
Special Session: Emerging Architecture Design,
Control, and Security Challenges in Software

Defined Vehicles
Aya El-Fatyany1,2, Xiaohang Wang1, Parasara Sridhar Duggirala3, Samarjit Chakraborty3

Sudeep Pasricha4, Amit Kumar Singh5

Zhejiang University1, Menoufia University2, UNC Chapel Hill3, Colorado State University4, University of Essex5

{ayaelfatyany,xiaohangwang}@zju.edu.cn, psd@cs.unc.edu, samarjit@cs.unc.edu,
sudeep@colostate.edu, a.k.singh@essex.ac.uk

Abstract—Software Defined Vehicles (SDVs) represent a
paradigm shift in the automotive industry, where vehicles are
increasingly controlled and managed through software, while
relying less on mechanical and hardware components. While
this allows considerable flexibility in the introduction of new
“smart” features and fast tracks innovations in multiple domains,
it also creates new challenges and opportunities in architecture
design, control, and security. By adopting modular architectures,
adaptive control strategies, and robust security measures, SDVs
can pave the way for a safer and more efficient future of
transportation. In this paper, we cover perspectives from both,
industry and academia, in this area. They provide embedded
systems researchers an overview of recent developments and
emerging challenges in SDV from the perspective of architecture
design, control, and security. The emerging challenges also set
the foundations for future research in this domain.

Index Terms—Software defined vehicles (SDVs), Architecture
design, Control, Robustness, Security.

I. INTRODUCTION

In the automotive industry, Software Defined Vehicles
(SDVs) represent a transformative shift, where the core func-
tions and features of vehicles are increasingly controlled and
updated through software rather than traditional hardware
modifications or mechanical components. This software-based
approach leverages advanced computing, connectivity, and
over-the-air updates to enhance vehicle capabilities, including
user experience, performance and safety. Even after vehicles
leave the production line, such a software-based approach en-
ables manufacturers to continuously improve and personalize
vehicles, offering unprecedented flexibility and adaptability in
response to changing technological advancements, customer
needs and regulatory requirements. As vehicles evolve into
more sophisticated and interconnected platforms, software-
defined approaches are expected to play a pivotal role in the
future of mobility.

While SDVs bring enhanced flexibility and customization,
they also introduce an array of challenges [1] in architec-
ture design, control, and security. As vehicles become more
reliant on software to manage various aspects like engine
performance, braking systems, infotainment and autonomous
driving capabilities, the underlying architecture must be cau-
tiously designed so that various subsystems can be seamlessly
integrated [2]. This includes addressing issues like real-time
data processing, interoperability between legacy systems and
new software modules, and ensuring robust communication

– perhaps using wireless networks in the future [3], [4] –
within the vehicle. For example, automotive control systems
that were once largely mechanical or analog, now they require
sophisticated algorithms and real-time processing to efficiently
manage the interactions between various vehicle components.
This complexity demands for thorough testing [5], verifi-
cation [6], and debugging [7] processes to ensure that the
software functions as intended under all conditions, including
safety-critical situations.

Similarly, robust perception in SDVs relying on embedded
systems presents a range of challenges [8] that must be over-
come to ensure the reliability [9] and safety of these vehicles.
The challenges include achieving processing efficiency, real-
time data processing and sensor integration and calibration.
Moreover, the increasing connectivity of SDVs to external
networks and cloud services introduces significant cybersecu-
rity challenges [10]. This makes vehicles as potential targets
for hacking, data breaches, and other malicious activities.
Therefore, protecting the vast amounts of data generated by
and transmitted within SDVs is of paramount importance.
The security aspect is further complicated by integrating
third-party applications and services, which is essentially to
designing an advanced vehicle. This necessitates stringent
control measures and secure software update mechanisms [11]
to prevent unauthorized access and ensure the integrity of
the software ecosystem. In this rapidly evolving landscape,
addressing these emerging challenges in architecture design,
control, and security is crucial to realizing the full potential of
SDVs while safeguarding the safety, privacy, and trust of users.
This paper discusses some of the aforementioned emergent
challenges and solutions being debeloped to address them.

II. IN-VEHICLE ARCHITECTURES IN THE AGE OF SDVS

Over the past years, automotive in-vehicle architectures
are evolving from having many distributed ECUs (electronic
control units) that are connected by multiple communication
buses and gateways, to more centralized architectures where
fewer powerful ECUs are assigned all computational tasks.
This move has multiple advantages, but also poses several
challenges. Instead of point-to-point connections between
ECUs, there is now an emphasis on flexible service-oriented
architectures [12], where different services hosted on different
ECUs are advertised, and clients are dynamically matched

to services at startup time. This allows adding new services
and clients much more flexibly. In previous architectures,
adding new functions necessitated ensuring the availability
of sufficient computation and communication resources and
guaranteeing that the timing behavior of existing tasks are not
disrupted [13]. While service-oriented architectures provide
flexibility, they also add to additional delays that need to be
mitigated – both through architectural innovations, new timing
analysis techniques, new methods for application schedul-
ing [14], [15] and resource allocation [16], and new ways of
designing automotive control software [17].

The core idea behind SDVs is to decouple software archi-
tectures from the hardware platform on which the software
applications run. Such separation has happened in many other
domains like smartphones, where Android or iOS allows appli-
cation developers to independently develop software without
getting into the hardware intricacies of different smartphone
architectures. Similarly, software-defined networks allow the
flexible development of software-based networking services
without requiring network addresses or firewalls to be recon-
figured. The goal of SDVs is to introduce such flexibility in
the automotive domain. This is to some extent already allowed
by standards like AUTOSAR, but more innovations are needed
to better decouple automotive hardware architectures from the
software design decisions.

The evolution of automotive in-vehicle E/E (electrical and
electronic) started with distributed architectures where each
function was mapped to a different ECU and ECUs com-
municated using signal-oriented protocols. As the number
of ECUs and the length of communication cables started
growing to levels that were not sustainable, there was a
push to consolidate. This led to the evolution of domain-
oriented architectures where domain controllers consolidated
multiple domain functions that were previously distributed.
Currently, zone-oriented architectures are being considered,
that distribute each control application even much further. Such
architectures connect a diverse set of sensors and actuators
that are in close physical proximity, to a zone ECU or zone
controller. Cross-zone communication is enabled via a high-
bandwidth backbone, e.g., using Ethernet. Also, few powerful
vehicle computers or central ECUs are used to implement
most of the main computations and decision making, which
can be OEM-specific. Zone controllers connect to the vehicle
computing cluster also via high-bandwidth automotive Ether-
net. Such an architecture enables significant reduction in the
length and weight of a car’s wiring harness, which is currently
one of the heaviest car components, along with the engine
and chassis, and also one of the most expensive ones. This
reduction is because sensors and actuators now need not be
connected to different individual ECUs or even domains, and
can instead be connected to the nearest zone ECU. However,
such architectures also imply that signals belonging to the
same control application will now have to traverse across mul-
tiple communication zones. The corresponding signal delays,
which depend on how communication buses and gateways are
configured, will affect control performance. Further, functions
from different control applications, that might even come from
different suppliers, now share the same ECU. Such sharing

is enabled by common interfaces defined by AUTOSAR.
But the task mapping and scheduling decisions also open a
bigger design space and play an important role in determining
control performance. Robustness and composability are im-
portant requirements for such architectures – they enable new
software components to be seamlessly added to the system
without disrupting the timing behavior of existing applications.
How to enable this using a mix of time- and event-triggered
architectures [18] are open research problems that are currently
being studied.

III. AUTOMOTIVE CONTROL IN THE ERA OF SDVS

The algorithmic core of the millions of lines of software
code in SDVs is made up of feedback control loops. Tradi-
tional workflows involve first designing the control strategy,
followed by generating software code corresponding to the
designed strategy, and finally implementing the code on a
distributed embedded platform as found in modern automotive
E/E architectures [19]. This workflow follows the principles
of “separation of concerns” and has worked well for federated
automotive architectures with independent or loosely-coupled
ECUs (electronic control units) that supported the “one func-
tion per ECU” paradigm. But with the SDV paradigm and
integrated architectures, where sensing, control, and actuation
tasks are spread across multiple ECUs and share such ECUs
with other software tasks, the traditional workflow of first
designing and then implementing approach to control software
development is breaking down. This is because designing con-
trol strategies without accounting for implementation platform
details, freezes the design and does not allow exploiting the
many different ways in which control software tasks may be
partitioned, mapped and scheduled on modern in-vehicle E/E
architectures. Each of these options results in different timing
behaviors experienced by the control software, and accuracy
of machine learning based perception, which necessitates
adjusting the control strategy and its parameters – something
no longer possible if the control design is already frozen.
This also results in a large semantic gap between models
of controllers and their implementations, which necessitates
increased testing and debugging. In this paper we discuss
multiple emerging techniques for addressing these challenges,
which are prompting new paradigms for automotive control
design and implementation, including the use of machine
learning based approaches.

A. Framework & Tools for Control/Architecture Co-Design

In order to account for the different timing characteristics
associated with the different implementation choices of a
control application, we have designed a control/architecture
co-design framework [20], [21], [22] and a corresponding
toolchain [23] to implement it. The input to such a framework
is a controller template that specifies the high-level structure
of the controller, without all the parameters such as the
sampling period and the controller gain values being specified.
The second input to this framework is a set of different
implementation constraints, such as the dependencies between
the tasks of each controller sharing implementation resources,

the maximum utilization of each resource (processors and
buses), and scheduler templates. The framework then explores
different implementation options for the control tasks [24],
[25], such as task mappings, and parameters of the scheduler
templates on the processors and the buses (e.g., task priorities,
deadlines, or slot lengths for time-triggered schedules). Each
of these implementation options represent different timing
behaviors experienced by each controller. In order to maximize
control performance, the controller parameters need to be
optimized for the specific timing behavior in question. Our
co-design framework automatically synthesizes such controller
parameters for each implementation choice being explored.
In this process, the best combination of controller parameters
and controller implementation is identified. The metrics that
may be optimized in this process can be resource utilization,
maximizing the number of controllers that can be implemented
on a given platform, or control performance metrics such as
stability, settling time, or peak overshoot.

To implement this framework, we have used a set of stan-
dard tools and connected them to form a toolchain. Depending
on the specific setup at hand, the toolchain can include (i) a set
of Simulink template blocksets to model control applications,
and a set of tool-specific blocksets for architecture config-
uration (e.g., tools from Mentor Graphics support blocksets
specific to their tools); (ii) code to automate the flow between
controller design and architecture configuration phases – these
include specification extraction, re-configuration of the control
models with the calculated values of the control parameters,
and synthesizing implementation architecture parameters, e.g.,
ECU and bus schedules; (iii) code for multi-objective design
space exploration and co-optimization to simultaneously syn-
thesize control and architecture parameters while accounting
for different design tradeoffs between e.g., quality of control
and resource utilization.

More concretely, we start with 1 specification modeling,
where the Simulink blocksets are used to partially specify
control algorithms according to design specifications, e.g.,
plant descriptions and control objectives. In addition, the im-
plementation architecture is also modelled, using a collection
of tools with each responsible for a part of the architec-
ture. For example, a FlexRay network and a CAN network
may be specified using different tools. This is followed by

2 specification extraction, where a Parse tool extracts the
necessary information from the partially specified controllers
and architecture description files. For this, we have used the
AUTOSAR FIBEX (Field Bus Exchange) XML format that is
supported by all automotive design tools. The extracted infor-
mation was organized into a collection of different files. Next,
in a 3 design space exploration phase, a co-optimization tool
jointly synthesizes all controller and architecture parameters.
This is where the bulk of our research has feed into, and used
different optimization tools like CPLEX and Gurobi1. The
output of this phase is a visual representation of feasible design
configurations showing different tradeoffs between multiple
design objectives, i.e., a pareto front. Next, in 4 parameter
write-back, the designer selects a specific parameter set from

1ibm.com/analytics/cplex-optimizer, gurobi.com

Fig. 1. Safe & unsafe behaviors due to deadline misses [28].

the different tradeoffs, and the configure tool writes these
parameters back to partially-specified control and architecture
models in order to complete their configuration and ensure
the necessary compatibility between them. The fully specified
system models can now be used to 5 generate code or binary
files using the Simulink code generator and they can also
be used to generate, e.g., bus controllers using tools like the
Mentor Capital Systems Network. These are then flashed onto
ECUs, thereby completing the entire design process. These
ECUs are next used in HiL (hardware-in-the-loop) simulations
to verify that the system works as intended [26], [27].

B. System-level Safety Driven Controller Implementations

Resource sharing and distributed implementations — the
two main characteristics of SDVs — result in large delays
that can adversely impact control performance. Traditional de-
sign workflows rely on “design followed by implementation,”
where control engineers design controllers and determine
their parameters like sampling periods and tolerable sensor-to-
actuator delays. This is followed by embedded systems engi-
neers implementing the controllers in software while ensuring
that design-time parameters like sampling periods and delays
are respected. In this process, deadlines have become synony-
mous with safety, and a control task missing its deadline is
considered a safety violation. While this approach allows a
beneficial separation between design and implementation, it is
inflexible and overly conservative.

To address this, we have viewed the satisfaction of deadlines
to be a “secondary property,” and instead attempted to focus on
the satisfaction of system-level safety properties. Such system-
level safety properties better reflect actual safety concerns, and
they might continue to be satisfied even when the deadlines
of software tasks are occasionally violated. This affords more
flexibility during implementation with respect to meeting
timing constraints. In particular, this allows better distribution
of sensing, control, and actuation tasks on an architecture, and
also allows more control tasks to be implemented or “packed”
on the same architecture. While there could be different no-
tions of what constitutes system-level safety, we have recently
studied one where we assume a safety pipe around the ideal
trajectory of the system in its state space and refer to any
trajectory as safe as long as it stays within the safety pipe.
This is shown in Figure 1 based on the model of an automotive
electric steering system [28]. Here, the solid black line shows

the ideal system trajectory, viz., the evolution of the closed-
loop system in the (x1, x2) state space, when the control task
always meets its deadline (which may not be feasible in a
real implementation, as in SDVs). The envelope around the
black line is the safety margin, representing system behaviors
that are considered to be safe. The system trajectories shown
in the red and green lines are obtained when the control
task misses some of its deadlines during the evolution of
the system, as such deadline misses cause the dynamics of
the system to alter. Because of such deadline misses, control
inputs necessary to actuate the system are not available and
depending on the policy in place, an old control input may
be applied. As expected from the definition of the safety pipe,
the red trajectories violate the safety property and the time
instants where the violations occur are marked with “×”. The
corresponding times have been marked with a black × on the
ideal trajectory.

To be able to exploit this notion of system-level safety and
allow more flexible timing behaviours, note that the dynamics
of the closed-loop system, i.e., the system trajectories obtained
in Figure 1, depend on (i) the task deadline hit/miss patterns,
(ii) which control input is applied when a control task misses
its deadline and therefore the intended control input is not
available, and (iii) how is the incomplete control task handled,
e.g., whether it is killed or is allowed to execute beyond its
deadline, which impacts the load on the system and therefore
future task deadline misses. In our recent work [28], we have
studied different possibilities with regards to (ii) and (iii), that
were proposed in [29]. There exists many standard techniques
to check whether the closed-loop system becomes unstable
because of deadline misses [30]. Hence, our work has focused
on systems that remain stable, but we intend to check whether
their dynamics deviate too much from the ideal behavior to
be deemed unsafe, viz., whether they go outside the safety
pipe. Second, we are interested in identifying which timing
behaviors or deadline hit/miss patterns are safe. Finally, how
can we exploit this notion of system-level safety to implement
more control tasks [31] on an implementation platform that
would otherwise not be possible?

For a specific deadline hit/miss pattern and a specified
strategy to handle deadline misses, it is straightforward to
check whether the safety property is satisfied over any finite
time horizon. This is done by “simulating” a run of the
closed loop system for this deadline hit/miss pattern. But if
the number of timing behaviors or deadline hit/miss patterns
allowed by an implementation platform is very large — which
is the case in reality — then it is no longer feasible to check the
dynamics of the system for each of these patterns [32]. To get
around this, we developed a safe but approximate reachability
analysis technique [28], [33]. Here, safe implies that if our
reachability analysis technique certifies a set of deadline
hit/miss patterns to satisfy the specified safety property, then
all system trajectories resulting from these deadline hit/miss
patterns are guaranteed to remain within the safety pipe. The
technique is approximate because if it deems a set of deadline
hit/miss patterns to be unsafe then the system trajectories
resulting from them may or may not lie outside the safety
pipe, i.e., the safety property may not be violated.

T1 T3 T1 T2 T3 T4 T1 T3 T1 T2 T3 T4 ...
Schedule (repeat)

Slots

Fig. 2. Scheduling control tasks with deadline misses.

Using the above-mentioned approximate reachability anal-
ysis, we now briefly outline a technique for synthesizing
schedules to pack more control tasks on an implementation
platform compared to what would be possible if all task
deadlines were to be met. For this, consider a set of four
control tasks T1, . . . , T4 that need to be scheduled on a single
processor. This technique can be extended to a distributed
implementation platform with multiple processors and buses.
Time is partitioned into equal-sized slots (see Figure 2), and
for simplicity we assume that this slot size is also equal to the
sampling period of each of the control tasks. For the purpose
of illustration, we assume that the Worst-Case Execution Time
(WCET) [34], [35] of each of the control tasks T1, . . . , T4 is
such that at most two of them may be scheduled in each time
slot, and if a task Ti is not scheduled in a particular slot then
it misses its deadline. As outlined above, when a control task
misses its deadline, based on the policy in place, the previous
control input may be applied, causing the dynamics of the
system to deviate.

The schedule for the tasks T1, . . . , T4, shown in Figure 2
satisfies the scheduling constraint that no more than two tasks
can be scheduled in one time slot. It may be observed that
the schedule for any task Ti may be represented as a binary
string. In Figure 2, the one for T1 is 110110 . . ., that of T2

is 010010 . . ., T3 is 101101 . . ., and finally, that of T4 is
001001 Here, 1 denotes the deadline in a particular time
slot being met and 0 denotes a deadline miss. Given a concrete
schedule of this form, we can check whether it satisfies the
scheduling/resource constraint and the safety constraint. The
safety constraint is validated by checking whether a run of
the system with the deadline hit/miss pattern dictated by the
schedule results in a trajectory that is contained within the
safety pipe. To check the safety of a set of binary strings
(deadline hit/miss patterns) and not one concrete string, we
use the approximate reachability analysis outlined earlier.
When such sets of binary strings constitute regular languages,
and satisfy a specified system-level safety property, we have
shown in [31] that using automata-theoretic techniques we can
synthesize schedules of the form in Figure 2. In particular,
given a regular language for each task Ti to be scheduled,
where the language represents a class of safe timing behaviors,
it is possible to synthesize a schedule for all of these tasks
that satisfy the resource constrains on the system, e.g., that no
two tasks may be scheduled in each slot. Extensions to more
general setups and resource constraints have been recently
studied in [36].

Hence, as delays become larger with in-vehicle architectures
supporting SDVs, and there is more pressure to accommodate
the growing volume of software in vehicles, re-thinking how
control algorithms are designed and implemented is necessary.
We have discussed the possibility of introducing a new notion
of safety, viz., one that considers system-level properties

instead of deadline misses that may or may not impact system-
level behavior. This approach may be extended in many
different ways, including to what kind of guarantees should
security [37], [38] or machine learning (ML) components
provide for safety certification [39], [40], [41].

IV. EMERGING ROBUSTNESS: ROBUST PERCEPTION WITH
EMBEDDED SYSTEMS IN SDVS

In emerging SDVs, robust environmental perception with
embedded systems is critical to informing control and other
operational components that directly impact driving behavior
[42]. Robustness in the context of SDVs refers to multi-faceted
objectives that include real-time, safety-critical, secure, and
accurate perception-driven operation, despite the presence of
multiple uncertainties, noise sources, and threat vectors.

One of the first challenges that must be overcome for robust
perception in SDVs relates to supporting real-time commu-
nication among various distributed sensors and computing
units within the vehicle. Any violation of real-time deadlines
associated with data transmission and processing can prevent
timely perception. In emerging SDVs, time-triggered network
protocols such as automotive Ethernet and Flexray are used to
provide stronger real-time guarantees than traditional event-
driven protocols such as CAN. However, time-triggered auto-
motive transmissions are still susceptible to jitter, which is the
stochastic delay-induced deviation from the actual periodicity
of a message. At a high level, jitter can be classified into
either bounded (deterministic) jitter or unbounded (random)
jitter [43]. Bounded jitter is a periodic variation due to the
systematic occurrences of certain events in the system, such
as queuing of messages, clock jitter, etc., whose peak-to-peak
value is bounded. Unbounded jitter is an unpredictable timing
noise whose peak-to-peak value is not bounded, e.g., due
to thermal noise in an electrical circuit that can delay task
executions or message transmissions, external disturbances,
etc. Such random jitter is very hard to predict, and can severely
affect system performance, with catastrophic consequences in
some cases, e.g., when the airbag deployment signal from
the impact sensor to the inflation module gets delayed due
to jitter. In [44], a novel framework called JAMS-SG was
proposed to overcome the impact of random jitter in time-
triggered vehicle networks. JAMS-SG integrated jitter in the
early design phase, by performing jitter-aware frame packing
(packing of different signals from an ECU into messages)
and used a novel SA+GRASP heuristic for the synthesis of
jitter-aware design time communication schedules. At the same
time, to cope with unexpected jitter variations at runtime, the
framework integrated Multi-Level Feedback Queues (MLFQs)
with an intelligent runtime scheduler that opportunistically
packs jitter affected time-triggered and high priority event-
triggered messages for jitter-resilient communication. A cus-
tom frame format was also introduced to solve the addressing
and segmentation problem associated with packing multiple
jitter-affected messages. In experimental analysis across vary-
ing jitter conditions, JAMS-SG was able to achieve lower
response times compared to the state-of-the-art approaches,
and more importantly, without missing any message deadlines.

The framework can be adapted to a variety of time-triggered
protocols with minimal changes. In [45], this framework was
extended to integrate lightweight symmetric key cryptography
to further prevent data corruption (either malicious or noise
related) over the vehicle network, while ensuring that real-
time constraints were not violated.

The actual design of the robust perception system for SDVs
entails solving multiple complex problems. First, the optimal
set of sensors must be selected from a heterogeneous suite
of sensors, e.g., cameras, radars, lidars. After the number
and type of each sensor has been selected, for each of these
sensors, their location and orientation on the vehicle must
be determined, to maximize environmental coverage in the
vehicle field of view. The combination of these sensors must
enable high object detection rates and low false positive
detection rates, for which deep machine learning techniques
have been found to be particularly effective [46]. Additionally,
such techniques must meet the stringent latency requirements,
onboard memory capacity, and computational complexity in
vehicle contexts, which is challenging. Lastly, as the position
of obstacles and traffic are highly dynamic in real-world
scenarios, so after detection of an object, tracking is required
to predict its new position. Due to noise from various sources
there is an inherent uncertainty associated with the measured
position and velocity of an object. This uncertainty can be
minimized by using sensor fusion algorithms. An important
challenge with sensor fusion algorithms is that the complexity
of tracking objects increases as the objects get closer, due to
a much lower margin for error (uncertainty) in the vicinity of
the vehicle [47].

The VESPA framework [48] represents one of the first
frameworks for automated sensor placement and orientation
of sensors in SDVs. The work explored various design space
exploration algorithms including Simulated Annealing and
Greedy Random Adaptive Search Procedure (SA + GRASP),
Genetic Algorithm (GA), and Particle Swarm Optimization
(PSO) to determine the best algorithm for the problem. Given
a specific vehicle and its dimensions, a candidate set of het-
erogeneous sensors, and ADAS features to be supported (e.g.,
to meet a specific SAE autonomy level). It was shown that
the GA algorithm provided the best results, generating sensor
selections, placements, and orientations to meet perception
targets. The VESPA framework was shown to optimize percep-
tion performance across multiple ADAS features for the 2019
Chevrolet Blazer and 2016 Chevrolet Camaro vehicles. The
PASTA framework extended this work to not only determine
sensor placement and orientation, but also co-optimize them
with a deep learning based object detector design, and sensor
fusion algorithm [49]. The heterogeneous sensor library, object
detection model library (including YOLOv3, YOLOv4, SSD,
R-CNN, Fast R-CNN, and Faster R-CNN), sensor fusion
algorithm library (including Kalman filter, Extended Kalman
filter, and Unscented Kalman filter), and physical dimensions
of the vehicle model are provided as inputs to the framework.
An algorithmic design space exploration is used to generate
a perception architecture solution which is evaluated based
on a cumulative score from performance metrics relevant to
the autonomy level being targeted. Five design space search

exploration algorithms were explored as part of the framework:
genetic algorithm (GA), differential evolution (DE), firefly
algorithm (FA), particle swarm optimization (PSO) and the
hybrid genetic algorithm–particle swarm optimization (GA-
PSO). Experimental analysis with a BMW Minicooper and
Audi-TT vehicles demonstrated that the GA algorithm based
approach provided the best results. The perception architecture
performance with PASTA outperformed the VESPA frame-
work, due to PASTA’s more comprehensive co-optimization
across a larger number of key components of the perception
architecture.

A fundamental challenge with deploying perception archi-
tectures, such as the ones generated by the VESPA and PASTA
frameworks, in SDVs, involves ensuring that the associated
algorithms can execute in real-time on resource constrained
embedded platforms. One of the most resource intensive
components in any perception architecture is the vision-based
object detector that is utilized in most emerging SDVs. This is
a compute and memory-intensive task involving both classifi-
cation and regression, and typically performed with machine
learning models. One type of machine learning based object
detector is a two-stage detector that employs a region proposal
stage and subsequent object classification stage. The region
proposal stage often consists of a Region Proposal Network
(RPN) which proposes several Regions of Interest (ROIs) in an
input image. These ROIs are used to classify objects in them.
The objects are then surrounded by bounding boxes to localize
them. Examples of two-stage detectors include R-CNN, Fast
R-CNN, and Faster R-CNN. In contrast to two-stage detec-
tors, single-stage detectors use a single feed-forward network
which involves both classification and regression to create the
bounding boxes to localize objects. Some examples of single-
stage detectors are YOLOv5 (You Only Look Once), Reti-
naNet, YOLOR, and YOLOX. While single-stage detectors
are lightweight and faster than two-stage detectors, they are
less accurate. Unfortunately, even the lightweight single-stage
detectors are compute and memory intensive, and it remains
challenging to efficiently deploy them on embedded and IoT
platforms. The R-TOSS framework [50] provides a possible
solution to this challenge. This framework performs automated
model pruning on object detectors to reduce their latency,
memory footprint, and energy overheads. Unlike traditional
pruning algorithms that can generally be classified as unstruc-
tured pruning or structured pruning, the framework explores an
unconventional semi-structured pruning approach, involving
applying specific geometric kernel patterns to prune convo-
lutional kernels and associated connectivity in object detector
models. The framework also proposed and approach for reduc-
ing computational cost of iterative pruning by using depth first
search to generate parent-child kernel computational graphs, to
be pruned together. Additionally, a novel pruning technique to
prune 1×1 kernel weights was proposed to increase achievable
model sparsity. A detailed comparison against multiple state-
of-the-art pruning approaches showed the effectiveness of the
novel R-TOSS framework, outperforming several state-of-art
pruning frameworks. Interestingly, the framework was able to
increase the mAP of the object detectors compared to the mAP
of the baseline models, and even more impressively, achieve

these results without any compiler optimization or additional
hardware requirements. Experimental results on the JetsonTX2
embedded board showed that the R-TOSS framework resulted
in a model compression rate of 4.4× on the YOLOv5s and
2.89× on the RetinaNet object detectors, while outperforming
the original model as well as several state-of-the-art pruning
frameworks in terms of accuracy and inference time.

As the perception system in modern SDVs utilizes a large
number of sensors and also relies on extensive external com-
munication with roadside infrastructure and other vehicles, it
possesses a large attack surface that can be exploited by attack-
ers [51]. It is possible to compromise one or more sensors or
communication interfaces remotely or via physical tampering
to launch data integrity attacks that can corrupt data and
data confidentiality attacks that can steal sensitive information.
Thus, the deployment of perception architectures on embedded
platforms in SDVs must include smart intrusion detection
systems (IDS). An IDS is extremely crucial and often the
last line of defense when an attacker breaks through defense
mechanisms. Traditional IDS solutions relied on firewalls or
rule-based (non-AI-based) systems to detect cyber-attacks.
However, they are not effective against detecting sophisticated
automotive attacks [51]. Recently, machine learning based
IDS have emerged for SDVs. The INDRA IDS proposed in
[52] is an example of such an approach, making use of a
gated recurrent unit (GRU)-based recurrent autoencoder neural
network for intrusion detection in SDVs. This IDS learns the
normal operating behavior of the system by reconstructing the
input attack-free data during training at design-time. During
inference at runtime, the IDS observes the deviation from the
learned normal system behavior to detect attacks in SDVs.
This approach showed promising results when it was deployed
on automotive embedded hardware platforms and tested under
several attack scenarios. In [53], an unsupervised LSTM-based
encoder-decoder neural network was proposed that integrates
a novel self-attention mechanism to learn the characteristics of
normal data. The attention mechanism enhanced the ability of
the model to focus on the important hidden state information
from the past. A one-class support vector machine (OCSVM)-
based classifier was trained and deployed together with the
self-attention model at runtime to detect attacks. This approach
demonstrated superior performance compared to various state-
of-the-art statistical, proximity-based, and machine learning
based IDS approaches under different attacks scenarios, across
multiple metrics: accuracy, F1 score, false-positive rate (FPR),
and receiver operating characteristics (ROC) curve-area under
the curve (AUC). A temporal convolutional neural attention
(TCNA) network-based lightweight IDS called TENET was
described in [54], to learn very long-term dependencies be-
tween messages transmitted over an in-vehicle network. This
was used to effectively learn the normal system behavior of the
vehicle at design time. A decision tree (DT)-based classifier
was used to learn the model deviations that correspond to
the normal vehicle operation at design time. At runtime, the
trained TCNA and DT models were used to detect anomalous
deviations using the deviation score metric, to detect attacks.
This technique outperformed all the comparison works, includ-
ing INDRA, in the Matthews correlation coefficient (MCC)

metric. Such IDS frameworks will become increasingly crucial
to realize robust perception architectures in future SDVs.

V. EMERGING SECURITY: COVERT CHANNEL AND
IN-VEHICLE NETWORK SPOOFING ATTACKS ON

EMBEDDED SYSTEMS IN SDVS

Covert channels and in-vehicle network spoofing attacks
pose significant risks to the safety, privacy, financial stability,
regulatory compliance, and consumer trust associated with
SDVs. In covert channel attacks, the malicious nodes/programs
use undetected channels, e.g., heat transfer, vibration, inter-
packet delay, light color, etc. to secretly transmit sensitive
data in an unprotected manner. This type of attacks, together
with vulnerability detection and side channel attacks, can
leak sensitive data to violate privacy. We first discuss how
typical covert channel attacks work at chip level and embedded
systems in SDVs. The attack effects are analyzed and modeled.
Detection methods will also be discussed to find these secret
data transmissions along with the countermeasures to stop the
information leakage. Finally, we will present our recent works
on hacking the in-vehicle networks in a real car to control
various components of the car, where attacks are based on
reverse engineering the CAN protocol followed by injecting
car-control commands.

A. Covert Channel Attacks on Embedded Systems in SDVs

Software-Defined Vehicles (SDVs) leverage high-
performance many-core System on a Chip (SoC) resources
to facilitate autonomous driving and various intelligent
applications. These SoCs integrate specialized units for
AI and robotic algorithms, multi-core CPUs for general
tasks, and many-core CPUs for real-time processing [55].
A heterogeneous architecture is essential for balancing
the processing power and energy efficiency in advanced
embedded systems for autonomous vehicles. Nonetheless,
many-core SoCs face challenges, such as thermal covert
channels.

Thermal covert channel (TCC) attacks present a significant
security challenge for many-core chips. These attacks are
closely related to the transmission rate and bit error rate (BER)
of the TCC, which are influenced by the transmission charac-
teristics of the thermal signals and the modulation, encoding,
and multiplexing techniques used. The versatility of TCCs
was demonstrated in a study by [56], which employed various
modulation and line-coding methods, as well as multiplexing
techniques. The authors compared the performance of 13
different TCCs in terms of BER and transmission rate, which
allowed them to quantitatively assess the potential damage and
develop suitable countermeasures to address TCC attacks. Un-
derstanding the maximum transmission throughput of different
TCC designs is crucial for identifying potential vulnerabilities
and implementing effective mitigation strategies. The research
in [57] concentrated on three primary areas that hinder the
efficiency of thermal covert channels: signal generation at
the source end, signal decoding at the destination end, and
end-to-end communication protocols. This study introduced
several techniques to improve the capacity of thermal covert

channels by overcoming thermal interference. Specifically, in
this study, data in a thermal covert channel were encoded and
represented using a novel thermal signaling scheme, where the
logic value, 0 or 1, modulates the duty cycle of the thermal
signals. Additionally, the study demonstrated that selecting
an appropriate transmission frequency can significantly reduce
thermal interference. Furthermore, it proposes a robust end-to-
end communication protocol for reliable communication. The
proposed attack can reduce the Bit Error Rate (BER) by 75%
and enhance the transmission rate by 370%. Therefore, the
proposed attack can be utilized to transmit passwords secretly
on a chip with a stable transmission rate of 160bps and a
BER as low as 0%. The study described in [58] aimed to
investigate the potential security threats in multi-core systems
by measuring the temperature. The authors sought to regulate
fan speed and reduce the temperature of the system to an
appropriate level as a protective measure against these attacks.
The results indicate that a substantial decrease in temperature
is correlated with a decrease in power consumption.

The necessity for a reliable and confidential method for
transmitting sensitive data over an untrusted network-on-chip
(NoC) integrated into a system-on-chip (SoC) design has
arisen because of the potential risk of compromised data
integrity and security. In [59], a novel approach was pre-
sented that ensures secure data transmission over an untrusted
NoC. This scheme encodes binary data as inter-packet delays
between packets traveling between a source-destination pair.
The analytical model developed in this study was utilized to
determine the maximum data transmission rate of this IPD-
based communication channel. To enhance the undetectability
and robustness of the proposed data transmission scheme,
a new block coding method and communication protocol
were proposed. The IPD channel offers several advantages
over competing TCC, cache covert channel, and circuit-based
encryption schemes, including a lower packet error rate (PER)
and overhead and higher throughput, making it a suitable
option for secure data transmission in unsecured NoC-based
systems.

Owing to increasing security concerns posed by thermal
covert channel (TCC) attacks on many-core systems, multiple
detection methods based on threshold levels have been devel-
oped. However, these methods are insufficient for detecting
TCCs using advanced signaling and specific modulation tech-
niques, as highlighted in [60]. To address this issue, this study
proposes a detection method based on pattern classification
that can effectively counter improved stealthy TCCs that use
reduced signal amplitude to evade threshold-based detection.
This proposed method achieved a detection accuracy of 99%
for both the baseline TCC and the improved stealthy TCC. Af-
ter employing the DVFS-based countermeasure on the detected
CPU cores, the PERs of both types of TCCs were higher than
70%, but with a low runtime and low energy. The proposed
detection method and DVFS-based countermeasure are low-
complexity and low-overhead, making them well-suited to
work together to thwart any known TCC attacks with ease.

A previous study [61] demonstrated that thermal signals
combined with noise using direct sequence spread spectrum
(DSSS) modulation exhibited no detectable amplitude differ-

ence for the detector. This makes DSSS-based TCC highly
challenging to detect and requires innovative approaches
owing to the transmission of noise-like signals. This study
proposes isolating useful signal components by eliminating
low-frequency noise and irrelevant signals, followed by a
threshold-based detection method to identify potential TCC.
Upon detecting a DSSS-based TCC attack, a countermeasure
involving a strong noise injection to jam the TCC can be
employed. The authors reported that the proposed detection
scheme achieved a high accuracy of up to 89% for detecting
TCC without DSSS- and DSSS-based TCC.

CRC
CAN ID
(11 Bit)

Data Payload
(0~8 Byte)

EoF
A
C
K

DLC
(4 Bit)

S
o
F

Fig. 3. CAN Bus Frame.

B. In-vehicle Network Attacks and Countermeasure

Contemporary automobiles are equipped with various elec-
tronic systems that provide new and convenient functions for
drivers and passengers. To implement advanced driver assis-
tance systems (ADAS), such as lane keeping assist (LKAS),
anti-lock braking systems (ABS), and smart cruise control
(SCC), vehicles rely on electronic control units (ECUs) instead
of manual control. Consequently, many ECUs have been in-
stalled in contemporary vehicles [62]. Controller area networks
(CAN) have emerged as the de facto standard for communica-
tion among ECUs in vehicles. As shown in Fig.3, a standard
CAN frame comprises several fields including the Start of
Frame (SOF), Arbitration Field (CAN ID), Control Field,
Data Field (payload), CRC field, knowledge field (ACK), and
End of Frame (EOF). CAN networks can be connected to
external systems through connected and autonomous vehicle
technologies. However, CAN lacks security measures such
as confidentiality, authentication, and access control, enabling
attackers to access the CAN bus and inject packets that
manipulate critical functions, such as emergency braking,
acceleration, and steering control.

An attacker can potentially exploit external interfaces, such
as an OBD-II diagnostics port, telematics unit, or in-vehicle
infotainment (IVI), to launch an attack on a real car [63].
Hackers can carry out various types of critical attacks, includ-
ing gaining knowledge about the architecture and behavior
of connected electronic control units (ECUs) in the vehicle.
However, these attacks do not require specific prior knowl-
edge. Each manufacturer employs its own set of identifiers for
the same functions, which are encoded in the CAN matrix, and
may not be constant for every model [64]. Additionally, other
types of attacks, such as Denial of Service (DoS), Fuzzing,
Spoofing, Malfunction, can occur.

Furthermore, CAN networks face significant challenges in
protecting against remote attacks, owing to their long-range
connectivity. Covert channels, which are hidden communica-
tion paths, have emerged as potential threats and protective
measures to these networks. Specifically, the use of covert
channels in Controller Area Networks (CAN) has been ex-
plored for their ability to enhance vehicular message authenti-
cation procedures while maintaining the system performance.

OBD-II port

Interface

Telematics
unit

In-vehicle
Infotainment

Inject attack
messages

Messages
injected

IDS ECU

Compromised
ECU

ECU ECU

ECU

Alter

Mointor CAN
message

and detect attack

Fig. 4. CAN Bus IDS Architecture.

In a study conducted by researchers [65], the potential for
benign defensive uses of covert channels to support vehicular
message authentication mechanisms was investigated as a
transparent resource-conserving approach to automotive net-
work security. The authors provide the first comprehensive
evaluation of covert channels in Controller Area Networks
(CAN) with respect to the achievable bandwidth and reliability
of covert communication. Researchers have identified timing-
based covert channels as potential candidates for developing
a supplementary nonce synchronization channel that can en-
hance the resilience of existing authentication mechanisms to
message loss.

[66] proposed TACAN, a secure method for authenticating
ECUs on a legacy CAN bus using covert channels without
modifying the CAN protocol or increasing traffic. TACAN
utilizes a centralized Monitor Node and employs IAT-based,
LSB-based, and hybrid covert channels for ECU authenti-
cation. The study reported that the TACAN-based detector
accurately identified CAN bus attacks with a high detection
rate and a false alarm rate below 0.33 percent when the
detection threshold was set to 2 or higher.

Moreover, to prevent, detect, and mitigate CAN bus network
attacks, an intrusion detection system (IDS) can be imple-
mented between the external connection and CAN bus, as
depicted in Fig.4. The IDS will filter out any malicious traffic
that an attacker attempts to send into the CAN bus system,
and it will generate alert messages.

In [67], a deep convolutional neural network (DCNN)-based
intrusion detection system (IDS) was proposed to safeguard the
CAN bus from cyber-attacks. The authors introduced a frame
builder, which is a straightforward data-assembly module that
directly uses bit-stream data from the CAN bus in the CNN.
This module converts the CAN bus data into a grid-like
structure that is compatible with the DCNN. Using the grid
data frame instead of a feature vector, the CNN-based classifier
can effectively learn temporal sequential patterns in CAN
traffic data without additional preprocessing. The IDS was
designed using a modified Inception-ResNet model originally
developed for large-scale image classification by reducing the
size and number of layers.

The study in [68] introduced HistCAN, an advanced in-
trusion detection system (IDS) for anomalies on CAN buses.
HistCAN employs a hybrid convolutional neural network
(CNN)-multilayer perceptron (MLP) structure to create a
spatial-temporal representation and capture multidimensional
data from CAN sequences. It also includes a historical in-
formation fusion module to capture long-term dependencies
across the CAN ID series, enhancing detection accuracy
and performance. Experiments revealed that HistCAN often

outperforms benchmark methods, achieving an impressive
F1 score of 0.9954 in a fully self-supervised manner while
meeting real-time requirements.

VI. CONCLUDING REMARKS

The paper discussed existing efforts and design challenges
towards adoption of SDVs that represent a paradigm shift in
the automotive industry. Various aspects of emerging archi-
tecture, control and security challenges were considered from
both industrial and academic points of view, while review-
ing state-of-the-art approaches. While this paper discussed
architectural issues, control, robust perception, and security
separately, they will increasingly need to be co-designed in
order to better exploit the rich tradeoffs that exist between
them. Further, as autonomous features continue to increase in
modern cars there will also be interesting tradeoffs between
resource requirements, design complexity, extensibility and
certifiability that need to be studied in the future.

VII. ACKNOWLEDGMENTS

We acknowledge financial support from the following: Na-
tional Science Foundation grant CNS-2132385 and CPS-
2038960, the National Natural Science Foundation of
China under Grants 92373205 and 62374146, the National
Key Research and Development Program of China No.
2023YFB4404404, CCF-Phytium Fund, the Key Technologies
R&D Program of Jiangsu (Prospective and Key Technologies
for Industry) under Grant BE2023005-2.

REFERENCES

[1] U. D. Bordoloi et al., “Autonomy-driven emerging directions in
software-defined vehicles,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2023.

[2] F. Sagstetter et al., “Schedule integration framework for time-triggered
automotive architectures,” in 51st Annual Design Automation Conference
(DAC), 2014.

[3] P. H. Kindt et al., “Energy modeling for the bluetooth low energy
protocol,” ACM Trans. Embed. Comput. Syst., vol. 19, no. 2, pp. 13:1–
13:32, 2020.

[4] ——, “Neighbor discovery latency in ble-like protocols,” IEEE Trans.
Mob. Comput., vol. 17, no. 3, pp. 617–631, 2018.

[5] A. Karimi and P. S. Duggirala, “Automatic generation of test-cases of
increasing complexity for autonomous vehicles at intersections,” in 13th
ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS
2022, Milano, Italy, May 4-6, 2022. IEEE, 2022, pp. 1–11.

[6] P. Kumar et al., “A hybrid approach to cyber-physical systems verifica-
tion,” in 49th Annual Design Automation Conference (DAC), 2012.

[7] D. Roy et al., “Timing debugging for cyber-physical systems,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2021.

[8] C. Hobbs et al., “Perception computing-aware controller synthesis
for autonomous systems,” in Design, Automation & Test in Europe
Conference & Exhibition, (DATE), 2021.

[9] G. Georgakos et al., “Reliability challenges for electric vehicles: from
devices to architecture and systems software,” in 50th Annual Design
Automation Conference (DAC), 2013.

[10] P. Waszecki et al., “Automotive electrical and electronic architecture
security via distributed in-vehicle traffic monitoring,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 36, no. 11, pp. 1790–
1803, 2017.

[11] P. Mundhenk et al., “Lightweight authentication for secure automotive
networks,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015.

[12] E. Fraccaroli et al., “Timing predictability for SOME/IP-based service-
oriented automotive in-vehicle networks,” in Design, Automation & Test
in Europe Conference (DATE), 2023.

[13] A. Masrur et al., “Vm-based real-time services for automotive control
applications,” in 16th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2010.

[14] D. Roy et al., “Goodspread: Criticality-aware static scheduling of CPS
with multi-qos resources,” in 41st IEEE Real-Time Systems Symposium
(RTSS), 2020.

[15] S. Chakraborty and L. Thiele, “A new task model for streaming
applications and its schedulability analysis,” in Design, Automation and
Test in Europe Conference and Exposition (DATE), 2005.

[16] D. Roy et al., “Tighter dimensioning of heterogeneous multi-resource
autonomous CPS with control performance guarantees,” in 56th Annual
Design Automation Conference (DAC), 2019.

[17] W. Chang et al., “OS-aware automotive controller design using non-
uniform sampling,” ACM Trans. Cyber Phys. Syst., vol. 2, no. 4, pp.
26:1–26:22, 2018.

[18] M. Lukasiewycz et al., “Modular scheduling of distributed heteroge-
neous time-triggered automotive systems,” in 17th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2012.

[19] D. Roy et al., “Semantics-preserving cosynthesis of cyber-physical
systems,” Proc. IEEE, vol. 106, no. 1, pp. 171–200, 2018.

[20] R. Schneider et al., “Constraint-driven synthesis and tool-support
for Flexray-based automotive control systems,” in 9th International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2011.

[21] D. Goswami, R. Schneider, and S. Chakraborty, “Re-engineering cyber-
physical control applications for hybrid communication protocols,” in
Design, Automation and Test in Europe (DATE), 2011.

[22] ——, “Co-design of cyber-physical systems via controllers with flex-
ible delay constraints,” in 16th Asia South Pacific Design Automation
Conference (ASP-DAC), 2011.

[23] D. Roy et al., “Tool integration for automated synthesis of distributed
embedded controllers,” ACM Trans. Cyber Phys. Syst., vol. 6, no. 1, pp.
3:1–3:31, 2022.

[24] L. Zhang et al., “Task- and network-level schedule co-synthesis of
Ethernet-based time-triggered systems,” in 19th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2014.

[25] D. Roy et al., “Multi-objective co-optimization of flexray-based dis-
tributed control systems,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2016.

[26] G. Tibba et al., “Testing automotive embedded systems under X-in-
the-loop setups,” in 35th International Conference on Computer-Aided
Design (ICCAD), 2016.

[27] J. Oetjens et al., “Safety evaluation of automotive electronics using
virtual prototypes: State of the art and research challenges,” in The 51st
Annual Design Automation Conference (DAC). ACM, 2014, pp. 113:1–
113:6.

[28] C. Hobbs et al., “Safety analysis of embedded controllers under imple-
mentation platform timing uncertainties,” IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., vol. 41, no. 11, pp. 4016–4027, 2022.

[29] M. Maggio et al., “Control-system stability under consecutive deadline
misses constraints,” in 32nd Euromicro Conference on Real-Time Sys-
tems (ECRTS), 2020.

[30] D. Liberzon, Switching in Systems and Control, ser. Systems & Control:
Foundations & Applications. Birkhäuser, 2003.

[31] S. Xu et al., “Safety-aware flexible schedule synthesis for cyber-physical
systems using weakly-hard constraints,” in 28th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2023.

[32] A. Yeolekar et al., “Checking scheduling-induced violations of control
safety properties,” in 20th International Symposium on Automated
Technology for Verification and Analysis (ATVA), ser. Lecture Notes in
Computer Science, vol. 13505. Springer, 2022.

[33] B. Ghosh et al., “Statistical verification of autonomous system con-
trollers under timing uncertainties,” Real Time Syst., vol. 60, no. 1, pp.
108–149, 2024.

[34] L. Ju et al., “Context-sensitive timing analysis of Esterel programs,” in
46th Design Automation Conference (DAC), 2009.

[35] ——, “Timing analysis of Esterel programs on general-purpose multi-
processors,” in 47th Design Automation Conference (DAC), 2010.

[36] C. Hobbs et al., “Quantitative safety-driven co-synthesis of cyber-
physical system implementations,” in 15th ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), 2024.

[37] H. Liang et al., “Security-driven codesign with weakly-hard constraints
for real-time embedded systems,” in 37th IEEE International Conference
on Computer Design (ICCD), 2019.

[38] P. Mundhenk et al., “Security in automotive networks: Lightweight
authentication and authorization,” ACM Trans. Design Autom. Electr.
Syst., vol. 22, no. 2, pp. 25:1–25:27, 2017.

[39] S. Xu et al., “Neural architecture sizing for autonomous systems,” in
15th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), 2024.

[40] Z. Wang et al., “Bounding perception neural network uncertainty for
safe control of autonomous systems,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2021.

[41] M. Goyal, M. Dewaskar, and P. S. Duggirala, “Nexg: Provable and
guided state-space exploration of neural network control systems using
sensitivity approximation,” IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., vol. 41, no. 11, pp. 4265–4276, 2022.

[42] V. K. Kukkala, J. Tunnell, S. Pasricha, and T. Bradley, “Advanced
driver-assistance systems: A path toward autonomous vehicles,” IEEE
Consumer Electronics Magazine, vol. 7, no. 5, pp. 18–25, 2018.

[43] V. K. Kukkala, S. Pasricha, and T. Bradley, “Jams: Jitter-aware message
scheduling for flexray automotive networks,” in Proceedings of the
Eleventh IEEE/ACM International Symposium on Networks-on-Chip,
2017, pp. 1–7.

[44] ——, “Jams-sg: A framework for jitter-aware message scheduling for
time-triggered automotive networks,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 24, no. 6, pp. 1–31,
2019.

[45] ——, “Sedan: Security-aware design of time-critical automotive net-
works,” IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp.
9017–9030, 2020.

[46] V. K. Kukkala and S. Pasricha, Machine Learning and Optimization
Techniques for Automotive Cyber-Physical Systems. Springer Nature,
2023.

[47] J. Dey and S. Pasricha, “Co-optimizing sensing and deep machine
learning in automotive cyber-physical systems,” in 2022 25th Euromicro
Conference on Digital System Design (DSD). IEEE, 2022, pp. 308–315.

[48] J. Dey, W. Taylor, and S. Pasricha, “Vespa: A framework for optimizing
heterogeneous sensor placement and orientation for autonomous vehi-
cles,” IEEE Consumer Electronics Magazine, vol. 10, no. 2, pp. 16–26,
2020.

[49] J. Dey and S. Pasricha, “Robust perception architecture design for
automotive cyber-physical systems,” in 2022 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 2022, pp. 241–246.

[50] A. Balasubramaniam, F. Sunny, and S. Pasricha, “R-toss: A framework
for real-time object detection using semi-structured pruning,” in 2023
60th ACM/IEEE Design Automation Conference (DAC). IEEE, 2023,
pp. 1–6.

[51] V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “Roadmap for cyberse-
curity in autonomous vehicles,” IEEE Consumer Electronics Magazine,
vol. 11, no. 6, pp. 13–23, 2022.

[52] ——, “Indra: Intrusion detection using recurrent autoencoders in au-
tomotive embedded systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3698–
3710, 2020.

[53] ——, “Latte: L stm self-att ention based anomaly detection in e mbedded
automotive platforms,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 20, no. 5s, pp. 1–23, 2021.

[54] S. V. Thiruloga, V. K. Kukkala, and S. Pasricha, “Tenet: Temporal
cnn with attention for anomaly detection in automotive cyber-physical

systems,” in 2022 27th Asia and South Pacific design automation
conference (ASP-DAC). IEEE, 2022, pp. 326–331.

[55] H. Chishiro, K. Suito, T. Ito, S. Maeda, T. Azumi, K. Funaoka, and
S. Kato, “Towards heterogeneous computing platforms for autonomous
driving,” in 2019 IEEE International Conference on Embedded Software
and Systems (ICESS). IEEE, 2019, pp. 1–8.

[56] J. Wang, X. Wang, Y. Jiang, A. K. Singh, L. Huang, and M. Yang,
“On evaluation of on-chip thermal covert channel attacks,” in 2022
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES). IEEE, 2022, pp. 9–10.

[57] Z. Long, X. Wang, Y. Jiang, G. Cui, L. Zhang, and T. Mak, “Improving
the efficiency of thermal covert channels in multi-/many-core systems,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 1459–1464.

[58] P. Rahimi, A. K. Singh, and X. Wang, “Fan speed control based defence
for thermal covert channel attacks in multi-core systems,” in 2022 29th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS). IEEE, 2022, pp. 1–4.

[59] J. Xu, X. Wang, Y. Jiang, A. K. Singh, C. Gu, L. Huang, M. Yang,
and S. Li, “Secured data transmission over insecure networks-on-chip
by modulating inter-packet delays,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp.
4313–4324, 2022.

[60] X. Wang, H. Huang, R. Chen, Y. Jiang, A. K. Singh, M. Yang,
and L. Huang, “Detection of thermal covert channel attacks based
on classification of components of the thermal signal features,” IEEE
Transactions on Computers, vol. 72, no. 4, pp. 971–983, 2022.

[61] X. Wang, S. Wang, Y. Jiang, A. K. Singh, M. Yang, and L. Huang,
“Combating stealthy thermal covert channel attack with its thermal sig-
nal transmitted in direct sequence spread spectrum,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 11, pp. 4064–4075, 2022.

[62] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in
automotive communication systems,” Proceedings of the IEEE, vol. 93,
no. 6, pp. 1204–1223, 2005.

[63] H. J. Jo and W. Choi, “A survey of attacks on controller area networks
and corresponding countermeasures,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 7, pp. 6123–6141, 2021.

[64] J. Laufenberg, T. Kropf, and O. Bringmann, “A framework for can
communication and attack simulation,” in 2022 IEEE 95th Vehicular
Technology Conference:(VTC2022-Spring). IEEE, 2022, pp. 1–7.

[65] S. Vanderhallen, J. Van Bulck, F. Piessens, and J. T. Mühlberg, “Robust
authentication for automotive control networks through covert channels,”
Computer Networks, vol. 193, p. 108079, 2021.

[66] X. Ying, G. Bernieri, M. Conti, L. Bushnell, and R. Poovendran, “Covert
channel-based transmitter authentication in controller area networks,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2665–2679, 2021.

[67] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion
detection using deep convolutional neural network,” Vehicular Commu-
nications, vol. 21, p. 100198, 2020.

[68] S. Zhuo, N. Li, and K. Ren, “Histcan: A real-time can ids with enhanced
historical traffic learning capability.”

