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Abstract 

We consider a problem of inferring contact network from nodal states observed dur-
ing an epidemiological process. In a black-box Bayesian optimisation framework this 
problem reduces to a discrete likelihood optimisation over the set of possible net-
works. The cardinality of this set grows combinatorially with the number of network 
nodes, which makes this optimisation computationally challenging. For each network, 
its likelihood is the probability for the observed data to appear during the evolution 
of the epidemiological process on this network. This probability can be very small, 
particularly if the network is significantly different from the ground truth network, 
from which the observed data actually appear. A commonly used stochastic simula-
tion algorithm struggles to recover rare events and hence to estimate small probabili-
ties and likelihoods. In this paper we replace the stochastic simulation with solving 
the chemical master equation for the probabilities of all network states. Since this 
equation also suffers from the curse of dimensionality, we apply tensor train approxi-
mations to overcome it and enable fast and accurate computations. Numerical simula-
tions demonstrate efficient black-box Bayesian inference of the network.
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Introduction
Background

The recent outbreak of COVID-19 and the public discussion that followed has led to 
better understanding of the central role that epidemiological models play in the deci-
sion making process and developing an informed response strategy. The quality of the 
mathematical models used in this process is crucial, not only because it allows to accu-
rately predict the spread of a disease in population, but also in order to increase pub-
lic trust in research and the decisions that are based on it. A large number of epidemic 
models used in education and research follow the Kermack–McKendrick compartmen-
tal SIR model [1]. An implicit assumption of this model is that the susceptible, infected 
and recovered groups are well-mixed in the sense that every person in any group has the 
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same probability to come in contact with anyone from another group, i.e. the contact 
network is homogeneous. However, this assumption holds relatively poorly in communi-
ties, which poses a significant limitation to application of compartmental models. More 
accurate models should include the information on the structure of contact network, 
leading to study of epidemics on networks [2–6].

Predicting the evolution of epidemic on a given network is much more difficult than 
solving a homogeneous model. Consider the case when each network node represents 
a single individual, who can be susceptible or infected. The dynamics of the epidemic 
becomes stochastic and depends on the position of infected individuals in the network 
and the number of susceptible neighbours they are in contact with. Hence, we need to 
model a probability distribution function of network states instead of states themselves. 
This probability distribution function satisfies the chemical master equation (CME) [7], 
which is an ordinary differential equation on the probability values. However, the total 
number of network states (and hence the size of the CME) grows exponentially in the 
number of network nodes [3, 4]. This makes the direct solution of the stochastic network 
models computationally intractable for large networks [6].

Perhaps the most traditional method for tackling the CME is the Stochastic Simula-
tion Algorithm (SSA) [8] and variants, which compute random walks over the network 
states, distributed according to the CME solution. However, as a Monte Carlo method, 
the SSA is known to converge slowly, especially for rare events. Alternative approaches 
include mean-field approximations [9, 10], effective degree models [11–13], and edge-
based compartmental models [14], but these models are approximate and rely on trun-
cation of the state space. This introduces a truncation error that is difficult to estimate 
and/or keep below a desired tolerance for a general network. Other approaches include 
changing the original model into a surrogate model such as birth-death processes [15], 
or using neural networks [16, 17]. For solving the original model in a numerically con-
trollable approximation framework, a new approach based on tensor product factorisa-
tions was recently proposed by authors in [18].

If the contact network is not known, we can attempt to solve an inverse problem, i.e. 
to infer the network from observations of disease data over time. For N network nodes, 
the number of possible networks grows exponentially in N 2. Hence, for large N,   the 
problem complexity typically grows much faster than the information available, and net-
work inference becomes a (very) under-determined problem [19]. Network inference is 
therefore only solved directly for very small population sizes [20, 21], or equivalently by 
assuming that the population consists of a few densely connected groups and estimat-
ing couplings between them [22]. Networks with mass-action kinetics can be inferred 
uniquely by observing transition rates at a simplex set of states [23], but the cardinality 
of this set is combinatorial in N. To address the problem for larger N,   one can involve 
additional information about the network structure, such as degree distribution and 
sparsity [24, 25], community structure [26], and/or assumptions on the underlying sta-
tistical distribution for the network and infer its parameters [27]. In some cases more 
complex than pairwise interactions improve the network reconstruction [28]. Predict-
ability of a stochastic process of observations and reconstructability of a network using 
their mutual information was considered in [29]. This information can be used to esti-
mate the success of a network inference, before the full inference algorithm is applied. 
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In contrast to stochastic inference, one can instead model a deterministic dynamics and 
minimise the observational error over the network parameters in the right-hand side of 
the dynamics [30]. Another approach is to infer properties of the network rather than 
its exact structure [31], e.g. to find a class of network distributions, which the contact 
network most likely belongs to [15]. Related work include inferring the origin of epi-
demic given the contact network [32]. For a recent survey on network inference see [33]. 
Finally, most close to our work is the maximum-likelihood estimation of the network 
link probabilities from binary time series [34]. However, the latter paper uses an expec-
tation-maximisation algorithm assuming the Poisson distribution, while in this paper we 
rely on the full Bayesian formalism with likelihoods computed directly from the chemi-
cal master equation.

Our contribution

In this paper we investigate inference of the contact network from states of the network 
observed over time. We use a Bayesian formulation to find the network with the maxi-
mum a posteriori (MAP) estimate. However, we do not assume any prior knowledge on 
the structure of the contact network (uniform prior), and thus look for the maximum 
likelihood estimate (MLE),

which we solve as black-box optimisation problem. To summarise the above, the net-
work inference problem is difficult due to the following reasons. 

1. Large inverse problem. The inverse problem is a high-dimensional discrete optimisa-
tion problem. Indeed, in an undirected network with N nodes there are 12N (N − 1) 
potential links, which are the optimisation variables, each of which can indepen-
dently be in one of two states (on/off). In total, the search space which consists of 
2N (N−1)/2 possible networks, hence the exhaustive search is computationally unfea-
sible. Since the optimisation variables are discrete, the gradient of the target function 
is unavailable, and hence we can’t apply steepest descend or Newton–Raphson algo-
rithms. Hence, to find the near-optimal solution, we need to explore the structure 
of the high-dimensional array with some (possibly heuristic) algorithm, which may 
require a large number of target function evaluations.

2. Large forward problem. For each network in the search space, a single evaluation of 
the target function requires solving a forward problem, i.e. finding a probability of 
given data to be observed during the evolution of the disease on the current network. 
This is a Markov chain problem on the state space of accessible network states, which 
scales exponentially with the number of nodes, causing the currently available algo-
rithms to struggle.

3. Low contrast caused by insufficient data. We may observe conditional probabilities 
to be (almost) the same, P(data | network1) ≈ P(data | network2), for example if the 
two networks differ only by the links attached to the nodes, for which we do not have 
(enough) events in the observed dataset. In this case, the Bayesian optimisation won’t 
be able to choose one particular network, as a large number of them are equally likely 
to produce the observed dataset. Any numerical approximation errors due to limita-

networkopt = arg max
network

P(data | network),
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tions of the forward problem solvers (see item 2) add extra noise to the high-dimen-
sional probability density function and further complicate the optimisation process 
(see item 1). Due to the probabilistic nature of the problem, the ground truth network 
network⋆, for which the observed dataset was generated, may differ from the optimal 
network recovered by the Bayesian inference method, network⋆  = networkopt.

4. High contrast caused by a large amount of data. Although adding more data makes 
the ground truth network a unique global optimum for Bayesian optimisation, it also 
creates a large number of local optima. In a black-box optimisation setting, there is 
no prior information that could navigate the optimisation towards the global opti-
mum, and the algorithm can be trapped in a local optimum for considerable time.

The existing literature often does not consider these issues separately, nor approach 
the problem directly. It is typically stated that the network optimisation is impos-
sible to solve, and alternative formulations are considered [6, 15, 19, 33]. In this 
paper we attempt to perform the black-box network inference directly following the 
Bayesian optimisation framework. To tackle the forward problem, we solve the CME 
using tensor product factorisations [18]. A related work was recently proposed in 
tensor network community, but it is limited to linear one-dimensional chains [35]. 
We demonstrate that the proposed method provides faster and more accurate solu-
tion to the forward problem compared to SSA, particularly when the network is far 
from optimal.

Next, we apply two Markov Chain Monte Carlo (MCMC) algorithms for black-box 
discrete high-dimensional optimisation and analyse results. An overall workflow of 
this procedure is illustrated in Fig. 1. By simulating three examples of networks, we 
show that by collecting sufficiently many data we can make the contrast high enough 
to infer the original ground truth network.

Fig. 1 Network inference workflow. An MCMC algorithm samples proposal network configurations, G . 
The CME is solved on each time interval [tk−1, tk ] in the observed data, starting from the state observation 
X(tk−1) = xk−1 and obtaining the TT approximation of the probability of observing the state X(tk) = xk 
for the given network G . The CME solver is applied in place of a more commonly used SSA method, that 
struggles to recover rare events. The probabilities for all data are multiplied to form the likelihood L(G) , which 
is accepted or rejected in the MCMC. Finally, the network with the maximum likelihood among the MCMC 
samples is inferred
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Notation

We use calligraphic font for contact networks G, blackboard font for sets R, G, X, sans-serif 
font for probability P , expectation E, variance V, and likelihood L. Indices m, n and scalar 
values x, p are shown in usual maths italics. We use maths roman font for vectors, e.g. net-
work states x or unit vectors en. We use capitals for matrices, e.g. adjacency matrix G of net-
work G. When the considered vectors and matrices grow exponentially in number of people 
N,  and hence suffer from the curse of dimensionality, we highlight it using bold font, e.g. p 
for high-dimensional probability distribution function, and A for the matrix of CME.

Methods
Forward problem: ε‑SIS epidemic on network

We consider the ε-SIS model of the contact process, which is a variation of a classical sus-
ceptible-infected-susceptible (SIS) model, allowing for every node to self-infect with rate 
ε. This process was originally proposed by Hill et al. to describe the spread of emotions in 
social network [36]. Mieghem et al. studied analytical properties of the model for fully con-
nected networks [37, 38]. Zhang et al. extended this study to arbitrary networks and found 
conditions under which the equilibrium distribution can be accurately approximated by a 
scaled SIS process, gaining useful insights on vulnerability of the population [39].

The classical SIS model has an absorbing state where all nodes are susceptible (i.e. the net-
work is fully healthy), but due to spontaneous self-infections the ε-SIS model does not have 
an absorbing state, hence the epidemics lasts forever. This property allows us to observe the 
epidemics for sufficiently long time and eventually collect the dataset which is large enough 
to ensure the required contrast for the Bayesian optimisation.

We consider a ε-SIS epidemic on a unweighted simple network G = (V , E), which is a 
set of nodes (representing people, or agents) V = {1, 2, . . . ,N } and links (or edges, repre-
senting contacts between agents) E = {(m, n) : m ∈ V , n ∈ V , m �= n}. We additionally 
assume that the contacts are bidirectional, i.e. (m, n) ∈ E ⇔ (n,m) ∈ E , which allows us to 
introduce a symmetric adjacency relation m ∼ n ⇔ (m, n) ∈ E for the connections.

Each node can be in one of two states, xn ∈ X = {susceptible, infected} = {0, 1}, for 
n ∈ V . The state of the whole network is therefore a vector x =

(
x1 x2 . . . xN

)T
∈ X

N. We 
consider the system dynamics as a continuous-time Markov jump process on the state space 
� = X

N . The following two types of transitions (or reactions), infection and recovery, occur 
independently and at random according to the Poisson process with the following rates

where en ∈ R
N is the n-th unit vector. For simplicity, we assume that the recovery rates 

p
(rec)
x→y = γ are the same for all nodes of the network. In the classical SIS model, the infec-

tion rate for the susceptible node xn = 0 is proportional to the number of its infected 
neighbours, In(x) = |{m ∈ V : m ∼ n, xm = 1}|, and the per-contact rate β , which we 
also consider the same across all network. In the ε-SIS model, an additional infection 
rate ε is introduced to describe possible infection through contacts with the external, 
off-the-network, environment. Hence, the infection rate is p(inf)x→y = In(x)β + ε. Exam-
ples of the Markov transition graph are shown in Fig. 2.

(1)px→y =







p
(inf)
x→y, if ∃n ∈ V : y = x + en;

p
(rec)
x→y, if ∃n ∈ V : y = x − en;

0, otherwise,
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The stochastic properties of the system are described as probabilities of network states 
p(x, t) = P(system is in state x at time t). The system dynamics is written as a system 
of ordinary differential equations (ODEs), known as Markovian master equation [3, 7], 
Chapman or forward Kolmogorov equations:

subject to initial conditions p(x0, 0) = 1 for the initial state x = x0 and p(x, 0) = 0 oth-
erwise. The number of ODEs scales as 2N , making traditional numerical solvers struggle 
for even moderate values of N.

Inverse problem: Bayesian inference of the network

Our goal is to infer the most probable contact network G = (V , E) from the observed 
data X = {tk , x(tk)}

K
k=0. According to the Bayes theorem [40], P(G|X ) = P(X |G)P(G)

P(X )
, 

where P(G) is the prior probability distribution for the grid, P(X |G) is the likelihood of 
the observed data as a function of the grid G, P(X ) is the probability of the observed 
data, and P(G|X ) is the posterior probability of the grid given the data.

The connectivity network G can be described by its adjacency matrix G = [gm,n]m,n∈V 
with gm,n = 1 ⇔ (m, n) ∈ E and gm,n = 0, otherwise. Since G is simple, G is a binary 
symmetric matrix, G = GT , with zero diagonal, diag(G) = 0. It is easy to see that a 
grid G can be described by 12N (N − 1) independent binary variables gm,n ∈ B = {0, 1} 
with m, n ∈ V and m > n, representing the states (on/off) of possible edges (m, n) ∈ E . 
Therefore, for a fixed number of nodes |V| = N , the set of all possible networks 
G = {G : gm,n = gn,m ∈ B, m, n ∈ V , m > n} has cardinality |G| = 2N (N−1)/2. Note that 

(2)p′(x, t) =
∑

y∈XN

(
py→x · p(y, t)− px→y · p(x, t)

)
, x ∈ X

N,

Fig. 2 Markov transitions between network states: a ε-SIS epidemic on a chain of N = 3 people; b ε-SIS 
epidemic in a fully connected network of N = 3 people. On the graph, green arrows denote recovery process 
with rate γ , and red arrows with a circled number k denote infection process with rate kβ + ε
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G is isomorphic to BN (N−1)/2 , the set of adjacency elements gm,n . The structure of this 
set is illustrated in Fig. 3.

Assuming that nodes are known and no prior information of the edges E is available, 
we take the uniform prior distribution, P(G) = 2−N (N−1)/2. Although P(X ) is unknown, 

it does not affect the optimisation problem, as maxG P(G|X ) = 2−N (N−1)/2

P(X )
maxG P(X |G), 

hence arg maxG P(G|X ) = arg maxG P(X |G).

Due to the Markovian property of the system dynamics, the likelihood can be 
expanded as follows,

where X(t) ∈ X
N are random variables describing the network states dur-

ing its stochastic evolution, and the time sequence {tk}
K
k=0 is monotonically 

increasing. We see that the likelihood is a product of transition probabilities 
P(xk−1 → xk|G) = P(X(tk) = xk|X(tk−1) = xk−1,G), which are the probabilities for the 
system to evolve from the state xk−1 to xk over the time period [tk−1, tk ]. The (black-box) 
Bayesian network inference therefore boils down to likelihood optimisation,

To compute a single log-likelihood log L(G) in (4), we need to solve K forward prob-
lems, i.e. estimate the chance of arriving to the state xk from the state xk−1 over the 
period of time t ∈ [tk−1, tk ] for k = 1, . . . ,K . To find the optimal network Gopt , we may 
need to compute a large amount of log-likelihoods for different networks G, hence the 
efficiency of the forward solver is crucial to make the optimisation procedure feasible. 
This rules out a possibility of solving (2) directly due to the curse of dimensionality.

(3)

L(G) = P(X |G) = P(X(t1) = x1, · · · , X(tK) = xK|G)

= P(X(t1) = x1|X(t0) = x0,G) · · ·P(X(tK) = xK|X(tK−1) = xK−1,G),

=

K∏

k=1

P(X(tk) = xk|X(tk−1) = xk−1,G)
︸ ︷︷ ︸

P(xk−1→xk |G)

,

(4)Gopt = arg max
G∈G

log L(G) = arg max
G∈G

K∑

k=1

logP(xk−1 → xk|G).

Fig. 3 The set of all possible networks with N = 3 nodes is a binary hypercube in dimension 1
2
N(N − 1) = 3
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Stochastic simulation algorithms for forward problem

Traditionally, probabilities p(x, t) are estimated using the Stochastic Simulation Algo-
rithm (SSA) [8], or some more efficient (e.g. multilevel) Monte Carlo simulations of 
the realisations of the model [41–44]. Essentially, these methods sample NSSA ran-
dom walks through the state space � = X

N  starting at the initial state xk−1, count the 
number nSSA of trajectories that end up in the state xk by the time tk , and estimate the 
target probability as a frequency,

The cost of sampling each trajectory does not grow exponentially with N which makes 
these methods free from the curse of dimensionality. However, the convergence of these 
algorithms is not particularly fast, with typical estimates

with 0.5 � δ � 1 depending on a particular method. This is usually sufficient to esti-
mate large probabilities and main statistics (such as mean and variance) of the pro-
cess. However, if the probability p = P(xk−1 → xk|G) is small, to ensure the desired 
relative precision |p− p̃| � ǫp, the number of samples should satisfy cN−δ

SSA � ǫp, or 
NSSA � (ǫp/c)−1/δ . In practice this means that estimation of rare events with probabili-
ties p � 10−6 with these algorithms can be prohibitively expensive.

If the computational budget of NSSA trajectories is exhausted and none of them 
arrived at xk , then nSSA = 0 and p̃ = 0, i.e. the event is not resolved with the algo-
rithm and is considered impossible. If this happens for at least one transition from 
state xk−1 to xk for some k = 1, . . . ,K , then the whole likelihood L(G) = 0 for the given 
network G. In practical computations this issue can occur for most networks G  = G⋆ 
except the ‘ground truth’ network and its close neighbours. The limited computation 
budget for the forward problem therefore leads to flattening of the high-dimensional 
landscape of the likelihoods, wiping off the structural information that should be used 
to navigate the optimisation algorithm towards the solution of (4). This motivates the 
development of more accurate methods for the forward problem, such as the tensor 
product approach that we discuss in the following subsection.

Tensor product algorithms for forward problem

To find the probabilities composing the likelihood  (4), we can solve the system of 
ODEs (2) for the probabilities of the network states. This system is commonly known 
as the chemical master equation (CME) and consists of |XN | = 2N  equations and 
unknowns, hence traditional solvers suffer from the curse of dimensionality. To miti-
gate this problem, different approaches were used, including sparse grids [45], adap-
tive finite state projections [46–48], radial basis functions [49], neural networks [16, 
17], and tensor product approximations, such as canonical polyadic (CP) format [50–
52], and more recently tensor train (TT) format [18, 53–60]. Here we briefly describe 
the tensor train approach used in our recent paper [18].

(5)P(xk−1 → xk |G) ≈ P̃(xk−1 → xk |G) =
n
SSA

N
SSA

.

err =
∣
∣
∣P(xk−1 → xk |G)− P̃(xk−1 → xk |G)

∣
∣
∣ � cN

−δ
SSA

,
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First, we note that among 2N reaction rates py→x in (2) only 2N are non-zero, accord-
ing to (1):

for x ∈ X
N. Let us now uncover the tensor product structure of the matrix of this CME. 

For this we assume that 2N network states x ∈ X
N are ordered lexicographically, i.e. the 

state x = (x1, · · · , xN)
T has index

which corresponds to how binary numbers are written in big-endian notation, e.g. 
000 = 0, 001 = 1, 010 = 2, 100 = 4, 101 = 5, 111 = 7, see also Fig. 4. When the proba-
bility distribution function (p.d.f.) vector p(t) =

[
p(x, t)

]

x∈XN is composed, we place the 
probability p(x, t) in position x , assuming 0-based indexing scheme, i.e. vector indices 
enumerated from 0 up to 2N − 1. If 1-based indexing scheme is used, we place p(x, t) in 
position x + 1.

Using indicator function

we can write p(rec)x→(x−en)
= γ1xn=1, and p(inf)x→(x+en)

= (ε + β
∑

m∼n 1xm=1)1xn=0. Col-

lecting these reaction rates in vectors of size 2N , and using the big-endian lexicographic 
ordering as explained above, we obtain tensor product decomposition

where �i =
(
0 1

)T appears in position n,  �e =
(
1 1

)T appear elsewhere. The tensor prod-
uct structure is illustrated for N = 3 in Fig. 4. For example, the full vector of recovery 
transitions corresponding to recovery of person n = 1 is

(6)
p′(x, t) =

N∑

n=1

(

p
(inf)
(x−en)→xp(x − en, t)+ p

(rec)
(x+en)→xp(x + en, t)

−
(

p
(inf)
x→(x+en)

+ p
(rec)
x→(x−en)

)

p(x, t)
)

,

x = x1x2 . . . xN = 2N−1x1 + 2N−2x2 + · · · + 20xN ,

1condition =

{
1, if condition is true
0, if condition is false,

(7)
[

p
(rec)
x→(x−en)

]

x∈XN
= γ �e⊗ · · · ⊗ �e⊗�i⊗ �e⊗ · · · ⊗ �e,

Fig. 4 The tensor product structure of recovery transitions [p(rec)x→(x−en)
]x∈XN is illustrated for population of 

N = 3 people. Recovery takes place on individual nodes and hence does not depend on contact network. 
In each panel, highlighted states x are where p(rec)x→(x−en)

= γ , indicating that person n is infected and can 
recover; this is also shown by green arrows. Non-highlighted states correspond to p(rec)x→(x−en)

= 0 . a n = 1 , b 
n = 2 , c n = 3
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We can see that this transition is possible from states x =
(
x1 x2 x3

)
 with x1 = 1, which 

are located in positions 100 = 4, 101 = 5, 110 = 6, 111 = 7 of the vector (assuming 
0-based indexing), in agreement to Eq. (8) and Fig. 4a.

Similarly,

where �s =
(
1 0

)T appears in position n,   �i =
(
0 1

)T appear in positions m ∼ n, 

�e =
(
1 1

)T appear elsewhere. To complete the expansion for the right-hand side of (6), 
we need to express the shifted state p(x − en, t) as a sum over probabilities p(y, t) as 
follows

where the shift matrix JT =

(
0 0
1 0

)

 appears in position n,   and identity matrices 

Id =

(
1 0
0 1

)

 appear elsewhere. Similarly, 
[
p(x + en, t)

]

x∈XN = Jnp with 

Jn = Id⊗ · · · ⊗ Id⊗ J⊗ Id⊗ · · · ⊗ Id. Combining the above, we collect all equations 
of (6) in a vectorised CME

where the 2N × 2N matrix A admits the following tensor product form:

where Î = diag(�i) =

(
0 0
0 1

)

 and Ŝ = diag(�s) =

(
1 0
0 0

)

. This so-called canonical polyadic 

(CP) [61–63] form represents the CME matrix A as a sum of (2N + |E |) elementary ten-
sors, each of which is a direct product of N small 2× 2 matrices, acting on a single node 

(8)

[

p
(rec)
x→(x−e1)

]

x∈XN
= γ�i⊗ �e⊗ �e

= γ
(
0 1

)T
⊗

(
1 1

)T
⊗

(
1 1

)T

= γ
(
0 0 0 0 1 1 1 1

)T
.

(9)

[

p
(inf)
x→(x+en)

]

x∈XN
= ε�e⊗ · · · ⊗ �e⊗�s⊗ �e⊗ · · · ⊗ �e

+ β
∑

m∼n

�e⊗ · · · ⊗ �e⊗�s⊗ �e⊗ · · · ⊗ �e⊗�i⊗ �e⊗ · · · ⊗ �e,

(10)

p(x − en, t) =
∑

y∈XN

1x1=y1 · · · 1xn−1=yn−1 · 1xn−1=yn · 1xn+1=yn+1 · · · 1xN=yN · p(y, t),

[
p(x − en, t)

]

x∈XN =
(

Id⊗ · · · ⊗ Id⊗ JT ⊗ Id⊗ · · · ⊗ Id
)

︸ ︷︷ ︸

JTn

p(t),

(11)p′(t) = Ap(t), p(0) = p0,

(12)

A = γ

N∑

n=1

Id⊗ · · · ⊗ Id⊗ (J − Id)Î ⊗ Id⊗ · · · ⊗ Id

+ ε

N∑

n=1

Id⊗ · · · ⊗ Id⊗ (JT − Id)Ŝ ⊗ Id⊗ · · · ⊗ Id

+ β

N∑

n=1

∑

m∼n

Id⊗ · · · ⊗ Id⊗ (JT − Id)Ŝ ⊗ Id⊗ · · · ⊗ Id⊗ Î ⊗ Id⊗ · · · ⊗ Id,
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of the network only. Hence, the storage for A reduces from O(2N 〈k〉) down to 
O((2N + �k�)N ) elements, where �k� = |E |/|V| denotes the average degree of G. The 
curse of dimensionality for the matrix is therefore removed.

To remove the exponential complexity in solving  (11), we need to achieve a similar 
compression for the p.d.f. p(t) = [p(x, t)]x∈XN , for which we employ the tensor train 
(TT) format [64].

Here, the rn−1 × 2× rn factors p(n) =
[

p(n)αn−1,αn
(xn)

]

, n = 1, . . . ,N , are called TT cores, 

and the ranges of the summation indices r0, . . . , rN are called TT ranks. Each core p(n) 
contains information related to node n in the network, and the summation indices 
αn−1,αn of core p(n) link it to cores p(n−1) and p(n+1). The matrix-vector multiplication 
can be performed fully in tensor product format. Using recently proposed algorithms 
[55, 56] the linear system of ODEs (11) can be solved fully in the TT format avoiding the 
curse of dimensionality, as explained in details in [18].

Ordering of network nodes for faster forward problem solving

The TT decomposition of probability functions exhibits low ranks when distant (with 
respect to their position in the state vector) variables are weakly correlated; see e.g. [65] 
for a rigorous analysis of this for the multivariate normal probability density function. 
Numerical approaches to order the variables in such a way include a greedy complexity 
optimisation over a reduced space of permutations [66, 67], using gradients to compute 
a Fisher-type information matrix and its eigenvalue decomposition to sort or rotate the 
variables [68], and sorting the variables according to the Fiedler vector of the network 
[69]. Since in our case the variables are discrete, we adopt the latter approach.

We consider the Laplacian matrix of the network G, defined as follows

where G ∈ B
N×N is the adjacency matrix of G, and e =

(
1 1 · · · 1

)T
∈ B

N. We are 
particularly interested in the Laplacian spectrum of G, i.e. solutions to the eigenvalue 
problem Lu = �u. It is easy to see that since G = GT we also have L = LT , hence the 
spectrum is real, � ∈ R. We also note that L = [ℓm,n]m,n∈V is diagonally dominant, since 
ℓm,m =

∑

n∈V gm,n � 0, and ℓm,n = −gm,n � 0 for m  = n, hence |ℓm,m| =
∑

m�=n |ℓm,n|. 
Since diag(L) � 0 and L is symmetric and diagonally dominant, the Laplacian is positive 
semi-definite, hence its eigenvalues are nonnegative, �n−1 � �n−2 � . . . � �1 � �0 � 0. 
It is easy to see that Le = 0, hence �0 = 0 is the lowest eigenvalue with the correspond-
ing eigenvector u0 = e.

The second eigenvalue, which we denote �1, is called the algebraic connectivity 
of G or Fiedler value. It was known since [70] that �1 = 0 if and only if G is discon-
nected. This is a particularly easy scenario for epidemiological modelling. If G consists 
of two disjoint networks, G1 and G2, then nodes from G1 and G2 can not affect each 
other. The random variables associated with those nodes are therefore independent, 

(13)p ≈ p̃ =

r0,...,rN∑

α0,...,αN=1

p(1)α0,α1
⊗ · · · ⊗ p(n)αn−1,αn

⊗ · · · ⊗ p(N)
αN−1,αN

.

(14)L = diag(Ge)−G,
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i.e. if X1 ∈ G1 and X2 ∈ G2 then P(X1,X2) = P(X1)P(X2). This means that if we order 
the variables x1, . . . , xN  in such a way that the first block x1, . . . , xm ∈ G1 and the sec-
ond block xm+1, . . . , xN ∈ G2 do not overlap, then the TT format  (13) for the p.d.f. 
p(x1, . . . , xN ) will have the TT rank rm = 1 for the connection separating G1 and G2.

These geometric properties of the network can be estimated from the eigenvector 
v = u1, also known as Fiedler vector. In the pioneering paper [71] it was related to 
finding an optimal cut in the network G. It was generalised to reducing the envelope 
(or the bandwidth) of the adjacency matrix G in [72], and later to finding orderings 
of variables for which TT decomposition  (13), and related MPS and DMRG repre-
sentations in quantum physics [73], have lower TT ranks [69]. The Fiedler vector can 
be computed by minimising the Rayleigh quotient v = arg minv⊥e v

TLv/�v�2, also 
known as the Courant minimax principle, orthogonally to u0 = e. Following [72], we 
use the Fiedler vector to define a one-dimensional embedding of the graph to a linear 
chain. Let σ ∈ Sn be the permutation vector of the set of nodes V such that (vσ ) is 
ordered, i.e. vσ1 � vσ2 � · · · � vσN , or equivalently in the ascending order. Following 
[69], the same permutation of variables also reduces the TT ranks of the TT decom-
position (13). In particular, it groups together variables corresponding to independent 
subnetworks. Hence, we compute this permutation and adopt its order of variables 
before solving the forward problem (11) using tensor product algorithms.

Algorithms for Bayesian inverse problem

Since the full grid search is unfeasible for even moderate networks, we adopt the 
Metropolis-Hastings Markov Chain Monte Carlo (MCMC) method to approach the 
maximum of L(G) . The method is depicted in Algorithm 1. We need to choose a pro-
posal distribution q(Ĝ|G) which is tractable for sampling a new state of the network Ĝ , 
given the current network G . In each iteration, given the current network Gi , we sample a 
new proposal Ĝ and accept or reject it with probability based on the Metropolis-Hastings 
ratio, forming a Markov Chain of network configurations G0,G1, . . . After the Markov 
Chain is computed, we return the sample of this chain with the maximal likelihood.

Algorithm 1 MCMC algorithm for the likelihood maximisation
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This algorithm is known to converge to the true distribution 1Z L(G) (where Z is the 
normalising constant) under mild assumptions [74]. We implement two proposal 
distributions. 

1. Choose one link in Gi uniformly at random and toggle its state (on/off). Since there 
are N (N − 1)/2 possible links to toggle, q(Ĝ|G) = 2

N (N−1) independently of Ĝ and G , 
and hence cancels in the Metropolis-Hastings ratio. We will call Algorithm 1 with 
this proposal “MCMC-R”, since it samples the links with Replacement.

2. Every N (N − 1)/2 iterations (i.e. when mod (n,N (N − 1)/2) = 0 ), sample a ran-
dom permutation vector σ ∈ SN (N−1)/2 of the set {1, . . . ,N (N − 1)/2}, and in 
the next N (N − 1)/2 iterations toggle links in the order prescribed by σ . This is 
still a valid MCMC algorithm with a constant proposal distribution, but now with 
respect to σ , corresponding to a collection of networks in consecutive update steps, 
(Gi+1, . . . ,Gi+N (N−1)/2) . In our numerical experiments reported in Sect.  “Results” 
this algorithm sometimes increased the likelihood faster in terms of the individual 
link changes (and hence computing time), and resulted in a better grid reconstruc-
tion. In each block of N (N − 1)/2 iterations, this algorithm proposes link changes 
without replacement [75]. For this reason, we will call this algorithm “MCMC-noR” 
(for “no Replacement”).

Cancelling the constant proposal probability, and using log-likelihoods to avoid numeri-
cal over- and under-flow errors, we can rewrite the Metropolis-Hastings ratio as 
h(Ĝ,Gi) = eln L(Ĝ)−ln L(Gi). We can further modify this formula to gain more control on 
performance of MCMC. Specifically, we introduce the temperature, or tempering param-
eter τ as follows:

We note that this formula resembles the Boltzmann distribution, also know as Gibbs 
distribution, which is used in statistical and theoretical physics and describes probabil-
ity to observe particles in the ground and exited energy states. Similarly, the parameter 
τ controls how often MCMC accepts a network with worse likelihood that the current 
one, which in order affects the convergence of the algorithm and its ability to get out of 
local optima. If a new grid Ĝ has better likelihood than the current grid Gi, it is always 
accepted. Otherwise, it is accepted only with probability p = L(Ĝ)/L(Gi) < 1 for τ = 1 . 
For τ > 1, this probability becomes p1/τ > p, which increases the probability that the 
new grid is accepted, encouraging MCMC to escape a local maximum.

Choosing initial guess for optimisation

A good initial guess G0 for the contact network can significantly improve the computa-
tional efficiency by reducing the number of steps required by the optimisation algorithm 
to converge towards the optimum Gopt, but also by simplifying the forward problems and 
hence reducing the computational time required to evaluate each likelihood L(G) in (4). 
Here we present a simple algorithm to generate an initial guess using the given nodal 

(15)h(Ĝ,Gi) = exp

(

−
ln L(Gi)− ln L(Ĝ)

τ

)

.
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time series data X = {tk , xk}
K
k=0. By comparing each next state xk against a previous one 

xk−1 for k = 1, . . . ,K  node-by-node, we observe events of two possible types: infected 
nodes that become susceptible (recovery), and susceptible nodes becoming infected 
(infection). Recoveries are single-node events and provide no information on the net-
work connectivity. In contrast, infections are two-node events that occur when a suscep-
tible node is connected to an infected node. Therefore, any node m that was or became 
infected during t ∈ [tk−1, tk ] could have infected any connected susceptible node n that 
became infected during the same time interval.

Thus, we compute the connectivity scores hm,n for all m, n ∈ V as follows

where Ik = {m ∈ V : xm,k−1 = 1 or xm,k = 1} is the set of all infected nodes at the begin-
ning or by the end of the interval t ∈ [tk−1, tk ]. The higher is the acquired score hm,n the 
higher is the evidence that m ∼ n in the contact network. Hence, when the scores are 
calculated, we can sample an initial guess network G0 randomly with probabilities for 
each link proportional to the scores. Alternatively, for a more deterministic approach, 
we can discretise the distribution, and set m ∼ n in G0 for all links (m, n) for which the 
score exceeds the average, hm,n � 2

N (N−1)

∑

i>j hi,j .

Results
The numerical experiments were implemented in Matlab 2022b based on TT-Toolbox1 
and tAMEn2 packages, and run on one node of the HC44 series of the University of Bath 
“Nimbus” Microsoft Azure cluster. Experiments with different datasets were run in par-
allel over 42 cores of the Intel Xeon Platinum 8168 CPUs. Each of these parallel pro-
cesses ran in a single-threaded mode. The codes are made public and freely available 
from github. com/ savos tyanov/ ttsir.

Linear chain

For this experiment we generated Ns = 42 samples of synthetic data by computing ran-
dom walks of ε-SIS process with parameters β = 1, γ = 0.5 and ε = 0.01 for the dura-
tion of T = 200 time units. The trajectories were then re-sampled to a uniform grid on 
[0,T ] with the time step �t = 0.1 to imitate data collected at regular intervals. There-
fore, each trajectory contained K = 2000 data records representing the epidemic pro-
cess. Data were created using the ‘ground truth’ network G⋆ which is a linear chain with 
N = 9 nodes as shown in Fig. 5a, and assuming that the initial state x0 = (1, 0, . . . , 0) is 
the same for all data samples.

First, we checked the contrast of the log-likelihood at the ground truth network G⋆, 
by computing E[log10 L(G)− log10 L(G⋆)] for all G that are nearest neighbours of G⋆, i.e. 
differ by only one link. The results are averaged over the Ns = 42 sampled datasets and 
shown in Fig. 5b. We note that removal of an existing link from G⋆ results in contrast 

(16)hm,n =

K∑

k=1

h(k)m,n, with h(k)m,n =

{
1

|Ik |
, if xn,k−1 = 0, xn,k = 1, andm ∈ Ik;

0, otherwise,

1 https://github.com/oseledets/TT-Toolbox.
2 https://github.com/dolgov/tamen.

https://github.com/savostyanov/ttsir
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E[log10 L(G)− log10 L(G⋆)] ≃ −50, raising to ≃ −60 for links attached to the sides of the 
chain. This is easy to understand, as removal of a link from G⋆ creates a disconnected 
network G, where two parts can not pass the infection on to each other, hence the epi-
demic dynamics on G differs significantly from the one on G⋆. Adding a new link to G⋆ 
results in a milder contrast E[log10 L(G)− log10 L(G⋆)] ∈ [−30,−10], because the grid 
remains connected and the dynamics of the epidemic is less affected. This confirms that 
G⋆ is at least a local optimum for log L(G), and therefore can be inferred by Bayesian 
optimisation, assuming the optimisation algorithm manages to converge to it.

Secondly, we evaluated probabilities P(x(ns)k−1 → x
(ns)
k |G) in  (4) for all data records 

k = 1, . . . ,K  for all generated datasets ns = 1, . . . ,Ns. The results are shown in Fig. 5c for 

Fig. 5 Inferring linear chain network with N = 9 people from ε-SIS epidemic process with β = 1, γ = 0.5 
and ε = 0.01 : a the ground truth network G⋆ in its initial state; b the contrast log10 L(G)− log10 L(G⋆) 
averaged over Ns = 42 datasets, shown for grids G that differ from G⋆ by a single link (m, n); axes × show 
links in G⋆ ; c the distribution of probabilities for the transitions observed in data for the initial guess network 
G0 ; d the distribution of probabilities for the transitions observed in data for the ground truth network G⋆ ; e 
convergence of likelihood L(G) towards L(G⋆) in the optimisation algorithm MCMC-noR; average (solid lines) 
± one standard deviation (shaded areas) over the Ns = 42 datasets; shown for temperatures τ = 1, 10, 100 ; f 
convergence of network G towards G⋆
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the initial guess network G = G0 computed as explained in Sect. “Choosing initial guess 
for optimisation”, and in Fig. 5d for the ground truth network G = G⋆. We used the SSA 
algorithm [8] with NSSA = 103 samples as explained in Sect. “Stochastic simulation algo-
rithms for forward problem”. A significant number of events are not resolved by SSA and 
the probabilities are estimated as zero, as shown by the log10 p = −∞ column on the 
histograms. We then computed the same probabilities by solving the CME (11) subject 
to initial condition x(ns)k−1 on time interval t ∈ [tk−1, tk ], for which we apply the tAMEn 
algorithm [56] with Chebyshëv polynomials of degree 12 in time and relative accu-
racy threshold ǫtAMEn = 10−6. From the tAMEn algorithm we obtain the whole p.d.f. 
p(t) = [p(x, t)]x∈XN for t ∈ [tk−1, tk ] and for all states x ∈ X

N, from which we extract the 
required probability by projecting to the deterministic final state x(ns)k .

We observe that 1.7% of probabilities are unresolved by SSA for G = G0 and 1.1% of 
probabilities are unresolved for G = G⋆, which is nevertheless sufficient for both likeli-
hoods L(G0) = 0 and L(G⋆) = 0 to be unresolved for 100% of data samples ns = 1, . . . ,Ns.

The number of SSA trajectories is set to approximately match the computational time 
of SSA and tensor product algorithms for the forward problem. With tAMEn, the tra-
jectories p(t) are computed in the TT format  (13) for which the TT ranks are deter-
mined adaptively. For this example we observe TT ranks r ≃ 14.8± 2.3 for G = G0 and 
r ≃ 11.1± 0.9 for G = G⋆ leading to computational time for the likelihood L(G) to be 
CPU time ≃ 98± 6.9 seconds for G = G0 and CPU time ≃ 80± 3.2 seconds for G = G⋆. 
With the SSA algorithm, one likelihood computation took CPU time ≃ 199± 23.5 sec-
onds for G = G0 and CPU time ≃ 107± 6.3 seconds for G = G⋆. Note that the forward 
problems become easier to solve as the optimisation process approaches the ground 
truth network both because the linear geometry of the chain matches the structure of 
the TT format, and because the easier reaction network admits larger time steps in SSA. 
Due to the simplicity of the linear structure, a linear chain is an attractive model for 
study in quantum physics, see e.g a recent paper on the SIS model on a linear chain [35].

We performed the black-box Bayesian optimisation using Neval = 103 steps of the 
MCMC algorithms with and without replacement as explained in Sect. “Algorithms for 
Bayesian inverse problem”. We observed similar performance of both algorithms, hence 
only the results for MCMC-noR are shown in Fig. 5e for the convergence of the likeli-
hood L(G) towards the one of the ground truth network, L(G⋆), and in Fig.  5f for the 
corresponding convergence of the network G towards the ground truth network G⋆. The 
latter is measured using the number of incorrectly inferred links,

related to the total number of possible links, 12N (N − 1). For both MCMC-R and 
MCMC-noR without tempering (with τ = 1 ), we observe a steady convergence towards 
optimum with the ground truth grid correctly inferred in 40 out of 42 experiments and 
one link inferred incorrectly in 2 out of 42 experiments after Neval = 103 likelihood 
evaluations. To improve this result, we used tempering with temperature τ = 10, and 
observed a slightly slower convergence of MCMC-noR, which then achieved the exact 
recovery for all Ns data samples. We also observed that increasing the temperature fur-
ther to τ = 100 results in a much slower convergence and poor recovery, indicating that 

(17)�G − G⋆�1 =
∣
∣{m, n ∈ V , m > n : gm,n �= g⋆m,n}

∣
∣,
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this parameter needs to be carefully adjusted. In total for this experiment, the network 
inference from each dataset with K = 2000 records took about 7.3 · 103 seconds.

Austria road network

For this experiment we considered a more realistic example of a contact network, drawn 
from the road network in Austria, shown in Fig. 6a. As previously, we generated Ns = 42 
samples of synthetic data for a ε-SIS model with per contact transfer rate β = 1, indi-
vidual recovery rate γ = 0.5 and self-infection rate ε = 0.01. However, from preliminary 
experiments we noted that both MCMC algorithms for Bayesian optimisation struggle 
to converge to the optimum. To partly mitigate this, we increased the size of each data-
set to K = 104 data records, created by observing the state for the duration of T = 1000 
time units at uniform time grid with the step �t = 0.1.

From the contrasts shown on Fig.  6b, we see that removal of any of two 
links that produces a disconnected graph G results in a very high con-
trast, E[log10 L(G)− log10 L(G⋆)] � −400. Removing or adding other 
links results in a connected G and hence a moderate value of the contrast 
E[log10 L(G)− log10 L(G⋆)] ∈ [−100,−15].

Similarly to the previous example, we observe that SSA with nSSA = 103 samples does 
not resolve a significant number of events along the trajectory, and therefore returns 
P̃(xk−1 → xk|G) = 0 for 5.6% of data points for the initial guess network G = G0 and 
for 2.0% of data points for the ground truth network G = G⋆, leading to the likelihood 
L(G) = 0 being unresolved in all experiments for both grids. Note that the proportion 
of unresolved (rare) events is larger for this example due to a more complex network 
structure.

Using the tensor product approach with the same parameters as in Sect.  “Lin-
ear chain” for the forward problem, we were able to resolve probabilities of up to 
p ∼ 10−7, which produced non-zero values for all likelihoods L(G) , enabling the opti-
misation for the inverse problem. For this example, one likelihood evaluation solving 
the forward problem with tAMEn took CPU time ≃ 431± 8.2 seconds for G = G0 and 
CPU time ≃ 439± 4.8 seconds for G = G⋆. The main reason for the larger times com-
pared to the previous experiment is the larger data size K = 104 compared to K = 2000 
for the linear chain. However, a more complex structure of the contact network also con-
tributed via higher TT ranks r ≃ 12.0± 1.8 for G = G0 and r ≃ 13.4 ± 1.2 for G = G⋆. 
The total time required to perform the Bayesian optimisation with Neval = 104 steps of 
the MCMC algorithm took us about 45 hours. For comparison, when SSA is used as the 
forward solver, one likelihood computation took CPU time ≃ 1292± 58.7 seconds for 
G = G0 and CPU time ≃ 853± 24.4 seconds for G = G⋆.

From results shown in Fig. 6 we note that without tempering ( τ = 1 ) the convergence 
of both MCMC algorithms is stuck in a local maximum where approximately 4 of 36 
links are inferred incorrectly. Using tempering with τ = 10, we observed almost the 
same convergence at initial stage of optimisation, which then resulted in a faster con-
vergence towards a better inference, with 38 out of 42 data samples allowed for the exact 
recovery, and the remaining 4 out of 42 had only one incorrect link out of 36.
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The difference in performance compared to the linear chain example can be consid-
ered as a consequence of a high contrast, that sharpens the high-dimensional landscape 
and makes both the global and local maxima steeper. If we use less data for Bayesian 
inference, the contrast reduces, making it easier for MCMC to escape from local optima 
by switching from current network Gi to less attractive proposal Ĝ with probability 
L(Ĝ)/L(Gi) < 1 as explained in Alg.  1. However, it also makes global maximum less 
emphasised and can lead to a situation where the optimal grid recovered by the Bayesian 
optimisation is not the same as the ground truth grid, Gopt  = G⋆.

Fig. 6 Inferring a road network in Austria ( N = 9 nodes) from ε-SIS epidemic process with β = 1, γ = 0.5 
and ε = 0.01 : a the ground truth network G⋆ in its initial state; b the contrast log10 L(G)− log10 L(G⋆) 
averaged over Ns = 42 datasets, shown for grids G that differ from G⋆ by a single link (m, n); axes × show 
links in G⋆ ; c the distribution of probabilities for the transitions observed in data for the initial guess network 
G0 ; d the distribution of probabilities for the transitions observed in data for the ground truth network G⋆ ; e 
convergence of likelihood L(G) towards L(G⋆) in the optimisation algorithm MCMC-noR; average (solid lines) 
± one standard deviation (shaded areas) over the Ns = 42 datasets; shown for temperatures τ = 1, 10 ; f 
convergence of network G towards G⋆
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Florentine families

We consider a slightly larger network representing marriage alliances and business rela-
tionships between Florentine families in XV century.3 The network is given as an undi-
rected weighted graph with 16 nodes, one of which is isolated from the rest, as shown 
in Fig. 7a. The weights of the links represent what kind of relationship the families have. 
For the purpose of this experiment we ignore the disconnected node and disregard the 
difference in connections. Hence we consider an undirected and unweighted network of 
N = 15 nodes. Still, a more densely connected network leaves states more frequently in 
the infected state with β = 1 used in the previous examples. To obtain a more meaning-
ful data (and more accurate inference), we simulate the observation data using β = 0.4 , 
γ = 0.5 , and ε = 0.004 . We observe states at uniformly distributed time points over 
the duration of T = 400 time units, sampled with the time step �t = 0.1, resulting in 
K = 4 · 103 data records.

From the contrasts shown in Fig.  7b we see that removal of the link between 
nodes 1 and 9 results in disconnected network, which results in a significant 

Fig. 7 Inferring a network of Florentine families ( N = 15 nodes) from ε-SIS epidemic process with 
β = 0.4, γ = 0.5 and ε = 0.004 : a the ground truth network G⋆ in its initial state; b the contrast 
log10 L(G)− log10 L(G⋆) averaged over Ns = 21 datasets, shown for grids G that differ from G⋆ by a single link 
(m, n); axes × show links in G⋆ ; c convergence of likelihood L(G) towards L(G⋆) in the optimisation process; 
average (solid lines) ± one standard deviation (shaded areas) over the Ns = 21 datasets; d convergence of 
network G towards G⋆

3 The network is taken from netwo rks. skewed. de/ net/ flore ntine_ famil ies.

https://networks.skewed.de/net/florentine_families
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contrast, E[log10 L(G)− log10 L(G⋆)] � −100. Notably, removal of the link (9,  10) 
does not fully disconnect the network, but considerably reduces the chance for 
the disease to reach from the node 9 to the node 13,   hence the observed large con-
trast E[log10 L(G)− log10 L(G⋆)] ≈ −53. Similarly, removal of the link (9,  13) 
makes it harder for the disease to reach the node 10,   which also results in a 
high contrast E[log10 L(G)− log10 L(G⋆)] ≈ −49. The remaining links seem to 
be considerably less important, and their removal results in a lower contrast 
E[log10 L(G)− log10 L(G⋆)] � −20. On average, adding extra links also result in a lower 
contrast, with a notable exception of the first node, which is the origin of the epidemic. 
The lower contrast around the ground truth network may cause extra challenge for the 
exact recovery of this network, particularly if the likelihoods are computed inaccurately.

We run the MCMC-noR algorithm without tempering ( τ = 1 ), and with tempering 
( τ = 10 ), but observe better results of the former. The convergence of the log-likelihood 
is shown in Fig.  7c, and the convergence of the inferred network is shown in Fig.  7d. 
We observe accurate recovery of the network, specifically, among the Ns = 21 data sam-
ples that we tried, 11 resulted in exact recovery. In the remaining 10 data samples, we 
observed only 1 to 3 incorrectly recovered links. In our experiments, the MCMC-noR 
algorithm has reached the final network configuration after Neval ≈ 41 · 103 samples on 
average, which took 4.2 days of CPU time.

Small world network

We note that even though the use of tensor product algorithms allows us to compute 
likelihoods (4) faster and more accurately, the exact Bayesian inference of a contact net-
work in a fully black-box setting remains a challenging task, as we see from experiments 
in Sects. “Austria road network” and “Florentine families”.

In this section we present a preliminary experiment where we assume some prior 
knowledge of the contact network, which allows us to reduce the number of unknown 
parameters even for a larger number of network nodes. Specifically, we assume that 
the contact network is from a family of small-world networks [76], which is shown in 
Fig. 8a. It consists of N = 15 nodes which are arranged as a loop and connected with a 
double bond, where each node n ∈ V is connected to nodes n+ 1 and n+ 2, where we 
assume that indices go around the circle, so N + 1 = 1 and N + 2 = 2 when necessary. 
The main loop is rewired, i.e a certain link (n, n+ 1) is removed and replaced with a link 
(n, m) to a random node m ∈ V , which provides additional connectivity. For this experi-
ment we assumed that the ground truth network G⋆ contains a single rewired link 1  → 8, 
i.e. the link (1,  2) is removed and replaced with (1,  8). We then proceed to infer this 
network, assuming that we know it is from the set of small-world networks with a single 
rewired link n  → m, which we denote G̃. The problem therefore reduces to finding only 
two parameters, n and m,   and the search space shrinks from |G| = 2N (N−1)/2 to only 
|G̃| = N 2 possible grids.

Inferring a network from a known class can be formulated as Bayesian optimisa-
tion (4) on a class of networks G̃ parameterised by a small number of parameters. This 
removes our main computational challenge related to high dimensionality of the search 
space and allows us to solve this problem directly. We generated Ns = 42 data samples 
by simulating the ε-SIS epidemic on a ground truth contact network G⋆ using parameters 
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β = 1, γ = 0.5 and ε = 0.01, for the duration of T = 1000 time units, and re-sampled 
the data to a uniform grid with the time step �t = 0.1, hence creating K = 104 records 
for each data sample. Using tAMEn algorithm to model the evolution of epidemic on 
15-node networks, we were able to compute the likelihoods for all grids G ∈ G̃. We then 
computed the average contrast for all G ∈ G̃ as shown in Fig. 8b. The results show that 
E[log10 L(G)− log10 L(G⋆)] � −10 for all G  = G⋆, which ensures that the ground truth 
network is a unique global maximum of the Bayesian optimisation problem (4).

Discussion
Inferring the contact network in a Bayesian optimisation framework requires us to esti-
mate the likelihood of observed data X , which are a realisation of epidemic dynamics 
on the ground truth network G⋆, to appear for the epidemic on another network G. In a 
black-box setting, we have no a priori information on the network, and start the opti-
misation from an initial guess G0 that may be (very) different from G⋆. For the grids G in 
the vicinity of G0, observing the same dynamics as on G⋆ is a (very) rare event, which we 
need to estimate with sufficient precision in order to evaluate the likelihoods L(G). The 
slow convergence of the SSA algorithm limits its capability to recover rare events. By 
replacing it with the tensor product algorithms, we are able to recover rare events much 
more accurately by solving the forward problem in the CME form (11) and overcoming 
the curse of dimensionality. This allows the MCMC method to find its way from the ini-
tial network G0 towards the optimum.

As the optimisation gets closer to G⋆, the likelihoods increase and the presence of steep 
local maxima slows down the convergence towards the global one. In this area high 
contrast ratios L(G⋆)/L(G) are undesirable as they make it harder for the MCMC algo-
rithm to escape local maxima. By preliminary experiments demonstrated in this paper 
we show that this can be addressed tempering of L(G) to simplify the high-dimensional 
landscape for the optimisation. Another idea is to use only a part of the available data to 
compute likelihoods  (4), which has been used successfully for sampling from concen-
trated distributions of continuous random variables [77].

Fig. 8 Inferring a rewired link in small world graph ( N = 15 nodes) from ε-SIS epidemic process 
with β = 1, γ = 0.5 and ε = 0.01 : a the ground truth grid G⋆ shown in its initial state; b the contrast 
log10 L(G)− log10 L(G⋆) averaged over Ns = 42 datasets, shown for grids G ∈ G̃ from a class of small-world 
networks with a single rewired link
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We also explored the potential of tensor product algorithms for tackling the net-
work likelihood optimisation. However, these attempts so far were less efficient than 
the MCMC algorithm (in particular the MCMC without replacement). The TT-Cross 
algorithm [78] and its extensions [79] are used to compute a TT approximation to a 
black-box tensor by drawing a few adaptive samples from it using the maximum vol-
ume algorithm [80] or a greedy version thereof [79]. These maximum volume samples 
are expected to be good candidates for the maximum absolute value of the tensor [80, 
81]. However, the maximum volume algorithm requires all elements of a TT core, which 
must be drawn as full columns from the tensor, including elements which are known to 
be far from the maximum. MCMC probes only one element at a time, and can skip such 
unnecessary calculations. In numerical experiments with the linear chain, MCMC was 
systematically faster and more accurate compared to the TT-Cross maximiser, albeit by 
a modest margin (1–2 contacts). Tempering the likelihood to reduce its TT ranks and 
caching its values (which are often repeated in the TT-Cross) may make this approach 
faster in terms of the actual CPU time.

Another tensor optimiser proposed recently is PROTES [82], a probabilistic method 
similar to genetic algorithms. In each iteration, this algorithm draws Nc candidate 
optima as random samples from a probability distribution function in the TT format, 
which is in turn updated by a stochastic gradient ascent maximising the probability of 
drawing ns samples with the largest values of the sought function out of the Nc candi-
dates. The default parameters proposed in [82] are ns = 10 and Nc = 100 . Compared 
to our budget of Neval = 400 function evaluations, this corresponds to only 4 stochastic 
gradient ascent iterations, which are clearly insufficient and produce an almost random 
network. Taking Nc in the order of 10 (and hence ns < 10 ) is uncompetitive too, since a 
few tens of iterations cannot compensate for a more random stochastic gradient due to a 
smaller ns . However, it may be reasonable to use such an algorithm to fine-tune a previ-
ous TT approximation of the likelihood to new data.

Choosing a more informative prior on the network may aid the inference. We have 
already stepped away from a fully uniform prior in the small world example, where we 
sought only one rewiring instead of the state of all links. Penalising improbable or redun-
dant links with a low prior probability may be beneficial for more general networks as 
well.

Potentially, it may be possible to use all MCMC points to compute posterior expec-
tations rather than the MLE/MAP. However, this would be difficult for network iden-
tification for two reasons. First, accurate sampling would need much more likelihood 
evaluations (and hence CPU time) to decorrelate the Markov chain, whereas the MLE/
MAP can be found in a few thousand samples. Secondly, the expected state would be a 
real-valued instead of binary vector, and require ambiguous post-processing to convert 
it into a network. Mitigation of these obstacles can be a matter of a future research.
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