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Deep Subdomain Adaptation Network Improves 

Cross-Subject Mental Workload Classification 

Abstract—Cross-subject classification is of great practical 

value in the mental monitoring. The trained model on a person 

can be transferred to another person without retraining. To 

date, it is achieved by global domain adaptation without 

considering differences in subdomain distributions. In this case, 

there is a lack of sensitivity to specific information associated 

with each category. To solve this problem, we proposed a deep 

subdomain adaptation network (DSAN) to estimate mental 

workload levels across different persons. In the proposed DSAN, 

the first temporal and spatial layers were designed as a feature 

extractor. The features extracted by the feature extractor were 

aligned between the source samples and target samples in each 

subdomain separately. The alignment loss calculated by local 

maximum mean difference (LMMD) was back-propagated to 

update the weights of the feature extractor to enhance the 

feature extraction performance. Subdomain adaptation was 

achieved over iterations during the model training. The 

proposed subdomain adaptation is not specialized for a 

particular feature extractor, as shown in this paper. It is 

universal and can be applied after any feature extractors. Two 

datasets (Dataset MATB and Dataset SFE) were used to 

evaluate the proposed DSAN. The results showed that the 

proposed DSAN outperformed the compared methods in terms 

of classification accuracy, showing an elevation of 3%~7%. This 

study provides an effective solution for the cross-subject mental 

workload classification and will promote practical applications 

of mental workload monitoring. 

Keywords—Deep Subdomain Adaptation Network, EEG, 

Cross-Subject Classification, Mental Workload, Local Maximum 

Mean Difference, Brain Computer Interface 

I. INTRODUCTION  

In the field of brain-computer interfaces, researchers have 
shown increasing interest in the mental workload (MW) 
paradigm [1]. The evaluation of MW helps to optimize task 
execution and decision-making processes in various 
environments, thus increasing efficiency and reducing error 
rates. It can be expressed as the proportion of mental resources 
utilized for a specific task compared to the overall mental 
capacity of a person [2]. Either extremely low or too high a 
workload can lead to a negative impact on human 
performance in task implementation [3]. Therefore, it is 
paramount to accurately determine the level of MW so that the 
appropriate MW can be maintained to maximize productivity. 

Up to this point, MW has been assessed by subjective and 
objective metrics [4]. The subjective measurement relies on 
the human’s perception and self-evaluation using a predefined 
questionnaire, such as the NASA task load index [5] and the 

primary task performance method [6]. Though subjective 
measurements can be easily carried out, they cannot provide a 
real-time and objective assessment. In contrast, objective 
measurements depend on physiological signals, including 
electroencephalogram (EEG), electrocardiogram (ECG) [7], 
and functional near-infrared spectroscopy (fNIRS) [8]. 
Among these signals, EEG is one of the most frequently 
utilized signals because of its high temporal resolution, 
portability, safety, and cost-effectiveness. Hence, we utilized 
EEG in this study to classify different levels of mental 
workload. 

Various methodologies have been devised to categorize 
mental workload levels using EEG data, such as k-nearest 
neighbors (k-NN) [9], random forest (RF) [10], and support 
vector machine (SVM) [11]. In addition, the studies [12], [13], 
[14] have shown that deep learning models have surpassed 
traditional machine learning methods on the tasks of within-
subject MW classification. However, the presence of 
individual variability in EEG data presents a difficulty in 
cross-subject workload studies. Applying subject-specific 
models to new subjects may result in a decline in recognition 
accuracy for the model. It is essential to create mental 
workload recognition models that can be applied across 
different subjects to improve generalization in real-world 
scenarios.  

In response to this concern, a variety of domain adaptable 
approaches have been developed [15], [16], [17]. Domain 
adaptation (DA) considers the data from some subjects as the 
source domain and the data from a new subject as the target 
domain, which then transfers knowledge from the source 
domain to the target domain. A typical DA algorithm [18] 
seeks to acquire domain-invariant features that can be applied 
to cross-subject classifications by minimizing the disparities 
in data distribution between domains. Thereby, models that 
have been trained using source data can make predictions for 
the data in the target domain. Notable instances are deep 
adaptation neural networks (DANN) [18], transfer joint 
matching (TJM) [19], minimal mean difference (MMD) [20], 
and deep domain adaptation (DDA) [21]. Following global 
domain adjustment, classifiers have the potential to effectively 
categorize samples from both domains [20], [21]. 
Nevertheless, these methods consider the data distribution as 
a whole and disregard individual distributions existing in each 
category, which results in inadequate and inaccurate 
transferring from the source domain to the target domain. 

In order to address the aforementioned issue, we proposed 
to consider each category as a distinct subdomain. In this 
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study, the categories are mental workload levels (i.e., low, 
medium, and high). The objective is to minimize variations in 
subdomains across subjects in the estimation of mental 
workload. Aligning data distributions between the source and 
target domains within each subdomain can enhance the 
performance of mental workload classification. To this end, 
we proposed a deep subdomain adaptation network (DSAN). 
In the proposed DSAN, any feature extractors that extract 
mental workload-related features can be embedded. These 
features’ distributions are aligned between the source domain 
and the target domain for each category, respectively. Because 
the alignment is done separately for each category, data labels 
are required. It is straightforward for source domain data as 
both data and labels are available. However, the target domain 
data lacks available labels. Paired data from the source domain 
was used to train a label classifier. Then, this label classifier 
was used to generate pseudo-labels for the data in the target 
domain. Local maximum mean difference (LMMD) was 
adopted to measure the alignment. LMMD loss was back-
propagated to calculate gradients for updating network 
weights towards the minimization of LMMD loss. During the 
back-propagation, the weights of the feature extractor 
embedded in the DSAN were also updated to optimize the 
extracted features. Two different datasets were used to 
evaluate the proposed DSAN. 

II. METHOD 

In this study, we aimed to classify mental workload across 
human subjects. This is more meaningful from the viewpoint 
of practical application because the trained model can be 
directly applied to a new subject without retraining. Leave-

one-subject-out cross validation was employed in model 
evaluation. The data from a subject is the target domain data 

𝐷𝑡 = {(𝑥𝑗
𝑡)}𝑗=1

𝑁𝑡 , and the data from the remaining subjects are 

the source domain data 𝐷𝑠 = {(𝑥𝑖
𝑠 , 𝑦𝑖

𝑠)}𝑖=1
𝑁𝑠 , where 𝑁𝑡 denotes 

the quantity of unlabeled samples and 𝑁𝒔 denotes the quantity 
of labeled samples. It is expected that the source and target 
domains share the same feature space and label space, i.e., 
𝑥𝑠 , 𝑥𝑡 ∈ 𝑅𝐶×𝑇  and 𝑦𝑠 ∈ {1,2,⋅⋅⋅, 𝐾} . Here, 𝐶  denotes the 
quantity of channels in EEG signal for each sample, 𝑇 denotes 
the quantity of data points in each channel, and 𝐾 denotes the 
quantity of categories of MW. In usual, the marginal 
probability distributions of these two domains exhibit 
dissimilarities, namely 𝑃𝑠(𝑥𝑠) ≠ 𝑃𝑡(𝑥𝑡) . Therefore, we 
extracted MW-related features and aligned the features’ 
distribution to solve this problem. As depicted in Fig. 1, we 
used a domain-sharing convolutional network as a feature 
extractor. This network extracts high-level feature 
representations from preprocessed EEG data. Subsequently, 
the extracted features were fed into the subdomain adaptation 
module to achieve two objectives. The primary objective is to 
predict the labels of the data from either the source or target 
domain based on the inputted features. The second objective 
is to quantify the disparities between features’ distributions 
between the source domain and the target domain for each 
category (subdomain) using LMMD and minimize the 
differences between the domains. 

A. Feature Extractor and Label Classifier 

Feature Extractor: The purpose of the feature extractor is 
to encode preprocessed EEG data and generate features that 
facilitate the following distribution alignment of the features. 

 

Fig. 1. DSAN model's architectural design. 

TABLE I.  ARCHITECTURE PARAMETERS OF DSAN. 

 Layer Kernel Size Input Size Output Size Activation 

Temporal Conv Conv_1a (1, 13) (1, n, T) (P1b, n, T) GELU 

Spatial Conv Conv_2 (n, 1) (P1, n, T) (P2, 1, T) GELU 

 Pooling (1, 35) (P2b, 1, T) (P2, 1, T//c35)  

Projection Linear  (P2*T//35, 1) (1024, 1)  

Classifier 
Fully-Connected  (1024, 1) (512, 1) GELU 
Fully-Connected  (512, 1) K  

a.The conv_1 layer contains the padding operation.  

b.P1 and P2 are the numbers of filters, and n denotes the number of channels. 

c.// represents the floor division.  



One-dimensional temporal convolution was used to extract 
temporal characteristics contained in the EEG signal, and the 
other one-dimensional spatial convolution was used to extract 
spatial characteristics. The Gaussian error linear unit (GELU) 
activation function was utilized to enhance the nonlinearity 
of the model and prevent issues such as gradient explosion 
and vanishing. Then, the features outputted from convolution 
layers were fed into a pooling layer to down-sample features. 
In this paper, the input EEG data (𝑥𝑠 , 𝑥𝑡) were mapped to the 
features [𝑓𝑠 = 𝐺𝑓(𝑥𝑠; 𝜃𝑓),𝑓𝑡 = 𝐺𝑓(𝑥𝑡; 𝜃𝑓)] through feature 

extractor 𝐺𝑓, using the parameters 𝜃𝑓. 

Label Classifier: To guarantee the classifier's prediction 
accuracy, the training process utilizes data from the source 
domain. The extracted features representing temporal and 
spatial characteristics of EEG were inputted into the classifier 

𝐺𝑐 with the parameters 𝜃𝑐 to obtain the predicted label yŝ. In 

other words, yŝ = 𝐺𝑐(𝐺𝑓(𝑥𝑠; 𝜃𝑓); 𝜃𝑐). It comprises of two 

fully-connected layers, with the first layer utilizing the GELU 
activation function and the output values from the second 
layer are directly utilized to compute the cross-entropy loss. 
which is mathematically described as follows: 

ℒ𝑐𝑙𝑠 = −
1

𝑁𝑠
[∑  

𝑁𝑠

𝑖=1

∑  

𝐾

𝑘=1

𝐼[𝑦𝑖
𝑠 = 𝑘] log (𝐺𝑐(𝐺𝑓(𝑥𝑖

𝑠; 𝜃𝑓); 𝜃𝑐))](1) 

If 𝑦𝑖
𝑠 = 𝑘, then the value of 𝐼[𝑦𝑖

𝑠 = 𝑘] is 1; Otherwise, it 
is 0. Table I displays the specific structural characteristics of 
the feature extractor and label classifier. 

B. LMMD-Based Subdomain Adaptation 

In the domain adaption, all data are treated as a whole. In 
this case, detailed information about the data distributions for 
each category cannot be captured. In this study, we treated 
each MW category separately as a subdomain and adapted 
each subdomain to retain complete information using local 
maximum mean difference (LMMD) [22]. LMMD provides 
more refined subdomain alignment by measuring the 
discrepancy between kernel-mean-embedding-related 
subdomains in the Hilbert space. 

ℒLMMD(𝑝(𝑘), 𝑞(𝑘)) ≜ 𝐸𝑘 ∥∥𝐸𝑝(𝑘)[𝜙(𝑓𝑠)] − 𝐸𝑞(𝑘)[𝜙(𝑓𝑡)]∥∥𝐻

2
(2) 

Here, 𝑝(𝑘)  and 𝑞(𝑘)  denote the distributions of 𝐷𝑠
(𝑘)

 and 

𝐷𝑡
(𝑘)

, respectively. H represents a reproducing kernel Hilbert 

space (RKHS) with a kernel ℎ . Where ℎ(𝑓𝑠 , 𝑓𝑡) =
⟨𝜙(𝑓𝑠), 𝜙(𝑓𝑡)⟩ . 𝜙(·)  represents the feature mapping that 
projects the feature ( 𝑓 ) to the RKHS. ⟨⋅,⋅⟩  denotes inner 

product of vectors. We add a weight parameter 𝑤𝑘 to weight 
samples of different categories. Therefore, optimizing 
formula (2) can be expressed as 

ℒLMMD =
1

𝐾
∑  

𝐾

𝑘=1 ∥
∥
∥
∥
∥
∥

∑  

𝑥𝑖
𝑠∈𝐷𝑠

𝑤𝑖
𝑠𝑘𝜙(𝑓𝑖

𝑠) − ∑  

𝑥𝑗
𝑡∈𝐷𝑡

𝑤𝑗
𝑡𝑘𝜙(𝑓𝑗

𝑡)

∥
∥
∥
∥
∥
∥

𝐻

2

(3) 

Among them, 𝑤𝑖
𝑠𝑘  and 𝑤𝑖

𝑡𝑘  represent the weights of 𝑓𝑖
𝑠 

and 𝑓𝑖
𝑡  for category 𝐾 , respectively. The weights were 

calculated by 

𝑤𝑖
𝑠𝑘 =

𝑦𝑖
𝑠𝑘

∑  (𝑥𝑗,𝑦𝑗)∈𝐷𝑠
𝑦𝑗

𝑠𝑘
           𝑜𝑟      𝑤𝑖

𝑡𝑘 =
𝑦𝑖

𝑡𝑘

∑  (𝑥𝑗,𝑦𝑗)∈𝐷𝑡
𝑦𝑗

𝑡𝑘
(4) 

where 𝑦𝑖
𝑠𝑘  and 𝑦𝑖

𝑡𝑘  are the 𝑘𝑡ℎ  class entries of vector 

𝑦𝑖
𝑠  and 𝑦𝑖

𝑡 , respectively. For the source domain data, we can 
calculate 𝑤𝑖

𝑠𝑐  using the available label 𝑦𝑠  according to the 

formula (4). However, there are no available labels for the 
target domain data to compute weights. Here, we used 
pseudo labels 𝑦̂𝑡 outputted by the label classifier to replace 
𝑦𝑡 for calculating the weights 𝑤𝑡 of the target domain data. 

Embed the LMMD algorithm into the model. In each 
batch, 𝑓𝑠 , 𝑓𝑡 and the real label 𝑦𝑠 of the source domain and 
the pseudo label 𝑦̂𝑡  obtained by the classifier of the target 
domain are used together as inputs to LMMD. Therefore, the 
calculation of subdomain distribution differences is as 
follows: 

ℒ𝐿𝑀𝑀𝐷=
1

𝐾
∑  

𝐾

𝑘=1

[∑  

𝑛𝑠

𝑖=1

∑  

𝑛𝑠

𝑗=1

𝑤𝑖
𝑠𝑘𝑤𝑗

𝑠𝑘ℎ(𝑓𝑖
𝑠 , 𝑓𝑗

𝑠)
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𝑛𝑡

𝑖=1

∑  

𝑛𝑡

𝑗=1

𝑤𝑖
𝑡𝑘𝑤𝑗

𝑡𝑘ℎ(𝑓𝑖
𝑡 , 𝑓𝑗

𝑡)

−2 ∑  

𝑛𝑠

𝑖=1

∑  

𝑛𝑡

𝑗=1

𝑤𝑖
𝑠𝑘𝑤𝑗

𝑡𝑘ℎ(𝑓𝑖
𝑠 , 𝑓𝑗

𝑡)

(5) 

The cost function of the proposed DSAN model 
comprises two components: the error of the label classifier 
and LMMD loss of the subdomain adaptation, which can be 
expressed by the addition of formulas (1) and (5). 

ℒtotal(𝜃𝑓, 𝜃𝑐) = ℒcls + 𝜆ℒLMMD (6) 

Where 𝜆 = 1.  

III. DATASETS AND RESULTS 

A. Description of Datasets 

To comprehensively evaluate the proposed DSAN for 
classifying levels of mental workload across subjects, we 
used two different datasets: simulated flight experiment (SFE) 
[14], [23] and multi-attribute task battery (MATB) [24]. 

The SFE dataset includes 7 human subjects who operated 
a simulated aircraft using a joystick and a keyboard. Three 
operation difficulties for piloting the aircraft were imposed to 
induce three levels of mental workload, respectively. Each 
subject performed three identical sessions, each consisting of 
three levels of mental workload tasks (i.e., low, medium, and 
high), lasting 6 minutes (2 minutes for each task).  

The MATB dataset includes 15 human subjects who 
performed NASA MATB tasks. Each of the subjects 
completed three experimental sessions. Each experiment 
records a one-minute resting state and a fifteen-minute task 
state. The workload level was adjusted by giving different 
numbers of subtasks and different complexities of each 
subtask, resulting in low, medium, and high levels of 
workload. 

B. Methods Comparison 

We compared the proposed DASN with other methods in 
terms of classification accuracy of mental workload. To 
ensure a fair comparison, the same feature extractor was used 
in this study. The compared methods are briefly listed below. 
Shallow-Net: A traditional deep learning model designed for 
encoding features of EEG signals, which does not include 
domain adaptation [25]. Custom domain adaptation (CDA): 



Incorporating maximum mean difference (MMD) into deep 
neural networks to align distribution disparities across 
domains [20]. Deep domain adaptation (DDA): Employing 
adversarial learning and MMD techniques to mitigate 
distribution disparities among diverse domains [21]. 
Correlation alignment (CORAL): It utilizes correlation 
alignment to tackle the issue of distribution divergence across 
several domains [25]. Domain adversarial neural network 
(DANN): Utilizing adversarial learning techniques to address 
feature distribution challenges across diverse domains [18]. 

The comparison results of methods on the SFE dataset are 
listed in Table II. Fig. 2 shows the comparison results 
obtained based on the MATB dataset. The comparison results 
derived from both datasets showed that the lowest 
classification accuracy was achieved by the Shallow-Net, 
which did not include domain adaptation. The classification 

accuracy was greatly increased due to domain adaptation. 
This reflects that domain adaption was useful for cross-
subject classification because shared features across subjects 
could be extracted with the help of domain adaptation. The 
results show an improvement of 3%-5%. Our method aligns 
features from a refined perspective, achieving clearer 
classification boundaries. The results have improved by 3%-
7%. 

C. Does It Rely on Feature Extractor? 

In order to investigate whether the proposed model is 
universal and does not rely on a particular feature extractor, 
we employed two popular networks (i.e., EEGNET and 
Conformer [27], [28]) to replace the used feature extractor. 
The results are displayed in Table III. It is clear that the 
classification accuracy of mental workload was elevated from 
the condition without (W/O) subdomain adaptation to the 

TABLE II.  COMPARISON RESULTS FOR THE DATASET SFE (CLASSIFICATION ACCURACY IN %) 

          Method 

Subject 
Shallow-Net CDA DDA CORAL DANN DSAN 

1 70.37 80.00 78.89 80.83 80.56 80.19 

2 57.22 69.44 70.28 67.22 69.44 72.59 
3 46.48 42.22 42.50 42.22 41.67 39.07 

4 51.50 57.22 57.50 51.94 53.06 57.22 

5 43.33 56.39 59.44 56.39 59.72 56.30 

6 65.37 72.22 67.22 65.56 63.33 75.93 
7 51.48 55.00 55.83 56.39 54.44 56.67 

Mean 55.11 61.79 61.67 60.08 60.32 62.57 

STD 9.12 11.82 10.86 11.49 11.57 13.33 

 

 

 

 

Fig. 2. Comparison results for the dataset MATB. 

 

 

Fig. 3. Visualization of features extracted by the feature extractor with the help of different domain adaptation methods.  



condition with subdomain adaptation (SA) for both feature 
extractors (i.e., EEGNET and Conformer). These results 
demonstrated that it does not rely on a particular feature 
extractor. It should work for other feature extractors. 

D. Domain Adaptation to Feature Extraction 

In the backpropagation, the loss from the domain 
adaptation contributes to weight updating of the feature 
extractor. We, therefore, attempt to explore the effect of 
domain adaptation methods on feature extraction in the 
feature extractor. In order to visualize high-dimensional 
features derived from the feature extractor in a two-
dimensional plane, t-distributed stochastic neighbor 
embedding (t-SNE) [29] was utilized to reduce 
dimensionality. The data from subject 9 in the dataset MATB 
were used as an illustrative example. The distributions of raw 
EEG (RAW) and the features extracted with the help of 
DANN, CDA, DDA, CORAL, and DSAN are depicted in 
Fig. 3. It can be seen that DSAN is the best among these 
methods, and the features of the source and target domains 
are closely clustered when they are from the same category. 
The clusters of each category are more separable. For the 
other domain adaptation methods, features from the target 
domain are interleaved around the boundaries among 
categories. This issue can be significantly mitigated by 
DSAN due to the subdomain adaptation. Another advantage 
of DSAN is that the features of the source and target domain 
overlap more for each category. These results suggest that 
separate feature alignment for each subdomain can yield 
more domain-invariant features, which benefits the cross-
subject classification.  

IV. CONCLUSIONS 

This study proposed a subdomain adaptation-based 
transfer learning model (DSAN) to classify mental workload 
levels, which achieved better performance in cross-subject 
classification. DSAN aligns the feature distributions between 
the source domain and the target domain separately for each 
category while forcing the feature extractor to generate more 
domain-invariant features, collectively resulting in better 
classification performance in the mental workload 
classification. In addition, our study demonstrated that it does 
not rely on a particular feature extractor and is applicable to 
any feature extractor. The visualization of features further 
confirmed the advantage of DSAN, showing more separable 
features among categories and more overlapped features 
between the source domain and target domain. Our 
subsequent work is to further enhance DSAN performance by 
taking into account the confidence of pseudo labels and 
integrating contrastive learning methods. 
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