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Abstract—Reliable and timely data collection is an important
and challenging problem for underwater wireless sensor networks
(UWSNs), partly due to the very slow underwater communication
and the difficulty in recharging the sensors. In this paper, we
exploit the use of autonomous underwater vehicles (AUVs) for
UWSN data collection task. Specifically, we investigate how to
maximize the value of information (VoI) for data collection
through joint optimization of cluster head (CH) selection and
multi-AUV path planning. We formulate the joint optimization
problem for the task, taking into account the energy constraints
of sensor nodes. To solve the problem, we propose a deep
reinforcement learning algorithm based on an encoder-decoder
architecture. The entire UWSN system is fed into the encoder
network, followed by a composite decoder consisting of an
AUV selection decoder and a cluster access sequence decoder
to obtain the cluster access sequence for each AUV. Based
on the determined sequences, we further utilize the dynamic
programming algorithm to achieve optimal CH selection. Finally,
we obtain the sequence of AUVs accessing the selected CHs.
Simulation results demonstrate that the proposed learning-based
approach converges and achieves a higher VoI than the existing
benchmark algorithms.

Index Terms—AUV, data collection, VoI, path planning

I. INTRODUCTION

Underwater wireless sensor networks (UWSNs) play a
crucial role for ocean monitoring and resource exploitation,
with applications such as marine environment monitoring,
surveillance of underwater facilities, early disaster warning
[1]. One of the major challenges for UWSNs is reliable and
efficient data collection. Compared to the terrestrial sensor
networks, communication between underwater sensor nodes
and data sinks often relies on acoustic signals due to the rapid
attenuation of radio frequency signals in underwater environ-
ments. However, underwater acoustic communication is known
for its low data rate, large delay, and high energy consumption
limitations [2]. Additionally, replacing batteries for underwater
sensor nodes is extremely difficult. Therefore, there is a strong
demand for reliable and efficient data collection methods.

Recent advances in autonomous underwater vehicle (AUV)
have led to increasing research interest in utilizing AUVs
to assist data collection in UWSNs. A key advantage of
using AUVs for data collection is their ability to periodically
navigate towards sensor nodes and collect data from them
using close-range and high-speed communication links (such
as optical or electromagnetic communication) [3]. In this way,

the data can be collected fast with minimized energy consump-
tion of the sensor nodes, thereby significantly extending the
lifetime of UWSNs. To enhance data collection efficiency, it
has been proposed to cluster sensor nodes and select cluster
heads (CHs) to collect and aggregate data from other nodes
in the clusters [4]. This allows AUVs to collect data from the
entire area by visiting a limited number of CHs.

Existing studies have focused on single AUV deployments
in small-scale scenarios. However, the increasing scale of
UWSNs and the complexity and low-latency requirements
of underwater operational tasks necessitate collaborative data
collection by multiple AUVs [5]. In this paper, we are moti-
vated to investigate the use of multiple AUVs for reliable and
efficient data collection in UWSNs. We specifically consider
the path planning of AUVs as it significantly impacts the
energy consumption of AUVs and data collection delay [6],
[7]. Meanwhile, considering the influence of CH selection, we
investigate the problem of jointly optimizing CH selection and
multi-AUV path planning.

We first formulate the joint optimization problem for the
task, taking into account the energy constraints of sensor
nodes. Unlike existing research which primarily focuses on
reducing data latency and extending the lifespan of sensor
networks, we aim to maximize the value of information (VoI),
which emphasizes the timeliness of information and highlights
the significant differences in its importance [8]–[10]. Further-
more, the path planning problem can be viewed as a sequence-
to-sequence problem, which is particularly suitable for solving
using an encoder-decoder architecture. Thus, we propose an
encoder-decoder based deep reinforcement learning (EDDRL)
algorithm for its solution. The UWSN system serves as input
to the encoder network, which is then decoded by a composite
decoder comprising an AUV selection decoder and a cluster
access sequence decoder. This process allows us to obtain the
cluster access sequence for each AUV. Subsequently, CHs are
selected by using a dynamic programming method with the
predetermined sequences, thereby deriving the selected CHs
access sequence for each AUV. The parameters of the proposed
algorithm are trained in an unsupervised manner using the
REINFORCE algorithm. Simulation results demonstrate that
the proposed algorithm converges and achieves a higher VoI
compared to other benchmark algorithms.

The remainder of this paper is organized as follows. Section



II introduces the system model and formulates the problem.
The proposed algorithm is detailed in Section III. Section IV
provides simulation results, and Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a scenario of large-scale UWSNs for multi-
AUV collaborative data collection. The system comprises a
surface station, multiple AUVs, and numerous underwater
sensor nodes. The underwater sensor nodes are deployed
regionally, and perform continuous monitoring of the specific
region for which they are responsible. It is now assumed that
the system operates under non-emergency conditions, where
the AUVs periodically depart from the surface station, navigate
to each CH to collect data according to predetermined paths,
and upon completing the data collection, return to the surface
station for data offloading.

To improve the efficiency of data collection, all nodes are
organized into M clusters, each of which is equipped with a
designated CH. For any given cluster Cm,m ∈ {1, 2, . . . ,M},
the CH is designated as Hm, Hm ∈ Cm, making the set
of CHs represented by H = {H1, H2, . . . ,HM}. Before the
AUV arrives, CH Hm collects data from other member nodes
through hydroacoustic communication. When the AUV visits
Hm, the CH transmits a data packet to the AUV via an optical
communication link. As a result, the energy consumption of
the member node i and the CH of Cm can be denoted as

Ei = Pt
Di

R (di)

Em = Pr

∑
i∈C̃m

Di

R (di)
+ Pt

Im
Ro

(1)

where Di is the amount of data collected from the underwater
environment by the node i in cluster Cm, Im is the total
amount of data in the cluster, denoted by Im =

∑
i∈Cm

Di.
The receiving power and transmitting power of the sensor node
are denoted by Pr and Pt, respectively. The set of member
nodes in the cluster Cm is denoted by C̃m. The Euclidean
distance of node i from the CH Hm is denoted by di. R (di)
represents the hydroacoustic communication rate, while the
optical communication rate between the AUV and the CH is
denoted by Ro.

We assume that AUVj needs to access Zj CHs during
a data collection task, and define binary variable Am

j [ζ]
to indicate whether AUVj visits the CH Hm for data
collection during step ζ. A value of 1 represents visita-
tion, while a value of 0 indicates non-visitation. Therefore,
the CHs access sequence for all AUVs can be denoted
as A =

{
Am

j [ζ], 1 ≤ j ≤ U, 1 ≤ m ≤ M, 1 ≤ ζ ≤ Zj

}
. As

mentioned above, the movement of AUVs must satisfy the
constraints as follows

U∑
j=1

Zj∑
ζ=1

Am
j [ζ] = 1,∀1 ≤ m ≤ M (2a)

U∑
j=1

Zj∑
ζ=1

M∑
m=1

Am
j [ζ] = M, ∀1 ≤ j ≤ U (2b)

where (2a) restrict each CH to be visited by only one AUV
in each round of data collection, and (2b) indicates that all
AUVs need to visit all CHs.

The set of trajectory of the AUVj can be denoted as
Lj = {ℓj [0], ℓj [1], . . . , ℓj [Zj ] , ℓj [0]}, where ℓj [ζ] represents
the coordinates of the AUV at step ζ and ℓj [0] is the coor-
dinates of the surface station. Let us analyze the change in
VoI after AUV collects data from the CH. Assume that the
initial VoI of Cm is denoted as Em, thus the initial VoI of
collected data when AUVj visits the CH at step ζ denoted as
Ej [ζ] =

∑M
m=1 A

m
j [ζ]Em, which reflects the importance of

the data. Once the data is transmitted to AUV, its VoI decreases
with time, and the rate of this decrease is influenced by the
subsequent travel time of the AUV and its communication time
with the CH. At the moment T ζ+1

j , the VoI remaining of the
data collected is represented as

V ζ
j

(
T ζ+1
j

)
= βEj [ζ] + (1− β)Ej [ζ]e

−
∆T

ζ→ζ+1
j
α (3)

where β ∈ [0, 1] is a factor that measures the trade-off between
data importance and timeliness, and α is the decay factor,
reflecting the rate of decay of the VoI over time. ∆T ζ→ζ+1

j

denotes the difference between the moments when the AUVj

arrives at position ℓj [ζ] and position ℓj [ζ + 1] respectively,
which includes the time of the optical communication between
the AUV and the CH at position ℓj [ζ], as well as the time
of the movement of the AUV from position ℓj [ζ] to position
ℓj [ζ+1]. Denote the amount of data collected by AUVj when
it visits the CH at step ζ as Ij [ζ] =

∑M
m=1 A

m
j [ζ]Im. Thus

∆T ζ→ζ+1
j is equal to

∆T ζ→ζ+1
j = T ζ+1

j − T ζ
j =

Ij [ζ]

Ro
+

dj [ζ]

va
(4)

where va denotes the movement speed of the AUV, and
dj [ζ] = ∥ℓj [ζ + 1]− ℓj [ζ]∥ is the displacement distance of
the AUV from position ℓj [ζ] to position ℓj [ζ +1]. When data
collection is complete, the total system VoI collected by the
surface station can be expressed as

V =

U∑
j=1

Zj∑
ζ=1

Zj∑
i=ζ

(
βEj [ζ] + (1− β)Ej [ζ]e

−
∆T

i→i+1
j
α

)
(5)

Since the retained VoI for data collected by AUVs at each
CH depends on the time interval required by their return to
the surface station. This time interval is affected by the path
planning of AUVs, and the path of each AUV is influenced by
the CH selected for each cluster and the CHs access sequence
for AUVs. The aim of this paper is to maximize the VoI of
the UWSNs by jointly optimizing the selection of CHs H and
the CHs access sequence A for all AUVs. The optimization
problem is formulated as follows

P0 : max
H,A

V (H,A) (6a)

s. t. Hm ∈ Cm,∀1 ≤ m ≤ M (6b)
Em ≤ Emax (6c)

(2a) and (2b) (6d)



Fig. 1: The proposed algorithm architecture.

where (6b) delineates the restrictions associated with the CHs,
(6c) denotes the energy constraints for each sensor node within
a single round of data collection, where Emax represents the
maximum allowable energy consumption. Since the aim of P0

depends on the AUV’s travel time and communication duration
with the CH, the cluster access sequence of the AUV needs
to integrate considerations of CH coordinates, data volume
within the cluster, and the initial VoI of the data.

III. ENCODER-DECODER BASED DEEP REINFORCEMENT
LEARNING ALGORITHM

P0 is a classic NP-hard problem, which is challenging to
obtain the optimal solution within polynomial time due to
its inherent complexity. To solve this problem, we propose
EDDRL algorithm. Specifically, the algorithm obtains the
cluster access sequence of each AUV through a network
based on an encoder-decoder architecture. Then, the CHs are
selected based on the previously determined sequences through
an optimal CH selection algorithm based on dynamic pro-
gramming. Additionally, the algorithm calculates the system
rewards based on acquired VoI and updates the parameters of
the network using the REINFORCE algorithm. The overall
architecture of the algorithm is depicted in Fig. 1.

A. Encoder-Decoder Based Network

To obtain the cluster access sequence for each AUV, we
employ an encoder-decoder based network where the inputs
include the coordinates of the surface station, as well as the
coordinates, data volume, and data VoI of nodes in multiple
clusters, and the output is the cluster access sequence for
each AUV. In this paper, the cluster access sequence of
AUVs is viewed as a mapping between sequences, where
the initial sequence contains multiple clusters including the
surface station, and the target sequence is the cluster access
sequence for each AUV.

1) Encoder: The encoder is responsible for extracting
features from the input data I = {I0, I1, . . . , IM}, where
I0 = ℓ0 ∈ R3 represents the starting point of AUVs, Im

represents all the node coordinates, total data volume, and

initial VoI within cluster Cm. As shown in Fig. 1, the encoder
mainly consists of multiple attention layers. First, the input I
is embedded as h0. Subsequently, the embedded data h0 is
fed into N attention layers for better feature representation,
each attention layer is the same as the one in the standard
Transformer, consisting of a multi-head attention layer and a
feed-forward layer, each of which performs residual concate-
nation and layer normalization. Assuming that the input of
the nth attention layer is hn−1 =

{
hn−1
0 ,hn−1

1 , . . . ,hn−1
M

}
,

where hn−1
m represents the feature representation of cluster

Cm after going through the previous n − 1 attention layers.
Then the nth attention layer can be represented as

Y n = MHA(hn−1,hn−1,hn−1)

Y n = LN(hn−1 + Y n)

hn = LN
(
Y n + FFN

(
Y n

)) (7)

where MHA(·) represents the multi-head attention calculation,
FFN(·) represents the feed-forward operation and LN(·) rep-
resents the layer normalization operation.

After passing through N encoder layers, the final output
hN ∈ R(M+1)×dim of the encoder layers is obtained. Thus,
the cluster feature representation for each cluster is denoted as
hN
m ∈ Rdim(0 ≤ m ≤ M). The average of all cluster features,

represented as ĥN = 1
M+1

∑M
m=0 h

N
m, serves as the overall

graph feature of the UWSN. This value will be used in the
decoder stage to construct the context vector for each AUV.

2) Decoder: The decoder inputs the cluster feature vectors
from the encoder and the state vectors of the AUV before
decoding step t, and outputs the AUV that needs to be moved
and the next cluster that the AUV needs to visit. To enable
the network to flexibly allocate tasks among multiple AUVs
based on the environmental state and avoid conflicts arising
from different AUVs visiting the same cluster, the decoder in
this paper consists of an AUV selection decoder and a cluster
access sequence decoder. The decoding step is to firstly select
an AUV to be moved by the AUV selection decoder, and then
the cluster access sequence decoder chooses the next cluster
that the selected AUV needs to visit.

The AUV selection decoder leverage both the current
features of each AUV and the historical route features to
make informed decisions regarding which AUV to move next.
Specifically, in the decoding phase at step t, the historical route
features of AUVi are denoted as

Gi
t =

[
gi
0, g

i
1, . . . , g

i
t−1

]
Gt =

[
max

(
G1

t

)
,max

(
G2

t

)
, . . . ,max

(
GU

t

)]
Gt = FFN (W 1Gt + f1)

(8)

where Gi
t ∈ Rt×dim represents the arrangement of the cluster

features visited by AUVi before step t, gi
j ∈ Rdim represents

the feature vector of the cluster visited by AUVi at step j,
W 1 and f1 are learnable parameters. MAX(·) represents the



maximum pooling operation. Similarly, the current features of
AUVs can be constructed as follows

Bi
t =

[
gi
t−1, E

i
t−1

]
Bt =

[
B1

t ,B
2
t , . . . ,B

U
t

]
Bt = FFN (W 2Bt + f2)

(9)

where Ei
t−1 represents the VoI collected by AUV before step

t, W 2 and f2 are learnable parameters. Finally, the historical
route features Gt and the current features Bt of AUVs are
projected linearly and then passed through a softmax function
to obtain the probability distribution P t for the selection of
each AUV

P t = softmax
(
W 3

[
Bt,Gt

]
+ f3

)
(10)

where W 3 and f3 are learnable parameters. The AUV se-
lection result V i

t for step t can be determined based on the
probability distribution P t. Then the cluster accessed by the
AUV at step t+1 is determined by the cluster access sequence
decoder. Firstly, the characteristics of the cluster in which
the AUV is currently located, the VoI of the collected data
and the encoding characteristics of the clusters need to be
taken into account to construct the eigenvector of AUVi at
step t, denoted as yi

t. A multi-head attention mechanism is
used to aggregate the attention based features of AUVi to
all clusters, then the attention weight of AUVi for selecting
each cluster is computed through the single-head attention.
The whole process can be expressed as

yi
t =

(
W 4

[
gi
t−1, E

i
t−1

]
+ f4

)
+ ĥN

yi
t = LN

(
yi
t +MHA

(
yi
t,hN ,hN

))
ut
i,m =

{
Qi(Km)T√

dimk
, bm = 0

−∞, bm = 1

(11)

where Qi = yi
tWQ ∈ Rdim,Km = hN

mWK ∈ Rdim are
query vectors and key vectors, respectively. WQ, WK , W 4

and f4 are learnable parameters, bm denotes whether the
cluster Cm is visited by AUV or not. The attention weights
of AUVi to the cluster Cm are defined as −∞ if Cm has
already been visited by AUV in order to prevent the repeated
visits. From this, the attention weight of AUVi to all clusters
is obtained, which is denoted as ut

i =
{
ut
i,1, u

t
i,2, . . . , u

t
i,M

}
,

then the learning process of ut
i,m(1 ≤ m ≤ M) is stabilized by

the tanh function, and finally the probability of AUVi visiting
each cluster at step t is calculated by the softmax function as

pti,m =
eC·tanh(ut

i,m)∑M
j=1 e

C·tanh(ut
i,j)

, 1 ≤ m ≤ M (12)

The next cluster will be visited can be determined based
on the probability distribution pti,m, upon determining the
next cluster to be visited, AUVi updates the environmental
state. Subsequently, leveraging this updated state, it identifies
the AUV scheduled to move in the (t + 1)th step and the
corresponding cluster for visitation. This decoding process
iterates until all clusters have been traversed.

B. Optimal CH Selection Algorithm

The optimal CH selection algorithm, grounded in dynamic
programming, takes as input the access sequence of clusters by
AUVs, and the output corresponds to the CH associated with
the cluster visited by the AUV. The objective of the algorithm
is to derive a path that maximizes the VoI retained by the
AUV.

We first analyze the relationship between the VoI that
AUV has when accessing any adjacent clusters Cζ and Cζ+1.
Assume that cluster Cζ has an initial VoI of Eζ , Vn[ζ] denotes
the VoI of data retained by the AUV when the AUV visits the
nth sensor node of cluster Cζ , then the AUV moves to the
mth sensor node of cluster Cζ+1 for data collection, the data
VoI that the AUV has is denoted as Vn→m[ζ + 1], Vn[ζ] and
Vn→m[ζ + 1] can be expressed as

Vn[ζ] =

ζ−1∑
i=1

βEi +

ζ−1∑
i=1

(1− β)Eie
−

∆Tn
i→ζ
α

Vn→m[ζ + 1] =

ζ∑
i=1

βEi +

ζ∑
i=1

(1− β)Eie
− (∆Tn

i→ζ+∆Tn→m
ζ )

α

(13)

where ∆Tn
i→ζ denotes the time difference between when AUV

starts collecting data from cluster Ci and reaches the nth
sensor node of cluster Cζ . It is evident that selecting different
CHs will make ∆Tn

i→ζ different, subsequently influencing
Vn[ζ], ∆Tn→m

ζ denotes the time required for the AUV to
collect data from the nth sensor node in cluster Cζ and move
to the mth sensor node in cluster Cζ+1. The first term in Vn[ζ]
and Vn→m[ζ+1] remains constant over time, while the second
term diminishes over time and is affected by the CH selection.
We define Vn,var[ζ] as decaying VoI of Vn[ζ], which can be
expressed as

Vn,var[ζ] =

ζ−1∑
i=1

Eie
−

∆Tn
iζζ
α (14)

Therefore, during the selection of the CH, it is only
necessary to ensure the maximization of decaying VoI to
guarantee the maximization of the final obtained VoI. Sim-
ilarly, Vn→m,var[ζ + 1] can be defined as decaying VoI of
Vn→m[ζ+1], and its state transition relationship with Vn,var[ζ]
can be defined as follows according to (13) and (14)

Vn→m,var[ζ + 1] = e−
∆Tn→m

ζ
α (Vn,var[ζ] + Eζ) (15)

It is evident that when sensor nodes m and n are determined,
maximizing Vn→m,var[ζ + 1] requires maximizing Vn,var[ζ].
We define V ∗

n→m,var[ζ+1], V ∗
n,var[ζ] are the maximum values

corresponding to Vn→m,var[ζ +1], Vn,var[ζ] respectively. Fur-
thermore defining V ∗

m,var[ζ+1] as the maximum value of the
decay over time portion of the data VoI retained by the AUV
when it reaches the mth sensor node of cluster Cζ+1, which
is expressed as

V ∗
m,var[ζ + 1] = max

n∈Cζ

e−
∆Tn→m

ζ
α

(
V ∗
n,var[ζ] + Eζ

)
(16)

The equation above represents the state transition equation
for the decayed VoI of the AUV between cluster Cζ and



Algorithm 1 Optimal CH Selection Algorithm Based on
Dynamic Programming

1: Initialize dp ∈ R(zi+2)×Nmax , p ∈ R(zi+1)×Nmax , ζ = 0
2: while ζ ≤ zi do
3: for m in Cζ+1 do
4: if xζ+1,n = 1 then
5: Update dp[ζ + 1][m] and p[ζ][m] according to (17)
6: else
7: dp[ζ + 1][m] = 0
8: p [ζ][m] = −1
9: end if

10: end for
11: ζ ← ζ + 1
12: end while
13: Initialize pre = p [zi] [0], CH set H = {pre}
14: while zi > 1 do
15: pre = p [zi − 1] [pre]
16: Insert pre in the first place of H
17: zi ← zi − 1
18: end while

cluster Cζ+1. Since the VoI remains fixed without time decay
and is independent of CH selection, the objective of CH
selection is to maximize V ∗

var [zi + 1], which represents the
maximum data VoI when the AUV returns to the surface
station. Based on (16), the optimal solution V ∗

var [zi + 1] can
be obtained through dynamic programming. We define array
dp[ζ][n] = V ∗

n,var[ζ] to represent the maximum retained
decayed VoI when the AUV visits the nth sensor node in
cluster Cζ for data collection. To obtain the selected CH for
each cluster, we define an array p[ζ][m] to store the sensor
node in the previous cluster corresponding to dp[ζ+1][m]. In
this case, we have the equations as follows

dp[ζ + 1][m] = max
n∈Cζ

e−
∆Tn→m

ζ
α (dp[ζ][n] + Eζ)

p[ζ][m] = arg max
n∈Cζ

e−
∆Tn→m

ζ
α (dp[ζ][n] + Eζ)

(17)

Additionally, the selected CH needs to ensure that the
energy consumption of the nodes within the cluster satisfies
constraint (1). For any node in cluster Cζ serving as the CH,
we define binary variable xζ,n ∈ {0, 1} to indicate whether the
energy consumption of the nodes within the cluster satisfies
the constraint when node n serves as the CH. The optimal CH
selection algorithm is detailed in Algorithm 1.

C. Model Training Based on REINFORCE
The parameters of the encoder-decoder based network need

to be trained to maximize the system VoI. In this section,
we consider training the network parameters using a Monte
Carlo-based REINFORCE algorithm. Given an instance s of
the UWSN, the network parameters are denoted by θ, and
the network outputs the result of the cluster access sequence
for each AUV, which is represented as π. With Pθ(π | s)
representing the probability distribution of network output
actions. According to the REINFORCE algorithm, the gradient
of our objective L(θ) is expressed as

∇θL(θ) = 1
B

∑B
i=0 [(V (πi | si)− Vbl (si))∇θ logPθ (π | si)] (18)

(a) AUV number (b) Cluster number

Fig. 2: The convergence of the proposed algorithm under
different parameters.

where Vbl (si) is the reward obtained from the baseline net-
work, which is used to estimate the average performance
of the encoder-decoder based network in determining the
AUV cluster access sequence. Before training, the network
model parameters θ and the baseline model parameters θbl

are identical. After training, the parameters of the network
model are updated, and if the improvement of θ is significant
according to a paired t-test (5%), it is copied to θbl.

IV. PERFORMANCE EVALUATION

In the simulation, we consider deploying multiple AUVs
with a speed of 5 m/s for data collection in an underwater
environment of 1000 m × 1000 m × 100 m, twenty clusters
are deployed within, each containing 5 to 10 sensor nodes that
are randomly deployed. The initial VoI for data in each cluster
is randomly generated between [1, 7], with β set to 0.5 and
decay factor α set to 200. The amount of data perceived by
sensor nodes in each round is randomly generated between
40 − 50 kb. The transmission power and reception power of
sensor nodes are set to 300mW and 100mW respectively. The
maximum energy consumption constraint for nodes during
each round is set to 1.2J. To minimize the random effects
of simulation parameters, the results of all algorithms were
averaged from 20 experiment repetitions.

We first focus on the convergence of multi-AUV path plan-
ning networks with different parameters. Fig. 2 demonstrates
that the proposed algorithm achieves stable convergence. As
depicted in Fig. 2a, as the number of AUVs increases, the
convergence of the network decelerates. This is due to more
exploration is required to fully learn the task allocation among
AUVs. Meanwhile, the VoI retained by AUVs amplifies with
the increase in the number of AUVs. This trend stems from the
reduced average distance traveled by each AUV. Fig. 2b shows
the variation of system VoI with epoch when the number of
clusters increases. It can be seen that as the number of clusters
increases, the VoI retained by the AUVs increases, but also the
network convergence speed decreases as more exploration is
required to learn the path planning of AUVs.

Fig. 3 displays an example of the AUV movement paths
planned by our algorithm and the percentage of VoI retained
for each cluster in an UWSN. As shown in Fig. 3a, each AUV
tends to visit a similar number of clusters, and the clusters with



(a) Path planning result

(b) Retained VoI

Fig. 3: Example AUV path planning in the 2D plane with the
percentage of VoI retained with 3 AUVs.

higher data importance tend to be visited later. The trade-off
between the data importance and timeliness is also shown. The
selected CHs effectively shorten the travel distance of AUVs,
reducing the loss of VoI. Fig. 3b shows the retained VoI of each
cluster along the AUV movement path. All clusters preserve
more than 50% of VoI upon the AUV’s return to the surface
station. Furthermore, for the last few clusters accessed, each
one retains over 80% of VoI. This supports accessing clusters
with higher data importance later in the sequence.

We then verify the effect of different parameters on the VoI
of the system. For comparison, we consider three benchmark
schemes: GAAP [8], LG-DQN [10], and SPDC-GA [11].
As depicted in Fig. 4a, the VoI collected by each algorithm
increases with the number of AUVs. Notably, our algorithm
consistently outperforms others, yielding the highest data VoI.
This is due to the efficient learning of AUV cluster access
sequences and the selection of optimal CHs in accordance
with the sequences, thereby enhancing retained data VoI while
adhering to node energy constraints. Fig. 4b demonstrates
the relationship between the VoI obtained by each algorithm
for different number of clusters. The VoI collected by each
algorithm exhibits an increasing trend with the number of
clusters, and our algorithm consistently achieves the highest
data VoI across different cluster numbers. This is because our
algorithm uses the optimal result as the final output, which
improves the overall data VoI.

V. CONCLUSION

In this paper, we investigated the issue of data collection
in UWSNs assisted by multiple AUVs. We formulated this

(a) AUV number (b) Cluster number

Fig. 4: Comparison of collected VoI by different algorithms.

problem as a challenging combinatorial optimization problem,
aiming to maximize the VoI of the collected data. By employ-
ing EDDRL algorithm, we successfully addressed the joint
optimization of CH selection and multi-AUV path planning.
Simulation results demonstrate that the proposed algorithm
converges faster and achieves higher VoI.
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