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K-stability of Casagrande–Druel varieties
By Ivan Cheltsov at Edinburgh, Tiago Duarte Guerreiro at Orsay, Kento Fujita at Osaka,

Igor Krylov at Pohang and Jesus Martinez-Garcia at Colchester

Abstract. We introduce a new subclass of Fano varieties (Casagrande–Druel varieties)
that are n-dimensional varieties constructed from Fano double covers of dimension n � 1. We
conjecture that a Casagrande–Druel variety is K-polystable if the double cover and its base
space are K-polystable. We prove this for smoothable Casagrande–Druel threefolds, and for
Casagrande–Druel varieties constructed from double covers of Pn�1 ramified over smooth
hypersurfaces of degree 2d with n > d > n

2
> 1. As an application, we describe the connected

components of the K-moduli space parametrizing smoothable K-polystable Fano threefolds in
the families № 3.9 and № 4.2 in the Mori–Mukai classification.
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Throughout this paper, all varieties are defined over C.

1. Introduction

Let V be a Fano variety with Kawamata log terminal singularities, and let L be a line
bundle on V such that the divisor �.KV C L/ is ample, and j2Lj contains a non-zero effective
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divisor. Let R be a divisor in j2Lj, and let �WB ! V be the double cover ramified over R.
Then B can be explicitly constructed as follows. Let Y D P .OV ˚OV .L//, let � WY ! V be
the natural projection, and let � be the tautological line bundle on Y . Set H D ��.L/. Then
we have the isomorphisms

H 0.Y;OY .�// Š H
0.V;OV /˚H

0.V;OV .L//;

H 0.Y;OY .� �H// Š H
0.V;OV /˚H

0.V;OV .�L//:

Using these isomorphisms, fix sections uC 2 H 0.Y;OY .�// and u� 2 H 0.Y;OY .� �H//

that correspond to 1 2 H 0.V;OV / under the isomorphisms above. Set S˙ D ¹u˙ D 0º. Then
we have S� \ SC D ¿ and SC � S� CH . Take f 2 H 0.V;OV .2L// that defines R. Then
we can identify B with the divisor ¹��.f /.u�/2 D .uC/2º 2 j2SCj, where the double cover
� is induced by � .

Remark 1.1. We allowR to be singular, soB can be very singular (and even reducible).
However, if the log pair .V; 1

2
R/ has Kawamata log terminal singularities, then the double cover

B is a Fano variety with Kawamata log terminal singularities [29]. So, for simplicity, we will
always say that B is a Fano double cover (even if B is non-normal or reducible).

Let F D ��.R/, and let �WX ! Y be the blow up of the intersection SC \ F . Then

X is smooth ” Y and B are smooth ” V and R are smooth:

Moreover, the variety X is also a Fano variety (see Section 2).

Definition 1.2. If the Fano variety X has at most Kawamata log terminal singulari-
ties, then X is called the Casagrande–Druel variety constructed from �WB ! V (or from the
ramification divisor R � V ). Note that L 2 PicV is uniquely determined by R.

The group Aut.Y / contains a subgroup � Š Gm that fixes both S� and SC point-
wise, and the action of � lifts to Aut.X/, so we can identify � with a subgroup in Aut.X/.
In Section 2, we will show that Aut.X/ also contains an involution � such that

h�; �i Š Gm Ì �2;

and � swaps the proper transforms of the sections S� and SC. Set G D h�; �i and � D � ı �.
Then we have the commutative diagram

X X

Y Y

V V

 
!�

 !

�

 

!
�

 

! �

 

!
�

 

!�
 !

�(

(

and the composition � is a G-equivariant conic bundle such that G acts trivially on V .

Remark 1.3. Our construction of Casagrande–Druel varieties is inspired by the paper
[12]. See [12, Lemma 3.1 (iii)]. But it goes back to the construction of de Jonquieres involutions
using hyperelliptic curves instead of Fano double covers. See also [11, 20, 33, 43].
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The del Pezzo surface of degree 6 (blow up of P2 at three general points) is the unique
smooth Casagrande–Druel surface. Smooth Casagrande–Druel threefolds form 3 families. To
present them, we use labeling of smooth Fano threefolds from [7].

Example 1.4. Let V D P2, letL D OP2.1/, letR be an arbitrary smooth conic in j2Lj.
Then B Š P1 � P1, and X is the unique smooth Fano threefold in the family № 3.19.

Example 1.5. Let V D P2, let L D OP2.2/, letR be any smooth quartic curve in j2Lj.
Then B is a del Pezzo surface of degree 2, and X is a Fano threefold in the family № 3.9.

Example 1.6. Let V D P1 � P1, let L D OV .1; 1/, letR be any smooth curve in j2Lj.
Then B is a del Pezzo surface of degree 4, and X is a Fano threefold in the family № 4.2.

All smooth Casagrande–Druel threefolds are K-polystable; see [27, Theorem 6.1] and [7].
In fact, K-polystable Casagrande–Druel varieties exist in every dimension.

Example 1.7 ([16, 17]). Suppose that V D Pn�1, L D OPn�1.1/, R is smooth, n > 2.
Then X can be obtained by blowing up the n-dimensional smooth quadric at two points. The
variety X is spherical, and it is known that X is K-polystable [17, §4.4.2].

In this paper, we prove the following theorem.

Theorem 1.8. Suppose that V D Pn�1, L D OPn�1.r/, R is smooth, n > r > n
2
> 1.

Then X is K-polystable.

We obtain this result as an application of the following K-polystability criteria.

Theorem 1.9. Suppose that both V and R are smooth (or equivalently X is smooth),
and �KV �Q aL, where a 2 Q>0 such that a > 1. Let � be the smallest rational number
such that �L is very ample. Set n D dim.X/ (so dim.V / D n � 1), set d D Ln�1, set

kn.a; d; �/ D
anC1 � .a � 1/nC1

.nC 1/.an � .a � 1/n/
d�n�2 C

anC1 � .aC n/.a � 1/n

2.nC 1/.an � .a � 1/n/

and set


 D min
²

1

kn.a; d; �/
;

.nC 1/.an � .a � 1/n/

.nC 1 � a/an C .a � 1/nC1
;
aı.V /.nC 1/.an � .a � 1/n/

n.anC1 � .a � 1/nC1/

³
;

where ı.V / is the ı-invariant of the Fano variety V . If n > 3, d�n�2 > 2 and 
 > 1, then the
Casagrande–Druel variety X is K-polystable.

Remark 1.10. In the notation of Theorem 1.9, if n > 2 and d�n�2 < 2, then we have
d�n�2D 1, which gives V DPn�1 andLDOPn�1.1/, soX is K-polystable; see Example 1.7.

In this paper, we also prove the following two theorems about K-polystability of several
singular Casagrande–Druel 3-folds.
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Theorem 1.11. Suppose V D P1 � P1, L D OV .1; 1/, and R is one of the following
curves:

(1) C1 C C2, where C1 and C2 are smooth curves in jLj such that jC1 \ C2j D 2;

(2) `1 C `2 C `3 C `4, where `1 and `2 are two distinct smooth curves of degree .1; 0/, and
`3 and `4 are two distinct smooth curves of degree .0; 1/;

(3) 2C , where C is a smooth curve in jLj.

Then X is K-polystable.

Theorem 1.12. Suppose V D P2, L D OP2.2/, and R is one of the following curves:

(1) a singular reduced curve in j2Lj with at most A1 or A2 singularities;

(2) C1 C C2, where C1 and C2 are smooth conics that are tangent at two points;

(3) C C `1 C `2, where C is a smooth conic, `1 and `2 are distinct lines tangent to C ;

(4) 2C , where C is a smooth conic.

Then X is K-polystable.

To present their applications, let MKss
n;v be the K-moduli functor of Fano varieties that

have dimension n and anticanonical volume v 2 Q>0 in the sense of [47, Theorem 2.17]. Then
MKss
n;v is an Artin stack of finite type [9, 28, 45]. Moreover, as in [30, Theorem 1.3], it admits

a separated good moduli space (see [5, 10]) MKss
n;v !M

Kps
n;v in the sense of [4], where MKps

n;v

is a proper [8, 30] and projective [14, 47] scheme whose points parametrize K-polystable Fano
varieties of dimension n and anticanonical volume v. Let MKps

.3:9/
and MKps

.4:2/
be the closed

subvarieties of MKps
3;26 and MKps

3;28 whose general points parametrize smooth Fano threefolds in
the families № 3.9 and № 4.2, respectively. Then Theorems 1.11 and 1.12 imply the following
two results (see Section 6 and cf. [24]).

Corollary 1.13. Let V D P1 � P1, LD OV .1; 1/, � D .SL2.C/� SL2.C// Ì�2 and
T D P .H 0.V;OV .2; 2//

_/. Let T ss � T be the GIT semistable open subset with respect to
the natural �-action, and let M be the GIT quotient T ss == � . Then there is a morphism

ˆWM !M
Kps
3;28

2 2

Œf � 7! ŒXf �;

where Xf is the Casagrande–Druel threefold that is constructed from R D ¹f D 0º 2 j2Lj.
Furthermore, the morphism ˆ is an isomorphism onto MKps

.4:2/
, and MKps

.4:2/
is a connected

component of the scheme MKps
3;28.

Corollary 1.14. Let V D P2,L D OP2.2/, � D SL3.C/, T D P .H 0.P2;OP2.4//
_/.

Let T ss � T be the GIT semistable open subset with respect to the natural �-action, and letM
be the GIT quotient T ss == � . Then there exists a morphism

ˆWM !M
Kps
3;26

2 2

Œf � 7! ŒXf �;
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where Xf is the Casagrande–Druel threefold that is constructed from R D ¹f D 0º 2 j2Lj.
Furthermore, the morphism ˆ is an isomorphism onto MKps

.3:9/
, and MKps

.3:9/
is a connected

component of the scheme MKps
3;26.

If B is the smooth del Pezzo surface from Examples 1.4, 1.5, 1.6, then B is K-polystable.
If B is the Fano manifold from Theorem 1.8, then B is K-polystable [19, Theorem 1.1]. If B
is the singular del Pezzo surface from Theorems 1.11 and 1.12 such that R is reduced, then B
is also K-polystable [35]. Inspired by this, we pose the following conjecture.

Conjecture 1.15. If V and B are K-polystable Fano varieties, then X is K-polystable.

If B is a K-polystable Fano variety, the log Fano pair .V; 1
2
R/ is also K-polystable [31].

Thus, our conjecture is closely related to the following recent result.

Theorem 1.16 ([32]). Suppose that �KV �Q aL, where a 2 Q>0 such that a > 1. Set

�n.a/ D
anC1 � .aC n/.a � 1/n

2.nC 1/.an � .a � 1/n/
;

where n D dimX . Then X is K-semistable if and only if .V; �n.a/R/ is K-semistable.

The K-polystability of V in Conjecture 1.15 is necessary.

Example 1.17 (Yuchen Liu). Let V D P .1; 1; 4/, let L D OV .4/, let R be a general
curve in j2Lj, and let � 2 .0; 3

4
/ \Q. Then .V; �R/ is a log Fano pair. One can show that

ı.V; �R/ > 1 .ı.V; �R/ > 1; respectively/ ” � >
3

8

�
� >

3

8
; respectively

�
;

so that the singular del Pezzo surface B is K-polystable, but .V; 9
52
R/ is not K-semistable.

Hence, the threefold X is not K-semistable by Theorem 1.16.

Let us say few words about the proofs of Theorems 1.9 and 1.12. In Section 2, we will
show that X=� Š Y , and we have the following commutative diagram:

X Y

V ;

 

!�

 

!
�

 !

�

where � is the quotient map, which is a double cover ramified over our divisor B 2 j2SCj.
Thus, using [31], we see that

X is K-polystable ” the log Fano pair
�
Y;
1

2
B
�

is K-polystable:

In Section 3, we will prove the following result, which implies Theorem 1.9.

Theorem 1.18. Suppose that V and R are smooth (so B is smooth), and �KV �Q aL,
where a 2 Q>0 such that a > 1. Let � be a rational number such that �L is very ample.
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Set n D dimY (so dimV D n � 1) and d D Ln�1. Suppose n > 3 and d�n�2 > 2. Then

ı
�
Y;
1

2
B
�
> min

²
1

kn.a; d; �/
;

.nC 1/.an � .a � 1/n/

.nC 1 � a/an C .a � 1/nC1
;

aı.V /.nC 1/.an � .a � 1/n/

n.anC1 � .a � 1/nC1/

³
;

where kn.a; d; �/ is defined in Theorem 1.9.

Proof of Theorem 1.9. Indeed, notice that the right-hand side of the inequality in Theo-
rem 1.18 is precisely 
 as defined in Theorem 1.9. By assumption, 
 > 1, and so, by [31], it
follows that X is K-polystable.

We refer the reader to the excellent survey [46] for an overview on K-stability and to
[7, 22] for extensive applications of the celebrated Abban–Zhuang theory introduced in [2].
In these applications (especially in Sections 4 and 5, we will make extensive use of Zhuang’s
result [49] that equivariant K-polystability for reductive groups implies K-polystability. We
will also make frequent use of the result in [31] to determine K-stability of branched covers.

Let us describe the structure of this paper. First, in Section 2, we will prove a few basic
properties of Casagrande–Druel varieties. Then, in Section 3, we will prove Theorem 1.18. In
Sections 4 and 5, we will give proofs of Theorem 1.11 and Theorem 1.12, respectively. Finally,
in Section 6, we will prove Corollary 1.13, and we will show thatMKps

.4:2/
Š P .1; 2; 3/. We will

omit the proof of Corollary 1.14, since it is similar to the proof of Corollary 1.13.

2. Preliminaries

Let V be a (possibly non-projective) variety, letL1 andL2 be line bundles on V such that
L1 C L2 œ 0 and jL1 C L2j ¤ ¿, and let f 2 H 0.V;OV .L1 C L2// that defines a non-zero
effective divisor R on V . Set

Y1 D P .OV ˚O.L1//; Y2 D P .OV ˚O.L2//:

Now, let �1WY1 ! V and �2WY2 ! V be the natural projections, and let �1 and �2 be the
tautological line bundles on Y1 and Y2, respectively. We have the isomorphisms

H 0.Y1;OY1.�1// Š H
0.V;OV /˚H

0.V;OV .L1//;

H 0
�
Y1;OY1.�1 � �

�
1 .L1//

�
Š H 0.V;OV /˚H

0.V;OV .�L1//;

H 0.Y2;OY2.�2// Š H
0.V;OV /˚H

0.V;OV .L2//;

H 0
�
Y2;OY2.�2 � �

�
2 .L2//

�
Š H 0.V;OV /˚H

0.V;OV .�L2//:

Using these isomorphisms, fix sections

uC1 2 H
0.Y1;OY1.�1//; u�1 2 H

0
�
Y1;OY1.�1 � �

�
1 .L1//

�
;

uC2 2 H
0.Y2;OY2.�2//; u�2 2 H

0
�
Y2;OY2.�2 � �

�
2 .L2//

�
that correspond to the section 1 2 H 0.V;OV /. Let

S�1 D ¹u
�
1 D 0º � Y1; SC1 D ¹u

C
1 D 0º � Y1;

S�2 D ¹u
�
2 D 0º � Y2; SC2 D ¹u

C
2 D 0º � Y2:
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For i 2 ¹1; 2º, the divisors S�i and SCi are disjoint sections of the natural projection �i such
that S�i jS�i � �Li � �S

C
i jS

C

i
, where we use isomorphisms S�i Š V Š S

C
i induced by �i .

Now, we set Q D Y1 �V Y2. Then we have the canonical isomorphisms

P
�
OY1 ˚OY1.�

�
1 .L2//

�
Š Q Š P

�
OY2 ˚OY2.�

�
2 .L1//

�
;

so that we have the commutative Cartesian diagram

Q

Y1 Y2

V ;

 !

�1  

!
�2

 

!�1
 !

�2

where �1 and �2 are natural projections. Set # D �1 ı �1 D �2 ı �2.
Set F1 D ��1 .R/ � Y1. Let �1WX ! Y1 be the blow up along the intersection F1 \ SC1 ,

and let E1 be the �1-exceptional divisor. Note that F1 C S�1 corresponds to

��1 .f /u
�
1 2 H

0
�
Y1;OY1.�1 C �

�
1 .L2//

�
and SC1 corresponds to uC1 2 H

0.Y1;OY1.�1//. Thus, the ideal sheaf I � OY1 of F1 \ SC1
admits the surjection

OY1.�1 C �
�
1 .L2//˚OY1.�1/! I ! 0:

Therefore, there is a natural closed embedding X ,! Q over V such that its image is the
effective divisor defined by the zeroes of the section

#�.f /u�1 u
�
2 � u

C
1 u
C
2 2 H

0
�
Q;OQ.�

�
1.�1/C �

�
2.�2//

�
;

where we identified H 0.Q;OQ.�
�
i .D/// D H

0.Yi ;OYi .D// for every D 2 Pic.Yi /.
Let us identify X with its image in Q. Set � D �1 ı �1. Then � is induced by # , it is

a conic bundle, and R is its discriminant divisor. Set

S1 D �
�
1 .S
�
1 /; S2 D �

�
1 .S
C
1 / �E1; E2 D �

�
1 .F1/ �E1:

Then S1, S2, E2 are effective Cartier divisors on the variety X ; these are the proper transforms
of the divisors S�1 , SC1 , F1, respectively. Moreover, the divisors S1 and S2 are mutually disjoint
sections of the conic bundle � . Furthermore, we have

S1jS1 � �L1 and S2jS2 � �L2;

where we use isomorphisms S1 Š V and S2 Š V induced by � . Similarly, we see that the
divisor E1 CE2 is given by zeroes of the section

��.f / 2 H 0
�
X;OX .�

�.L1 C L2//
�
Š H 0.V;OV .L1 C L2//:

Set F2 D ��2 .R/ � Y2, and let �2WX ! Y2 be the morphism induced by �2WQ! Y2.
Since the defining equation of X � Q is symmetric, we conclude that �2 is the blow up along
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the scheme-theoretic intersection F2 \ SC2 , the �2-exceptional divisor is E2, and there exists
the following commutative diagram:

X

Y1 Y2

V :

 !

�1  

!
�2 

!

�

 

!�1
 !

�2

This is an elementary transformation of the P1-bundle �1 in the sense of Maruyama [33]. Now,
using [33, Theorem 1.4] and [33, Proposition 1.6], we see that

S1 D �
�
2 .S
C
2 / �E2; S2 D �

�
2 .S
�
2 /; E1 D �

�
2 .F1/ �E2:

Remark 2.1. Let U D P .OV ˚OV .�L1/˚OV .�L2//, let �U be the tautological
line bundle on the variety U , let �U WU ! V be the natural projection. We have the isomor-
phisms

H 0.U;OU .�U // Š H
0.V;OV /˚H

0.V;OV .�L1//˚H
0.V;OV .�L2//;

H 0
�
U;OU .�U C �

�
U .L1//

�
Š H 0.V;OV /˚H

0.V;OV .L1//˚H
0.V;OV .L1 � L2//;

H 0
�
U;OU .�U C �

�
U .L2//

�
Š H 0.V;OV /˚H

0.V;OV .L2//˚H
0.V;OV .L2 � L1//:

Using these isomorphisms, fix sections

v0 2 H
0.U;OU .�U //;

v1 2 H
0
�
U;OU .�U C �

�
U .L1//

�
;

v2 2 H
0
�
U;OU .�U C �

�
U .L2//

�
;

which correspond to the section 1 2 H 0.V;OV /. Recall that Q=V Š P1 � P1. Projecting
from the section u�1 D u

�
2 D 0, we get a birational map QÜ U . Since X=V is a .1; 1/ divi-

sor onQ=V which does not pass through the point (section) we project from, the map restricts
to an isomorphism of X on its image. The image of X on U is a conic given by the equation

��U .f /v
2
0 � v1v2 D 0;

so that we can identify X with a Cartier divisor on U such that X � 2�U C ��U .L1 C L2/.

Proposition 2.2. Suppose that V is normal and projective, and KV is Q-Cartier. Then
X is normal, and KX is Q-Cartier. Moreover, the following assertion holds:

�KX is ample ” �KV ;�KV � L1;�KV � L2 are ample:

Proof. The normality of the variety X follows from Remark 2.1 and [25, Proposi-
tion 5.24]. Similarly, using notation introduced in Remark 2.1, we see that

KU �Q �3�U C �
�
U .KV � L1 � L2/;

so KX is Q-Cartier by the adjunction formula, because X is a Cartier divisor on U .
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To prove the remaining assertion, suppose that �KV , �KV � L1, �KV � L2 are ample.
Then �U C ��U .�KV / in Remark 2.1 is ample. Then so is �KX �Q .�U C �

�
U .�KV //jX .

Alternatively, we can prove the ampleness of �KX directly. Namely, observe that

(2.1) �KX �Q S1 C S2 C �
�.�KV /:

Moreover, applying the adjunction formula to the sections S1 and S2, we get

�KX jS1 �Q �KV � L1; �KX jS2 �Q �KV � L2;

where we used S1 Š V and S2 Š V . Hence, if �KV , �KV � L1, �KV � L2 are ample, then
the divisor �KX is also ample by Kleiman’s ampleness criterion.

This also shows that both divisors �KV � L1, �KV � L2 are ample if �KX is ample.
Observe that E1 \E2 Š R. Using this isomorphism and (2.1), we get �KV jR � �KX jR. On
the other hand, we have

�2KV �Q .�KV � L1/C .�KV � L2/CR:

Hence, using Kleiman’s criterion again, we see that �KV is ample if �KX is ample.

From now on, we assume, in addition, that V is normal and projective.

Example 2.3. Suppose V D P1 � P1, and L1 and L2 are divisors of degrees .1; 0/
and .0; 1/, and R is a smooth divisor in jL1 C L2j. Then X is a smooth Fano 3-fold by Propo-
sition 2.2. One can show that X is the unique smooth Fano 3-fold in the deformation family
№ 4.7. Note that X is K-polystable [7, §3.3].

Remark 2.4 ([21, Lemma 9.8]). Suppose that V is a smooth Fano variety, and assume
�KV �Q aL, where L is an ample divisor in Pic.V /, and a 2 Q>0. Suppose R and X are
smooth, and

L1 �Q a1L; L2 �Q a2L;

where a1 and a2 are rational numbers such that a1 > a2. It follows from Proposition 2.2 that
X is a Fano variety if and only if a > a1. Further, if X is a Fano variety, then it follows from
the proof of [21, Lemma 9.8] that

ˇ.S2/ < 0 ” a1 > a2:

Therefore, if a > a1 > a2, then X is a K-unstable Fano variety.

From now on, we also assume that L1 D L2. Set L D L1. Then R 2 j2Lj. Set

Y D P .OV ˚O.L//:

let � WY ! V be the natural projection, and let � be the tautological line bundle on Y . Note
that Y Š Y1 Š Y2. Using the isomorphisms

H 0.Y;OY .�// Š H
0.V;OV /˚H

0.V;OV .L//;

H 0
�
Y;OY .� � �

�.L//
�
Š H 0.V;OV /˚H

0.V;OV .�L//;

fix uC 2H 0.Y;OY .�// and u� 2H 0.Y;OY .� � �
�.L/// that correspond to 1 2H 0.V;OV /.

Let S� D ¹u� D 0º and SC D ¹uC D 0º. Then SC � S� C ��.L/.



10 Cheltsov, Duarte Guerreiro, Fujita, Krylov and Martinez-Garcia, Casagrande–Druel varieties

Proposition 2.5. There is a double cover X ! Y ramified in a divisor B 2 j2SCj such
that the projection � induces a double cover B ! V that is ramified in R.

Proof. Let T D P .OV ˚OV .�L//˚OV .�2L//, let $ WT ! V be the natural pro-
jection, and let �T be the tautological line bundle on T . Observe that

H 0.T;OT .�T // Š H
0.V;OV /˚H

0.V;OV .�L//˚H
0.V;OV .�2L//;

H 0
�
T;OT .�T C$

�.L//
�
Š H 0.V;OV /˚H

0.V;OV .L//˚H
0.V;OV .�L//;

H 0
�
T;OT .�T C$

�.2L//
�
Š H 0.V;OV /˚H

0.V;OV .2L//˚H
0.V;OV .L//:

Using these isomorphisms, fix sections

t0 2 H
0.T;OT .�T //;

t1 2 H
0
�
T;OT .�T C$

�.L//
�
;

t2 2 H
0
�
T;OT .�T C$

�.2L//
�
;

which corresponds to 1 2 H 0.V;OV /. Then

¹t0 D 0º Š P .OV .�L/˚OV .�2L//;

¹t1 D 0º Š P .OV ˚OV .�2L//;

¹t2 D 0º Š P .OV ˚OV .�L//:

Now, we consider the homomorphism

(2.2) OQ ˚OQ.#
�.L//˚OQ.#

�.2L//! OQ.�
�
1.�1/C �

�
2.�2//

defined by the composition of0BBBB@
1 0 0

0 1
2

0

0 1
2

0

0 0 1

1CCCCAWOQ ˚OQ.#
�.L//˚OQ.#

�.2L//

! OQ ˚OQ.#
�.L//˚OQ.#

�.L//˚OQ.#
�.2L//

and the surjection

OQ ˚OQ.#
�.L//˚OQ.#

�.L//˚OQ.#
�.2L//� OQ.�

�
1.�1/C �

�
2.�2//

obtained by the tensor product of the pullbacks of the following natural surjections:

OY1 ˚OY1.�
�
1 .L1//� OY1.�1/;

OY2 ˚OY2.�
�
2 .L2//� OY2.�2/:

Then (2.2) is surjective. This gives the morphism �WQ! T over V with

��.t0/ D u
�
1 u
�
2 ;

��.t1/ D
1

2
.uC1 u

�
2 C u

�
1 u
C
2 /;

��.t2/ D u
C
1 u
C
2 ;

where we identified H 0.Q;OQ.�
�
i .D/// D H

0.Yi ;OYi .D// for D 2 Pic.Yi /.
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Using the local criterion for flatness, we see that � is flat. Further, � is finite of degree 2.
Now, using [23, I (6.11)] and [23, I (6.12)], we see that the morphism � is branched over the
divisor BT 2 j2.�T C$�.L//j that is given by t21 � t0t2 D 0.

Let Y0 be the divisor in j�T C$�.2L/j that is given by $�.f /t0 � t2 D 0, and let
�0WY0 ! V be the morphism induced by$ . Then X D ��.Y0/ as Cartier divisors, so that the
restrictionX ! Y0 is a double cover branched overBT jY0 . Moreover, using the exact sequence

0! OV .�2L/

 
f
0
�1

!
����! OV ˚OV .�L/˚OV .�2L/

�
1 0 f
0 1 0

�
������! OV ˚OV .�L/! 0;

we get an isomorphism Y0 Š Y over V . Hence, we identify Y D Y0.
Set B D BT jY . Then B is defined by

.uC/2 � ��.f /.u�/2 D 0;

which implies the remaining assertions of the proposition.

Let � 2 Aut.X/ be the Galois involution of the double cover X ! Y in Proposition 2.5.
Then �.S1/ D S2 and �.E1/ D E2, and it follows from the proof of Proposition 2.5 that the
conic bundle � WX ! V is h�i-equivariant with � acting trivially on V .

Proposition 2.6. Suppose that V is smooth, L is nef, X has Kawamata log terminal
singularities, and �KX is ample. Then the deformations of X are unobstructed.

Proof. By Remark 2.1,X can be embedded into U D PV .OV ˚OV .�L/˚OV .�L//

such that X 2 j2�U C 2��U .L/j, where �U is the tautological line bundle and �U is the natural
projection. Therefore, since U is smooth, the variety X has at worst canonical singularities,
and X has at worst local complete intersection singularities. Hence, it follows from [42, Theo-
rem 2.3.2], [42, Theorem 2.4.1], [42, Corollary 2.4.2] that the deformation functor

DefX WA! .Sets/

has a semi-universal formal element in the sense of [42, Definition 2.2.6], where A is the
category of local C-algebras with the residue field C. Thus, by [41, Proposition 2.4] and
[41, Proposition 2.6], the deformations of X are unobstructed if Ext2

OX
.�1X ;OX / D 0.

Let us show that Ext2
OX
.�1X ;OX / D 0. Set n D dim.X/. As in [41, §1.2], we have

Ext2OX .�
1
X ;OX / ' Ext2OX .�

1
X ˝ !X ; !X / ' H

n�2.X;�1X ˝ !X /
_:

Since �KV and �KV � L are ample by Proposition 2.2 and L is nef, we see that

�U C �
�
U .�KV /

is ample, and �U C ��U .L/ is nef. In particular, both divisors

�KU � 3�U C �
�
U .�KV C 2L/;

�KU �X � �U C �
�
U .�KV /

are ample. On the other hand, using the exact sequence of sheaves

0! OU .�X/jX ! �1U jX ! �1X ! 0;
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we get the following exact sequence:

Hn�2.X;�1U jX ˝ !X /! Hn�2.X;�1X ˝ !X /! Hn�1.X;OU .�X/jX ˝ !X /:

Moreover, using the Kawamata–Viehweg vanishing theorem, we get

Hn�1.X;OU .�X/jX ˝ !X / ' H
1.X;KX C .�KU /jX /

_
D 0:

Furthermore, using the exact sequence of sheaves

0! �1U ˝ !U ! �1U ˝ !U .X/! �1U jX ˝ !X ! 0;

we get the exact sequence

Hn�2.U;�1U ˝ !U .X//! Hn�2.X;�1U jX ˝ !X /! Hn�1.U;�1U ˝ !U /:

Since both !U and !U .X/ are anti-ample, the Akizuki–Nakano vanishing theorem gives

Hn�2.U;�1U ˝ !U .X// D H
n�1.U;�1U ˝ !U / D 0:

This gives Ext2
OX
.�1X ;OX / D 0, which completes the proof.

3. K-polystability criteria

The goal of this section is to prove Theorem 1.18. To do so, we will apply the theory of
Abban–Zhuang [2], as applied in [7, §1.7] and [22], consisting on bounding delta-invariants
below by picking a specific flag.

Fix a positive integer n > 3. Let V be a smooth projective variety of dimension n � 1,
and let L be an ample Cartier divisor on V . Set d D Ln�1. Fix � 2 Q>0 such that �L
is very ample. Let Y D P .OV ˚OV .L//, and let � WY ! V be the natural projection. Set
H D ��.L/. Let S� and SC be disjoint sections of the projection � such that SC � S� CH .

Remark 3.1. Unlike Section 1, we do not assume that V is a Fano variety.

Fix a positive rational number a > 1. Let D.a/ D S� C aH . Then D.a/ is nef and big.
Moreover, if a > 1, then D.a/ is ample.

Lemma 3.2 (cf. [48]). Let P be a point in S�. Then

ıP .Y ID.a// > min
²

.nC 1/.an � .a � 1/n/

.nC 1 � a/an C .a � 1/nC1
;
ı.V IL/.nC 1/.an � .a � 1/n/

n.anC1 � .a � 1/nC1/

³
;

where ıP .Y ID.a// is the (local) ı-invariant of the variety Y polarized by the divisor D.a/,
and ı.V IL/ is the ı-invariant of V polarized by L. Further, if ı.V IL/ 6 a, then

ıP .Y ID.a// >
ı.V IL/.nC 1/.an � .a � 1/n/

n.anC1 � .a � 1/nC1/
:

Proof. It follows from [2, 7] that

ıP .Y ID.a// > min
²

1

SD.a/.S
�/
; inf

F=S�

P2CS� .F /

AS�.F /

S.W S�
�;� IF /

³
;
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where S.W S�

�;� IF / is defined in [7, Section 1.7], and the infimum is taken over all prime
divisors over S� whose centers on S� contain P . This easily implies the required assertion.

Indeed, take u 2 R>0. Then D.a/ � uS� �R .1 � u/S� C aH , so that

D.a/ � uS� is nef ” D.a/ � uS� is pseudo-effective ” u 6 1:

Thus, since vol.D.a// D D.a/n D d.an � .a � 1/n/, we have

SD.a/.S
�/ D

1

D.a/n

Z 1
0

vol.D.a/ � uS�/ du

D
1

d.an � .a � 1/n/

Z 1

0

..1 � u � a/n.�1/nC1d C and/ du

D
.nC 1 � a/an C .a � 1/nC1

.nC 1/.an � .a � 1/n/
:

Using S� Š V , we get .D.a/ � uS�/jS� �R .aC u � 1/H jS� �R .aC u � 1/L.
Let F be any prime divisor over S�. Then it follows from [7, Section 1.7] that

S.W S�

�;� IF / D
n

D.a/n

Z 1

0

Z 1
0

vol..D.a/ � uS�/jS� � vF / dv du

D
n

D.a/n

Z 1

0

Z 1
0

vol..aC u � 1/L � vF / dv du

D
n

D.a/n

Z 1

0

.aC u � 1/n
Z 1
0

vol.L � vF / dv du

D
n

d.an � .a � 1/n/
�
anC1 � .a � 1/nC1

nC 1

Z 1
0

vol.L � vF / dv

D
n

nC 1

anC1 � .a � 1/nC1

d.an � .a � 1/n/
� Ln�1SL.F /

D
n

nC 1

anC1 � .a � 1/nC1

an � .a � 1/n
SL.F /:

This gives

AS�.F /

S.W S�
�;� IF /

D
AS�.F /

SL.F /
�
nC 1

n
�

an � .a � 1/n

anC1 � .a � 1/nC1

6 ıP .V IL/ �
nC 1

n
�

an � .a � 1/n

anC1 � .a � 1/nC1
;

which implies the first part of the assertion.
We now assume ı.V IL/ 6 a and we want to show

.nC 1/.an � .a � 1/n/

.nC 1 � a/an C .a � 1/nC1
>
ı.V IL/.nC 1/.an � .a � 1/n/

n.anC1 � .a � 1/nC1/
:

This inequality is equivalent to

ı.V IL/ 6
n.anC1 � .a � 1/nC1/

.nC 1 � a/an C .a � 1/nC1
:
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We must show that the right-hand side of the inequality above is at least a. But

n.anC1 � .a � 1/nC1/

.nC 1 � a/an C .a � 1/nC1
> a ” anC1.a � 1/ � .a � 1/nC1.aC n/ > 0;

which is clearly true.

Now, fix a smooth divisor B 2 j2SCj. Let �WB ! V be the morphism induced by � .
Suppose that � is the double cover ramified over a smooth divisor R 2 j2Lj. Set � D 1

2
B .

Note that B \ S� D ¿. Let kn.a; d; �/ be the number defined in Theorem 1.9.

Proposition 3.3. Let P be a point in Y n S�. Suppose that d�n�2 > 2. Then

ıP .Y;�ID.a// >
1

kn.a; d; �/
;

where ıP .Y;�ID.a// is the (local) ı-invariants of the pair .Y;�/ polarized by D.a/.

This result together with Lemma 3.2 implies Theorem 1.18.

Proof of Theorem 1.18. Note that V is a Fano variety and �KV �Q aL. Then

�KY � 2S
C
� ��.KV C L/ �Q 2SC C .a � 1/H;

which gives
�.KY C�/ �Q SC C .a � 1/H �Q S� C aH D D.a/;

so that .Y;�/ is the log Fano pair and

ı.Y;�/ D ı.Y;�ID.a//;

where ı.Y;�/ is the ı-invariant of the log Fano pair .Y;�/. Now, we can apply Lemma 3.2
and Proposition 3.3 to get the required assertion.

In the remaining part of the section, we will prove Proposition 3.3 by induction on n.

3.1. Base of induction. Let V be a smooth projective surface, letL be an ample Cartier
divisor on V , let � be the smallest rational number such that �L is very ample, let

Y D P .OV ˚OV .L//;

and let � WY ! V be the natural projection. Set H D ��.L/. Let S� and SC be disjoint sec-
tions of the projection � such that SC � S� CH , and let B be an irreducible normal surface
in j2SCj such that � induces a double cover B ! V which is ramified in a reduced curve
R 2 j2Lj. Fix a 2 Q such that a > 1. Let D.a/ D S� C aH . Then D.a/ is nef and big, and
D.a/ is ample for a > 1. Set � D 1

2
B and d D L2.

Remark 3.4. Since �L is very ample and L is Cartier, we have d� D .�L/ � L 2 Z>0
and

d�2 D .�L/2 2 Z>0:

Moreover, if d� D 1, then � D 1, d D L2 D 1, V D P2 and L D OP2.1/.
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Suppose, in addition, that d� > 2. Set

k3.a; d; �/ D
8d�a3 C 6.1 � 2d�/a2 C 8.d� � 1/a � 2d�C 3

8.3a2 � 3aC 1/
:

Let P be a point in Y such that P … S� and P … Sing.B/.

Proposition 3.5. One has ıP .Y;�ID.a// > 1
k3.a;d;�/

.

In the remaining part of this subsection, we will prove this result. We will only consider
the case P 2 B , because the case P … B is much simpler.

Let V1 be a general curve in j�Lj that contains the point �.P /, and let Y1 D ��.V1/.
Then V1 is a smooth curve, and Y1 is a smooth surface. For simplicity, we setD D D.a/. Take
u 2 R>0. Then D � uY1 �R S� C .a � �u/H , so that D � uY1 is pseudo-effective if and
only if u 6 a

�
. We have

.D � uY1/jS� �R .S� C .a � �u/H/jS� �R .a � 1 � �u/L;

where we use isomorphism S� Š V induced by � . Hence, the divisor D � uY1 is nef if and
only if u 6 a�1

�
. Moreover, the Zariski decomposition of D � uY1 is

P.u/ �R

´
S� C .a � �u/H if u 2 Œ0; a�1

�
�;

.a � �u/.S� CH/ D .a � �u/SC if u 2 Œa�1
�
; a
�
�;

and

N.u/ D

´
0 if u 2 Œ0; a�1

�
�;

.�uC 1 � a/S� if u 2 Œa�1
�
; a
�
�;

where P.u/ is the positive part, and N.u/ is the negative part.
Note that H 3 D 0, H 2 � S� D d , H � .S�/2 D �d , .S�/3 D d . Then

SD.Y1/ D
1

D3

Z a
�

0

vol.D � uY1/ du

D
1

.S� C aH/3

�Z a�1
�

0

.S� C .a � �u/H/3 du

C

Z a
�

a�1
�

..a � �u/.S� CH//3 du

�
D
.2a � 1/.2a2 � 2aC 1/

4�.3a2 � 3aC 1/
:

Let f be the fiber of the P1-bundle � that contains P . Then there are two cases to
consider: either B intersects f transversely at P or tangentially. For each case, we consider
an appropriate plt blow up hW zY1 ! Y1 at the point P with smooth exceptional curve E. We
let �1 D �jY1 , and we denote by z�1 the proper transform on zY1 of the divisor �1. Then it
follows from [2, 7, 22] that

ıP .Y;�/ > min
²

1

SD.Y1/
;
AY1;�1.E/

S.V
Y1
�;� IE/

; inf
Q2E

AE;�E .Q/

S.V
zY1;E
�;�;� IQ/

³
:
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where S.V Y1�;� IE/ and S.V
zY1;E
�;�;� IQ/ are defined in [7, Section 1.7], and �E is the different

computed via the adjunction formula

KE C�E D .K zY1 C
z�1 CE/jE :

For instance, if h is the ordinary blow up at the point P , then �E D z�1jE . For simplicity, we
rewrite the last inequality as

(3.1)
1

ıP .Y;�/
6 max

²
SD.Y1/;

S.V
Y1
�;� IE/

AY1;�1.E/
; sup
Q2E

S.V
zY1;E
�;�;� IQ/

AE;�E .Q/

³
:

Thus, to prove Proposition 3.5, it is enough to bound each term in (3.1) by k3.a; d; �/.
We set S�1 D S

�jY1 , H1´ H jY1 , B1´ BjY1 , D1 D P.u/jY1 . Note that H1 � d�f
and

D1 �

´
S�1 C .a � �u/d�f if u 2 Œ0; a�1

�
�;

.a � �u/.S�1 C d�f / if u 2 Œa�1
�
; a
�
�:

We denote by zS�1 , zB1, zf the proper transforms on zY1 of the curves S�1 , B1, f , respectively.
Recall that Y1 is a P1-bundle over the smooth curve V1. In Lemmas 3.6 and 3.7, we estimate
ıP .Y;�ID.a// when B and f intersect transversely or tangentially, respectively. Notice that
zY1 has Picard rank 3 and its Mori cone is generated by the divisors zS�1 , zf and E.

Lemma 3.6. Suppose B intersects f transversally. Then ıP .Y;�ID.a// > 1
k3.a;d;�/

.

Proof. Let hW zY1 ! Y1 be the ordinary blow up at P , where E is the h-exceptional
curve. We have zS�1 � h

�.S�1 / and zf � h�.f / �E. Take v 2 R>0. Then

h�.D1/ � vE �

´
zS�1 C .a � �u/d�

zf C ..a � �u/d� � v/E if u 2 Œ0; a�1
�
�;

.a � �u/. zS�1 C d�
zf /C ..a � �u/d� � v/E if u 2 Œa�1

�
; a
�
�:

We have the following intersection numbers:

� zS�1
zf E

zS�1 �d� 1 0

zf 1 �1 1

E 0 1 �1

This shows that h�.D1/ � vE is pseudo-effective if and only if v 6 .a � �u/d�.
If u 2 Œ0; a�1

�
�, the positive part of the Zariski decomposition of h�.D1/ � vE is

zP .u; v/ �

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

zS�1 C .a � �u/d�
zf C ..a � �u/d� � v/E

if v 2 Œ0; 1�;

zS�1 C ..a � �u/d�C 1 � v/
zf C ..a � �u/d� � v/E

if v 2 Œ1; 1 � d�2uC ad� � d��;
�d�2uC ad� � v

d� � 1
. zS�1 C d�

zf C .d� � 1/E/

if v 2 Œ1 � d�2uC ad� � d�; .a � �u/d��;
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and the negative part is

zN.u; v/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 if v 2 Œ0; 1�;

.v � 1/ zf if v 2 Œ1; 1 � d�2uC ad� � d��;

d�.�u � aC v/

d� � 1
zf C

d�2u � ad�C d�C v � 1

d� � 1
zS�1

if v 2 Œ1 � d�2uC ad� � d�; .a � �u/d��:

Similarly, if u 2 Œa�1
�
; a
�
�, the positive part of the Zariski decomposition of h�.D1/ � vE is

zP .u; v/ �

8̂̂̂̂
<̂
ˆ̂̂:
.a � �u/. zS�1 C d�

zf /C ..a � �u/d� � v/E

if v 2 Œ0; a � �u�;
1

d� � 1
.�d�2uC ad� � v/. zS�1 C d�

zf C .d� � 1/E/

if v 2 Œa � �u; .a � �u/d��:

and the negative part is

zN.u; v/ D

8̂̂<̂
:̂
0 if v 2 Œ0; a � �u�;
1

d� � 1
.d�.�u � aC v/ zf C .�u � aC v/ zS�1 /

if v 2 Œa � �u; .a � �u/d��:

Now, using results from [7, Section 1.7], we compute

S.W
zY1
�;� IE/ D

3

D3

Z a
�

0

Z .a��u/d�

0

vol.D1 � vF / dv du

D
3

.S� C aH/3

Z a
�

0

Z .a��u/d�

0

zP .u; v/2 dv du

D
4a3d�C 6.1 � d�/a2 C 4.d� � 2/a � d�C 3

4.3a2 � 3aC 1/
:

Moreover, we have AY1;�1.E/ D 2 �
1
2
D

3
2

, so that

S.W
Y1
�;� IE/

AY1;�1.E/
D
4a3d�C 6.1 � d�/a2 C 4.d� � 2/a � d�C 3

6.3a2 � 3aC 1/
:

Let Q be a point in E. Then, using results from [7, Section 1.7], we compute

S.W
zY1;E
�;�;� IQ/ D

3

.S� C aH/3

Z a
�

0

Z .a��u/d�

0

. zP .u; v/ �E/2 dv duC Fq.W
zY1;E
�;�;� /

D
6a2 � 8aC 3

4.3a2 � 3aC 1/
C FQ.W

zY1;E
�;�;� /;

where

FQ.W
zY1;E
�;�;� / D

6

.S� C aH/3

Z a
�

0

Z .a��u/d�

0

. zP .u; v/ �E/ � ordQ. zN.u; v/jE / dv du;

because P … Supp.N.u// for u 2 Œ0; a
�
�. Notice that

FQ.W
zY1;E
�;�;� / ¤ 0

only when Q 2 zf .
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Thus, there are three cases to consider.

� Q D E \ zf . Then

FQ.W
zY1;E
�;�;� / D

3 � 8aC 6a2 C d� � 4ad�C 6a2d� � 4a3d�

4.3a2 � 3aC 1/

and AE;�E .Q/ D 1 since Q … zB1. Hence, we have

S.W
zY1;E
�;�;� IQ/

AE;�E .Q/
D
d�.2a � 1/.2a2 � 2aC 1/

4.3a2 � 3aC 1/
:

� Q 2 E \ zB1. Then AE;�E .Q/ D
1
2

, so that

S.W
zY1;E
�;�;� IQ/

AE;�E .Q/
D

6a2 � 8aC 3

2.3a2 � 3aC 1/
:

� Q 2 E away from zf and zB1. Then AE;�E .Q/ D 1, so that

S.W
zY1;E
�;�;� IQ/

AE;�E .Q/
D

6a2 � 8aC 3

4.3a2 � 3aC 1/
:

The third case is smaller than the previous one (exactly half), so we do not consider it. So,
using (3.1), we obtain the inequality

1

ıP .Y;�/
6 max

²
.2a � 1/.2a2 � 2aC 1/

4�.3a2 � 3aC 1/
;

4a3d�C 6.1 � d�/a2 C 4.d� � 2/a � d�C 3

6.3a2 � 3aC 1/
;

d�.2a � 1/.2a2 � 2aC 1/

4.3a2 � 3aC 1/
;
6a2 � 8aC 3

2.3a2 � 3aC 1/

³
:

(3.2)

Recall from Remark 3.4 that d�2 > 1. This allows us to conclude

d�.2a � 1/.2a2 � 2aC 1/

4.3a2 � 3aC 1/
>
.2a � 1/.2a2 � 2aC 1/

4�.3a2 � 3aC 1/
;

so we can discard the first term in (3.2). Moreover, since d� > 2, we have

4a3d�C 6.1 � d�/a2 C 4.d� � 2/a � d�C 3

6.3a2 � 3aC 1/
6 k3.a; d; �/;

d�.2a � 1/.2a2 � 2aC 1/

4.3a2 � 3aC 1/
6 k3.a; d; �/;

6a2 � 8aC 3

2.3a2 � 3aC 1/
6 k3.a; d; �/;

which gives ıP .Y;�ID.a// > 1
k3.a;d;�/

.

Now, we deal with the case when f is tangent to B at the point P .
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Lemma 3.7. Suppose B and f are tangent at P . Then ıP .Y;�ID.a// > 1
k3.a;d;�/

.

Proof. Now, we let hW zY1 ! Y1 be the .1; 2/-weighted blow up of the point P such that
the curves zB1 and zf are disjoint. Then zf D h�.f / � 2E. Take v 2 R>0. Then

h�.D1/ � vE �

´
zS�1 C .a � �u/d�

zf C .2.a � �u/d� � v/E if u 2 Œ0; a�1
�
�;

.a � �u/. zS�1 C d�
zf /C .2.a � �u/d� � v/E if u 2 Œa�1

�
; a
�
�:

Moreover, we have the following intersection numbers:

� zS�1
zf E

zS�1 �d� 1 0

zf 1 �2 1

E 0 1 �
1
2

Thus, the divisor h�.D1/ � vE is pseudo-effective if and only if v 6 2.a � �u/d�.
If u 2 Œ0; a�1

�
�, the positive part of the Zariski decomposition of h�.D1/ � vE is

zP .u; v/ �

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

zS�1 C .a � �u/d�
zf C .2.a � �u/d� � v/E

if v 2 Œ0; 1�;

zS�1 C
�
.a � �u/d�C

1 � v

2

�
zf C .2.a � �u/d� � v/E

if v 2 Œ1;�2d�2uC 2ad� � 2d�C 1�;
�2d�2uC 2ad� � v

2d� � 1
. zS�1 C d�

zf C .2d� � 1/E/

if v 2 Œ�2d�2uC 2ad� � 2d�C 1; 2.a � �u/d��;

and the negative part is

zN.u; v/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 if v 2 Œ0; 1�;
v � 1

2
zf if v 2 Œ1;�2d�2uC 2ad� � 2d�C 1�;

d�.�u � aC v/

2d� � 1
zf C

2d�2u � 2ad�C 2d�C v � 1

2d� � 1
zS�1

if v 2 Œ�2d�2uC 2ad� � 2d�C 1; 2.a � �u/d��:

Similarly, if u 2 Œa�1
�
; a
�
�, the positive part of the Zariski decomposition of h�.D1/ � vE is

zP .u; v/ �

8̂̂̂̂
<̂
ˆ̂̂:
.a � �u/. zS�1 C d�

zf /C .2.a � �u/d� � v/E

if v 2 Œ0; a � �u�;
�2d�2uC 2ad� � v

2d� � 1
. zS�1 C d�

zf C .2d� � 1/E/

if v 2 Œa � �u; 2.a � �u/d��;

and the negative part is

zN.u; v/ D

8<:0 if v 2 Œ0; a � �u�;
d�.�u � aC v/

2d� � 1
zf C

�u � aC v

2d� � 1
zS�1 if v 2 Œa � �u; 2.a � �u/d��:
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Now, using results from [7, Section 1.7], we compute

S.W Y1
�;� IE/ D

3

D3

Z a
�

0

Z 2.a��u/d�

0

vol.D1 � vF / dv du

D
3

.S� C aH/3

Z a
�

0

Z 2.a��u/d�

0

zP .u; v/ dv du

D
1

4
�
8a3d�C 6.1 � 2d�/a2 C 8.d� � 1/a � 2d�C 3

3a2 � 3aC 1

Moreover, since AY1;�1.E/ D 2, we have

S.W
Y1
�;� IE/

AY1;�1.E/
D
1

8
�
8a3d�C 6.1 � 2d�/a2 C 8.d� � 1/a � 2d�C 3

3a2 � 3aC 1
:

Let Q be a point in E. Using results from [7, Section 1.7], we get

S.W
zY1;E
�;�;� IQ/ D

3

.S� C aH/3

Z a
�

0

Z 2.a��u/d�

0

. zP .u; v/ �E/2 dv duC FQ.W
zY1;E
�;�;� /

D
1

8
�
6a2 � 8aC 3

3a2 � 3aC 1
C FQ.W

zY1;E
�;�;� /;

where

FQ.W
zY1;E
�;�;� / D

6

.S� C aH/3

Z a
�

0

Z 2.a��u/d�

0

. zP .u; v/ �E/ � ordQ. zN.u; v/jE / dv du:

There are three cases to consider.

� Q D E \ zf . Then

FQ.W
zY1;E
�;�;� / D

1

8

8a3d� � 6.2d� � 1/a2 C 8.d�C 1/a � 2d� � 3

3a2 � 3aC 1

and AE;�E .Q/ D 1 since Q … zB1. Hence, we have

S.W
zY1;E
�;�;� IQ/

AE;�E .Q/
D
d�

4
�
.2a � 1/.2a2 � 2aC 1/

3a2 � 3aC 1
:

� Q 2 E \ zB . Then AE;�E .Q/ D
1
2

, so that

S.W
zY1;E
�;�;� IQ/

AE;�E .Q/
D
1

4
�
6a2 � 8aC 3

3a2 � 3aC 1
:

� Q 2 E is the A1 singularity. Then AE;�E .Q/ D
1
2

, and so

S.W
zY1;E
�;�;� IQ/

AE;�E .Q/
D
1

4
�
6a2 � 8aC 3

3a2 � 3aC 1
:
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We have the inequality

1

ıP .Y;�/
6 max

²
.2a � 1/.2a2 � 2aC 1/

4�.3a2 � 3aC 1/
;

1

8
�
8a3d�C 6.1 � 2d�/a2 C 8.d� � 1/a � 2d�C 3

3a2 � 3aC 1
;

d�

4
�
.2a � 1/.2a2 � 2aC 1/

3a2 � 3aC 1
;
1

4
�
6a2 � 8aC 3

3a2 � 3aC 1

³
:

Now, arguing as in the end of the proof of Lemma 3.6, we find

1

ıP .Y;�/
6
1

8
�
8a3d�C 6.1 � 2d�/a2 C 8.d� � 1/a � 2d�C 3

3a2 � 3aC 1
;

and the result follows.

Proof of Proposition 3.5. This is a combination of Lemmas 3.6 and 3.7.

3.2. The induction. Let us use all assumptions and notation introduced in Section 3.
Recall that � is the smallest rational number for which �L is a very ample Cartier divisor
on the variety V and d D Ln�1. Then �n�1d D .�L/n�1 > 1. Let us prove Proposition 3.3
by induction on dim.Y / D n > 3; the base of induction (the case when n D 3) is done in
Section 3.1.

Therefore, we suppose that Proposition 3.3 holds for varieties of dimension n � 1 > 3.
Let P be a point in Y such that P … S�. We must prove that

ıP .Y;�ID.a// >
1

kn.a; d; �/
;

where kn.a; d; �/ is presented in Theorem 1.9. We will only consider the case when P 2 B ,
since the case P … B is simpler and similar. Thus, we suppose that P 2 B .

Let Vn�1 be a general divisor in j�Lj that contains the point �.P /. Set

Yn�1 D �
�.Vn�1/:

For simplicity, set D D D.a/. First, let us compute SD.Yn�1/. Take u 2 R>0. Then

D.a/ � uYn�1 �R S� C .a � �u/H;

so D.a/ � uYn�1 is pseudo-effective if and only if u 6 a
�

. For u 2 Œ0; a
�
�, let P.u/ be the

positive part of the Zariski decomposition of D.a/ � uYn�1, and let N.u/ be its negative part.
Then

P.u/ �

´
S� C .a � �u/H D D.a � �u/ if u 2 Œ0; a�1

�
�;

.a � �u/.S� CH/ D .a � �u/D.1/ if u 2 Œa�1
�
; a
�
�;

and

N.u/ D

´
0 if u 2 Œ0; a�1

�
�;

.�uC 1 � a/S� if u 2 Œa�1
�
; a
�
�:
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Recall that S� \ SC D ¿. Note that .S�/n D .�1/nC1d and .SC/n D d . Hence, we have

D.a/n D .S� C aH/n D ..1 � a/S� C aSC/n D d.an � .a � 1/n/:

Now, we compute

SD.Yn�1/ D
1

D.a/n

Z 1
0

vol.D.a/ � uYn�1/ du

D
1

D.a/n

Z a�1
�

0

.S� C .a � �u/H/n du

C
1

D.a/n

Z a
�

a�1
�

..a � �u/.S� CH//n du

D
1

D.a/n

Z a�1
�

0

d..�1/nC1.1 � aC �u/n C .a � �u/n/ du

C
1

D.a/n

Z a
�

a�1
�

d.a � �u/n du

D
anC1 � .a � 1/nC1

�.nC 1/.an � .a � 1/n/
:

Set

Resn.a/ D
anC1 � .aC n/.a � 1/n

2.nC 1/.an � .a � 1/n/
:

Lemma 3.8. One has kn.a; d; �/ D SD.a/.Yn�1/d�n�1 C Resn.a/ and Resn.a/ > 0.

Proof. The equality follows from the formulas for kn.a; d; �/ and SD.a/.Yn�1/. Let
us show that Resn.a/ > 0. We may assume that a > 1. The denominator is clearly positive.
Hence, we only need to verify that anC1 � .aC n/.a � 1/n > 0. But

� a

a � 1

�n
D

�
1C

1

a � 1

�n
D

nX
iD0

�
n

i

�� 1

a � 1

�i
> 1C

n

a � 1
> 1C

n

a
D
aC n

a
;

which gives anC1 � .aC n/.a � 1/n > 0. This shows that Resn.a/ > 0.

Set �n�1 D �jYn�1 . Then SD.Yn�1/ 6 kn.a; d; �/ by Lemma 3.8, since d�n�1 > 1.
Therefore, using [2], we see that ıP .Y;�ID/ > 1

kn.a;d;�/
provided that

(3.3) S.V Yn�1�;� IE/ 6 kn.a; d; �/AYn�1;�n�1.E/

for every prime divisor E over the variety Yn�1 such that its center on Yn�1 contains P , where
AYn�1;�n�1.E/ is the log discrepancy, and S.V Yn�1�;� IE/ is defined in [7, Section 1.7].

Suppose that n > 4. Let us prove (3.3) using Proposition 3.3 applied to .Yn�1; �n�1/.
LetE be a prime divisor over Yn�1 whose center in Yn�1 contains P . Since P … S�, it follows
from [7, Corollary 1.108] that

S.V Yn�1�;� IE/ D
n

Dn

Z a
�

0

�Z 1
0

vol.P.u/jYn�1 � vE/ dv
�
du
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D
n

Dn

Z a�1
�

0

Z 1
0

vol.S� C .a � �u/H � vE/ dv du

C
n

Dn

Z a
�

a�1
�

Z 1
0

vol..a � �u/.S� CH/ � vE/ dv du

D
n

Dn

Z a�1
�

0

Z 1
0

vol.S� C .a � �u/H � vE/ dv du

C
n

Dn

Z a
�

a�1
�

.a � �u/n
Z 1
0

vol.S� CH � vE/ dv du:

Now, applying Proposition 3.3 (induction step), we getZ 1
0

vol.S� C .a � �u/H � vE/ dv

6 kn�1.a � �u; d�;�/.S� C .a � �u/H/n�1AYn�1;�n�1.E/

and Z 1
0

vol.S� CH � vE/ dv 6 kn�1.1; d�;�/.S� CH/n�1AYn�1;�n�1.E/:

Hence, combining, we obtain

S.V Yn�1�;� IE/ 6
n

Dn

Z a�1
�

0

kn�1.a � �u; d�;�/.S
�
C .a � �u/H/n�1AYn�1;�n�1.E/ du

C
n

Dn

Z a
�

a�1
�

.a � �u/nkn�1.1; d�;�/.S
�
CH/n�1AYn�1;�n�1.E/ du

D AYn�1;�n�1.E/
n

Dn

Z a�1
�

0

kn�1.a � �u; d�;�/.S
�
C .a � �u/H/n�1 du

C AYn�1;�n�1.E/
n

Dn

Z a
�

a�1
�

.a � �u/nkn�1.1; d�;�/.S
�
CH/n�1 du:

Let us compute these two integrals separately. We have

A1´

Z a�1
�

0

kn�1.a � �u; d�;�/.S
�
C .a � �u/H/n�1 du

D d�n�1
Z a�1

�

0

d�..�1/n�1.1 � aC �u/n C .a � �u/n/

�n
du

C

Z a�1
�

0

d�..a � �u/n � .a � �uC n � 1/.a � �u � 1/n�1/

2n
du

D
d2�n�1

�n.nC 1/
.anC1 � .a � 1/nC1 � 1/C

d

2n.nC 1/
.anC1 � .aC n/.a � 1/n � 1/

and

A2´

Z a
�

a�1
�

.an � �u/
nkn�1.1; d�;�/.S

�
CH/n�1 du D

d.2d�n�2 C 1/

2n.nC 1/

D
d2�n�1

�n.nC 1/
C

d

2n.nC 1/
:
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Adding these two integrals, we get

n

D.a/n
.A1 C A2/ D

d�n�1

�.nC 1/

anC1 � .a � 1/nC1

an � .a � 1/n
C

1

2.nC 1/

anC1 � .aC n/.a � 1/n

an � .a � 1/n

D SD.a/.Yn�1/d�
n�1
C Resn.a/:

This gives S.V Yn�1�;� IE/ 6 kn.a; d; �/AYn�1;�n�1.E/ by Lemma 3.8, which proves (3.3) and
completes the proof of Proposition 3.3.

3.3. Applications. The only application of Theorem 1.9 we could find is Theorem 1.8.
Let us use assumptions and notation of Theorem 1.9. Let V D Pn�1 and L D OPn�1.r/.
Suppose that 1 < n

2
< r < n. Then � D 1

r
, d D rn�1 and a D n

r
.

Lemma 3.9. One has kn.a; d; �/ < 1.

Proof. One has

kn.a; d; �/ D
.2d�n�2 C 1/anC1 � .aC n/.a � 1/n � 2d�n�2.a � 1/nC1

2.nC 1/.an � .a � 1/n/
:

Thus, it is enough to show that

2.nC 1/.an � .a � 1/n/

�
�
.2d�n�2 C 1/anC1 � .aC n/.a � 1/n � 2d�n�2.a � 1/nC1

�
> 0:

Substituting � D 1
r

, d D rn�1, a D n
r

, and multiplying by rnC1, we get the inequality

.nn � .n � r/n.r C 1//.2r � n/ > 0;

which holds since 2r � n > 0 and n > r > n
2

by assumption.

Lemma 3.10. One has
.nC 1/.an � .a � 1/n/

.nC 1 � a/an C .a � 1/nC1
> 1:

Proof. The inequality is equivalent to

.nC 1/.an � .a � 1/n/ > .nC 1 � a/an C .a � 1/nC1:

Substituting a D n
r

, multiplying by rn, and dividing by n, we get nn � .r C 1/.n � r/n > 0,
which holds since 1 < n

2
< r < n.

Lemma 3.11. One has
aı.V /.nC 1/.an � .a � 1/n/

n.anC1 � .a � 1/nC1/
> 1:

Proof. We have ı.V / D ı.Pn�1/ D 1. Thus, the required inequality is equivalent to

n.anC1 � .a � 1/nC1/ � a.nC 1/.an � .a � 1/n/ < 0:

Substituting a D n
r

, multiplying by rnC1, and dividing by n, we get nn � .r C 1/.n � r/n > 0,
which holds since 1 < n

2
< r < n.

Theorem 1.8 follows from Lemmas 3.9, 3.10, 3.11 and Theorem 1.9.
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4. Proof of Theorem 1.11

The goal of this section is to prove Theorem 1.11 and describe singular K-polystable
limits of smooth Fano 3-folds in the deformation family № 4.2. We start with the following
(probably well-known) result, which we fail to find in the literature.

Proposition 4.1. Let C be a .2; 2/-curve in P1 � P1. Then C is

� GIT stable for PGL2.C/ � PGL2.C/-action if and only if it is smooth,
� GIT strictly polystable if and only if it is one of the curves in Theorem 1.11.

Proof. Choose homogeneous coordinates x; y of degree .1; 0/ on P1 � P1, and choose
homogeneous coordinates u; v of degree .0; 1/. Then C is given by

2X
iD0

2X
jD0

aijx
2�iyiu2�j vj D 0:

Observe that any one-parameter subgroup �WC� ! PSL2.C/ � PSL2.C/ is conjugate to a
diagonal one of the form

t 7!

��
tr0 0

0 t�r0

�
;

�
tr1 0

0 t�r1

��
for some integers r1 > r0 > 0 and r1 > 0, which we will write as � D .r0;�r0; r1;�r1/. Then
the Hilbert–Mumford function is

�.f; �/ D max¹r0.2 � 2i/C r1.2 � 2j /; aij ¤ 0º:

Clearly, if �.f; �/ 6 0, then a00 D a10 D a01 D 0. Moreover, if this inequality is strict, then
we additionally have a11 D 0. Furthermore, we have �.x2v2; �/ D ��.y2u2; �/. So at least
one of a20 and a02 is zero. Without loss of generality, we assume that a20 D 0. Therefore, if
�.f; �/ < 0, then a00 D a10 D a01 D a11 D a20 D 0.

Suppose that C is singular at the point .Œ1 W 0�; Œ1 W 0�/, so that a00 D a10 D a01 D 0,
and consider the one-parameter subgroup � D .1;�1; 1;�1/. Then �.f; �/ D 4 � 2.i C j /,
which is non-positive if and only if i C j > 2. But, since aij D 0 whenever i C j < 2, we
conclude that �.f; �/ 6 0 and C is not stable.

Conversely, suppose there exists a one-parameter subgroup � for which �.f; �/ 6 0.
Note that �.x2�iyiu2�j vj ; �/ > 0 for any one-parameter subgroup � provided that i C j < 2.
This gives a00 D a10 D a01 D 0, so that the curve C is singular at .Œ1 W 0�; Œ1 W 0�/.

Now, let us describe the unstable locus. Suppose a00 D a10 D a01 D a11 D a20 D 0.
Consider the one-parameter subgroup � D .1;�1; 2;�2/. Then

�.f; �/ D 6 � 2.i C 2j /;

which is negative if and only if i C 2j > 3. But since aij D 0 whenever i C 2j 6 3, it follows
that �.f; �/ < 0. Similarly, one can show that C is GIT-unstable if it can be given by

a02x
2v2 C a12xyv

2
C a21y

2uv C a22y
2v2 D 0:

This describes all possibilities for the curve C to be GIT-semistable, which easily implies the
description of GIT-polystable .2; 2/-curves.
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Now, we set V D P1 � P1. Let L D OV .1; 1/, let R be a curve in j2Lj, set

Y D P .OV ˚OV .L//;

let � WY ! V be the natural projection, let S� and SC be disjoint sections of � such that

SC � S� C ��.L/:

Finally, we set F D ��.R/, and let �WX ! Y be the blow up at the intersection SC \ F . If R
is smooth, then X is K-polystable [7]. Theorem 1.11 says that X is also K-polystable in the
case when R is one of the following singular curves:

(1) C1 C C2, where C1 and C2 are smooth curves in jLj such that jC1 \ C2j D 2;

(2) `1 C `2 C `3 C `4, where `1 and `2 are two distinct smooth curves of degree .1; 0/, and
`3 and `4 are two distinct smooth curves of degree .0; 1/;

(3) 2C , where C is a smooth curve in jLj.

Now, let us prove Theorem 1.11. We start with the following remark.

Remark 4.2. Suppose that R D `1 C `2 C `3 C `4, where `1 and `2 are two distinct
smooth curves in V of degree .1; 0/, and `3 and `4 are two distinct smooth curves of degree
.0; 1/. Then X is toric, and it corresponds to the moment polytope in MR whose vertices are

.0; 0; 1/; .1; 0; 1/; .1; 1; 1/; .0; 1; 1/;

.1; 1; 0/; .�1; 1; 0/; .�1;�1; 0/; .1;�1; 0/;

.0; 0;�1/; .�1; 0;�1/; .�1;�1;�1/; .0;�1;�1/:

The barycenter of the moment polytope is the origin, so X is K-polystable. See also [24].

Our next step is the following simple lemma.

Lemma 4.3. Suppose R D 2C for a smooth curve C 2 jLj. Then X is K-polystable.

Proof. Here, the morphism � is a weighted blow up at the intersection ��.C / \ SC,
and X has non-isolated singularities along a smooth curve, which we will denote by C . The
threefold X can be obtained in a slightly different way. Let us describe it.

SetW D V � P1, let$ WW ! V be the natural projection, let zS� and zSC be its disjoint
sections, and let zE D $�.C /. Then there exists commutative diagram

U

W X

V

 !˛

 

!
 

 

!$
 !

�ı�

such that
� ˛ is the blow up along the intersection curves zE \ zS� and zE \ zSC,
�  contracts the proper transform of the surface zE to the curve C ,
� � ı  maps the proper transforms of the surfaces zS� and zSC to the surfaces S� and SC,

respectively.
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Let yE be the proper transform on the threefold U of the surface zE. We may assume that the
curve C is the diagonal curve in V D P1 � P1. Using this, we see that

Aut.X/ Š Aut.U / Š Aut.W; zE C zS� C zSC/ Š PGL2.C/ � .Gm Ì �2/ � �2:

Indeed, we have that Aut.X/ lifts to U since  is a blow up along the singular locus. In
particular,  is Aut.U /-equivariant. On the other hand, ˛ is Aut.U /-equivariant as well. By
construction, Aut.X/! Aut.W; zE C zS� C zSC/ is an isomorphism. Finally, W is a product
and the last isomorphism follows.

Observe that yE is the only Aut.X/-invariant prime divisor over X . Thus, using [49], we
conclude that the threefold X is K-polystable if ˇ. yE/ > 0. Let us compute ˇ. yE/.

We let F� and FC be ˛-exceptional surfaces such that ˛.F�/ � zS� and ˛.FC/ � zSC,
let yS� and ySC be the proper transforms on U of the surfaces S� and SC, respectively. Further,
set H1 D .pr1 ı ˛/

�.OP1.1//, H2 D .pr2 ı ˛/
�.OP1.1//, H3 D .pr3 ı ˛/

�.OP1.1//, where
pr1, pr2, pr3 are projections W ! P1 such that pr1 and pr2 factors through $ . Then

 �.�KX / � �KU � 2.H1 CH2 CH3/ � F
�
� FC � 2 yE C yS� C ySC C 2.F� C FC/:

Now, we take u 2 R>0. Then the divisor  �.�KX / � u yE is R-rationally equivalent to

.2� u/.H1CH2/C 2H3C .u� 1/.F
�
C FC/�R .2� u/ yE C yS

�
C ySCC 2.F�C FC/;

and yS� C ySC C 2.F� C FC/ is not big, so  �.�KX / � u yE is pseudo-effective if and only
if u 6 2. Moreover, if u 2 Œ0; 1�, then the divisor  �.�KX / � u yE is nef. Furthermore, if
u 2 Œ1; 2�, then the Zariski decomposition of the divisor  �.�KX / � u yE is given by

 �.�KX / � u yE �R .2 � u/.H1 CH2/C 2H3„ ƒ‚ …
positive part

C .u � 1/.F� C FC/„ ƒ‚ …
negative part

:

Hence, we have

ˇ. yE/ D 1 �
1

.�KX /3

Z 2

0

vol. �.�KX / � u yE/ du

D 1 �
1

28

Z 1

0

..2 � u/.H1 CH2/C 2H3 C .u � 1/.F
�
C FC//3 du

�
1

28

Z 2

1

..2 � u/.H1 CH2/C 2H3/
3 du

D 1 �

Z 1

0

8u3 � 24u2 C 28 du �

Z 2

1

12.2 � u/2 du D
1

14
> 0;

which implies that X is K-polystable.

To complete the proof of Theorem 1.11, let us present X as a codimension two complete
intersection in a toric variety. Let T D .C7 nZ.I //=G2

m, where the G2
m-action is given by0B@x y z w u v s

1 1 1 1 1 0 2

0 0 0 0 1 1 0

1CA;
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and I is the irrelevant ideal hx; y; z; w; si \ hu; vi. Let zP D Proj.OP3 ˚OP3.1//. Then we
can identify zP with the hypersurface in T given by s D f .x; y; z; w/, where f .x; y; z; w/ is
any non-zero homogeneous polynomial of degree 2. Since Y can be obtained by blowing up
the quadric cone over the surface ¹xy D zwº � P3 at the vertex, we can identify Y with the
complete intersection in T given by´

xy D zw;

s D f .x; y; z; w/:

Then the projection � WT ! V is given by .x; y; z; w; u; v; s/ 7! .x; y; z; w/, where we iden-
tify V with ¹xy D zwº � P3. Then the surface S� is cut out on Y by v D 0. Moreover, we
can assume that SC is cut out on Y by u D 0, and we can identify R with the curve in SC that
is cut out by s D 0.

Let 'WT ! T be the blow up of T along u D s D 0. Then T D .C8 nZ.I //=G3
m, where

the torus action is given by the matrix0BBBB@
x y z w u v s t

1 1 1 1 1 0 2 0

0 0 0 0 1 1 0 0

0 0 0 0 1 0 1 �1

1CCCCA
and the irrelevant ideal

I D hx; y; z; w; si \ hx; y; z; w; ti \ hu; vi \ hu; si \ hv; ti:

Then ' induces the blow up of Y along R. Thus, we can identify X with the complete inter-
section in the toric variety T given by´

xy D zw;

st D f .x; y; z; w/:

Now, the subgroup � Š Gm of the group Aut.X/ mentioned in Section 1 can be explicitly
seen – it consists of all automorphisms .x; y; z; w; u; v; s; t/ 7! .x; y; z; w; �u; v; s; t/, where
� 2 C�. Similarly, we can choose the involution � 2 Aut.X/ to be the involution

.x; y; z; w; u; v; s; t/ 7! .x; y; z; w; v; u; t; s/:

Note that � is not canonically defined, since we can conjugate it with an element in � .
Suppose that R D C1 C C2, where C1 and C2 are smooth curves in jLj that meet trans-

versally at two points. Then, up to a change of coordinates, we may assume that

f .x; y; z; t/ D xy � �.z2 C w2/;

where � 2 C such that � … ¹0; 2;�2º. Then X is the complete intersection in T given by´
xy D zw;

st D xy � �.z2 C w2/:

We can see from the equation f D 0 of R D C1 C C2 that the group Aut.V; C1 C C2/
contains Gm Ì �22, where the two involutions swap coordinates x; y or z; w, and the Gm is
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defined by
.x; y; z; w/ 7!

�
�x;

y

�
; z; w

�
:

It follows that Aut.X/ contains automorphisms

.x; y; z; w; u; v; s; t/ 7!
�
�x;

y

�
; z; w; u; v; s; t

�
;

where � 2 C�. Similarly, the group Aut.X/ contains two involutions

.x; y; z; w; u; v; s; t/ 7! .y; x; z; w; u; v; s; t/;

.x; y; z; w; u; v; s; t/ 7! .x; y;w; z; u; v; s; t/:

Let G be the subgroup in Aut.X/ that is generated by all automorphisms described above.
Then G Š G2

m Ì �32, and we have the following result.

Lemma 4.4. The following assertions hold:

(a) X does not contain G-fixed points,

(b) X does not contain G-invariant irreducible curves,

(c) X contains two G-invariant irreducible surfaces – they are cut out by z ˙ w D 0.

Proof. Left to the reader.

Now, we can complete the proof of Theorem 1.11. Suppose that X is not K-polystable.
Using [49], we see that there is a G-invariant prime divisor F over X such that ˇ.F/ 6 0. Let
Z be the center of this divisor on X . By Lemma 4.4, Z is a surface and Z � .� ı �/�.L/.
Then, as in [21], we compute ˇ.F/ D ˇ.Z/ > 0. This shows that X is K-polystable.

5. Proof of Theorem 1.12

In this section, we prove Theorem 1.12. This result describes all singular K-polystable
limits of smooth Fano 3-folds in the family № 3.9. To show this, we need the following theorem.

Theorem 5.1 ([26, Theorem 2], [34, Example 7.13], [3]). Let C be a quartic curve
in P2. Then the curve C is

� GIT stable for PGL3.C/-action if and only if it is smooth or has A1 or A2-singularities,

� GIT strictly polystable if and only if it is one of the remaining curves in Theorem 1.12.

Let us prove Theorem 1.12. Set V D P2, L D OP2.2/ and Y D P .OV ˚OV .L//. Let
� WY ! V be the natural projection, set H D ��.L/, let S� and SC be disjoint sections of �
such that SC � S� CH , and let R be one of the following curves:

(1) a reduced quartic curve with at most A1 or A2 singularities;

(2) C1 C C2, where C1 and C2 are smooth conics that are tangent at two points;

(3) C C `1 C `2, where C is a smooth conic, `1 and `2 are distinct lines tangent to C ;

(4) 2C , where C is a smooth conic in jLj.
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Set F D ��.R/, and let �WX ! Y be the blow up at the complete intersection SC \ F . Then
X is a singular Fano threefold, and our Theorem 1.12 claims that X is K-polystable. To prove
this, we start with the most singular (and the most symmetric case).

Lemma 5.2. Suppose thatRD 2C for a smooth conicC � P2. ThenX is K-polystable.

Proof. In this case, the threefold X has non-isolated singularities along a smooth curve,
and the proof is very similar to the proof of Lemma 4.3. Namely, we have

(5.1) Aut.X/ Š PGL2.C/ � .Gm Ì �2/;

and there exists exactly one Aut.X/-invariant prime divisor over X , the exceptional divisor of
the blow up of X along the curve Sing.X/. So, to check that X is K-polystable, it is enough to
compute the ˇ-invariant of this prime divisor. Let us give details.

As in the proof of Lemma 4.3, we set W D V � P1. Let $ WW ! V be the natural
projection, let zS� and zSC be its disjoint sections, and let zE D $�.C /. Then there exists the
commutative diagram

(5.2)

U

W X

V

 !˛

 

!
 

 

!$
 !

�ı�

such that

� ˛ is a blow up along the curves zE \ zS� and zE \ zSC,
�  is a contraction of the proper transform of zE to the curve Sing.X/,
� � ı  maps the proper transforms of zS� and zSC to S� and SC, respectively.

This easily implies (5.1). Similarly, we see that (5.2) is Aut.X/-equivariant.
Let yE be the  -exceptional divisor. Then yE is the only Aut.X/-invariant prime divisor

over the threefold X . Thus, if ˇ. yE/ > 0, them X is K-polystable [49].
We let F� and FC be ˛-exceptional surfaces such that ˛.F�/ � zS� and ˛.FC/ � zSC,

let yS� and ySC be the proper transforms on U of the surfaces S� and SC, respectively.
Set H1 D .pr1 ı ˛/

�.OP1.1// for the projection pr1WW ! P1, set H2 D .$ ı ˛/�.OV .1//.
Then yE � 2H2 � F� � FC, which gives

 �.�KX / � �KU � 2H1 C 3H2 � F
�
� FC �Q 2H1 C

3

2
yE C

1

2
.F� C FC/:

Take u 2 R>0. Then

 �.�KX / � u yE �R 2H1 C .3 � 2u/H2 C .u � 1/.F
�
C FC/

�R 2H1 C
3 � 2u

2
yE C

1

2
.F� C FC/:

This shows that �.�KX / � u yE is pseudo-effective if and only if u 6 3
2

. Moreover, if we have
u 2 Œ0; 1�, then the divisor  �.�KX / � u yE is nef. If 1 < u 6 3

2
, its Zariski decomposition is

 �.�KX / � u yE �R 2H1 C .3 � 2u/H2„ ƒ‚ …
positive part

C .u � 1/.F� C FC/„ ƒ‚ …
negative part

:
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Hence, we have

ˇ. yE/ D 1 �
1

.�KX /3

Z 3
2

0

vol. �.�KX / � u yE/ du

D 1 �
1

26

Z 1

0

.2H1 C .3 � 2u/H2 C .u � 1/.F
�
C FC//3 du

�
1

26

Z 3
2

1

.2H1 C .3 � 2u/H2/
3 du

D 1 �
1

26

Z 1

0

16u3 � 36u2 C 26 du �
1

26

Z 3
2

1

24u2 � 72uC 54 du D
7

26
> 0;

which implies that X is K-polystable.

Similarly, we can show that X is K-polystable if R D C1 C C2, where C1 and C2 are
smooth conics that are tangent at two points. Indeed, in this case, the full automorphism group
Aut.X/ contains a subgroup G such that G Š .Gm/

2 Ì �22, the threefold X does not con-
tains G-fixed points, and the only G-invariant irreducible curve in X is a smooth fiber of
the conic bundle � ı �. Therefore, arguing exactly as in the proofs of [7, Lemma 4.64] and
[7, Lemma 4.66], we see that X is K-polystable.

However, this approach fails in the case when R has a singular point of type A1 or A2,
since, in general, X would not have as many symmetries. To overcome this difficulty, we
will use another approach described in the end of Section 1. Namely, we proved in Section 2
that Aut.X/ contains an involution � such that � swaps the proper transforms of S� and SC,
X=� Š Y , and the following diagram commutes:

X

Y Y

V ;

 !

�  

!
�

 

!�
 !

�

where � is the quotient map. Moreover, we also proved that the double cover � is ramified over
a divisor B 2 j2SCj such that the morphism B ! V induced by � is a double cover ramified
in the curve R. Set � D 1

2
B . Then �KX �Q ��.KY C�/, and .Y;�/ has Kawamata log

terminal singularities. Therefore, .Y;�/ is a log Fano pair. Moreover, it follows from [31] that

X is K-polystable ”
�
Y;
1

2
B
�

is K-polystable:

However, everything in life comes with a price: the action of the group � Š Gm described
earlier in Section 1 does not descent to Y via �, because � does not commute with �. Thus, the
group Aut.Y;�/ is much smaller than the group Aut.X/.

To explicitly describe B � Y , consider Y as the toric variety .C5 nZ.I //=G2
m such that

the torus action is given by the matrix0B@x1 x2 x3 x4 x5

1 1 1 2 0

0 0 0 1 1

1CA;
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with irrelevant ideal I D hx1; x2; x3i \ hx4; x5i. Let us also consider x1; x2; x3 as coordi-
nates on V D P2, so that the projection � is given by .x1; x2; x3; x4; x5/ 7! .x1; x2; x3/. Then
S� D ¹x5 D 0º. Moreover, we may assume that SC D ¹x4 D 0º, and B is given by

x24 � f4.x1; x2; x3/x
2
5 D 0;

where f4.x1; x2; x3/ is a quartic polynomial such that R D ¹f4.x1; x2; x3/ D 0º.
In the remaining part of the section, we will prove that the pair .Y;�/ is K-polystable.

Recall that H D ��.L/. Note also that

�.KY C�/ �Q S� C
3

2
H:

We will split the proof in several lemmas and propositions. We start with the following lemma.

Lemma 5.3. Let P be a point in S�. Then ıP .Y;�/ > 1.

Proof. Let us apply Lemma 3.2. We have

ıP .Y;�/ D ıP .Y ID.a// > min
²

4.a3 � .a � 1/3/

.4 � a/a3 C .a � 1/4
;
4.a3 � .a � 1/3/

3.a4 � .a � 1/4/
ı.V IL/

³
;

where D.a/ D �.KY C�/ and a D 3
2

. Thus, we have

ıP .Y;�/ > min
²
26

17
;
13

15
ı.V IL/

³
:

But
ı.V IL/ D ı

�
V I
2

3
.�KV /

�
D
3

2
ı.V I �KV / D

3

2
ı.V / D

3

2
ı.P2/ D

3

2
;

so that ıP .Y;�/ > 13
10

.

Similarly, applying Proposition 3.5, we obtain the following lemma.

Lemma 5.4. Let P be a point Y such that P … Sing.B/. Then ıP .Y;�/ > 1.

Proof. By Lemma 5.3, we may assume that P … S�. Then Proposition 3.5 gives

ıP .Y;�/ D ıP .Y ID.a// >
8.3a2 � 3aC 1/

8d�a3 C 6.1 � 2d�/a2 C 8.d� � 1/a � 2d�C 3
;

where D.a/ D �.KY C�/, a D 3
2

, d D L2 D 4, � D 1
2

. This gives ıP .Y;�/ > 52
49

.

The two most difficult parts of the proof that .Y;�/ is K-polystable are the following two
propositions, which will be proved in Sections 5.1 and 5.2 later.

Proposition 5.5. Let P be a point in B such that B has singular point of type A1 at P ,
and let F be a prime divisor over Y such that P D CY .F/. Then ˇY;�.F/ > 0.

Proposition 5.6. Let P be a point in B such that B has singular point of type A2 at P ,
and let F be a prime divisor over Y such that P D CY .F/. Then ˇY;�.F/ > 0.

By Lemmas 5.3 and 5.4 and Propositions 5.5 and 5.6, the log pair .Y;�/ is K-stable
in the case when R is a reduced plane quartic curve that has at most A1 or A2 singularities.
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Therefore, to complete the proof, we may assume that R is one of the following curves:

(2) C1 C C2, where C1 and C2 are smooth conics that are tangent at two points;

(3) C C `1 C `2, where C is a smooth conic, `1 and `2 are distinct lines tangent to C ;

(4) 2C , where C is a smooth conic in jLj.

Hence, appropriately changing coordinates x1; x2; x3, we may assume that

f4.x1; x2; x3/ D .x1x2 � x
2
3/.x1x2 � �x

2
3/;

where one of the following three cases holds:

(2) � … ¹0; 1º, R D C1 C C2, where C1 D ¹x1x2 D x23º and C2 D ¹x1x2 D �x23º;

(3) � D 0, R D C C `1 C `2, where C D ¹x1x2 D x23º, `1 D ¹x1 D 0º and `2 D ¹x2 D 0º;

(4) � D 1, R D 2C , where C D ¹x1x2 D x23º.

In each case, the group Aut.Y;�/ contains an involution � such that

�.x1; x2; x3; x4; x5/ D .x2; x1; x3; x4; x5/:

Lemma 5.7. Suppose that � … ¹0; 1º. Then .Y;�/ is K-polystable.

Proof. Suppose .Y;�/ is not K-polystable. It follows from [49] that there is a h�i-in-
variant prime divisor F over Y such that ˇY;�.F/ 6 0. Let P be a general point in CY .F/.
Then ıP .Y;�/ 6 1. But P … Sing.B/, since Sing.B/ consists of two singular points that are
swapped by � . Then ıP .Y;�/ > 1 by Lemmas 5.3 and 5.4, which is a contradiction.

Lemma 5.8. Suppose � D 0. Then .Y;�/ is K-polystable.

Proof. The surfaceB has a singular point of type A1, and two singular points of type A3,
that are swapped by � . Arguing as in the proof of Lemma 5.7 and using Propositions 5.5, we
see that X is K-polystable.

Lemma 5.9 (cf. Lemma 5.2). Suppose � D 1. Then .Y;�/ is K-polystable.

Proof. In this case, we have R D 2C , where C is an irreducible conic. Then we have
B D B1 C B2, where B1 and B2 are smooth surfaces in jSCj that intersect transversally along
a smooth curve such that �.B1 \ B2/ D C .

We already know from Lemma 5.2 that the threefold X is K-polystable in this case,
so that .Y;�/ is also K-polystable [31]. Let us prove this directly for consistency.

LetW D V � P1, let$ WW ! V be the natural projection, let zS�, zB1, zB2 be its disjoint
sections, and let zE D $�.C /. Then there exists the commutative diagram

U

W Y

V

 !˛

 

!
 

 

!$
 !

�
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such that ˛ is a blow up along the curve zE \ zS�, the morphism  is a contraction of the
proper transform of the surface zE to the intersection curve B1 \ B2 such that  maps the
proper transforms of the surfaces zS�, zB1, zB2 to the surfaces S�, B1, B2, respectively. Then

Aut.Y;�/ Š Aut.U / Š Aut.W; zB1 C zB2 C zE C zS�/ Š PGL2.C/ � �2:

Note that the commutative diagram above is Aut.Y;�/-equivariant.
Let F be ˛-exceptional surface, let yE be the  -exceptional surface, let yB1 and yB2 be the

proper transforms on U of the surfaces B1 and B2, respectively. Set y� D 1
2
. yB1 C yB2/. Then

KU C y� �Q  �.KY C�/, so that  is log crepant for .U; y�/. Then AY;�. yE/ D 1.
First, we compute ˇY;�. yE/. SetH1 D .pr1 ı ˛/

�.OP1.1// andH2 D .$ ı ˛/�.OV .1//,
where pr1 is the natural projection W ! P1. Then y� �Q H1 and yE � 2H2 � F , so that

 �.KY C�/ �Q KU C y� �Q H1 C 3H2 � F �Q H1 C
3

2
yE C

1

2
F:

Let u be a non-negative real number. Then

 �.KY C�/ � u yE �R H1 C .3 � 2u/H2 C .u � 1/F �R H1 C
3 � 2u

2
yE C

1

2
F;

and this divisor is pseudo-effective if and only if u 6 3
2

. For u 2 Œ0; 3
2
�, let P.u/ be the positive

part of the Zariski decomposition of  �.KY C�/ � u yE, and let N.u/ be the negative part.
Then

P.u/ �R

´
H1 C .3 � 2u/H2 C .u � 1/F if 0 6 u 6 1;
H1 C .3 � 2u/H2 if 1 6 u 6 3

2
;

and

N.u/ D

´
0 if 0 6 u 6 1;
.u � 1/F if 1 6 u 6 3

2
:

This gives

ˇY;�. yE/ D AY;�. yE/ �
1

.�KY ��/3

Z 3
2

0

.P.u//3 du

D 1 �
1

13

Z 1

0

.2H1 C .3 � 2u/H2 C .u � 1/F /
3 du

�
1

13

Z 3
2

1

.2H1 C .3 � 2u/H2/
3 du

D 1 �

Z 1

0

8u3 � 18u2 C 13 du �

Z 3
2

1

12u2 � 36uC 27 du D
7

26
> 0:

Suppose that .Y;�/ is not K-polystable. By [49], there exists an Aut.Y;�/-invariant
prime divisor F over Y such that ˇY;�.F/ 6 0. Let Z be its center on Y . Then ıP .Y;�/ 6 1
for every point P 2 Z. Hence, it follows from Lemmas 5.3 and 5.4 that Z � B1 \ B2. Hence,
since Z is a Aut.Y;�/-invariant irreducible subvariety, we see that Z D B1 \ B2.

Let yZ be the center of the divisor F on the threefold U . Then yZ ¤ yE, since ˇ. yE/ > 0.
Moreover, since yZ � yE and yZ is Aut.U /-invariant, we see that yZ is a Aut.U /-invariant section
of the natural projection yE ! Z. Set A D KU C y�. Then

0 > ˇY;�.F/ D AY;�.F/ � SA.F/ D AU;y�.F/ � SA.F/;
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because KU C y� �Q  �.KY C�/. Moreover, it follows from [2, 7, 22] that

1 >
A
U;y�

.F/

SA.F/
> min

²
1

SA. yE/
;

1

SA.W
yE
�;�I
yZ/

³
;

where SA.W
yE
�;�I
yZ/ is defined in [7, Section 1.7]. But SA. yE/ D 19

26
, so SA.W

yE
�;�I
yZ/ > 1.

Let us compute SA.W
yE
�;�I
yZ/. Using [7, Corollary 1.109], we see that

SA.W
yE
�;�I
yZ/ D

3

A3

Z 3
2

0

.P.u/j yE /
2 ord yZ.N.u/j yE /

C
3

A3

Z 3
2

0

Z 1
0

vol.P.u/j yE � v yZ/dv du;

which is easy to compute, because yE Š P1 � P1. Let us do this.
Let s D F \ yE. Then s is a section of the projection yE ! Z. Let f be a fiber of this

projection. Then

P.u/j yE D

´
.6 � 4u/fC us if 0 6 u 6 1;
.6 � 4u/fC s if 1 6 u 6 3

2
;

and

N.u/j yE D

´
0 if 0 6 u 6 1;
.u � 1/s if 1 6 u 6 3

2
:

Thus, we see that SA.W
yE
�;�I
yZ/ 6 SA.W

yE
�;�I s/ and

SA.W
yE
�;�I s/ D

3

13

Z 3
2

1

..6 � 4u/fC s/2.u � 1/ du

C
3

13

Z 1

0

Z u

0

..6 � 4u/fC .u � v/s/2 dv du

C
3

13

Z 3
2

1

Z 1

0

..6 � 4u/fC .1 � v/s/2 dv du

D
3

13

Z 3
2

1

2.6 � 4u/.u � 1/ du

C
3

13

Z 1

0

Z u

0

2.6 � 4u/.u � v/ dv du

C
3

13

Z 3
2

1

Z 1

0

2.6 � 4u/.1 � v/ dv du D
5

13
< 1;

which is a contradiction.

In the remaining part of this sections, we will prove Proposition 5.5 and 5.6.

5.1. Proof of Proposition 5.5. Let us use notation introduced earlier in this section
before Proposition 5.5, and let P be an isolated ordinary double point of the surface B . Then,
up to a change of coordinates, we may assume that P D .0; 0; 1; 0; 1/ and

f4.x1; x2; 1/ D x
2
1 C x

2
2 C higher order terms:
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Let �WY0 ! Y be the blow up at P ; note that � is a log resolution of .Y; B/. Then Y0 is
the toric variety .C6 nZ.I0//=G3

m for the torus action given by

M D

0BBBB@
x0 x1 x2 x3 x4 x5

0 1 1 1 2 0

0 0 0 0 1 1

1 0 0 1 1 0

1CCCCA
with irrelevant ideal

I0 D hx1; x2; x3i \ hx1; x2; x4i \ hx4; x5i \ hx0; x3i \ hx0; x5i:

To describe its fan, denote the vector generating the ray corresponding to xi by vi . Then

v0 D .1; 1; 1/; v1 D .1; 0; 0/; v2 D .0; 1; 0/;

v3 D .�1;�1;�2/; v4 D .0; 0; 1/; v5 D .0; 0;�1/:

The cone structure can be derived from the irrelevant ideal I0, and it can be visualized via the
following diagram:

v0

v1

v2

v3

v4 v5

Let Fi D ¹xi D 0º � Y0, and let Cij D Fi \ Fj for i ¤ j such that dim.Fi \ Fj / D 1.
Geometrically, the divisors Fi are as follows.

� F0 is the exceptional divisor of the blow up �WY0 ! Y .

� Let D � ��C be a pullback of a line and suppose D contains P ; then strict transform
��1� D of D on Y0 is linearly equivalent to F1 and F2.

� And for pullback, we have ��D � F3.

� Divisors F4 and F5 are the proper transforms of the positive and negative sections of �
on Y0, respectively.

Consider the Z3-grading of Pic.Y0/ given by M . If D1 and D2 are two divisors in Pic.Y0/,
then it follows from [15, Chapter 5] that

D1 � D2 ” degM .D1/ D degM .D2/:

Moreover, we have

Eff.Y0/ D hF0; F1; F5i and NE.Y0/ D hC12; C15; C01i:

In particular, a divisor D with degM .D/ D .a; b; c/ is effective if and only if all a; b; c > 0.
Note that curve C01 is a line in the exceptional divisor F0, C12 is the proper transform of a fiber
of � passing through P , and C15 is a pullback of the negative section of �.F1/ Š F2.
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Lemma 5.10. Intersections of divisors F0, F1, F5 are given by the following table:

F 30 F 20 F1 F 20 F5 F0F
2
1 F0F1F5 F0F

2
5 F 31 F 21 F5 F1F

2
5 F 35

1 �1 0 1 0 0 �1 1 �2 4

Proof. Recall that, for distinct torus-invariant divisors Fi ; Fj ; Fk , we may compute their
intersection using the fan and the cone structure (or the irrelevant ideal)

FiFjFk D

8<:0; xixjxk 2 I0;
1

jdet¹vi ; vj ; vkºj
otherwise:

This fact together with the linear equivalences implies the required assertion.

Using Lemma 5.10, we obtain the following intersection table:

� F0 F1 F5

C12 1 �1 1

C15 0 1 �2

C01 �1 1 0

Now, we set A D �.KY C�/. Take u 2 R>0. Set

L.u/ D ��.A/ � uF0:

Then L.u/ �R .3 � u/F0 C 3F1 C F5. So the divisor L.u/ is pseudo-effective if and only if
u 6 3. Let us find a Zariski decomposition of the divisor L.u/ for u 2 Œ0; 3�.

The divisor L.u/ is nef for u 2 Œ0; 1�. We have L.1/ � C12 D 0. Since C12 is a flopping
curve, we have to consider a small Q-factorial modification Y0Ü Y1 such that

Y1 D .C
6
nZ.I1//=G

3
m;

where the torus action is the same (given by the matrix M ) and the irrelevant ideal

I1 D hx1; x2i \ hx4; x5i \ hx0; x3i;

which is obtained from I0 by replacing hx0; x5i with hx1; x2i. The fan of Y1 is generated by
the same vectors, but the cone structure is different:

v0

v1

v2

v3

v4 v5
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Abusing our previous notation, we denote the divisor ¹xi D 0º � Y1 also by Fi , and we
let Cij D Fi \ Fj for i ¤ j such that Fi \ Fj is a curve. As above, we see that

NE.Y1/ D hC01; C15; C05i:

Moreover, intersections of divisors on Y1 are described in the following table:

F 30 F 20 F1 F 20 F5 F0F
2
1 F0F1F5 F0F

2
5 F 31 F 21 F5 F1F

2
5 F 35

0 0 �1 0 1 �1 0 0 �1 3

Using these intersections, we obtain the following intersection table:

� F0 F1 F5

C05 �1 1 �1

C15 1 0 �1

C01 0 0 1

The proper transform on Y1 of the divisor L.u/ is nef for u 2 Œ1; 2�, and it intersects the
curve C15 trivially for u D 2. Note that C15 � C25 on the surface F5, which implies that the
divisor F5 is contained in the negative part of the Zariski decomposition of the proper transform
of the divisor L.u/. In fact, we have N.u/ D .u � 2/F5 and

P.u/ D .3 � u/.F0 C F5/C 3F1;

where N.u/ is the negative part of the decomposition, and P.u/ is the positive part.

Lemma 5.11. One has AY;�.F0/ D 2 and SA.F0/ D 49
26

, so that

AY;�.F0/

SA.F0/
D
52

49
:

Proof. The equality AY;�.F0/ D 2 is obvious. Moreover, we have

vol.L.u// D

8̂<̂
:
�u3 C 13; u 2 Œ0; 1�;

�3u2 C 3uC 12; u 2 Œ1; 2�;

3u3 � 18u2 C 27u; u 2 Œ2; 3�:

Thus, we compute

SA.F0/ D
1

A3

Z 3

0

vol.L.u// du D
49

26
;

as claimed.

Now, we construct a common toric resolution zY for Y0 and Y1. Such variety is easy to
see from the fans of Y0 and Y1; we want to add the following ray:

v6 D .1; 1; 0/ 2 hv1; v2i \ hv0; v5i:
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Set zY to be the toric variety corresponding to v0; : : : ; v6 with the following cone structure:

v0

v1

v2

v3

v4 v5v6

Let '0W zY ! Y0 and '1W zY ! Y1 be the corresponding toric birational maps. Then

� '0 is the blow up of Y0 along the curve C12,

� '1 is the blow up of Y1 along the curve C05.

Set zFi D ¹xi D 0º � zY . Then zF6 is the exceptional divisor of '0 and '1.
The Zariski decomposition of the divisor '�0 .L.u// can be described as follows:

zP .u/ �R

8̂<̂
:
.3 � u/ zF0 C 3 zF1 C zF5 C 3 zF6; u 2 Œ0; 1�;

.3 � u/ zF0 C 3 zF1 C zF5 C .4 � u/ zF6; u 2 Œ1; 2�;

.3 � u/. zF0 C zF5/C 3 zF1 C .6 � 2u/ zF6; u 2 Œ2; 3�;

and

zN.u/ D

8̂<̂
:
0; u 2 Œ0; 1�;

.u � 1/ zF6; u 2 Œ1; 2�;

.u � 2/ zF5 C .2u � 3/ zF6; u 2 Œ2; 3�;

where zP .u/ is the positive part, and zN.u/ is the negative part.
Let � W zF0 ! F0 be the morphism induced by '0. Recall that F0 is the exceptional divisor

of the blow up � at a smooth pointP . Then, since � is a blow up at one point, we have zF0 Š F1.
Let e be the � -exceptional curve, and let f be a fiber of the natural projection zF0 ! P1. Then
zF0j zF 0 � �e � f, zF1j zF 0 � f, zF5j zF 0 � 0, zF6j zF 0 D e, which gives

zP .u/j zF 0 D

8̂<̂
:
u.fC e/; u 2 Œ0; 1�;

ufC e; u 2 Œ1; 2�;

ufC .3 � u/e; u 2 Œ2; 3�;

and

zN.u/j zF 0 D

8̂<̂
:
0; u 2 Œ0; 1�;

.u � 1/e; u 2 Œ1; 2�;

.2u � 3/e; u 2 Œ2; 3�:

We are ready to apply [2, 7, 22]. Set BF0 D �
�1
� .B/jF0 ; since B has a node at P , we see

that BF0 is a conic. We set �F0 D
1
2
BF0 and we set

ı.F0; �F0 IV
zF0
�;� / D inf

E= zF0

AF0;�F0 .E/

S.W
zF0
�;� IE/

;
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where the infimum is taken over all prime divisors E over zF0, and

S.W
zF0
�;� IE/ D

3

A3

Z 3

0

. zP .u/j zF 0/
2 ordE . zN.u/j zF 0/ du

C
3

A3

Z 3

0

Z 1
0

vol. zP .u/j zF 0 � vE/ dv du:

Let F be a prime divisor over Y such that P D CY .F/. Recall that

ˇY;�.F/ D AY;�.F/ � SA.F/ D AY;�.F/ �
1

A3

Z 1
0

vol.A � uF/ du:

It follows from [22, Theorem 4.8] and [22, Corollary 4.9] that

(5.3)
AY;�.F/
SA.F/

> ıP .Y;�/ > min
²
AY;�.F0/

SA.F0/
; ı.F0; �F0 IV

zF0
�;� /

³
:

Suppose ˇY;�.F/ 6 0. Then it follows from (5.3) and Lemma 5.11 that there is a prime
divisor E over zF0 such that

(5.4) S.W
zF0
�;� IE/ > AF0;�F0 .E/:

Let Z be the center of the divisor E on the surface zF0. Note that �.e/ … BF0 .

Lemma 5.12. One has Z \ e D ¿.

Proof. Note that AF0;�F0 .e/ D 2. Let us compute S.W
zF0
�;� I e/. For u 2 Œ0; 3�, let

t .u/ D sup¹v 2 R>0 j zP .u/j zF 0 � ve is pseudo-effectiveº:

For every v 2 Œ0; t.u/�, let us denote by P.u; v/ andN.u; v/ the positive and the negative parts
of the Zariski decompositions of the divisor zP .u/j zF 0 � ve, respectively. Then

S.W
zF0
�;� I e/ D

3

A3

Z 3

0

.P.u; 0//2 orde. zN.u/j zF 0/ duC
3

A3

Z 3

0

Z t.u/

0

.P.u; v//2 dv du:

Observe that

orde. zN.u/j zF 0/ D

8̂<̂
:
0; u 2 Œ0; 1�;

u � 1; u 2 Œ1; 2�;

2u � 3; u 2 Œ2; 3�:

Moreover, we have

t .u/ D

8̂<̂
:
u; u 2 Œ0; 1�;

1; u 2 Œ1; 2�;

3 � u; u 2 Œ2; 3�:

Furthermore, we have N.u; v/ D 0 for every u 2 Œ0; 3� and v 2 Œ0; t.u/�. Finally, we have

P.u; v/ D

8̂<̂
:
uf C .u � v/e; u 2 Œ0; 1�; v 2 Œ0; u�;

uf C .1 � v/e; u 2 Œ1; 2�; v 2 Œ0; 1�;

uf C .3 � u � v/e; u 2 Œ2; 3�; v 2 Œ0; 3 � u�;
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which gives

.P.u; v//2 D

8̂<̂
:
u2 � v2; u 2 Œ0; 1�; v 2 Œ0; u�;

u2 � .1 � v � u/2; u 2 Œ1; 2�; v 2 Œ0; 1�;

u2 � .3 � 2u � v/2; u 2 Œ2; 3�; v 2 Œ0; 3 � u�:

Integrating, we get S.W
zF0
�;� I e/ D 20

13
< 2 D AF0;�F0 .e/, so that Z ¤ e by (5.4).

Suppose that Z \ e ¤ ¿. Let O be a point of the intersection Z \ e. Then it follows
from [22, Theorem 4.17] and [22, Corollary 4.18] that

AF0;�F0 .E/

S.W
zF0
�;� IE/

> min
²

2

S.W
zF0
�;� I e/

;
1

S.W
zF0;e
�;�;�;IO/

³
D min

²
13

10
;

1

S.W
zF0;e
�;�;� IO/

³
;

where

S.W
zF0;e
�;�;� IO/ D

3

A3

Z 3

0

Z t.u/

0

.P.u; v/ � e/2 dv du:

Integrating, we get S.W
zF0;e
�;�;� IO/ D

20
13

, which contradicts (5.4).

Thus, we see that Z is disjoint from e. In particular, we see that

Z \ Supp. zN.u/j zF 0/ D ¿

for every u 2 Œ0; 3�. This will simplify some formulas in the following.
LetB zF 0 be the strict transform on zF0 of the curveBF0 . ThenB zF 0 is a smooth irreducible

curve in j2.eC f/j. Set� zF 0 D
1
2
B zF 0 . LetO be a point inZ. We may assume thatO 2 f. Then

there are three cases to consider:

(1) O … B zF 0 ,

(2) O 2 B zF 0 \ f, and f intersects B zF 0 transversely at the point O ,

(3) O D B zF 0 \ f, and f is tangent to B zF 0 at the point O .

Let � W yF0 ! zF0 be a plt blow up of the point O defined as follows:

� the map � is an ordinary blow up in the case whenO … B zF 0 , or whenO 2 B zF 0 \ f, and
the fiber f intersects the curve B zF 0 transversely at the point O ,

� the map � is a weighted blow up at the point O D B zF 0 \ f with weights .1; 2/ such that
the proper transforms on yF0 of the curves B zF 0 and f are disjoint in the case when the
fiber f is tangent to the curve B zF 0 at the point O .

Let C be the � -exceptional curve. We have C Š P1. Let B yF 0 be the proper transform on the
surface yF0 of the curve B yF 0 . Set � yF 0 D

1
2
B yF 0 . Let �C be the effective Q-divisor on the

curve C known as the different, which can be defined via the adjunction formula

KC C�C D .K yF 0 C� yF 0/jC :

If � is a usual blow up, then �C D � yF 0 jC . Similarly, if � is a weighted blow up, then

�C D � yF 0 jC C
1

2
o;
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where o is the singular point of the surface yF0 contained in C (o is an ordinary double point,
which is not contained in the proper transforms of the curves B zF 0 and f).

Now, for u 2 Œ0; 3�, we let

yt .u/ D sup¹v 2 R>0 j �
�. zP .u/j zF 0/ � vC is pseudo-effectiveº:

For every v 2 Œ0; yt .u/�, let us denote by yP .u; v/ and yN.u; v/ the positive and the negative parts
of the Zariski decompositions of the divisor ��. zP .u/j zF 0/ � vC , respectively. Then

(5.5) 1 >
AF0;�F0 .E/

S.W
zF0
�;� IE/

> min
²
AF0;�F0 .C /

S.W
zF0
�;� IC/

; inf
Q2C

AC;�C .Q/

S.W
yF0;C
�;�;� IQ/

³
by (5.4) and [22, Corollary 4.18], where the infimum is taken by all points Q 2 C , and

S.W
yF0;C
�;�;�; IQ/ D

3

A3

Z 3

0

Z yt.u/
0

. yP .u; v/ � C/2 dv duC FQ.W
yF0;C
�;�;� /

for

FQ.W
yF0;C
�;�;� / D

6

A3

Z 3

0

Z yt.u/
0

. yP .u; v/ � C/ ordQ. yN.u; v/jC / dv du:

Denote by ye and yf the proper transforms of the curves e and f, respectively.

Lemma 5.13. Suppose that � is an ordinary blow up. Let Q be a point in C . Then

AF0;�F0 .C /

S.W
zF0
�;� IC/

>
39

29
and

AC;�C .Q/

S.W
yF0;C
�;�;� IQ/

>
13

10
:

Proof. One has

��. zP .u/j zF 0/ �R

8̂<̂
:
u.yfCyeC C/; u 2 Œ0; 1�;

u.yfC C/Cye; u 2 Œ1; 2�;

u.yfC C/C .3 � u/ye; u 2 Œ2; 3�:

This easily implies that yt .u/ D u and

yN.u; v/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0; u 2 Œ0; 1�; v 2 Œ0; u�;

0; u 2 Œ1; 2�; v 2 Œ0; 1�;

.v � 1/yf; u 2 Œ1; 2�; v 2 Œ1; u�;

0; u 2 Œ2; 3�; v 2 Œ0; 3 � u�;

.v C u � 3/yf; u 2 Œ2; 3�; v 2 Œ3 � u; u�;

so that

yP .u; v/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

u.yfCye/C .u � v/C; u 2 Œ0; 1�; v 2 Œ0; u�;

uyfC .u � v/C Cye; u 2 Œ1; 2�; v 2 Œ0; 1�;

.u � v C 1/yfC .u � v/C Cye; u 2 Œ1; 2�; v 2 Œ1; u�;

uyfC .u � v/C Cye; u 2 Œ2; 3�; v 2 Œ0; 3 � u�;

.3 � v/yfC .u � v/C C .3 � u/ye; u 2 Œ2; 3�; v 2 Œ3 � u; u�;
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which gives

. yP .u; v//2 D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

u2 � v2; u 2 Œ0; 1�; v 2 Œ0; u�;

�v2 C 2u � 1; u 2 Œ1; 2�; v 2 Œ0; 1�;

2u � 2v; u 2 Œ1; 2�; v 2 Œ1; u�;

�3u2 � v2 C 12u � 9; u 2 Œ2; 3�; v 2 Œ0; 3 � u�;

�2u2 C 2uv C 6u � 6v; u 2 Œ2; 3�; v 2 Œ3 � u; u�:

Thus, integrating, we get S.W
zF0
�;� IC/ D

29
26

. Note that

AF0;�F0 .C / D

´
3
2
; O 2 B zF 0 ;

2; O … B zF 0 :

This gives the first required inequality. Similarly, we compute

S.W
yF0;C
�;�;� IQ/ D

9

26
C FQ.W

yF0;C
�;�;� /; where FQ.W

yF0;C
�;�;� / D

´
11
26
; Q Dyf \ C;

0 otherwise:

Observe that

AC;�C .Q/ D

´
1
2
; Q 2 B yF 0 ;

1; Q … B yF 0 :

Moreover, if O 2 B zF 0 \ f, the intersection C \yf consists of a single point, which is not
contained in B yF 0 . Thus, we have

AC;�C .Q/

S.W
yF0;C
�;�;� IQ/

D

8̂<̂
:
13
10
; Q D C \yf;

13
9
; Q D C \ B yF 0 ;

26
9

otherwise;

which implies the second required inequality.

Thus, it follows from (5.5) and Lemma 5.13 thatO D B zF 0 \ f, so f and B zF 0 are tangent
at the point O . Then � is a weighted blow up with weights .1; 2/. We have

��. zP .u/j zF 0/ �R

8̂<̂
:
u.yfCyeC 2C /; u 2 Œ0; 1�;

u.yfC 2C /Cye; u 2 Œ1; 2�;

u.yfC 2C /C .3 � u/ye; u 2 Œ2; 3�:

This gives yt .u/ D 2u. Moreover, we have

yN.u; v/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

0; u 2 Œ0; 1�; v 2 Œ0; u�;

.v � u/.yfCye/; u 2 Œ0; 1�; v 2 Œu; 2u�;

0; u 2 Œ1; 2�; v 2 Œ0; 1�;
v�1
2
yf; u 2 Œ1; 2�; v 2 Œ1; 2u � 1�;

.v � u/yfC .v � 2uC 1/ye; u 2 Œ1; 2�; v 2 Œ1; 2u � 1�;

0; u 2 Œ2; 3�; v 2 Œ0; 3 � u�;
vCu�3
2
yf; u 2 Œ2; 3�; v 2 Œ0; 3u � 3�;

.v � u/yfC .v C 3 � 3u/ye; u 2 Œ2; 3�; v 2 Œ3u � 3; 2u�;
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and

yP .u; v/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

.2u � v/C C uyfC uye; u 2 Œ0; 1�; v 2 Œ0; u�;

.2u � v/.C CyfCye/; u 2 Œ0; 1�; v 2 Œu; 2u�;

.2u � v/C C uyfCye; u 2 Œ1; 2�; v 2 Œ0; 1�;

.2u � v/C C 2u�vC1
2
yfCye; u 2 Œ1; 2�; v 2 Œ1; 2u � 1�;

.2u � v/.C CyfCye/; u 2 Œ1; 2�; v 2 Œ1; 2u � 1�;

.2u � v/C C uyfC .3 � u/ye; u 2 Œ2; 3�; v 2 Œ0; 3 � u�;

.2u � v/C C u�vC3
2
yfC .3 � u/ye; u 2 Œ2; 3�; v 2 Œ0; 3u � 3�;

.2u � v/.C CyfCye/; u 2 Œ2; 3�; v 2 Œ3u � 3; 2u�:

Then

. yP .u; v//2 D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

u2 � v2

2
; u 2 Œ0; 1�; v 2 Œ0; u�;

.2u�v/2

2
; u 2 Œ0; 1�; v 2 Œu; 2u�;

2u � 1 � v2

2
; u 2 Œ1; 2�; v 2 Œ0; 1�;

2u � v � 1
2
; u 2 Œ1; 2�; v 2 Œ1; 2u � 1�;

.2u�v/2

2
; u 2 Œ1; 2�; v 2 Œ1; 2u � 1�;

12u � 9 � 3u2 � v2

2
; u 2 Œ2; 3�; v 2 Œ0; 3 � u�;

.5u�2v�3/.u�3/
2

; u 2 Œ2; 3�; v 2 Œ0; 3u � 3�;
.2u�v/2

2
; u 2 Œ2; 3�; v 2 Œ3u � 3; 2u�:

Now, integrating, we get S.W
zF0
�;� IC/ D

49
26

. Thus, since AF0;�F0 .C / D 2, we get

AF0;�F0 .C /

S.W
zF0
�;� IC/

D
52

49
;

so it follows from (5.5) that there is a point Q 2 C such that S.W
yF0;C
�;�;� IQ/ > AC;�C .Q/. On

the other hand, we compute

S.W
yF0;C
�;�;� IQ/ D

9

52
C FQ.W

yF0;C
�;�;� /;

where

FQ.W
yF0;C
�;�;� / D

´
3
4
; Q D C \yf;
0 otherwise:

Recall that B yF 0 and yf are disjoint and do not contain the singular point of the surface yF0.
Moreover, we have

AC;�C .Q/ D

8̂<̂
:
1
2
; Q D C \ B yF 0 ;
1
2
; Q D Sing. yF0/;

1 otherwise:

Thus, summarizing, we get

AC;�C .Q/

S.W
yF0;C
�;�;� IQ/

D

8̂̂̂̂
<̂
ˆ̂̂:
13
12

Q D C \yf;
26
9
; Q D C \ B yF 0 ;

26
9
; Q D Sing. yF0/;

52
9

otherwise:
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In particular, we see that S.W
yF0;C
�;�;� IQ/ < AC;�C .Q/ in every possible case. The obtained

contradiction completes the proof of Proposition 5.5.

5.2. Proof of Proposition 5.6. Let us use notation introduced earlier in this section
before Proposition 5.6, and let P be a singular point of type A2 of the surface B 2 j2SCj.
Then, up to a change of coordinates, we may assume that P D .0; 0; 1; 0; 1/ and

f4.x1; x2; 1/ D x
2
1 C x

3
2 C higher order terms:

Let �WY0 ! Y be the blow up of the point P with weights .3; 2; 3/ with respect to vari-
ables .x1; x2; x4/; note that � is a toroidal log resolution of .Y; B/. We may describe Y0 as
a toric variety given as .C6 nZ.I0//=G3

m, where the action is given by the matrix

M D

0BBBB@
x0 x1 x2 x3 x4 x5

0 1 1 1 2 0

0 0 0 0 1 1

1 0 1 3 3 0

1CCCCA;
where the irrelevant ideal is

I0 D hx1; x2; x3i \ hx1; x2; x4i \ hx4; x5i \ hx0; x3i \ hx0; x5i:

To describe the fan of the toric threefold Y0, we denote by vi the vector generating the ray
corresponding to xi . Then

v0 D .3; 2; 3/; v1 D .1; 0; 0/; v2 D .0; 1; 0/;

v3 D .�1;�1;�2/; v4 D .0; 0; 1/; v5 D .0; 0;�1/;

and the cone structure can be visualized with the following diagram:

v0

v1

v2

v3

v4 v5

Let Fi D ¹xi D 0º � Y0 and Cij D Fi \ Fj for i ¤ j such that dim.Fi \ Fj / D 1. The
geometric identifications of Fi and Cij are the same as in previous section. Then

Eff.Y0/ D hF0; F1; F5i and NE.Y0/ D hC12; C15; C01i:

Intersections of divisors F0, F1, F5 are described in following table:

F 30 F 20 F1 F 20 F5 F0F
2
1 F0F1F5 F0F

2
5 F 31 F 21 F5 F1F

2
5 F 35

1
18

�
1
6

0 1
2

0 0 �
3
2

1 �2 4
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This gives the following intersection table:

� F0 F1 F5

C12
1
3
�1 1

C15 0 1 �2

C01 �
1
6

1
2

0

Now, we set A D �.KY C�/. Take u 2 R>0. Set L.u/ D ��.A/ � uF0. Then we have
L.u/ �R .9 � u/F0 C 3F1 C F5, so L.u/ is pseudo-effective if and only if u 6 9. Let us find
the Zariski decomposition for L.u/.

Observe that L.u/ is nef for u 2 Œ0; 3�. Since L.3/ � C12 D 0 and C12 is unique in its
numerical equivalence class, we consider a small Q-factorial modification Y0Ü Y1 along
the curve C12 such that Y1 D .C6 nZ.I1//=G3

m, where the torus action is the same, and the
irrelevant ideal is I1 D hx1; x2i \ hx4; x5i \ hx0; x3i. The fan of Y1 is generated by the same
vectors, but the cone structure is different:

v0

v1

v2

v3

v4 v5

Abusing our previous notation, we denote the divisor ¹xi D 0º � Y1 also by Fi , and we
let Cij D Fi \ Fj for i ¤ j such that Fi \ Fj is a curve. Then NE.Y1/ D hC01; C15; C05i,
and intersections on Y1 are described in the following two tables:

F 30 F 20 F1 F 20 F5 F0F
2
1 F0F1F5 F0F

2
5 F 31 F 21 F5 F1F

2
5 F 35

0 0 �
1
6

0 1
2

�
1
2

0 �
1
2

�
1
2

5
2

� F0 F1 F5

C05 �
1
6

1
2
�
1
2

C15
1
2
�
1
2
�
1
2

C01 0 0 1
2

Thus, we see that the proper transform on Y1 of the divisor L.u/ is nef for u 2 Œ3; 5�, and
it intersects the curve C15 trivially for u D 5. Since C15 is unique in its numerical equivalence
class, we consider another small Q-factorial modification Y1Ü Y2 such that

Y2 D .C
6
nZ.I2//=G

3
m;
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where the torus action is again given by the matrix M and the irrelevant ideal

I2 D hx1; x2i \ hx4; x5i \ hx1; x5i \ hx0; x2; x3i \ hx0; x3; x4i:

Then the fan of Y2 is generated by the same vectors, but the cone structure is different:

v0

v1

v2

v3

v4 v5

We abuse our notation again and denote the divisor ¹xi D 0º � Y2 also by Fi . Similarly,
we letCij D Fi \ Fj for i ¤ j such that Fi \ Fj is a curve. Then NE.Y2/ D hC01; C03; C05i,
and intersections on Y2 are described in the following two tables:

F 30 F 20 F1 F 20 F5 F0F
2
1 F0F1F5 F0F

2
5 F 31 F 21 F5 F1F

2
5 F 35

�
1
2

1
2

1
3

�
1
2

0 �1 1
2

0 0 3

� F0 F1 F5

C05
1
3

0 �1

C03
�2
3

1 1

C01
1
2
�
1
2

0

The proper transform on Y2 of the divisor L.u/ is nef for u 2 Œ5; 6�, and it intersects
both curves C01 and C05 trivially for u D 6. Furthermore, if u 2 Œ6; 9�, then the negative part
of the Zariski decomposition of the divisor L.u/ on the threefold Y2 is

N.u/ D .u � 6/F1 C
u � 6

3
F5;

while the positive part is P.u/ �R .9 � u/.F0 C F1 C
1
3
F5/. This gives

vol
�
L.u/

�
D

8̂̂̂̂
<̂
ˆ̂̂:
13 � u3

18
; u 2 Œ0; 3�;

�u2C3C23
2

; u 2 Œ3; 5�;
1
2
u3 � 8u2 C 3

2
u; u 2 Œ5; 6�;

�
1
9
u3 C 3u2 � 27uC 81; u 2 Œ6; 9�:

Integrating, we get SA.F0/ D 127
26

. Since AY;�.F0/ D 5, we get

AY;�.F0/

SA.F0/
D
130

127
> 1:
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Next we construct a partial common toric resolution for Y0, Y1, Y2, which is easy to see
from fan toric picture: we want to add the rays

v6 D .3; 2; 0/ 2 hv1; v2i \ hv0; v5i;

v7 D .1; 0;�1/ 2 hv0; v3i \ hv0; v3i;

v8 D .3; 1; 0/ 2 hv1; v2i \ hv0; v3i:

Set zY be the toric variety corresponding to v0; : : : ; v8 with the following cone structure:

v0

v1

v2

v3

v4 v5v6

v7
v8

Then we have the following toric diagram:

zY

Y 012 Y 001

Y12 Y01

Y2 Y1 Y0;

 

!

 !

�2  

!
�1  !

 1  

!
 0

 

!

 

!

 
!
 01 !

�12

 !� 0  !  0

where toric maps can be described as follows:

Map Center Weights Exceptional divisor Relation

 0 x1 D x2 D 0 .3; 2/ ¹x6 D 0º 3v1 C 2v2 D v6

 1 x0 D x5 D 0 .1; 3/ ¹x6 D 0º v0 C 3v5 D v6

�1 x1 D x5 D 0 .1; 1/ ¹x7 D 0º v1 C v5 D v7

�2 x0 D x3 D 0 .1; 2/ ¹x7 D 0º v0 C 2v3 D v7

 0 x1 D x5 D 0 .1; 1/ ¹x7 D 0º v1 C v5 D v7

� 0 x0 D x5 D 0 .1; 3/ ¹x6 D 0º v0 C 3v5 D v6

 01 x1 D x6 D 0
1
2
.3; 1/ ¹x8 D 0º 3v1 C v6 D 2v8

�12 x0 D x7 D 0
1
2
.1; 3/ ¹x8 D 0º v1 C 3v7 D 2v8

Here, 1
2
.a; b/ indicates that the variety has an A1-singularity along the center of blow up.
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Now, we set '0 D  01 ı  0 ı  0, '1 D  01 ı  0 ı  1, '2 D �12 ı � 0 ı �2. Let zFi be
the toric divisor ¹xi D 0º � zY . Then

'�0 .F0/ �Q zF0;

'�0 .F1/ �Q zF1 C 3 zF6 C zF7 C 3 zF8;

'�0 .F5/ �Q zF5 C zF7;

'�1 .F0/ �Q zF0 C zF6 C
1

2
zF8;

'�1 .F1/ �Q zF1 C zF7 C
3

2
zF8;

'�1 .F5/ �Q zF5 C 3 zF6 C zF7 C
3

2
zF8;

'�2 .F0/ �Q zF0 C zF6 C zF7 C 2 zF8;

'�2 .F1/ �Q zF1;

'�2 .F5/ �Q zF5 C 3 zF6:

Using this, we describe the Zariski decomposition of the divisor '�0 .L.u// as follows:

zP .u/ �R

8̂̂̂̂
<̂
ˆ̂̂:
.9 � u/ zF0 C 3 zF1 C zF5 C 9 zF6 C 4 zF7 C 9 zF8; u 2 Œ0; 3�;

.9 � u/ zF0 C 3 zF1 C zF5 C .12 � u/ zF6 C 4 zF7 C
21�u
2
zF8; u 2 Œ3; 5�;

.9 � u/ zF0 C 3 zF1 C zF5 C .12 � u/ zF6 C .9 � u/ zF7 C 2.9 � u/ zF8; u 2 Œ5; 6�;

.9 � u/. zF0 C zF1 C
1
3
zF5 C 2 zF6 C zF7 C 2 zF8/; u 2 Œ6; 9�;

and

zN.u/ D

8̂̂̂̂
<̂
ˆ̂̂:
0; u 2 Œ0; 3�;

.u � 3/ zF6 C
u�3
2
zF8; u 2 Œ3; 5�;

.u � 3/ zF6 C .u � 5/ zF7 C .2u � 9/ zF8; u 2 Œ5; 6�;

.u � 6/ zF1 C
u
3
zF5 C .2u � 9/ zF6 C .u � 5/ zF7 C .2u � 9/ zF8; u 2 Œ6; 9�:

where zP .u/ is the positive part, and zN.u/ is the negative part.
Now, we describe zP .u/j zF 0 and zN.u/j zF 0 for every u 2 Œ0; 9�. We have

zY D .C9
n zI /=G6

m;

where the torus action is given by the matrix

zM D

0BBBBBBBBBBBB@

x0 x1 x2 x3 x4 x5 x6 x7 x8

0 1 1 1 2 0 0 0 0

0 0 0 0 1 1 0 0 0

1 0 1 3 3 0 0 0 0

0 0 1 3 6 0 1 0 0

0 0 1 1 3 0 0 1 0

0 0 2 3 6 0 0 0 1

1CCCCCCCCCCCCA
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and the irrelevant ideal

zI D hx0; x3i \ hx0; x5i \ hx0; x7i \ hx1; x2i \ hx1; x5i \ hx1; x6i \ hx2; x7i \ hx2; x8i

\ hx3; x6i \ hx3; x8i \ hx4; x5i \ hx4; x6i \ hx4; x7i \ hx4; x8i \ hx5; x8i:

To obtain a similar description of the surface zF0, set x0 D 0, eliminate the first row in zM , and
set x3 D x5 D x7 D 1, since zI � hx0; x3i \ hx0; x5i \ hx0; x7i. The resulting matrix is0BBBB@

x1 x2 x4 x6 x8

3 2 3 0 0

0 0 3 1 0

0 1 3 0 1

1CCCCA:
Using this, we see that zF0 D .C5 nZ.I zF 0//=G

3
m, where the torus action is given by0BBBB@

z1 z2 z3 z4 z5

1 1 2 0 0

0 1 0 1 0

0 1 1 0 1

1CCCCA;
and I zF 0 D hz1; z3i \ hz1; z4i \ hz2; z4i \ hz2; z5i \ hz3; z5i. We can see from the matrices
that

x1j zF 0 D z1; x32 j zF 0 D z3; x4j zF 0 D z2; x36 j zF 0 D z4; x38 j zF 0 D z5:

The fan of the toric surface zF0 is given by

w1 D .1; 0/; w2 D .�1;�2/; w3 D .0; 1/; w4 D .1; 2/; w5 D .1; 1/

with obvious cone structure. Note that we can also recover this structure by noticing that
F0 Š P .1; 1; 2/ is the exceptional divisor of the weighted blow up � and that the maps  0
and  01 restrict to F0 as weighted blow ups. For i 2 ¹1; 2; 3; 4; 5º, let Ci be the curve in zF0
given zi D 0. The cone of effective divisors of the surface zF0 is generated by the curves C1,
C4, C5, and their intersection form is given in the following table:

� C1 C4 C5

C1 �
1
2

0 1

C4 0 �1 1

C5 1 1 �2

Further, we compute

zP .u/j zF 0 �R

8̂̂̂̂
<̂
ˆ̂̂:
u
3
C1 C

u
3
C4 C

u
3
C5; u 2 Œ0; 3�;

u
3
C1 C C4 C .

1
2
C

u
6
/C5; u 2 Œ3; 5�;

u
3
C1 C C4 C .3 �

u
3
/C5; u 2 Œ5; 6�;

.6 � 2u
3
/C1 C .3 �

u
3
/C4 C .3 �

u
3
/C5; u 2 Œ6; 9�;



Cheltsov, Duarte Guerreiro, Fujita, Krylov and Martinez-Garcia, Casagrande–Druel varieties 51

and

zN.u/j zF 0 D

8̂̂̂̂
<̂
ˆ̂̂:
0; u 2 Œ3; 5�;
u�3
6
.2C4 C C5/; u 2 Œ3; 5�;

u�3
3
C4 C

2u�9
3
C5; u 2 Œ5; 6�;

.u � 6/C1 C
2u�9
3
.2C4 C C5/; u 2 Œ6; 9�:

Let � W zF0 ! F0 be the morphism induced by '0. Then � is a birational morphism that
contracts C4 and C5. Set C 1 D �.C1/, C 2 D �.C2/, C 3 D �.C3/, identify F0 D P .1; 1; 2/
with coordinates Nz1, Nz2, Nz3 such that C 1 D ¹Nz1 D 0º, C 2 D ¹Nz2 D 0º, C 3 D ¹Nz3 D 0º, where
Nz1 and Nz2 are coordinates of weight 1, and Nz3 is a coordinate of weight 2. Then

�.C4/ D �.C5/ D C 1 \ C 3 D Œ0 W 1 W 0�;

and � is a composition of the ordinary blow up at the point Œ0 W 1 W 0� with the consecutive blow
up at the point on the proper transform of the curve C 3. Note that C5 is the proper transform
of the exceptional curve for the first blow up and C4 is the exceptional curve for the second
blow up.

LetB0 be the proper transform on Y0 of the surfaceB . Set�0 D 1
2
B0 andBF0 D B0jF0 .

Then, changing the coordinates Nz1, Nz2, Nz3, we may also assume that

BF0 D ¹z
2
1 C z

2
2 D z3º � F0:

This curve is smooth, it does not contain the singular point of F0, and Œ0 W 1 W 0� … BF0 . The
geometry of the surface F0 can be illustrated by the following picture:

C5

C1

C2

C3
C4

BF0

Note that the surface Y0 is singular along the curve C 3. We set

�F0 D
1

2
BF0 C

2

3
C 3:

Then
KF0 C�F0 �Q .KY0 C�0/jF0 ;

and �F0 is the corresponding different [40].
Now, we are ready to apply [2, 7, 22]. Let Q be a point in F0, let C be a smooth curve in

the surface F0 that contains Q, let zC be its proper transform on zF0. For u 2 Œ0; 9�, let

t .u/ D inf¹v 2 R>0 j the divisor zP .u/j zF 0 � v zC is pseudo-effectiveº:
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For a real number v 2 Œ0; t.u/�, let P.u; v/ and N.u; v/ be the positive part and the negative
part of the Zariski decomposition of the divisor zP .u/j zF 0 � v zC , respectively. Set

SL.W
F0
�;� IC/ D

3

A3

Z 9

0

. zP .u/j zF 0/
2 ord zC . zN.u/j zF 0/ du

C
3

A3

Z 9

0

Z t.u/

0

.P.u; v//2 dv du:

Write ��.C / D zC C† for an effective divisor † on the surface zF0. For u 2 Œ0; 9�, write

zN.u/j zF 0 D d.u/
zC CN 0.u/;

where d.u/ D ord zC . zN.u/j zF 0/, and N 0.u/ is an effective divisor on zF0. Set

S.W F0;C
�;�;� IQ/ D

3

A3

Z 9

0

Z t.u/

0

.P.u; v/ � zC/2 dv duC FQ.W
F0;C
�;�;� /

for

FQ.W
F0;C
�;�;� / D

6

A3

Z 9

0

Z t.u/

0

.P.u; v/ � zC/

� ordQ
�
.N 0.u/CN.u; v/ � .v C d.u//†/j zC

�
dv du;

where we consider Q as a point in zC using the isomorphism zC Š C induced by � .
We will choose C such that the pair .F0; C C�F0 � ordC .�F0/C / has purely log ter-

minal singularities. In this case, the curve C is equipped with an effective divisor �C such
that

KC C�C �Q .KF0 C C C�F0 � ordC .�F0/C /jC ;

and the pair .C;�C / has Kawamata log terminal singularities. The Q-divisor �C is known as
the different, and it can be computed locally near any point in C ; see [40] for details.

Let F be a prime divisor over Y such that P D CY .F/. Recall that

ˇY;�.F/ D AY;�.F/ � SA.F/ D AY;�.F/ �
1

A3

Z 1
0

vol.A � uF/ du:

Suppose ˇY;�.F/ 6 0. Then, using [22, Corollary 4.18], we obtain

1 >
AY;�.F/
SA.F/

> ıP .Y;�/ > min
²
AY;�.F0/

SA.F0/
; inf
Q2F0

min
²
AF0;�F0 .C /

SA.W
F0
�;� IC/

;
AC;�C .Q/

S.W
F0;C
�;�;� IQ/

³³
;

where the choice of C in the infimum depends on Q. Thus, since

AY;�.F0/

SA.F0/
> 1;

we have

inf
Q2F0

min
²
AF0;�F0 .C /

SA.W
F0
�;� IC/

;
AC;�C .Q/

S.W
F0;C
�;�;� IQ/

³
6 1:

In fact, since
AY;�.F0/

SA.F0/
D
130

127
> 1;
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it follows from [22, Corollary 4.18] and [2, Theorem 3.3] that we have a strict inequality

inf
Q2F0

min
²
AF0;�F0 .C /

SA.W
F0
�;� IC/

;
AC;�C .Q/

S.W
F0;C
�;�;� IQ/

³
< 1:

Let us use this to obtain a contradiction, which would finish the proof of Proposition 5.6.
Namely, we will show that, for every point Q 2 F0, there exists a smooth irreducible

curve C � F0 such that Q 2 C , the log pair .F0; C C�F0 � ordC .�F0/C / has purely log
terminal singularities, and the following two inequalities hold:

SA.W
F0
�;� IC/ 6 AF0;�F0 .C /;(5.6)

S.W F0;C
�;�;� IQ/ 6 AC;�C .Q/:(5.7)

To be precise, we will choose the curve C as follows:

� if Q 2 C 1, we let C D C 1;
� if Q … C 1 and Q 2 C 3, we let C D C 3;
� if Q … C 1 [ C 3, we let C be the unique curve in jC 1j such that Q 2 C .

Lemma 5.14. Let Q be a point in C 1. Set C D C 1. Then (5.6) and (5.7) hold.

Proof. Note that AF0;�F0 .C / D 1 and † D C 4 C C 5. We have

d.u/ D

´
0; u 2 Œ0; 6�

u � 6; u 2 Œ6; 9�;
and t .u/ D

´
u
3
; u 2 Œ0; 6�;

6 � 2u
3
; u 2 Œ6; 9�:

Moreover, we have

N.u; v/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

v.C4 C C5/; u 2 Œ0; 3�; v 2 Œ0; u
3
�;

v
2
C5; u 2 Œ3; 5�; v 2 Œ0; u

3
� 1�;

3vC3�u
3

C4 C
6vC3�u

6
C5; u 2 Œ3; 5�; v 2 Œu

3
� 1; u

3
�;

0; u 2 Œ5; 6�; v 2 Œ0; u � 5�;
vC5�u
2

C5; u 2 Œ5; 6�; v 2 Œu � 5; u
3
� 1�;

3vC3�u
3

C4 C
3vC9�2u

3
C5; u 2 Œ5; 6�; v 2 Œu

3
� 1; u

3
�;

0; u 2 Œ6; 9�; v 2 Œ0; 3 � u
3
�;

3vCu�9
3

.C4 C C5/; u 2 Œ6; 9�; v 2 Œ3 � u
3
; 6 � 2u

3
�;

and

P.u; v/ �R

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

u�3v
3
.C1 C C4 C C5/; u 2 Œ0; 3�; v 2 Œ0; u

3
�;

u�3v
3
C1 C C4 C

3Cu�3v
6

C5; u 2 Œ3; 5�; v 2 Œ0; u
3
� 1�;

u�3v
3
.C1 C C4 C C5/; u 2 Œ3; 5�; v 2 Œu

3
� 1; u

3
�;

u�3v
3
C1 C C4 C

9�u
3
C5; u 2 Œ5; 6�; v 2 Œ0; u � 5�;

u�3v
3
C1 C C4 C

3Cu�3v
6

C5; u 2 Œ5; 6�; v 2 Œu � 5; u
3
� 1�;

u�3v
3
.C1 C C4 C C5/; u 2 Œ5; 6�; v 2 Œu

3
� 1; u

3
�;

.18�2u�3v
3

C1 C
9�u
3
.C4 C C5/; u 2 Œ6; 9�; v 2 Œ0; 3 � u

3
�;

18�2u�3v
3

.C1 C C4 C C5/; u 2 Œ6; 9�; v 2 Œ3 � u
3
; 6 � 2u

3
�;
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which gives

.P.u; v//2 D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

.u�3v/2

18
; u 2 Œ0; 3�; v 2 Œ0; u

3
�;

u
3
� v � 1

2
; u 2 Œ3; 5�; v 2 Œ0; u

3
� 1�;

.u�3v/2

18
; u 2 Œ3; 5�; v 2 Œu

3
� 1; u

3
�;

�
u2

2
C uv � v2

2
� 13C 16

3
u � 6v; u 2 Œ5; 6�; v 2 Œ0; u � 5�;

u
3
� v � 1

2
; u 2 Œ5; 6�; v 2 Œu � 5; u

3
� 1�;

.u�3v/2

18
; u 2 Œ5; 6�; v 2 Œu

3
� 1; u

3
�;

�2uC 9C u2

9
�
v2

2
; u 2 Œ6; 9�; v 2 Œ0; 3 � u

3
�;

.18�2u�3v/2

18
; u 2 Œ6; 9�; v 2 Œ3 � u

3
; 6 � 2u

3
�;

and

P.u; v/ � C D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

u�3v
6
; u 2 Œ0; 3�; v 2 Œ0; u

3
�;

1
2
; u 2 Œ3; 5�; v 2 Œ0; u

3
� 1�;

u�3v
6
; u 2 Œ3; 5�; v 2 Œu

3
� 1; u

3
�;

6�uCv
2

; u 2 Œ5; 6�; v 2 Œ0; u � 5�;
1
2
; u 2 Œ5; 6�; v 2 Œu � 5; u

3
� 1�;

u�3v
6
; u 2 Œ5; 6�; v 2 Œu

3
� 1; u

3
�;

v
2
; u 2 Œ6; 9�; v 2 Œ0; 3 � u

3
�;

18�2u�3v
6

; u 2 Œ6; 9�; v 2 Œ3 � u
3
; 6 � 2u

3
�:

Integrating, we get

S.W F0
�;� IC/ D

10

13
< 1 D AF0;�F0 .C /;

so (5.6) holds.
Similarly, we compute

S.W F0;C
�;�;� IQ/ D

9

52
C FQ.W

F0;C
�;�;� /;

where

FQ.W
F0;C
�;�;� / D

´
1
12
; Q D C 1 \ C 3;

0 otherwise:

Observe that

AC;�C .Q/ D

8̂̂̂̂
<̂
ˆ̂̂:
1
2
; Q D C 1 \ BF0 ;
1
2
; Q D C 1 \ C 2;
1
3
; Q D C 1 \ C 3;

1 otherwise:

Thus, we have

AC;�C .Q/

S.W
F0;C
�;�;� IQ/

D

8̂̂̂̂
<̂
ˆ̂̂:
13
10

Q D C 1 \ C 3;
26
9

Q D C 1 \ C 2;
26
9
; Q D C 1 \ BF0 ;

52
9

otherwise;

which implies (5.7).
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Lemma 5.15. Let Q be a point in C 3 n C 1. Set C D C 3. Then (5.6) and (5.7) hold.

Proof. For u 2 Œ0; 9�, we have d.u/ D 0,N 0.u/ D zN.u/j zF 0 . As zC � C3 C 2C4 C C5,
we have

t .u/ D

´
u
6
; u 2 Œ0; 6�;

9�u
3
; u 2 Œ6; 9�:

We compute

N.u; v/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

2vC4 C vC5; u 2 Œ0; 3�; v 2 Œ0; u
6
�;

0; u 2 Œ3; 5�; v 2 Œ0; u�3
6
�;

u�3
6
.2C4 C C5/; u 2 Œ3; 5�; v 2 Œu�3

6
; u
6
�;

0; u 2 Œ5; 6�; v 2 Œ0; 6�u
3
�;

3vCu�6
3

.C4/; u 2 Œ5; 6�; v 2 Œ6�u
3
; 2u�9

3
�

6vC3�u
3

.C4/C
vC9�2u

3
.C4/; u 2 Œ5; 6�; v 2 Œ2u�9

3
; u
6
�;

2u�9
3
.C4 C C5/; u 2 Œ6; 9�; v 2 Œ0; 9�u

3
�;

and

P.u; v/ �

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

u�6v
3
.C1 C C4 C C5/; u 2 Œ0; 3�; v 2 Œ0; u

6
�;

u�6v
3
C1 C

3Cu�6v
6

C5 C C4; u 2 Œ3; 5�; v 2 Œ0; u�3
6
�;

u�6v
3
.C1 C C4 C C5/; u 2 Œ3; 5�; v 2 Œu�3

6
; u
6
�;

u�6v
3
C1 C

9�u�3v
3

C5 C C4; u 2 Œ5; 6�; v 2 Œ0; 6�u
3
�;

u�6v
3
C1 C

9�u�3v
3

.C5 C C4/; u 2 Œ5; 6�; v 2 Œ6�u
3
; 2u�9

3
�;

u�6v
3
.C1 C C4 C C5/; u 2 Œ5; 6�; v 2 Œ2u�9

3
; u
6
�;

9�u�3v
3

.2C1 C C4 C C5/; u 2 Œ6; 9�; v 2 Œ0; 9�u
3
�;

which gives

.P.u; v//2 D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

u2

18
C 2v2 � 2

3
uv; u 2 Œ0; 3�; v 2 Œ0; u

6
�;

u
3
� 2v � 1

2
; u 2 Œ3; 5�; v 2 Œ0; u�3

6
�;

u2

18
C 2v2 � 2

3
uv; u 2 Œ3; 5�; v 2 Œu�3

6
; u
6
�;

16
3
u � 2v � 13

2
u2; u 2 Œ5; 6�; v 2 Œ0; 6�u

3
�;

4u � 6v � 9 � 7
18
u2 C v2 C 2

3
uv; u 2 Œ5; 6�; v 2 Œ6�u

3
; 2u�9

3
�

9 � 6v � 2uC v2 C u2

9
C

2
3
uv; u 2 Œ5; 6�; v 2 Œ2u�9

3
; u
6
�;

2u�9
3
.C4 C C5/; u 2 Œ6; 9�; v 2 Œ0; 9�u

3
�;

and

P.u/ � C D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

u
3
� 2v; u 2 Œ0; 3�; v 2 Œ0; u

6
�;

1; u 2 Œ3; 5�; v 2 Œ0; u�3
6
�;

u
3
� 2v; u 2 Œ3; 5�; v 2 Œu�3

6
; u
6
�;

1; u 2 Œ5; 6�; v 2 Œ0; 6�u
3
�;

3 � v � u
3
; u 2 Œ5; 6�; v 2 Œ6�u

3
; 2u�9

3
�;

u
3
� 2v; u 2 Œ5; 6�; v 2 Œ2u�9

3
; u
6
�;

3 � u
3
� v; u 2 Œ6; 9�; v 2 Œ0; 9�u

3
�:
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Thus, integrating we get

S.W F0
�;� IC/ D

10

39
<
1

3
D AF0;�F0 .C /;

so (5.6) holds.
SinceQ ¤ C 1 \ C 3, we have FQ.W

F0;C
�;�;� / D 0, which gives S.W F0;C3

�;�;� IQ/ D
9
26

. But

AC;�C .Q/ D

´
1
2
; Q 2 BF0 ;

1; Q … BF0 :

Thus, we have
AC;�C .Q/

S.W
F0
�;� IC/

D

´
13
10
; Q 2 BF0 ;

26
9
; Q … BF0 ;

which implies (5.6).

Lemma 5.16. Let Q be a point in F0 such that Q … C 1 [ C 3, and let C be the unique
curve in the pencil jC 1j that contains Q. Then (5.6) and (5.7) hold.

Proof. Note that AF0;�F0 .C / D 1, and zC � C1 C C4 C C5. We have

t .u/ D

8̂<̂
:
u
3
; u 2 Œ0; 3�;

1; u 2 Œ3; 6�;
9�u
3
; u 2 Œ6; 9�:

For every u 2 Œ0; 9�, we have d.u/ D 0 and N 0.u/ D zN.u/j zF 0 . We compute

N.u; v/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0; u 2 Œ0; 3�; v 2 Œ0; u
3
�;

0; u 2 Œ3; 5�; v 2 Œ0; 1�;

0; u 2 Œ5; 6�; v 2 Œ0; 6 � u�;

.v C u � 6/C1; u 2 Œ5; 6�; v 2 Œ6 � u; 1�;

vC1; u 2 Œ6; 9�; v 2 Œ0; 3 � u
3
�;

and

P.u; v/ �

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

u�3v
3
.C1 C C4 C C5/; u 2 Œ0; 3�; v 2 Œ0; u

3
�;

u�3v
3
C1 C .1 � v/C4 C

3Cu�6v
6

C5; u 2 Œ3; 5�; v 2 Œ0; 1�;
u�3v
3
C1 C .1 � v/C4 C

9�u�3v
3

C5; u 2 Œ5; 6�; v 2 Œ0; 6 � u�;
18�2u�6v

3
C1 C .1 � v/C4 C

9�u�3v
3

C5; u 2 Œ5; 6�; v 2 Œ6 � u; 1�;
9�u�3v

3
.2C1 C C4 C C5/; u 2 Œ6; 9�; v 2 Œ0; 3 � u

3
�;

which gives

.P.u; v//2 D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.u�3v/2

18
; u 2 Œ0; 3�; v 2 Œ0; u

3
�;

�
1
2
C

u
3
�
1
3
uv C 1

2
v2; u 2 Œ3; 5�; v 2 Œ0; 1�;

�
u2

2
�
uv
3
C

v2

2
� 13C 16

3
u; u 2 Œ5; 6�; v 2 Œ0; 6 � u�;

5C 2uv
3
C v2 � 2u

3
� 6v; u 2 Œ5; 6�; v 2 Œ6 � u; 1�;

.3�u
3
�v/2

2
; u 2 Œ6; 9�; v 2 Œ0; 3 � u

3
�;
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and

P.u/ � zC D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

u�3v
6
; u 2 Œ0; 3�; v 2 Œ0; u

3
�;

u�3v
6
; u 2 Œ3; 5�; v 2 Œ0; 1�;

u�3v
6
; u 2 Œ5; 6�; v 2 Œ0; 6 � u�;

9�u�3v
3

; u 2 Œ5; 6�; v 2 Œ6 � u; 1�;
9�u�3v

3
; u 2 Œ6; 9�; v 2 Œ0; 3 � u

3
�:

Thus, integrating, we get

S.W F0
�;� IC/ D

9

26
< 1 D AF0;�F0 .C /;

so (5.6) holds.
Since Q … C 1 [ C 3, we have FQ.W

F0;C
�;�;� / D 0 and

AC;�C .Q/ D

´
1
2
; Q 2 BF0 ;

1; Q … BF0 :

Integrating, we get S.W F0;C
�;�;� IQ/ D

10
39

, so that

AC;�C .Q/

S.W
F0
�;� IC/

D

´
39
20
; Q 2 BF0 ;

39
10
; Q … BF0 ;

which implies (5.6).

Lemmas 5.14, 5.14, 5.16 complete the proof of Proposition 5.6.

6. On the K-moduli spaces

In this section, we prove Corollary 1.13. The proof of Corollary 1.14 is almost identical,
so we omit it. To start with, let us present the following well-known assertion.

Lemma 6.1. Let X be a smooth Fano threefold. Then

h0.X; TX / � h
1.X; TX / D �.X; TX / D

�K3X
2
� 18C b2.X/ �

b3.X/

2
;

where b2.X/ and b3.X/ are the second and the third Betti numbers of X , respectively.

Proof. The required assertion immediately follows from the Akizuki–Nakano vanishing
theorem and the Hirzebruch–Riemann–Roch theorem, since �KX � c2.X/ D 24.

Now, let us use notation and assumptions introduced in Corollary 1.13.

Lemma 6.2. Let f 2 T and let Xf be the Casagrande–Druel 3-fold constructed from
¹f D 0º. Suppose that f is GIT semistable with respect to the �-action. Then Xf is K-semi-
stable.

Proof. There exists a one-parameter subgroup �WGm ! � such that

Œf0� D lim
t!0

�.t/ � Œf �
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is a GIT polystable point in T . Let X0 be the corresponding Casagrande–Druel threefold con-
structed from ¹f0 D 0º. Then it follows from Theorem 1.11 that X0 is K-polystable. On the
other hand, the subgroup � gives isotrivial flat degeneration of Xf to X0, which implies that
Xf is K-semistable, because K-semistability is an open condition.

Now, we are ready to prove Corollary 1.13.

Proof of Corollary 1.13. Since the construction of Casagrande–Druel 3-folds is functo-
rial, there exists a �-equivariant flat morphism �T WXT ! T such that ��1T .Œf �/ Š Xf . We
setXT ss D ��1T .T ss/. Then the restriction morphismXT ss ! T ss is a �-equivariant flat family
of K-semistable Fano 3-folds by Lemma 6.2.

Let ¹T ss=�º be the fibered category over .Sch=C/fppf in the sense of [36, Example 4.6.7].
Then the family XT ss ! T ss gives a morphism ¹T ss=�º !MKss

3;28 of fibered categories. This
induces the morphism ŒT ss=��!MKss

3;28 between Artin stacks, since ŒT ss=�� is the stackifi-
cation of ¹T ss=�º (see [36, Remark 4.6.8]).

SinceM is the good moduli space of ŒT ss=��, it follows from [4, Theorem 6.6] that there
exists a natural morphism ˆWM !M

Kps
3;28 that maps Œf � to ŒXf �. We claim that ˆ is injective.

Since M is of Picard rank 1, it is enough to show this on the open subset of M parametrizing
Œf � such that .f D 0/ is non-singular, so that the corresponding 3-fold Xf is smooth. Suppose
that f1 and f2 are points in T and the corresponding Casagrande–Druel 3-folds Xf1 and Xf2
are both smooth and isomorphic. Let �WXf1 ! Xf2 be the isomorphism. Then � maps any
exceptional locus of the contraction of an extremal ray of Xf1 to an exceptional locus of the
contraction of an extremal ray of Xf2 . There are exactly 4 such exceptional loci: S1, S2, E1
and E2. Since Sj and Ek are not isomorphic to each other, the image of S1 � Xf1 via � must
be either S1 � Xf2 or S2 � Xf2 . In each case, the restriction of � to S1 gives a projective
isomorphism between .f1 D 0/ and .f2 D 0/. Thus, the points f1 and f2 are contained in one
�-orbit. Hence, the morphism ˆ is injective.

Observe that M is normal. Take Œf � 2M . Since the deformations of the 3-fold Xf are
unobstructed by Proposition 2.6, the variety MKps

3;28 is also normal at ŒXf � by Luna’s étale slice
theorem [6, Theorem 1.2]. Moreover, if Xf is smooth, then

dimŒXf �.M
Kps
3;28/ 6 h

1.Xf ; TXf / D dim.M/

by Lemma 6.1, since h0.X; TX / D dim.Aut.X// D 1. Therefore, using the injectivity of ˆ,
we see that the image ˆ.M/ �M

Kps
3;28 is a connected component, and ˆ is an isomorphism

onto this connected component by Zariski’s main theorem.

The variety MKps
.3:9/

is well-studied [26]. Let us describe MKps
.4:2/
Š T ss == � . Recall that

T D P
�
H 0.V;OV .2; 2//

_
�

and � D .SL2.C/ � SL2.C// Ì �2, where V D P1 � P1. Set �0 D SL2.C/ � SL2.C/.

Proposition 6.3 (Noam Elkies). One has T ss == �0 Š T
ss == � Š P .1; 2; 3/.

Proof. Let W D H 0.V;OV .2; 2//, let S be the symmetric algebra of W _, let S�0 be
its subalgebra of invariants for the natural �0-action, and let H.t/ be its Hilbert series

H.t/ D
X
k>0

dim
�
.Symk.W _//�0

�
tk :
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Then it follows from [39, §11.9] or [18, §4.6] that

H.t/ D

Z 1

0

Z 1

0

2 � z21 � z
�2
1

2
�
2 � z22 � z

�2
2

2
�

Y
j1;j22¹�1;0;1º

1

1 � t � z
2j1
1 z

2j2
2

d�1 d�2

with jt j < 1, where z1 D e2�
p
�1�1 and z2 D e2�

p
�1�2 . This gives

H.t/ D
1

.1 � t2/.1 � t3/.1 � t4/
:

Let us find generators of S�0 . Consider the standard basis

x20y
2
0 ; x

2
0y0y1; x

2
0y
2
1 ; x0x1y

2
0 ; x0x1y0y1; x0x1y

2
1 ; x

2
1y
2
0 ; x

2
1y0y1; x

2
1y
2
1

of the space W , let a00; a01; a02; a10; a11; a12; a20; a21; a22 be the dual basis of the space
W _, and let J2, J3, J4 be the coefficients of the characteristic polynomial of the matrix0BBBB@

1
2
a11 �a10 �a01 2a00

a12 �
1
2
a11 �2a02 a01

a21 �2a20 �
1
2
a11 a10

2a22 �a21 �a12
1
2
a11

1CCCCA
such that Jk 2 Symk.W _/ for k 2 ¹2; 3; 4º. Then J2, J3, J4 are �0-invariant, and these poly-
nomials are algebraically independent, which gives S�0 D CŒJ2; J3; J4�, so that

T ss == �0 Š P .2; 3; 4/ Š P .1; 2; 3/:

Since the polynomials J2, J3, J4 are also �-invariant, we also get T ss == �0 Š T
ss == � .

Remark 6.4. In fact, Proposition 6.3 is a classical result – Peano [38] and Turnbull [44]
showed that S�0 is generated by J2, J3, J4; see [44, §12] and [37, pages 242–246].

The surfaceMKps
.4:2/

is a component of the K-moduli space of smoothable Fano threefolds.
Another two-dimensional component of this K-moduli space has been described in [13], and
all its one-dimensional components have been described in [1].
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