
Extending Scratch Framework to Improve the Analytical Skills of
Undergraduate Students

Ubaid Ul Akbar
Department of Computer Science,
City University of Science and

Information Technology
Peshawar, Pakistan

ubaidulakbar@gmail.com

Saeed Akbar
School of Computer Science and
Technology, Zhejiang Normal

University, Jinhua 321004, China
saed.akbr@zjnu.edu.cn

Mumtaz Ali
Department of Computer Science,
City University of Science and

Information Technology
Peshawar, Pakistan

mumtazali@cusit.edu.pk

Rahmat Ullah
School of Computer Science and

Electronic Engineering, University of
Essex, UK

rahmat.ullah@essex.ac.uk

Rizwan Khan
School of Computer Science and
Technology, Zhejiang Normal

University, Jinhua 321004, China
imrizwankhan@gmail.com

Ivandro Ortet Lopes
School of Cyber Science &

Engineering, Huazhong University of
Science & Technology, Wuhan, China

ivandro.lopes@gmail.com

ABSTRACT
Scratch is an innovative and the most popular block-based Visual
Programming Language designed for beginners to learn program-
ming effectively. However, it lacks the capacity to allow users to
learn and solve larger real-world problems such as the Travelling
Salesman Problem (TSP). Hence, there is a need for an accessible
and effective tool to assist beginners and novice programmers in
learning and tackling the TSP. This paper introduces ScratchTSP, an
extension of the Scratch programming Framework, specifically de-
signed for the TSP. It offers an opportunity for beginners and novice
programmers to grasp the TSP and the various algorithms used to
solve it. For evaluation, we conduct a survey among undergradu-
ate students to assess the usability and usefulness of the proposed
ScratchTSP extension. Survey findings indicate that ScratchTSP
offers a user-friendly and effective tool for beginners or novice
programmers, aiding them in learning the TSP while developing
their critical thinking and problem-solving skills.

KEYWORDS
Block-based Visual Programming Languages, Problem-solving skills,
Scratch, Travelling Salesman Problem

ACM Reference Format:
Ubaid Ul Akbar, Saeed Akbar, Mumtaz Ali, Rahmat Ullah, Rizwan Khan,
and Ivandro Ortet Lopes. 2024. Extending Scratch Framework to Improve
the Analytical Skills of Undergraduate Students. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 5 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Programming is vital across various engineering disciplines such as
software engineering, electrical, and industrial engineering. Before
Visual Programming Languages (VPLs), students found program-
ming challenging and uninteresting [17]. VPLs make programming
simpler and fun for beginners. Among VPLs, Scratch [13] is themost
prominent visual programming framework, primarily designed to
increase beginner’s motivation towards programming. Although
Scratch does not provide any native support for transitioning to
high-level languages [12], students having a background in Scratch
appear to perform well in C programming [6]. The scratch frame-
work helps students in developing their problem-solving skills [8],
computational thinking [5], and logical reasoning [20].

Despite the numerous advantages that Scratch offers, one of
its major limitations is that the set of features offered by Scratch
is not mature enough [4] to help in teaching, learning, and solv-
ing complex programming tasks [15] such as the Travelling Sales-
man Problem (TSP) [16], software project scheduling [2] and deep
learning [3]. The TSP is a well-known combinatorial optimization
problem with numerous practical applications in various fields [16].
These applications include logistics, vehicle routing, and circuit
design. It serves as a benchmark problem in the study of algorithms
and optimization techniques. Therefore, there is a need to design
and develop a Scratch-based extension to help beginner/novice
programmers learn, understand, and solve the TSP.

In this paper, we fill the aforementioned gap by introducing a
Scratch extension called the ScratchTSP. It allows beginner-level
or novice programmers to gain a better understanding of the TSP
and how various algorithms solve it using Scratch. We design and
develop custom blocks for the said purpose and add them to the
basic vocabulary of the Scratch framework. We implement and
integrate well-known optimization algorithms such as Brute Force,
Branch and Bound, and Simulated Annealing. The code is publicly
available on Github 1.

The remaining sections are ordered as: Section 2 summarises the
existing literature. Section 3 presents the ScratchTSP. Section 4 and
Section 5 discuss the survey results and the conclusion, respectively.

1https://github.com/ubaidulakbar/scratchtsp

https://orcid.org/0009-0001-7635-824X
https://orcid.org/0000-0002-7093-9318
https://orcid.org/0000-0001-5162-5164
https://orcid.org/0000-0003-1972-3498
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/ubaidulakbar/scratchtsp

Conference’17, July 2017, Washington, DC, USA Akbar et al.

2 RELATEDWORK
Alturayeif et al. [3] introduce DeepScratch, a deep learning model
extension to Scratch that provides powerful language elements
to facilitate designing and building deep learning models. The ex-
tension provides two options to implement deep learning models:
training a neural network based on built-in data sets and using
pre-trained deep learning models. Park et al. [15] came up with
the idea of novel Scratch programming blocks for web scraping,
which allows students to scrape the contents of HTML elements
using CSS Selector and XPATH and automating their keyboard and
mouse in several ways.

Park et al. [14] design Tooee, a Scratch extension that allows K-
12 students to create big data and artificial intelligence applications
using text-based visual blocks. The proposed extension integrates
WebSockets into the Scratch environment. Scratch is primarily de-
signed to increase beginner’s motivation towards programming.
Recent studies have tried to add secondary features related to pro-
gramming such as the syntax validator [18], hint generator [9], and
logical errors detector [10] to the Scratch framework.

Research gap: Research community offers several extensions
for the Scratch programming environment to enable its users teach,
learn, and solve complex problems such as training a deep neu-
ral network [3]. However, existing studies overlook some of the
most important real-world problems such as the TSP [16] and task
scheduling [1]. TSP is one of the most widely studied problems
due to its numerous practical applications in real life. Therefore,
there is a need for a Scratch-based extension to help its users learn,
understand, and solve the TSP.

3 THE PROPOSED EXTENSION
The proposed ScratchTSP extension adds additional blocks and
commands to the Scratch framework. Furthermore, the ScratchTSP
implements three well-known algorithms for solving the TSP that
the Scratchers can experiment with: (1) the Brute Force algorithm
[11], (2) the Branch and Bound algorithm [19], and (3) the Simulated
Annealing algorithm [7]. The extension vocabulary is divided into
two types of blocks:

Brute Force
Simulated Annealing
Branch and Bound

Branch and BoundDestinations Algorithm

Figure 1: ScratchTspVisual block

Brute Force
Simulated Annealing
Branch and Bound

Brute ForceDestinations Algorithm Result Name

Figure 2: ScratchTspData block

3.1 ScratchTSP Blocks
Before conducting experiments with the Traveling Salesman Prob-
lem (TSP), it is essential for the user to delineate the destinations
to be traversed and the algorithm to identify the optimal path con-
necting the designated points. This can be achieved through the
utilization of the custom Stack blocks provided by the ScratchTSP
extension.

3.1.1 ScratchTspVisual Block. ScratchTspVisual block allows the
user to specify destinations and select the algorithm to find the
optimal path from a drop-down list as shown in Figure 1.

It simulates the given scenario and visualizes the output as an
un-directed graph. This block has two parts: (1) Input List – It takes
a list defining the position of nodes (destinations) in terms of 𝑥-
axis and 𝑦-axis values as an input as shown in Figure 3, and (2)
Algorithm Selection – Another essential element of the block is the
algorithm drop-down menu. It allows users to select algorithms
such as the Brute Force algorithm, the Branch and Bound algorithm,
and the Simulated Annealing algorithm to find the optimal path for
the given destinations.

3.1.2 ScratchTspData Block. Similar to the ScratchTspVisual block,
the ScratchTspData block allows users to specify destinations and
select an algorithm to solve the given input. However, unlike ScratchT-
spVisual, ScratchTspData solves a given scenario and returns a list
(Result) containing the optimal path found by the selected algo-
rithm (as shown in Figure 2) instead of visually presenting the
simulation results in an un-directed graph. ScratchTspData block is
useful if the users tend to use the results of the selected algorithm in
their custom applications. This block has three parts: (1) Input List
– Similar to the ScratchTspVisual block, it takes a list defining the
position of nodes (destinations) in terms of 𝑥-axis and 𝑦-axis values
as input, (2) Algorithm Selection: Similar to the ScratchTspVisual
block, this block has a drop-down menu allowing users to select
an algorithm to solve the TSP problem with input defined in the
input list, and (3) Result – In addition to Input List and Algorithm
Selection, the ScratchTspData block allows the user to specify the
name of the list where it needs to store the optimal path returned
by the selected algorithm.

3.2 Variable Block
The ScratchTSP extension contains a variable block called the Dis-
tance block, as depicted in Figure 4. The distance block returns
the total distance travelled after running the simulation. The Vari-
able block helps track the progress of the solution and displays
information to the user.

+ Length 5 =

Input List

1 -113 -120

2 -200 145

3 0 0

4 199 -102

5 -210 -160

Figure 3: Defining positions
for the nodes

Total Distance

0

Figure 4: Distance variable
block

Extending Scratch Framework to Improve the Analytical Skills of Undergraduate Students Conference’17, July 2017, Washington, DC, USA

4 SURVEY RESULTS AND DISCUSSION
We employ both pre-lecture and post-lecture surveys in our study.
The pre-lecture survey is used to collect demographic data on stu-
dents, including age, gender, prior degree grades, programming
proficiency, and understanding of the TSP. To assess the usability
and effectiveness of our extension, the post-lecture survey is con-
ducted. Figure 5 provides a visual representation of the procedural
sequence. The process commences with the formation of two stu-
dent groups (G1 and G2) and the administration of the pre-lecture
survey. Subsequently, analysis of the pre-lecture survey results in-
forms the development of lectures tailored to content relevance and
sufficiency. Following a two-week lecture series, the post-lecture
survey assesses the ScratchTSP extension’s effectiveness. The feed-
back provided by students guides the evaluation of usability and
effectiveness, as well as suggestions for potential enhancements.
In the following subsections, we present the survey methodology,
participant’s detailed demography, data collection and analysis
method, survey results and discussion, and finally summarize the
main findings and their implications in detail.

4.1 Survey Design and Methodology
We design two surveys: (1) pre-lecture survey, and (2) post-lecture
survey. The combination of pre and post-lecture surveys ensured a
holistic approach to data collection, aligning the lectures with the
students’ diverse proficiency levels and enhancing the ScratchTSP
extension based on their insights.

4.1.1 Pre-lecture Survey. The pre-lecture survey is meticulously
designed to understand the programming proficiency levels of par-
ticipating students and tailor the lectures accordingly. Another im-
portant objective is to assess the students’ baseline understanding
of the Traveling Salesman Problem (TSP). This survey was instru-
mental in ensuring that the subsequent lectures were adjusted to
meet the diverse needs of the attendees.

4.1.2 Post-lecture Survey. The post-lecture survey is structured
to collect feedback from students who had participated in the
ScratchTSP lectures. Its primary objectives is to assess the effective-
ness of the ScratchTSP extension, gather insights into its ease of
use, and solicit suggestions for potential improvements. The survey
aims to gauge the students’ overall satisfaction with the extension
and understand how it met their educational needs.

4.2 Participants
To evaluate the usability and effectiveness of the ScratchTSP ex-
tension, we conduct a survey of 65 undergraduate students. The
majority of the students are male (54), and the remaining 11 stu-
dents are female. The participating students are from Engineering,
Medical, and Computer Science, with ages ranging from 20 to 25
years. Moreover, students are classified based on their proficiency
level in programming as beginner-level (newbies), novice, interme-
diate, proficient, and expert programmers (Table 1 and 2). Moreover,
Figure 6 offers insights into students’ levels of understanding of the
Traveling Salesman Problem (TSP), segmented by their program-
ming proficiency.

 Proficient
 Intermediate
 Novice
 Newbie

Figure 6: Pre-lecture survey – TSP understanding

According to Figure 6, a significant number of students, espe-
cially beginners and novices, report having no understanding of
TSP. This underscores the need for educational interventions to
introduce these students to the concept effectively. The category of
"Limited Understanding" is prevalent among novices and interme-
diates. This group acknowledges some familiarity with TSP but is
still in the early stages of comprehension. Students with a "Moder-
ate Understanding" of TSP are primarily intermediates, proficients,
and experts. These students have a relatively deeper grasp of TSP,
indicating that as proficiency increases, so does the understanding
of complex concepts like TSP. The category of "Comprehensive
Understanding" is primarily represented by proficients and experts.
These students demonstrate a high level of comprehension in TSP,
showcasing the rewards of advanced programming proficiency.

4.3 Data Collection and Analysis
The data collection is done through the administration of physical
in-person surveys, both before and after a series of educational
lectures. These surveys are designed to gather valuable insights
from the participating students. The pre-lecture survey comprising
multiple-choice questions serves as a vital tool to profile the stu-
dents’ backgrounds and proficiency levels. It encompasses inquiries
about previous academic performance, age, programming skills,
and understanding of the TSP. These details help in categorizing the
students into distinct proficiency levels, enabling a comprehensive
understanding of their diverse demographics.

Table 1: Participants

Group Students Male/Female Descipline
1 43 37/6 Computer Science
2 7 5/2 Medical
3 15 12/3 Engineering

Total 65 54/11

Table 2: Programming proficiency of Participants

Proficiency Definition Students M/F
Newbie No prior Experience 31 24/7
Novice Experience <= 1 year 17 14/3

Intermediate Experience <= 2 years 8 7/1
Proficient Experience <= 3 years 6 5/1
Expert Experience > 3 years 3 3/0

Conference’17, July 2017, Washington, DC, USA Akbar et al.

CS Student

Medical Students

Engineering Students

Create Groups
Pre-lecture

Survey
Modify

Lectures
Deliver
lectures

Post-lecture
Survey

Analyse the
Survey resultsAnalyze Survey

Survey results Survey results

Figure 5: Activity diagram describing the workflow of the survey

 Proficient
 Intermediate
 Novice
 Newbie

Figure 7: ScratchTSP effectiveness

In contrast, the post-lecture survey primarily focuses on assess-
ing the effectiveness of the proposed ScratchTSP extension, gauging
students’ satisfaction, and soliciting feedback for potential improve-
ments. The Likert scale-based questions in this survey facilitate a
nuanced evaluation of the student’s satisfaction with the proposed
extension. Additionally, an open-ended question provides the stu-
dents with the opportunity to share qualitative feedback regarding
any areas where they believe enhancements could be made.

For the analysis of survey results, bar charts are used to present
the data graphically, enabling the depiction of patterns and trends
with clarity. These charts provide a visual representation of the
student’s responses, making it easier to identify variations and cor-
relations within the data. The use of graphical elements in data
presentation adds a layer of accessibility and enhances the inter-
pretability of survey results. This comprehensive data collection
and analysis methodology allowed for a robust examination of
students’ demographics, their interactions with the proposed ex-
tension, and their feedback for potential improvements, fostering a
more informed and tailored approach.

4.4 Post-lecture Evaluation
The post-lecture survey focuses on gathering feedback from the
students to evaluate the effectiveness and ease of use of the pro-
posed ScratchTSP extension. In the following text, we visualize
and describe the survey results to gain useful insights about the
feedback received from the students.

4.4.1 Effectiveness. Figure 7 offers a detailed view of students’
perceptions regarding the effectiveness of the ScratchTSP, cate-
gorized by their programming proficiency levels. The Likert scale,
encompassing options from "Strongly Agree" to "Strongly Disagree,"
served as a robust tool to capture the nuances of their feedback.

Across all proficiency levels, there is a substantial number of
students who either "Strongly Agree" or "Agree" with the effective-
ness of the ScratchTSP. This suggests that the majority of students,

 Proficient
 Intermediate
 Novice
 Newbie

Figure 8: ScratchTSP ease of use

regardless of their programming expertise, found the extension to
be highly effective or at least moderately so. Most importantly, all
the Proficient and Expert programmers believe that the proposed
extension is effective or highly effective. It is also important to
mention that Beginners largely express favorable views.

A significantly smaller proportion of students choose "Neither
Agree Nor Disagree." The segments that "Disagree" or "Strongly Dis-
agree" are notably smaller compared to the segments that "Strongly
Agree" or "Agree". A relatively small number of students, espe-
cially Beginners and Novices, hold negative views. Only one of the
Intermediate programmers expresses some disagreement.

4.4.2 Ease of Use. We also evaluate how easy is to use the proposed
ScratchTSP extension. Figure 8 offers a comprehensive view of
students’ perceptions regarding the ease of use of the ScratchTSP,
categorized by their programming proficiency levels. Utilizing a
Likert scale ranging from "Strongly Agree" to "Strongly Disagree,"
the data captures the nuanced feedback from students.

A significant number of students across all proficiency levels, in-
cluding beginners, novices, intermediates, proficients, and experts,
either "Strongly Agree" or "Agree" that the ScratchTSP extension is
easy to use. This indicates a consistent positive sentiment across the
entire spectrum of programming expertise. Even beginners, who
typically have less experience, express strong agreement with the
extension’s ease of use.

The category of "Neither Agree Nor Disagree" contains aminimal
number of responses, reflecting a slight degree of neutrality about
the ease of use. Only 2 students express neutral feedback regarding
the ease of use of the proposed extension.

The segments of students who "Disagree" or "Strongly Disagree"
with the extension’s ease of use are extremely small. Most of the
students are Beginners, while only one is a Novice. No Intermedi-
ate, Proficient, or Expert programmer expresses negative thoughts.
This trend suggests that the ScratchTSP extension generally avoids
strong negative perceptions regarding its usability.

Extending Scratch Framework to Improve the Analytical Skills of Undergraduate Students Conference’17, July 2017, Washington, DC, USA

 Proficient
 Intermediate
 Novice
 Newbie

Figure 9: Suggested improvements

4.4.3 Suggestions for Potential Improvements. In addition to col-
lecting feedback regarding the effectiveness and usability of the
proposed extension, we also added an open-ended question to al-
low the users to suggest further potential advancements. Figure 9
reflects students’ suggestions for improvements in the proposed
ScratchTSP extension, categorized by programming proficiency lev-
els. The dataset is structured with feature names as the first column,
allowing us to examine how students across different proficiency
levels perceive potential enhancements to the extension.

A large number of students from various proficiency levels have
suggested the inclusion of more algorithms in the ScratchTSP ex-
tension. This aligns with the generally positive perceptions of the
extension’s effectiveness and ease of use observed in the previous
datasets. It indicates an interest in enhancing the extension’s func-
tionality to cater to the diverse needs and expectations of students
at different proficiency levels.

Intermediate and proficient programmers are the ones who most
commonly suggest including features related to distance values,
which is consistent with their deeper understanding of related
concepts. This suggestion aligns with the effectiveness and ease
of use data, as students at these proficiency levels have previously
demonstrated a more favorable perception of the extension.

The suggestion to add features related to file input/output and
random values is mainly from proficient and expert programmers.
This aligns with the positive perception of the extension’s ease of
use among these proficiency levels. On the other hand, the sug-
gestion to add more constraints to the extension primarily comes
from proficient programmers.A significant number of beginners
and novices do not provide any specific suggestions.

5 CONCLUSION
In this work, we develop ScratchTSP, a Scratch-based extension
that aims to help novice programmers learn and understand the
traveling salesman problem and its solution algorithms. The moti-
vation for the development of the ScratchTSP extension stems from
its potential to bridge the gap between theoretical knowledge and
practical implementation of the TSP. This facilitates a more intuitive
understanding of TSP and its applicability in real-world scenarios.
The ScratchTSP can be used as a teaching aid in computer science
and software engineering classes to introduce optimizations and
algorithm design principles.

To evaluate the efficacy of the proposed extension, we conduct
pre-lecture and post-lecture surveys. The pre-lecture survey is used
to understand the demography and programming proficiency of

participating students and tailor the lectures accordingly. The post-
lecture survey is conducted to evaluate the proposed extension in
terms of effectiveness and ease of use.We have proven through post-
lecture surveys that our work has the potential to benefit the Scratch
programming community by providing a better understanding of
the TSP, a well-known combinatorial optimization problem.

REFERENCES
[1] Saeed Akbar, Ubaid Ul Akbar, Rahmat Ullah, and Zhonglong Zheng. 2024. A

Caolitional Game-Based Adaptive Scheduler Leveraging Task Heterogeneity
For Greener Data Centers. IEEE Transactions on Green Communications and
Networking (2024), 1–1.

[2] Saeed Akbar, Muhammad Zubair, Rizwan Khan, Ubaid Ul Akbar, Rahmat Ullah,
and Zhonglong Zheng. 2024. Weighted Multi-Skill Resource Constrained Project
Scheduling: A Greedy and Parallel Scheduling Approach. IEEE Access (2024).

[3] Nora Alturayeif, Nouf Alturaief, and Zainab Alhathloul. 2020. DeepScratch:
scratch programming language extension for deep learning education. Interna-
tional Journal of Advanced Computer Science and Applications 11, 7 (2020).

[4] Nayeon Bak, Byeong-Mo Chang, and Kwanghoon Choi. 2020. Smart Block: A
visual block language and its programming environment for IoT. Journal of
Computer Languages 60 (2020), 100999.

[5] Kay-Dennis Boom, Matt Bower, Jens Siemon, and Amaël Arguel. 2022. Relation-
ships between computational thinking and the quality of computer programs.
Education and information technologies 27, 6 (2022), 8289–8310.

[6] Jesennia Cárdenas-Cobo, Amilkar Puris, Pavel Novoa-Hernández, Águeda Parra-
Jiménez, Jesús Moreno-León, and David Benavides. 2021. Using scratch to im-
prove learning programming in college students: A positive experience from a
non-weird country. Electronics 10, 10 (2021), 1180.

[7] Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau. 2019. Simulated
annealing: From basics to applications. Handbook of metaheuristics (2019).

[8] Osman Erol and Neşe Sevim Çırak. 2022. The effect of a programming tool
scratch on the problem-solving skills of middle school students. Education and
Information Technologies 27, 3 (2022), 4065–4086.

[9] Benedikt Fein, Florian Obermüller, and Gordon Fraser. 2022. CATNIP: An Auto-
matedHint Generation Tool for Scratch. In Proceedings of the 27th ACMConference
on on Innovation and Technology in Computer Science Education Vol. 1. 124–130.

[10] Gordon Fraser, Ute Heuer, Nina Körber, Florian Obermüller, and Ewald Wasmeier.
2021. Litterbox: A linter for scratch programs. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering Education and Training
(ICSE-SEET). IEEE, 183–188.

[11] Marijn JH Heule and Oliver Kullmann. 2017. The science of brute force. Commun.
ACM 60, 8 (2017), 70–79.

[12] Yuhan Lin andDavidWeintrop. 2021. The landscape of Block-based programming:
Characteristics of block-based environments and how they support the transition
to text-based programming. Journal of Computer Languages 67 (2021), 101075.

[13] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1–15.

[14] Youngki Park and Youhyun Shin. 2021. Tooee: A novel scratch extension for
K-12 big data and artificial intelligence education using text-based visual blocks.
IEEE Access 9 (2021), 149630–149646.

[15] Youngki Park and Youhyun Shin. 2022. Novel scratch programming blocks for
web scraping. Electronics 11, 16 (2022), 2584.

[16] Petrică C. Pop, Ovidiu Cosma, Cosmin Sabo, and Corina Pop Sitar. 2024. A
comprehensive survey on the generalized traveling salesman problem. European
Journal of Operational Research 314, 3 (2024), 819–835.

[17] Alexander Repenning. 2017. Moving Beyond Syntax: Lessons from 20 Years of
Blocks Programing in AgentSheets. J. Vis. Lang. Sentient Syst. 3, 1 (2017), 68–91.

[18] Alexander Repenning and Ashok Basawapatna. 2021. Smacking screws with
hammers: Experiencing affordances of block-based programming through the
hourglass challenge. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. 267–273.

[19] Caio Paziani Tomazella and Marcelo Seido Nagano. 2020. A comprehensive
review of Branch-and-Bound algorithms: Guidelines and directions for further
research on the flowshop scheduling problem. Expert Systems with Applications
158 (2020).

[20] Albert Valls Pou, Xavi Canaleta, and David Fonseca. 2022. Computational Think-
ing and Educational Robotics Integrated into Project-Based Learning. Sensors 22,
10 (2022).

	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Extension
	3.1 ScratchTSP Blocks
	3.2 Variable Block

	4 Survey Results and Discussion
	4.1 Survey Design and Methodology
	4.2 Participants
	4.3 Data Collection and Analysis
	4.4 Post-lecture Evaluation

	5 Conclusion
	References

