 13. Freckles,
14. Prior Skin Cancer

Fusion: 1. Lesion Size, 2. Lesion Colour,

7PCL 3. Lesion Shape, 4. Lesion >7mm,

Williams 5. Lesion Inflamed,

6. Lesion Oozing,

7. Lesion Itch, 8. Lesion Pink,
85.24% 61.12% 73.18% 74.15%

9. Lesion Age, 10. Patient Age,
C4C 11. Patient Gender, 12. Lesion Body,
13. Moles, 14. Williams Score,

15. Sunburn, 16. Williams Group,
17. Hair Colour, 18. Freckles

Table 5. Performance gain comparison through fusing the 7PCL, Williams and C4C risk factors. Significant
values are in bold.
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Method Risk score Sensitivity Specificity Bal. acc. AUC

7PCL Lesion score based on Eq. 1 7391 £1.10% |49.49+£0.50% |61.70 £1.10% |60 £ 0.90%
Williams | Williams score based on Table 2 | 60.68 & 2.10% | 60.87 &= 0.80% | 60.49 £ 0.90% | 62.50 & 1.3%
Cc4C C4C risk score 76.09 £1.20% |61.71 £ 0.6% 68.90+0.80% 69.70 £ 1.20%

Table 6. Performance comparison of the new C4C risk score with the 7PCL-based lesion score and Williams
score. Significant values are in bold.

To the best of our knowledge, the majority of the previous studies used image data only and there is limited
work done on using patient metadata to classify lesions for skin cancer detection. Therefore, we have devel-
oped an Al framework solely based on metadata and observed that it can separate suspicious skin lesions from
non-suspicious ones with a high sensitivity, which has the potential to support current skin cancer assessment
when considered alongside image data. In the future, patients with both metadata and images classified as non-
suspicious could be reassured without referral to a specialist clinic. Furthermore, the C4C risk score can be used
as a decision-aid by telemedicine reporters to help with final lesion classification that is equivocal after image
classification alone. This has the potential to reduce the number of referrals to a specialist clinic for possible
biopsy and help reduce the waiting times for skin cancer diagnosis.

Conclusion

Using Al techniques for skin lesion classification based solely on metadata has great potential to partly automate
and facilitate the detection of suspicious lesions. With a reduction in patient referrals for possible biopsies, waiting
times for skin cancer diagnosis and treatment will be shortened, resulting in improved outcomes. In this study,
we developed an Al framework based on patient metadata for skin lesion classification, which outperformed
the existing 7PCL and Williams methods. This study also contributed to high-quality data collection followed
by the identification of a subset of meta-features highly relevant to skin cancer diagnosis. In our current and
future research, we are extending our investigation through the fusion of the newly identified skin risk factors
and weighted risk score together with lesion images using deep learning models, which we believe will further
boost the performance of skin cancer detection in a cost-effective manner.

Data availability

The dataset collected and analysed during the current study is not publicly available yet as it contributes to a pat-
ent application that is currently underway. To query about the data from this study please contact our co-author
Gordon Wishart (gcwishart@check4cancer.com).
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