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Abstract— EEG-based unimodal method has demon-
strated significant success in the detection of driving
fatigue. Nonetheless, data from a single modality might
be not sufficient to optimize fatigue detection due to in-
complete information. To address this limitation and en-
hance the performance of driving fatigue detection, a
novel multimodal architecture combining hybrid electroen-
cephalograph (EEG) and eye tracking data was proposed
in this work. Specifically, the EEG and eye tracking data
were separately input into encoders, generating two one-
dimensional (1D) features. Subsequently, these 1D fea-
tures were fed into a cross-modal predictive alignment
module to improve fusion efficiency and two 1D attention
modules to enhance feature representation. Furthermore,
the fused features were recognized by a linear classifier.
To evaluate the effectiveness of the proposed multimodal
method, comprehensive validation tasks were conducted,
including intra-session, cross-session, and cross-subject
evaluations. In the intra-session task, the proposed ar-
chitecture achieves an exceptional average accuracy of
99.93%. Moreover, in the cross-session task, our method
demonstrates an average accuracy of 88.67%, surpass-
ing the performance of EEG-only approach by 8.52%, eye
tracking-only method by 5.92%, multimodal deep canoni-
cal correlation analysis (DCCA) technique by 0.42%, and
multimodal deep generalized canonical correlation analysis
(DGCCA) approach by 0.84%. Similarly, in the cross-subject
task, the proposed approach achieves an average accu-
racy of 78.19%, outperforming EEG-only method by 5.87%,
eye tracking-only approach by 4.21%, DCCA method by
0.55%, and DGCCA approach by 0.44%. The experimental
results conclusively illustrate the superior effectiveness of
the proposed method compared to both single modality
approaches and canonical correlation analysis-based mul-
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I. INTRODUCTION

DRIVING fatigue has emerged as a significant contributor
to the increasing number of accidents in contemporary

society, incurring financial costs and endangering human lives.
In fact, driving fatigue has become a leading cause of road
fatalities in various countries [1]. Numerous researchers have
dedicated their efforts to developing efficient and robust meth-
ods for detecting fatigue and mitigating the consequences of
fatigue-related incidents [2].

In the driving fatigue detection methods, various features
are adopted as the input. Recently, researchers have explored
physiological and behavioral features for modeling, including
electroencephalogram (EEG) [3]–[9], electrooculogram (EOG)
[10], eye closure features [11], eye-tracking-based features
[12], yawn/nod motions [13], etc. Among these, physiological
features have received the most attention due to their ability
to directly reflect mental states [14]. The fatigue detection
methods typically utilize one of these features to train a
high-performance classifier. However, physiological methods,
particularly EEG-based approaches, sometimes perform poorly
when transferring well-trained classifiers to different subjects
(cross-subject) or different sessions with the same subject
(cross-session). This implies that well-trained classifiers today
may not be effective tomorrow. Experts attribute this phe-
nomenon to domain shift, which is likely caused by distri-
bution variances among different sessions and subjects [15].

There are two primary approaches to mitigating distribution
variances across different sessions and subjects. One approach
involves utilizing transfer learning techniques including do-
main adaptation (DA) methods and domain generalization
(DG) methods [16], [17]. Another approach involves lever-
aging data from hybrid modalities, commonly referred to as
the multimodal approach. The multimodal approach provides
multiple perspectives that capture various aspects of a specific
object or phenomenon. Each modality contributes unique in-
formation, allowing them to complement one another. Further-
more, multimodal methods have shown significant promise in
enhancing the performance of brain-computer interface (BCI)
systems, including SSVEP-BCI [18] , MI-BCI [19], [20] ,
P300-BCI [21] , and others [22], [23].
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In the past decade, there have been preliminary works on
detecting fatigue using hybrid modalities. Zheng et al. pro-
posed a hybrid approach for estimating vigilance by combining
EEG and forehead EOG data, with their data labeled using the
percentage of eye closure (PERCLOS) index calculated from
eye tracking data [24]. The limitation of their study involves:
i) their PERCLOS index was used for labeling, while the
generation of this index was based on the missed records of
eye-tracking glasses, which could occur due to issues such as
tracking device overheating or other failures. Consequently,
the direct representation of the subject’s mental fatigue state
by their index is uncertain; ii) their eye-movement features
were generated based on the EOG data, which could not
capture the dynamic amplitude and velocity of eye movements.
Nonetheless, their study demonstrated an improvement in
adopting a hybrid modalities approach. Some recent studies
have also demonstrated the effectiveness of EEG- and EOG-
based multimodal approaches [25], [26] and the efficacy of
other hybrid modalities methods [27], [28]. Moreover, numer-
ous studies focusing on eye-tracking unimodal features have
shown that, in addition to PERCLOS, metrics related to sac-
cades and fixations are effective indicators for fatigue detection
[29], [30]. Therefore, we propose leveraging a combination
of EEG and eye-tracking data to improve the detection of
driving fatigue, utilizing eye-tracking glasses to capture the
eye-movement features.

A typical architecture for multimodal fatigue detection
comprises four primary modules: preprocessing of unimodal
data, encoding of unimodal features, multimodal fusion and
encoding, and classification. The encoding of unimodal fea-
tures may be omitted in some architectures [24], [31]. Among
these modules, multimodal fusion and encoding are crucial
as they directly impact the architecture’s performance. Pre-
vious studies predominantly employed feature-level fusion
strategies, including direct fusion [25], [32], subspace feature
fusion [31], empirical weight fusion [33], canonical correlation
analysis fusion [6], [34], and neural network fusion [26].
Neural network fusion approaches are specifically designed for
deep learning methods, utilizing additional network modules to
fuse multimodal features, with efficacy dependent on module
design. In other multimodal BCI paradigms, deep canonical
correlation analysis (DCCA) and deep generalized canonical
correlation analysis (DGCCA) have proven to be effective
fusion methods [35], [36]. However, CCA-based fusion strate-
gies may limit the model’s ability to learn separable represen-
tations. Therefore, we proposed a novel non-CCA cross-modal
predictive alignment module to enhance fusion efficacy.

In this study, we proposed a driving fatigue detection archi-
tecture by integrating hybrid EEG and eye tracking modalities.
This approach considers both brain-derived information and
eye-tracking states comprehensively. To improve the fusion
efficiency and enhance the feature representation, a cross-
modal predictive alignment module and one-dimensional (1D)
attention module are proposed respectively. This approach
significantly bolsters the architecture’s robustness and further
elevates the detection performance in intra-session, cross-
session, and cross-subject tasks.

The arrangement of this study is organized as follows.

Section II shows the materials and methods of our study, which
introduces the experimental protocol, the EEG data acquisi-
tion, the data preprocessing and labeling, and the multimodal
architecture. In Section III and IV, we present the results and
discussion. The conclusion is presented in Section V.

II. MATERIALS AND METHODS

A. Experimental Protocol
We experimented with a hybrid dataset comprising multiple

modalities. The experiment was carefully designed to mimic
a real driving scenario, aiming to acquire more effective
multimodal experimental data. Fourteen healthy participants (9
males and 5 females) with an age of 21.6 ± 1.4 were recruited.
All participants were newcomers to the experiment and had
prior driving experience. These participants were screened to
ensure they had normal or corrected-to-normal vision and had
no history of neurological illness.

The driving simulation platform comprises three main com-
ponents, as illustrated in Fig. 1(b): a Thrustmaster T300 GT
vehicle suite, a 32-channel Brain Products (BP) LiveAmp
cap for EEG data collection, and a pair of Tobii Glasses 2
for eye-tracking data acquisition. The 32-channel EEG cap
efficiently captures signals from crucial brain regions while
offering ease of wear. All participants were required to obey
traffic regulations, avoiding collisions with other vehicles.
Additionally, they were instructed to minimize any movements
unrelated to driving operations to prevent interference during
data collection. The driving experiment lasts 90 minutes for a
session, with each subject undergoing two sessions within a
week, totaling 28 sessions across 14 subjects. The experiments
were conducted between 2−5 p.m., a period during which
drivers are more likely to experience a state of fatigue. Written
informed consent was obtained from each participant. The
Institutional Review Committee of Jiangmen Central Hospital
approved this study ([2021]8A).

B. Data Processing and Labeling
1) EEG: The EEG data was sampled at a rate of 250 Hz,

with the FCz channel as the reference. Electrode impedance
across all EEG channels was kept below 20 kΩ throughout
the driving simulation to prevent interference. EEGLab was
utilized for preprocessing [37], the preprocessing procedure
included bad-channel interpolation, applying a 1-40Hz band-
pass filter, and removing eye artifacts using ICA. The pro-
cessed data was segmented into non-overlapping 1-second
time windows and normalized by Z-score method.

2) Eye-tracking Data: The sample rate of eye-tracking data
was set at 100 Hz. In most cases, the eye-tracking data was
processed by the given software suite (Tobbi Pro Lab in this
study). However, the exported data of the software suite lacks
several important indices (e.g., saccade amplitude and saccade
velocity). Therefore, the raw eye-tracking data was further
processed through several steps to derive some crucial indices
and finally generate 8 eye-tracking characteristics. The overall
processing procedure is presented in Fig. 2. Two types of data
from eye-tracking were adopted, distinguished by red and blue
colors in the figure: physical data and tracking data. Among
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Fig. 1. The system of multimodal driving fatigue detection. (a) experimental scenario. (b) a subject wearing an EEG cap and a pair of Tobbi Glasses
was driving a simulated vehicle in the simulation platform.

Fig. 2. The overall framework of eye-tracking data processing. The data
was first recorded on an SDCard of Tobbi Glasses and then exported by
Tobbi Pro Lab. Among the exported data, the tracking data was further
processed to obtain several critical indices by a specially designed I-VT
fixation filter. Finally, a 60-second sliding window with a 1-second time
step was applied to generate 8 characteristics.

them, eye-tracking data was first filtered by a special Velocity-
Threshold Identification (I-VT) fixation filter [38] to extract
three key indices and further calculated to obtain features. We
adopt an optimal 60-second time window (results of using
various time windows are shown in Section III-C) for feature
generation with a time step of 1 second. The time step matches
that of the EEG data, allowing for a multimodal combination.

The 8 eye-tracking features are listed at the bottom of Fig.
2. Before sending to the multimodal model, the features were
standardized by Z-score method.

3) Labeling: In this study, a labeling scheme based on the
driving duration was employed [2]. Specifically, the initial
10 minutes of each driving session were assigned the label
of “alert” state, and the final 10 minutes were designated
as the “fatigue” state. To validate the appropriateness of
the adopted labeling scheme, we conducted post-experimental
questionnaires to evaluate participants’ subjective experiences
and perceptions of fatigue toward the end of the driving exper-
iment. The analysis indicated that the majority of participants
reported experiencing fatigue, affirming the efficacy of the
labeling method.

C. Multimodal Architecture

A novel multimodal architecture for fatigue detection was
proposed in this study. As demonstrated in Fig. 3(a), the
primary components include: i) an EEG convolutional network
for EEG encoding, ii) a Multi-Layer Perceptron (MLP) net-
work for eye-tracking data, iii) a novel non-CCA cross-modal
predictive alignment for feature fusion, and iv) a compact one-
dimensional module for feature enhancement.

1) EEG Convolutional Network: The structure of the pro-
posed EEG convolutional network is illustrated in Fig. 3(b).
The network consists of three convolutional blocks serving
as temporal filters, spatial filters, and deep temporal filters,
respectively. DepthWise and Separable convolutional layers
are adopted to reduce the network’s parameters [39]. The
hyperparameters F1, D, and F2 control the filter size and
were set to 8, 2, and 16, respectively. Here, D represents
the depth amplification factor for the DepthWise convolution.
Notably, the two pooling layers in the network result in a
total downsampling of 32 times, meaning that the sample rate
of the EEG signal is reduced to approximately 8Hz before
embedding generation.

In this study, the EEG encoder is tasked with processing
input signals of dimension 32×250 within a brief one-second
temporal window, while the eye-tracking encoder operates on
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Fig. 3. The framework of the proposed multimodal approach. (a) illustrates the overall framework. (b) presents the details of the EEG convolutional
encoder. Our approach leverages two distinct modalities of data, namely EEG and eye tracking, as inputs. By incorporating 1-second and 60-second
time windows, both short and long temporal contexts are effectively integrated. The EEG data is encoded by a convolutional network, while the
eye-tracking features are encoded using an MLP network. To enhance the representation of features, a 1D attention module is employed. In contrast
to CCA-based multimodal approaches, we proposed a cross-modal predictive alignment module to align hybrid features.

1×8 features over an extended 60-second window. The adop-
tion of varying window lengths facilitates feature extraction
across both short and long temporal contexts. Furthermore,
the uniform output dimensions of 1×64 for both encoders
facilitate seamless multimodal fusion.

2) Cross-modal Predictive Alignment: We proposed a novel
non-CCA alignment method, enhancing the fusion efficacy
through the optimization of cross-modal predictive tasks. As
shown at the right of Fig. 3(a), this approach improves the
relevance of unimodal features without excessive parameters.
The alignment of unimodal features is achieved through the
utilization of a similarity loss function, comparing predicted
results with their corresponding targets across both modalities.

Suppose there are two modalities, where x1 and x2 represent
the input data of these modalities. Let z1 ≜ f1(x1) and z2 ≜
f2(x2) be the encoded one-dimensional features of x1 and x2,
respectively. An MLP was employed to predict the features of
z2 from z1, and vice versa:

p1 = h1(z1)

p2 = h2(z2),
(1)

here, h1 and h2 represent the MLP predictors, p1 and p2
are the predicted results from z1 and z2, respectively. p1 is
intended to closely match z2, and similarly, p2 is intended to
closely match z1 (the predicted results and their target features
are visually depicted in the same color family in Fig. 3(a)).
Subsequently, the negative cosine similarity was computed
between the predicted results and the target features using the
following equation:

D(p1, z2) = − p1
∥p1∥2

· z2
∥z2∥2

, (2)

D(p1, z2) represents the negative cosine similarity function,
and the predictive alignment loss is defined as follows:

Lalign =
1

2
(D(p1, z2) +D(p2, z1)), (3)

Lalign denotes the alignment loss, the minimum value of
which is -1. Inspired by Simsiam [40], the stop-gradient
(stopgrad) operation was adopted to stop the gradient of the
target feature vector while optimizing, so that the alignment
task will only affect the parameters alongside the predictor’s
gradient propagation lane, avoiding the optimizer from quickly
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accessing to a degenerated solution. Equation (2) was modified
as follows:

D(p1, stopgrad(z2)), (4)

this means the z2 here is treated as a constant vector with no
gradient. Finally, the predictive alignment loss is changed as:

Lalign =
1

2
(D(p1, stopgrad(z2)) +D(p2, stopgrad(z1))),

(5)
with the iterations of backpropagation, the features of two
modalities would be much more able to predict each other,
thus more relative to each other in the latent space.

3) One-dimensional Attention Module: A one-dimensional
attention module was adopted to enhance the representation
of encoded features. As shown in the middle of Fig. 3(a), the
proposed attention module is applied to the features encoded
by the primary backbone of each modality.

Let Of ∈ RD represent the one-dimensional output feature
of a modality, where D is the length of the feature vector. The
attentional weights α are calculated as follows:

Os = fs(Of )

α = softmax(Os),
(6)

here, Os ∈ RD represents the score of D elements obtained
by a score function fs, where the score function applied is a
2-layer MLP. Once the attentional weights are computed, the
enhanced feature is obtained as follows:

O′
f = α⊗Of , (7)

⊗ denotes the Hadamard product. O′
f represents the enhanced

feature after the attention module.
4) Training: In this architecture, the final loss function

consists of two parts: a cross-modal alignment loss (Lalign)
and a cross-entropy classification loss (Lclf ). The overall loss
function is expressed as follows:

L = Lalign + Lclf . (8)

Given the substantial variation in data magnitude across dif-
ferent modalities, a two-stage training approach was adopted
for this multimodal network to mitigate the risk of potential
overfitting. The first stage involves the pretraining of the EEG
convolutional network using exclusively EEG unimodal data
to acquire appropriate initial parameters. The second stage
comprises the training of the entire multimodal network.

The architecture was implemented using PyTorch 1.12.1
(Python 3.8.16) on a workstation equipped with an Intel(R)
Core(TM) i5-9400F CPU and an NVIDIA GeForce RTX 2080
Ti GPU. The AdamW optimizer with a learning rate of 0.001
and a weight decay of 0.01 was employed in this work.
Model training extended for 200 epochs, with accuracy serving
as the evaluation metric for model selection. All validation
tasks and the pretraining stage followed the same setup. To
mitigate potential variations, five runs was conducted for the
performance evaluation tasks.

D. Evaluation Method
To comprehensively evaluate the proposed method, three

tasks were conducted [41], [42]: i) intra-session evaluation
task, which evaluates the performance of each session, the
result of each subject is the average of two sessions. The
data pertaining to each label within a singular session is par-
titioned chronologically into training, validation, and testing
sets, with allocations of 50%, 25%, and 25%, respectively; ii)
cross-session evaluation task, which evaluates the performance
across two sessions for every subject. A leave-one-session-out
cross-validation strategy was adopted for this task. Specifi-
cally, one complete session was used as the training set, while
the other session was utilized for validation and testing; iii)
cross-subject evaluation task, which evaluates the performance
across all subjects. Inspired by [43], a leave-one-subject-out
cross-validation strategy was adopted. Specifically, in each
validation fold, the data of a specific subject was adopted for
validation and testing, and the data of the rest subjects were
used for training [44], [45].

The performance of the proposed multimodal architecture
is compared with other methods, including: i) EEG method,
an unimodal method that utilizes only EEG signals as input,
with the same structure as the proposed EEG Convolutional
Encoder in Fig. 3(b); ii) eye tracking method, another uni-
modal method that uses only eye-tracking features as input;
iii) DCCA-based multimodal method, a multimodal method
employs DCCA as the fusion strategy, with the backbone
encoders for both modalities data identical to the proposed
architecture [46]; iv) DGCCA-based multimodal method, an-
other multimodal method that utilizes DGCCA as the fusion
strategy [36].

III. EXPERIMENTAL RESULTS

This section presents the experimental results of the study.
First, we analyzed the data from the two modalities to assess
the feasibility of using multimodal data and the effectiveness
of the adopted labeling method. Second, fatigue detection
performance was evaluated across intra-session, cross-session,
and cross-subject scenarios, respectively. Third, we inves-
tigated the impact of different eye-tracking time windows.
Fourth, an ablation study was conducted to assess the effective-
ness of each module in the proposed multimodal architecture.
Finally, we conducted cross-subject evaluation experiments
using the publicly available SEED-VIG data.

A. Analyses of Multimodal Data
1) Visualization and Analysis of EEG Data: Firstly, we con-

ducted a visual analysis of EEG signal power distribution
across three prevalent frequency bands: theta, lower alpha, and
beta. Statistical analyses were then performed for five specific
brain regions. The visualization results are depicted in Fig. 4.
The statistical analyses, as shown in Fig. 4(b), targeted the
prefrontal cortex, frontal lobe, central area, parietal lobe, and
occipital lobe.

The power distribution changes across three frequency
bands are illustrated in Fig. 4(a). The top and middle rows
display the average band power during the alert state and the
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Fig. 4. The EEG topographies of power distribution in three frequency bands and the subsequent statistical analysis across five brain regions are
presented. These topographies are organized in a 3x3 grid, as depicted in (a), with each column representing a distinct frequency band and each
row signifying different cognitive states: the alert state, fatigue state, and the subtraction of the fatigue state from the alert state. Notably, the color
representations in (b) and (c) are consistent. In (b), the channels chosen for analysis in the five brain regions are shown. Meanwhile, (c) illustrates
the average power across three frequency bands for the five regions in two mental states, accompanied by the corresponding significance by
Wilcoxon test. The Wilcoxon test was performed on 28 driving sessions (“*” indicates p<0.05, and “**” indicates p<0.01).

Fig. 5. The trends of 2 eye-tracking features for a subject (Subject 7) throughout the entire 90-minute driving session and the histograms of
fixation time in 2 mental states for all subjects. (a) illustrates the trend of fixation mean time and saccade mean time for a subject. (b) and (c) depict
histograms of fixation times in both the alert and fatigue states for all subjects. The fixation times were categorized into three classes: express
(<150ms), cognitive (150ms−900ms), and overlong(>900ms). The counts of express, cognitive, and overlong fixations were 4840, 15873, and
4029 in the alert state, and 7127, 15681, and 3030 in the fatigue state, respectively.
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Fig. 6. Classification results of methods in intra-session, cross-session, and cross-subject evaluation tasks. (a) depicts the intra-session results.
The average intra-session accuracy of EEG, eye tracking, DCCA multimodal, DGCCA multimodal and our multimodal approaches is 98.84±0.39%,
91.61±0.76%, 99.60±0.16%, 99.72%±,0.15%, and 99.93±0.05%, respectively. (b) depicts the cross-session results. The average cross-session
accuracy of the five methods is 80.15±0.58%, 82.75±0.44%, 88.25±1.58%, 87.83%±0.63%, and 88.67±1.00%, respectively. (c) depicts the
cross-session results. The average cross-subject accuracy of the five methods is 72.32%±0.86%, 73.98%±0.32%, 77.64%±0.69%, 77.75%±1.00%,
and 78.19%±0.56%, respectively. Our multimodal method performs consistently well among the five approaches in three evaluation tasks.

fatigue for all subjects, respectively. The bottom row presents
the results of subtracting the power of the fatigue state from
that of the alert state. According to the bottom topography,
an increase was observed in the prefrontal cortex across all
three frequency bands, while a decrease was noted in the other
frontal channels.

Fig. 4(c) depicts the average power of 5 regions on different
mental states with the difference significance by Wilcoxon test.
A non-overlapping 4-second time window was employed to
compute the power spectral density (PSD). Subsequently, the
PSD values were averaged across brain regions and driving
sessions to generate statistical samples. Therefore, each sample
provides information about the band power within a specific
brain region across a frequency band for a given session.
The statistical result revealed a significant increase within the
prefrontal cortex across three frequency bands for all sessions.
Furthermore, the parietal and occipital lobes exhibited a signif-

icant increase in the lower alpha band. A significant decrease
was evident in the beta band within the frontal lobe.

2) Visualization and Analysis of Eye-tracking Feature: The
eye-tracking features were visualized to investigate the trend
of eye-tracking features with subject’s increasing driving time
and conducted statistical analyses for all eight features.

The trends of 2 eye-tracking features for a subject (Subject
7) throughout the entire 90-minute driving session and the
histograms of fixation time in two mental states for all subjects
are presented in Fig. 5. Fig. 5(a) illustrates the trend of mean
fixation time and saccade mean time for a subject, the mean
saccade time exhibits an increasing trend as the time-on-
task increases, consistent with findings in [29]. Meanwhile,
the mean fixation time demonstrates a decreasing trend. Fig.
5(b) and 5(c) depict histograms of fixation times in the
fatigue and alert state, respectively. The fixation times were
categorized into three classes: express (<150ms), cognitive
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TABLE I
AVERAGE VALUE AND WILCOXON TEST RESULTS FOR 8 EYE-TRACKING

FEATURES IN ALERT AND SOBER STATE (N=28)
Feature Name Alert Fatigue P-value

Mean pupil diameter 4.44 4.35 −
Fixation count 87.5 92.12 −
Saccade count 134.85 177.25 0.007

Mean fixation duration 615.95 533.1 0.063
Mean saccade duration 58.25 68.38 0.022
Peak saccade velocity 158.89 158.48 −
Mean saccade velocity 98.73 96.43 −

Mean saccade amplitude 2.79 2.69 −

(150ms−900ms), and overlong(>900ms) [29]. The counts of
express, cognitive, and overlong fixations were 4840, 15873,
and 4029 in the alert state, and 7127, 15681, and 3030 in
the fatigue state, respectively. The ratio of cognitive fixations
decreased from 64.2% to 60.7%, the ratio of overlong fixations
decreased from 16.3% to 11.7%, while the ratio of express
fixations increased from 19.6% to 27.6%.

The results of the statistical analyses are presented in Table
I. Among the 8 eye-tracking features, a significant increase
was observed in both the “saccade count” and “saccade mean
duration”. Additionally, while not statistically significant, there
appears to be a decrease in “mean fixation duration” during
the fatigue state.

B. Performance of Fatigue Detection

Intra-session, cross-session, and cross-subject evaluation
tasks were conducted to assess the performance of methods,
respectively. The results are presented in Fig. 6.

1) Intra-session Performance: The results of intra-session
classification are presented in Fig. 6(a). The mean accuracy
for all subjects in the EEG unimodal, eye tracking uni-
modal, DCCA multimodal, DGCCA multimodal, and the pro-
posed multimodal methods is 98.84%±0.39%, 91.61%±0.76%,
99.60%±0.16%, 99.72%±,0.15% and 99.93%±0.05%, respec-
tively. The proposed method achieved the highest performance
among the five methods (99.93%) with the lowest standard
deviation compared to the other methods.

2) Cross-session Performance: The results of cross-session
classification are presented in Fig. 6(b). The mean accuracy
for the EEG unimodal, eye tracking unimodal, DCCA mul-
timodal, DGCCA multimodal, and the proposed multimodal
methods is 80.15%±0.58%, 82.75%±0.44%, 88.25%±1.58%,
87.83%±0.63%, and 88.67%±1.00%, respectively. Our multi-
modal method achieved the highest accuracy among the five
methods (88.67%±1.00%).

3) Cross-subject Performance: Cross-subject evaluation is a
more challenging task as it evaluates the model’s performance
across different subjects. The results are demonstrated in Fig.
6(c). The mean accuracy of 5 runs for the EEG unimodal, eye
tracking unimodal, DCCA multimodal, DGCCA multimodal,
and the proposed methods is 72.32%±0.86%, 73.98%±0.32%,
77.64%±0.69%, 77.75%±1.00%, and 78.19%±0.56%, respec-
tively. The proposed multimodal method consistently per-
formed well, achieving the highest accuracy among the five
approaches in three validation tasks.

Fig. 7. The performance influence of the eye-tracking time window for
both the eye-tracking method and the proposed multimodal method. (a)
demonstrates the trend of accuracy as the time window increases in
cross-session evaluation task. (b) demonstrates the trend of accuracy in
cross-subject evaluation task.

C. Influence of Eye-tracking Time Window
An interesting phenomenon in the selection of the time

window for eye-tracking feature generation (Section II-B.2)
was found. We examined the relationship between time win-
dow length and classification performance by testing various
time windows ranging from 4 seconds to 60 seconds in the
cross-session and cross-subject classification tasks, with the
time window for EEG data consistently set at 1 second. The
results are presented in Fig. 7. Both the eye tracking unimodal
method and the multimodal method were tested, with each
configuration run five times. In the eye-tracking unimodal
method, we observed a consistent increase in accuracy in both
cross-session(from 67.90% to 82.75%) and cross-subject(from
63.54% to 74.10%) tasks as the time window duration in-
creased. Meanwhile, in the cross-session task, the performance
of the multimodal method improved from 4 seconds to 32
seconds (from 83.03% to 88.59%), after which it stabilized
between 32 seconds and 60 seconds. In cross-subject task, the
accuracy of the proposed multimodal method increased from
76.54% to 78.19%.

D. Ablation Study
The proposed architecture encompasses a cross-modal pre-

dictive alignment task, a 1D attention module, and a pretrain-
ing procedure for the EEG encoding module. To systematically
evaluate different combinations of the proposed modules and
the effectiveness of pretraining procedure, ablation studies
were conducted. In the ablation experiments, the random seed
was consistently set to 42, the division of data and the input
order of data remains identical in all configurations for the
same validation task.

1) Ablation of Pretraining: The ablation result of pretraining
procedure was presented in Table II. With the pretraining

TABLE II
ABLATION RESULT (IN PERCENT) OF PRETRAINING

Method Cross-session Cross-subject
w/o pretraining 83.44 76.28
with pretraining 86.48 77.39

“w/o” represents the abbreviation of “without”.
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TABLE III
ABLATION RESULT (IN PERCENT) OF ALIGNMENT AND ATTENTION

Methods Cross-session Cross-subjectAlignment Attention
× × 81.38 78.64
✓ × 85.17 80.16
× ✓ 82.34 76.86
✓ ✓ 86.48 77.39

TABLE IV
PERFORMANCE (IN PERCENT) ON SEED-VIG DATASET

Method Accuracy
Multimodal-DCCA 86.99

Multimodal-DGCCA 87.83
Multimodal-Ours 96.62

procedure, the performance of model increase from 83.44%
to 86.48% and 76.28% to 77.39% in the cross-session and
cross-subject tasks, respectively.

2) Ablation of Alignment and Attention: The ablation results
for cross-modal predictive alignment and one-dimensional
attention are presented in Table II. In the cross-session task,
both the alignment and attention modules improve the model’s
performance by 3.79% and 0.96%, respectively. Combining
both modules yields a 4.62% performance enhancement. How-
ever, in the cross-subject task, the adoption of the attention
module resulted in a 1.78% performance decrease. Although
combining both modules leads to performance loss, utilizing
only the alignment module will result in a 1.52% performance
improvement.

E. Performance on SEED-VIG Dataset

To assess the performance of the proposed method on the
other dataset, cross-subject evaluation experiments using the
publicly available SEED-VIG dataset was conducted in this
work [24]. The results are summarized in Table IV. The
proposed approach achieved an accuracy of 96.92%, outper-
forming both DCCA-based and DGCCA-based multimodal
methods by 9.97% and 9.13%, respectively. These results
further underscore the efficacy of the proposed method.

IV. DISCUSSION

In this study, we conducted a series of driving simulation
experiments utilizing EEG and eye tracking. Visual and sta-
tistical analyses were executed on EEG data in five brain
regions, focusing on three typical frequency bands, as shown
in Figure 4. Our findings consistently revealed a significant
increase in activity within the prefrontal cortex across all three
frequency bands. This aligns with prior research [47], given
the prefrontal cortex’s role in guiding motor and cognitive
behaviors over time [48]. Additionally, a significant increase
in power activity was observed in the lower alpha bands
within the parietal and occipital lobes, a phenomenon in
line with previous studies [24]. The elevation in lower alpha
bands likely reflects the heightened effort required to maintain
alertness [49]. Conversely, a significant decrease was detected
in beta band activity within the frontal region, consistent with

observations in [3]. This decrease suggests that subjects might
be losing focus while driving.

Simultaneously, we conducted a visualization of the trends
in two eye-tracking features, the fixation time histograms in
two states (Fig. 5), and a statistical analysis for eight eye-
tracking features (Table I). The majority of subjects displayed
an increasing trend in mean saccade time, in line with previous
research [29]. However, the mean fixation time for most
subjects decreased for the entire driving process. This decline
in fixation time can be attributed to the growing occurrence
of eye wandering as the time-on-task increases. Additionally,
the histograms of fixation time revealed a reduction in the
proportion of cognitive and overlong fixations, coupled with
an increase in express fixations. It is important to note that the
change in proportion is primarily driven by an increase in the
count of express fixations and a decrease in the count of over-
long fixations. This phenomenon may suggest that the subjects
are gradually losing interest in the driving scene as drowsiness
sets in. Meanwhile, the statistical findings presented in Table
I indicate that the saccade count and saccade mean duration
exhibit significant differences between the alert and fatigue
states. These results offer substantial analytical support for the
adoption of eye-tracking features.

To address the information limitation of unimodal methods
and enhance the performance of driving fatigue detection, we
introduced an innovative multimodal architecture, which out-
performs the EEG unimodal method, eye-tracking unimodal
method, DCCA multimodal method, and DGCCA multimodal
method (Fig. 6). Notably, the performance of the multimodal
methods surpasses that of the unimodal ones. To delve into
how the multimodal features enhance the feature represen-
tation in the latent space, Uniform Manifold Approximation
and Projection (UMAP) [50]–[52] was employ to visualize the
latent features for both multimodal and unimodal models in
the cross-subject task, as illustrated in Fig. 8. The points in the
visualization represent the feature samples. The points cover
almost the entire 2D projection space, indicating the higher
complexity of EEG features. On the other hand, although
the eye-tracking feature appears relatively simpler compared
to EEG, it lacks the compactness required for an effective
classification boundary to be established by a classifier. How-
ever, when considering the multimodal features, a noticeable
improvement in adherence to the principle of maintaining high
cohesion within the same class and low coupling between
different classes is observed in the 2D projection, particularly
in the case of the multimodal method utilizing additive fusion.
This suggests the integration of multiple modalities by additive
fusion allows for a more robust and discriminative repre-
sentation. The superior pattern exhibited by additive fusion
may arise from its inherent capacity to effectively preserve
distinctive features, while avoiding excessive parameters that
could result in model overfitting.

Given the intricate pattern of the 2D projection of EEG
features in the unimodal method, there is a curious question
regarding whether the proposed multimodal method effectively
captures EEG features. To investigate which channels signif-
icantly contribute to the modeling process [53], we analyzed
the parameters of the channel convolution (DepthWiseConv2d
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in Fig. 3(b)) kernel within the EEG convolutional network
to visualize the learned importance of EEG channels across
three validation tasks. The results related to this analysis are
presented in Fig. 9, which illustrates that the prefrontal cortex
emerges as the most critical area for fatigue detection, a finding
that aligns with the observed increase in the prefrontal power
during the analysis of drowsy states (Fig. 4). This underscores
the efficacy of the proposed EEG convolutional network.

Additionally, we assessed the impact of varying eye-tracking
time windows on classification accuracy, examining different
window durations for both unimodal and multimodal methods
in cross-session and cross-subject tasks (Fig. 7). It’s worth
noting that while previous studies employed shorter time win-
dows (e.g., 4 seconds in [35] and 10 seconds in [54]) for eye-
tracking feature generation, our results demonstrated improved

Fig. 8. Feature visualization of unimodal and multimodal methods
for all subjects. The visualization represents the features learned by
the two unimodal methods, namely “EEG” and “Eye Tracking,” as well
as the features learned by the proposed multimodal methods using
additive fusion and concatenative fusion as fusion methods denoted
as “Multimodal-Add” and “Multimodal-Concat,” respectively. Notably,
the visualization intentionally omits the modules of 1D attention and
cross-modal alignment in “Multimodal-Add” and “Multimodal-Concat” to
provide a clear and intuitive assessment of the efficacy of adopting
multimodal approaches. To avoid the overfitting of models, the data of
Subject 2 was used as validation and model selection.

Fig. 9. Channel importance learned through channel convolution within
the EEG convolutional network of the proposed multimodal architecture.

performance with longer time windows. This observation may
be attributed to the substantial variability in eye-tracking data
within short time windows, influenced by saccades and rapid
eye movements occurring in both alert and fatigue states. In
contrast, longer time windows could mitigate these effects,
leading to more reliable features.

Moreover, we conducted an ablation study on the proposed
multimodal method. Table II highlights the efficacy of our pre-
training procedure and Table III demonstrates the significant
benefits of incorporating the cross-modal predictive alignment
module in both cross-session and cross-subject tasks. However,
the performance of the attention module increases in the
cross-session task, while it appears to diminish in the cross-
subject task. This could be attributed to more pronounced
distribution differences in the cross-subject data, which may
impede the one-dimensional attention module from learning
optimal feature weights effectively. In the application, we sug-
gest incorporating cross-modal alignment and one-dimensional
attention in cross-session tasks, and only integrating cross-
modal alignment in cross-subject tasks.

To gain insight into how the proposed alignment module
enhances cross-modal features, we conducted UMAP visual-
izations to compare the features of the multimodal method
with the alignment module against those of the model without
alignment and the model incorporating the DCCA module. The
results are illustrated in Fig. 10. All three methods effectively
distinguish the features of different classes as the training

Fig. 10. Impact on features (UMAP) through cross-modal predictive
alignment and Deep Canonical Correlation Analysis (DCCA). The vi-
sualization encompasses data collected from all subjects. The term
“Multimodal” pertains to the proposed multimodal model without cross-
modal alignment or DCCA, while “Multimodal-Ali.” and “Multimodal-
DCCA” refer to the models that incorporate cross-modal alignment
and DCCA, respectively. The top, middle, and bottom rows of the
visualization correspond to the features extracted from epoch 1, epoch
5, and epoch 30, respectively. Notably, the module of 1D attention was
deliberately excluded to facilitate a clear and direct comparison among
the methods.
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progresses. The key distinction is that the “Multimodal-Ali.”
method focuses on enhancing feature separability by increas-
ing the average distance between different classes, whereas
the “Multimodal-DCCA” method prioritizes preserving the
correlation coefficient between modalities, resulting in almost
consistent patterns in 2D projection across the first 30 epochs.
While preserving inter-modality correlation can be advanta-
geous for certain tasks, it may limit the model’s ability to
learn highly separable representations. In contrast, the model
that incorporates cross-modal alignment does not maintain the
correlation in the latent space, it aligns the multimodal features
by optimizing the cross-modal predicted similarity, which
seems to be more effective in enhancing the representation
of multimodal features.

Although the proposed multimodal architecture outperforms
other methods, it has several limitations. Firstly, the design of
different time windows, although compensating for each other,
may require a padding operation for the modality with a longer
time window during online applications at the start. Moreover,
the multimodal method requires two kinds of devices for
data acquisition, which could limit its real-world application.
Secondly, the proposed multimodal architecture includes a
pretraining stage for the EEG encoding network (which is also
adopted in the multimodal comparative method) to enhance
detection performance. As a result, our model is somewhat
less convenient compared to the end-to-end model. Thirdly,
the 1D attention module introduced in this study is employed
for 1D features encoded by the backbone networks of different
modalities. It’s important to note that the weights learned
for 1D features may have reduced interpretability compared
to those applied to earlier-stage features, such as temporal
attention (used for time samples) or spatial attention (used
for channels) [55]. Additionally, the performance of the 1D
attention module appears to be affected when dealing with data
featuring significant distribution differences. In the future, the
authors will seek more effective methods for learning highly
representative features to address the significant variations
present in cross-subject data, and delve deeper into enhancing
the interpretability of multimodal models.

V. CONCLUSION

This study introduced a novel architecture for driving fa-
tigue detection by integrating EEG and eye-tracking modal-
ities, resulting in a hybrid approach. The proposed multi-
modal neural network architecture consists of a convolutional
EEG encoder and an MLP eye feature encoder. During the
fusion stage, we proposed a cross-modal predictive task to
align features from different modalities and incorporated a
one-dimensional attention module to enhance feature repre-
sentation. The experimental outcomes of this study provide
substantial evidence regarding the advantages of utilizing
a multimodal approach for fatigue detection. Furthermore,
the results demonstrate the superiority of integrating the 1D
attention module in the cross-session task and employing the
cross-modal predictive alignment in both cross-session and
cross-subject tasks. These findings suggest promising potential
for the development of improved fatigue detection systems.
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