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Abstract: This paper introduces a novel fuzzy logic switched model predictive control (MPC) algo-
rithm for articulated steering vehicles, addressing significant path tracking challenges due to varying
road conditions and vehicle speeds. Traditional single-model and parameter-based controllers
struggle with tracking errors and computational inefficiencies under diverse operational conditions.
Therefore, a kinematics-based MPC algorithm is first developed, showing strong real-time perfor-
mance but encountering accuracy issues on low-adhesion surfaces and at high speeds. Then, a 4-DOF
dynamics-based MPC algorithm is designed to enhance tracking accuracy and control stability. The
proposed solution is a switched MPC strategy, integrating a fuzzy control system that dynamically
switches between kinematics-based and dynamics-based MPC algorithms based on error, solution
time, and heading angle indicators. Subsequently, simulation tests are conducted using SIMULINK
and ADAMS to verify the performance of the proposed algorithm. The results confirm that this
fuzzy-based MPC algorithm can effectively mitigate the drawbacks of single-model approaches,
ensuring precise, stable, and efficient path tracking across diverse adhesion road conditions.

Keywords: articulated steering vehicles; path tracking; model predictive control; fuzzy logic control;
diverse adhesion road conditions

1. Introduction

Articulated steering vehicles (ASVs), characterized by separate front and rear bodies
with steering achieved through relative rotation, are noted for their exceptional maneu-
verability, adaptability, and high load-bearing capacity. Examples include articulated
trucks and loaders, which are primarily deployed in enclosed environments like mines and
farmlands rather than on urban roads. Implementing autonomous driving technology in
these engineering vehicles offers significant benefits, including enhanced safety, increased
productivity, and reduced operational costs.

To implement path tracking for ASVs, the first step is to construct a vehicle model
that accurately describes its motion characteristics [1]. Currently, classic kinematic models
of ASVs are widely used to depict changes in position, heading, and articulation angles
based on inputs such as speed and articulation angular velocity [2]. For example, Nayl
et al. proposed a kinematic model incorporating vehicle sideslip to enhance tracking
accuracy [3]. However, kinematic models do not account for the internal forces within the
vehicle, resulting in inadequate accuracy under conditions of high speed and low traction.
Although some existing research has established dynamic models for ASVs primarily to
analyze the vehicle’s stability and steering characteristics [4–6], few have used these models
for path tracking control [7,8]. This is because dynamic models involve numerous variables
with complex interrelationships and parameters that are difficult to estimate accurately,
leading to significantly higher computational difficulty and time requirements compared
to kinematic models.
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Furthermore, researchers have developed various control algorithms for path tracking
based on these vehicle models, such as sliding mode controllers [9], LQR controllers [10],
feedback linearization controllers [11,12], and model predictive control (MPC) [2,7,13–15].
MPC has garnered significant attention in recent years due to its effectiveness in handling
multi-input, multi-constraint vehicle control problems [16]. However, most of these control
algorithms for ASVs [2,7,13,15] are based on constant controller parameters, which may lead
to suboptimal performance under varying road conditions and vehicle speeds, particularly
in scenarios involving low adhesion, high speed, and sharp turns.

Some studies have attempted to address the effects of road adhesion and speed on ve-
hicle tracking for other vehicle types. For instance, Li et al. developed a H∞ state feedback
controller tailored for a LPV system, accounting for uncertainties in vehicle longitudinal
speed and road adhesion coefficients [17]. Hang et al. introduced an LQR control approach
based on a LPV system, treating vehicle speed and road adhesion coefficient as variable
parameters [18]. Tang et al. proposed an MPC controller that adapts to speed-variable dy-
namics [19]. Despite these advancements, accurately estimating road adhesion coefficients
remains challenging, and incorrect estimations can lead to increased tracking errors. To
mitigate this issue, Chen et al. integrated vehicle sideslip angle into a handling stability
control framework for sideslip compensation [20].

Some studies integrate fuzzy logic systems with tracking controllers to enhance the
controller’s adaptability to varying parameters. For instance, He et al. proposed a fuzzy-
based speed parameter switching strategy to ensure better adaptability [21]. Rokonuzz
et al. developed a fuzzy-based switched MPC algorithm that switches between vehicle
kinematic and dynamic models [22], which can improve computational efficiency and
tracking accuracy. Additionally, Awad et al. developed a multi-input multi-output linear
MPC algorithm with fuzzy logic switching based on the vehicle’s heading angle [23]. For
ASVs, Alshaer proposed a fuzzy control algorithm that uses tracking error as input and
articulation angle and speed as outputs, enabling the vehicle to quickly converge to the
desired path [24]. Although existing research [22] has implemented MPC with fuzzy
switching strategy between kinematics and dynamics, it focuses on front-wheel-steering
vehicles operating on structured road, and therefore cannot be applied to articulated
steering vehicles.

In summary, a single set of parameters and models of ASVs cannot yield optimal
results under complex road conditions, potentially compromising control accuracy and
computational efficiency during path tracking. To address these challenges, this paper
proposes a switched MPC algorithm based on multiple vehicle models and parameters.
The main contributions of this paper are as follows:

(1) A new kinematics-based nonlinear MPC (KNMPC) controller—to ensure both tracking
accuracy and computational efficiency by incorporating the vehicle sideslip angle into
the kinematic model.

(2) A new 4-DOF dynamics-based linearized MPC (DLMPC)—to enhance tracking ac-
curacy under low adhesion road conditions and high speeds by considering tire-
ground interaction.

(3) A novel fuzzy-based switched MPC approach—to ensure accurate and efficient path
tracking under diverse road conditions simultaneously. This approach can facilitate
the transition between KNMPC and DLMPC.

(4) Effective simulations by SIMULINK and ADAMS—to evaluate and verify the perfor-
mance of KNMPC, DLMPC, and the switched MPC.

The remainder of the paper is organized as follows. Section 2 provides a brief de-
scription of the kinematic and dynamic models employed. The design and comparison
of KNMPC and DLMPC are detailed in Section 3. Section 4 presents the design of the
fuzzy-based switched MPC strategy. Subsequently, experimental results and analysis for
the switched MPC controller are presented in Section 5. Finally, a brief conclusion and
future work are provided in Section 6.



Robotics 2024, 13, 134 3 of 17

2. Vehicle Modeling

This section presents a kinematic model and a 4-DOF dynamic model for an ASV.
The kinematic model accounts for sideslip angle. The 4-DOF dynamic model includes the
longitudinal, lateral, and yaw motions of the front vehicle body, as well as the yaw motion
of the rear vehicle body. Figure 1 shows the models, and Table 1 lists their symbols.

Figure 1. (a) Geometry of kinematic model and (b) geometry of dynamic model.

Table 1. List of nomenclature.

Symbol Description

F(x f , y f ), R(xr, yr) Center points of front and rear wheel axle
α, β Sideslip angle of front and rear vehicle body

γ Steering angle
θ f , θr Heading angles of front and rear bodies
l f , lr Distances from articulation point to front and rear wheel axle
v f , vr Velocities of front and rear bodies

v f x, vrx Longitudinal velocity of front and rear wheel axle
v f y, vry Lateral velocity of front and rear wheel axle

O Centroid of vehicle
vox Longitudinal velocity of vehicle’s centroid
voy Lateral velocity of vehicle’s centroid
ωo Yaw rate of vehicle’s centroid
θ Yaw angle of vehicle’s centroid

Ff x, Frx Longitudinal tire force
Ff y, Fry Lateral tire force

I Moment of inertia of vehicle about z-axis
Loa Distance from centroid to articulation point
Lor Distance from centroid to rear axle

m f , mr Mass of front and rear vehicle bodies
Cα f , Cαr Cornering stiffness coefficient of front and rear tire
Cs f , Csr Longitudinal stiffness of front and rear tire

s f , sr Slip rate of front and rear wheels
α f , αr Sideslip angle of front and rear wheels

2.1. Kinematic Model

To improve the accuracy of the kinematic model, we deploy the slip angle based on
the model in [3]. The geometry of kinematic model is shown in Figure 1a. We assume
that the vehicle moves on a horizontal plane and its vertical motion is neglected. Also,
assuming the vehicle is in a steady-state steering condition, the variation in joint angular
velocity is small.
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Taking point F as the tracking reference point and considering the sideslip angle, the
changes in the lateral and longitudinal directions in the global coordinate system can be
expressed as: { .

x f = v f cos(θ f + α)
.
y f = v f sin(θ f + α)

(1)

During steady-state motion, the relative velocity between the front and rear bodies
at the articulation point is zero. Defining the counterclockwise direction as positive for
rotation, the motion constraint relationship at the articulation point between the front and
rear bodies can be expressed as:[

cos γ − sin γ
sin γ cos γ

]
×
[

cos α 0
sin α −l f

][
v f
θ f

]
=

[
cos β 0
sin β lr

][
vr
θr

]
(2)

where
[

cos γ − sin γ
sin γ cos γ

]
is the rotation matrix for the point transformation between the front

body coordinate system and the rear vehicle body coordinate system, with the articulation
angle γ being the rotation angle.

According to the geometry of kinematic model in Figure 1a, the relationship between
the heading angle of the rear body, the articulation angle, and the heading angle of the
front body is:

θr = γ + θ f (3)

By combining (1)–(3), we can obtain the kinematic model at reference point F as:
.
x f.
y f.
θ f.
γ

 =


cos(θ f + α)
sin(θ f + α)
sin(γ+α−β)

M
0

0
0

−lr cos β
M
1


[

v f.
γ

]
(4)

where M = l f cos(γ − β) + lr cos β.
The sideslip angle describes the angle difference between the actual direction of vehicle

travel and the orientation of the vehicle body. It can be expressed as{
α = arctanv f y/v f x
β = arctanvry/vrx

(5)

2.2. Dynamic Model

A diagram of the dynamic model is shown in Figure 1b, constructing a coordinate
system fixed to the vehicle body with the centroid of the entire vehicle O as the origin. This
model is primarily used to describe the lateral characteristics considering the effects of
tire–ground interaction. For the sake of calculation convenience, some simplifications are
made as follows:

(1) We assume the vehicle travels on a flat road surface, neglecting vertical motion.
(2) We assume the connection between the front and rear bodies is rigid, neglecting

motion coupling between steering systems and swing axles.
(3) We neglect the lateral load transfer of tires during steering.
(4) We neglect the coupling relationship between longitudinal and lateral forces of the tires

and consider the vehicle’s lateral and longitudinal motions separately during modeling.
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Based on Newton’s second law and Euler’s formula, the force equilibrium equations
in the X and Y axis of the vehicle, as well as the moment equilibrium equation about the Z
axis, can be derived as:

(m f + mr)
.
νox = (m f + mr)νoyωo + Ff x cos γ − Ff y sin γ + Frx

(m f + mr)
.
νoy = −(m f + mr)νoxωo + Ff x sin γ + Ff y cos γ + Fry

I
.

ωo = Ff xLoa sin γ + Ff y(l f + Loa cos γ)− FryLor

(6)

According to assumption (3), the forces acting on the two-side tires are approximated
as equal, and the tire forces are linearly described [6]. Therefore, the lateral and longitudinal
forces of the front and rear tires can be represented as:

Ff y = −2Cα f α f
Fry = −2Cαrαr
Ff x = −2Cs f s f
Frx = −2Csrsr

(7)

The lateral and longitudinal velocities at the center point of the front wheel axle are
represented as: {

v f x = vox cos γ + voy sin γ + ωoLoa sin γ

v f y = −vox sin γ + voy cos γ + ωo(Loa cos γ + l f )
(8)

By combining (6)–(8), the dynamic model can be represented as:

m
..
xo = m

.
yoωo − 2Cs f s f cos γ + 2Cα f a1 sin γ − 2Csrsr

m
..
yo = −m

.
xoωo − 2Cs f s f sin γ − 2Cα f a1 cos γ − 2Cαra2

I
.

ωo = −2Cs f s f Loa sin γ − 2Cα f a1a3 + 2CαrLora2.
x f =

.
xo cos γ +

.
yo sin γ + Loaωo sin γ

.
y f = − .

xo sin γ +
.
yo cos γ + a3ωo

.
θ f = ωo +

.
γ

(9)

where a1 = −
.
yo+Loaωo+l f (ωo+

.
γ)

.
xo cos γ+

.
yo sin γ+ωo Loa sin γ

+ γ, a2 = −
.
yo−Lorωo

.
xo

and a3 = Loa cos γ + l f .

3. MPC Controller Design and Tracking Error Comparison

Model predictive control (MPC) is a control strategy that continuously optimizes
control actions to achieve the best possible performance based on a defined cost function
while ensuring that constraints, such as actuator saturation, safety, and stability, are satisfied.
The future states of the vehicle are forecasted by a predictive model and used for optimizing
the control action, consequently enhancing control accuracy. In this section, we use the
kinematic and dynamic models constructed in Section 2 as the predictive models and
design model predictive controllers, accordingly, serving as the base controllers for the
switching control. We also compare their performance under different adhesion coefficients
and speeds.

3.1. Kinematics-Based Nonlinear MPC

Firstly, we design a kinematics-based nonlinear MPC considering vehicle sideslip
angle. The kinematic model in Equation (4) is simplified as:

.
χk = fk(χk(t), uk(t)) (10)

where χk =
[
x f y f θ f γ

]T
are the state variables and uk =

[
v f

.
γ
]T are the control

input variables.
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The discrete-time state-space equations, based on the forward Euler method, are
established as follows:

χk(k + 1) = χk(k) + T fk(χk(k), uk(k)) (11)

where T is the step size.
Due to the fewer number of state variables and their simpler relationships, the kine-

matic model is easy to solve. Therefore, we retain the nonlinearity of the kinematic model.
By directly expanding Equation (11), the vehicle states within the control horizon Nc and
the prediction horizon Np can be expressed as:

χ( t + i|t) = χ( t + i − 1|t) + T f (χ( t + i − 1|t), u( t + ic − 1|t))
...

χ( t + Nc + 1|t) = χ( t + Nc|t) + T f (χ( t + Nc|t), u( t + Nc|t))
...

χ
(

t + Np
∣∣t) = χ

(
t + Np − 1

∣∣t)+ T f
(
χ
(

t + Np − 1
∣∣t), u( t + Nc|t)

)
(12)

To ensure the vehicle tracks accurately and smoothly along the desired path, a cost
function [22] is designed in Equation (13).

J =
Np

∑
i=1

(
∣∣∣∣∣∣ed(t + i)

∣∣∣|2Qd
+
∣∣∣∣∣∣eθ(t + i) ||2Qθ

) +
Nc−1

∑
i=1

||∆u( t + i)||2R + ρε2

ed(t + i) =
√
(x(t + i)− xr(t + i))2 + (y(t + i)− yr(t + i))2, i = 1, 2, · · · , Np

eθ(t + i) = θ(t + i)− θr(t + i), i = 1, 2, · · · , Np
∆u(t + i) = u(t + i)− u(t + i − 1), i = 1, 2, · · · , Nc − 1

(13)

where ed represents the displacement error, eθ represents the heading angle error, and
∆u represents the control input increment for a single control step. Qd and Qθ are the
weight matrices corresponding to the state errors, R is the weight matrix for the control
input increments, and ρε2 is a quadratic relaxation factor used to improve the efficiency of
the solution.

To ensure the solved values align with the vehicle performance, the constraints are set
as follows: 

−vmax ≤ v ≤ vmax
−T

.
vmax ⩽ ∆v < T

.
vmax

−γmax ≤ γ ≤ γmax
−T

.
γmax ⩽ ∆γ < T

.
γmax

(14)

3.2. Dynamics-Based Linear MPC

Second, we design a dynamics-based linear MPC to improve accurate path tracking at
low adhesion and higher speeds. Similarly, according to Equation (10), the dynamic model
can be simplified as:

.
χd = fd(χd(t), ud(t)) (15)

where χd = [
.
xo,

.
yo, ωo, γ, x f , y f , θ f ] are the state variables and ud =

.
γ is the control

input variable.
Due to the numerous state variables in the dynamic model, solving the nonlinear

model is inefficient. Therefore, the model is linearized by performing a Taylor expansion
around point (χt, ut) and retaining the first-order terms, resulting in:

.
χd(t + 1) = A(t)χd(t) + B(t)ud(t) (16)

where the system matrix and input matrix are given as follows, respectively:
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A(t) =
∂ fd
∂χd

∣∣∣∣
χt ,ut



∂ f .
xo

∂
.
xo

∂ f .
xo

∂
.
yo

∂ f .
xo

∂ωo

∂ f .
xo

∂γ 0 0 0
∂ f .

yo
∂

.
xo

∂ f .
yo

∂
.
yo

∂ f .
yo

∂ωo

∂ f .
yo

∂γ 0 0 0
∂ f .

ωo
∂

.
xo

∂ f .
ωo

∂
.
yo

∂ f .
ωo

∂ωo

∂ f .
ωo

∂γ 0 0 0

0 0 0 0 0 0 0

cos γ sin γ Loa sin γ
∂ f .

x f
∂γ 0 0 0

− sin γ cos γ Loa cos γ + L f

∂ f .
y f

∂γ 0 0 0
0 0 1 0 0 0 0


, B(t) =

∂ fd
∂ud

∣∣∣∣
χt ,ut

=



∂ f .
xo

∂
.
γ

∂ f .
yo

∂
.
γ

∂ f .
ωo

∂
.
γ

1
0
0
1


.

Further discretizing Equation (16), we obtain:

χd(k + 1) = Ad(k)χd(k) + Bd(k)ud(k) (17)

where Ad(k) = I + TA(t), Bd(k) = TB(t), and I is the identity matrix.
According to Equation (12), we further expand Equation (17) within the control

horizon Nc and the prediction horizon Np and then solve for the control variable based
on Equation (13). In addition to considering the vehicle motion constraints and control
increment constraints associated with the kinematics-based MPC discussed above, dynamic
solutions can also incorporate constraints such as lateral acceleration to ensure vehicle
stability during motion. The optimization problem of DLMPC can be represented in the
following form:

minJ(χd(t), ud(t − 1), ∆ud(t))
s.t. − ∆ud,max ≤ ∆ud(k) ≤ ∆ud,max, k = t, t + 1, · · · , t + Nc − 1

−ud,max ≤ ud(k) ≤ ud,max, k = t, t + 1, · · · , t + Nc − 1
−χd,max − ε1r ≤ χd(k) ≤ χd,max + ε1r, k = t, t + 1, · · · , t + Np
0 ≤ ε ≤ εmax

(18)

where ud,max is the maximum value of control variables, ∆ud,max is the maximum value of
control increment, and χd,max is the maximum value of state variables. 1r is a dimensional
unit column vector.

3.3. Tracking Error Comparison

To verify the tracking performance of the controllers on regular and extreme road
conditions, we conducted the tests on different adhesion road surfaces at different speeds.
The common U-shaped paths found in agriculture and mining were used as the desired
paths to verify the controller’s tracking capabilities along both straight and turning tra-
jectories. The desired path, depicted in Figure 2, comprises a straight segment of length
L = 20 m followed by a curved arc with a radius of R = 2 m. According to the driving
environment [25], experiments were conducted separately on high-adhesion surfaces with
an adhesion coefficient of 0.8 and low-adhesion surfaces with an adhesion coefficient of 0.4.

Figure 3 shows the result on the road with the adhesion coefficient of 0.8. The vehicle
speeds were 1 m/s and 2 m/s, respectively. Figure 3c illustrates the result in KNMPC.
When the speed was 1 m/s, the displacement error remained within a range of 0.06 m both
straight motion and turning. However, when the speed increased to 2 m/s, the maximum
displacement error in the turning trajectory increased to approximately 0.15 m. From
Figure 3d, it can be observed that on high-adhesion road surfaces, the displacement error
of DLMPC is similar in magnitude to that of KNMPC. However, the average solving time
of DLMPC is higher than that of KNMPC.
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Figure 2. The desired path in the tests.

Figure 3. Tracking performance of the controllers on the road with the adhesion coefficient of 0.8.

Secondly, evaluation was conducted on a road with an adhesion coefficient of 0.4. The
vehicle speeds were 1 m/s and 2 m/s, respectively. The results are depicted in Figure 4.
Figure 4c shows a significant deviation made by KNMPC when tracking the turning path
at 1 m/s and 2 m/s, i.e., maximum displacement errors of 0.56 m and 0.63 m, respectively.
Figure 4d shows the maximum displacement errors of DLMPC, i.e., 0.07 m and 0.19 m,
respectively. By incorporating the relationship between tire forces and vehicle yaw into
the dynamic model, DLMPC can consider the impact of slip-on vehicle position when
calculating control inputs. As a result, the controller demonstrates improved performance
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on low-adhesion roads with significant slip. As shown in Figure 4e,f, DLMPC required
more computation time than KNMPC.

Figure 4. Tracking performance of the controllers on the road with the adhesion coefficient of 0.4.

4. Switched MPC Strategy Design

According to the results in Section 3.3, KNMPC has demonstrated higher tracking
accuracy under high adhesion and low-speed conditions, whereas DLMPC maintains good
tracking accuracy under low adhesion and high-speed conditions. In terms of compu-
tational efficiency, KNMPC is more efficient than DLMPC and requires less hardware
computational power. Given the diverse road adhesion coefficients encountered during
vehicle operation, controllers that rely on a single parameter or model struggle to maintain
both control accuracy and computational efficiency simultaneously.

To address this challenge, we propose a switched MPC strategy with multiple models
and parameters, which is illustrated in Figure 5. This approach includes four sub-controllers
in which KNMPC1 and KNMPC2 are nonlinear MPCs based on the kinematic model,
DLMPC1 and DLMPC2 are linear MPCs based on the dynamic model. Each model-based
controller employs two distinct sets of Np and Nc parameters to enhance adaptability to
roads with varying curvatures. These controllers compute control outputs (articulation
angle and speed) based on the current and desired vehicle states. The model prediction
errors, solution times across different models, and heading angle increments are introduced
as switching costs. A fuzzy logic switch then selects the appropriate sub-controller based
on the switching strategy for the path tracking control of ASV.
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Figure 5. Schematics of the proposed switched MPC.

4.1. Switching Cost

To achieve more rational and efficient application of sub-controllers under different
working conditions, a fuzzy logic-based switching strategy was designed. The switching
costs between the kinematic and dynamic models were taken as input to provide a suit-
able model selection as output. This strategy switches between different parameters and
controllers according to the cost function:

Mi = S(t, Js(i, t)(i = 1, · · · , n)) (19)

where S is the switching strategy, Js is cost function, and i is the controller ID.
The switching cost indicators include the predictive position errors Js_e, the increment

of desired heading angle Js_Λθ , and the solution times of different models Js_T . The model
predictive error directly reflects the predictive accuracy of the model at the current time.
To improve efficiency, we only selected the most relevant state variables to path tracking,
the X and Y coordinates and the heading angle, as the variables for evaluating predictive
error [26]. The states under the current inputs are calculated using the prediction model
in Equation (12), and these predicted states are then compared with the desired states at
future Np steps. The predictive error is obtained by averaging the error over Np steps. The
calculation formula is:

Js_e(Mi, t) =
1

Np

Np

∑
t=1

(√∣∣∣⌢x (t)− x(t)
∣∣∣2 + ∣∣∣⌢y (t)− y(t)

∣∣∣2 + ∣∣∣∣⌢θ (t)− θ(t)
∣∣∣∣
)

(20)

where (x(t), y(t)) are the current position and the desired position at future NP − 1 time

steps, and (
⌢
x(t),

⌢
y(t)) are the positions given by the predictive model. θ(t) is the current

heading angle and the desired states at future NP − 1 time steps, and
⌢
θ(t) is the heading

angle given by the predictive model.
Tracking error usually increases during steering. The rate of change of the heading

angle reflects the trend of path curvature variation, making it a suitable indicator for
switching strategy. This value is obtained by calculating the deviation between the current
heading angle θ(t) and the desired heading angle θd(t) at time t.

Js_Λθ(Mi, t) = θ(t)− θd(t) (21)
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The solution time is also an important indicator to consider during the control process,
as it reflects the computational efficiency of the controller. This value is obtained by
collecting the solution time of the controller, and the formula is expressed as:

Js_T(Mi, t) =
1
Ni

Ni

∑
t=1

∆T(t) (22)

where ∆T(t) is the solution time for the controller Mi at time t, and Ni is the number of
time steps in which the controller is active. To prevent the solution time from being zero,
each controller is assigned an initial value obtained from previous experiments.

By introducing appropriate weights, three indicators are added together to obtain the
switching cost function. These weights provide the flexibility for designing the appropriate
switching cost.

Js(Mi, t) = λe Js_e(Mi, t) + λΛθ Js_Λθ(Mi, t) + λT Js_T(Mi, t) (23)

where λe, λΛθ , λT represent the weights corresponding to each indicator. These weights
allow the switching cost function to be adjusted flexibly according to requirements. A
larger λe prioritizes tracking accuracy; a larger λΛθ prioritizes heading stability; and a
larger λT prioritizes the speed of computation.

Due to the significant differences in dimensions among the indicators, it is necessary
to appropriately normalize the values of each indicator before calculating the switching
cost. The normalization formula is as follows:

X̃i =
Xi − Xmin

Xmax − Xmin
(24)

where Xi is a vector composed of indicators at different steps, and Xmin and Xmax are the
maximum and minimum values in the vector, respectively.

4.2. Fuzzy Logic-Based Switching

To create a knowledge database, the vehicle was driven on roads with different
adhesion coefficients: 0.4, 0.6 and 0.8. For each road condition, different maneuvers such as
straight driving and turning were performed. The vehicle was driven at speeds of 1 m/s
and 2 m/s. To achieve higher tracking accuracy while ensuring computational efficiency,
we conducted multiple trial-and-error comparisons with different weight configurations
and determined the optimal weights. The optimal weights λe, λΛθ , λT were determined to
be 0.8, 0.6 and 0.5, respectively.

Figure 6 shows the range of cost values for each model. We fuzzified the switching
cost into three fuzzy subsets {S, M, L}, where S means ‘Small’, M means ‘Medium’ and
L means ‘Large’. The switching cost domain for KNMPC is [0, 1.5], and that for DLMPC
is [0, 1].

Figure 6. Switching cost for different models.
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Based on the knowledge base, the appropriate membership function for each input
variable is designed. Considering the dynamic variation characteristics of the input switch-
ing cost, we choose the trapezoidal membership function [27] for the fuzzification of the
input variables. This membership function is expressed as:

µ(Js) =



0 if Js ≤ a
Js−a
b−a if a < Js ≤ b
1 if b < Js ≤ c
d−Js
d−c if c < Js ≤ d

0 if Js > d

(25)

where µ(Js) represents the membership degree when the input variable value is Js. a and d
define the width of the trapezoid. b and c determine the slopes of the trapezoid. Figure 7
shows the input fuzzy sets with their degree of membership.

Figure 7. Membership functions for each input variable.

The input fuzzy sets are linked through a set of fuzzy rules to provide an output. The
output of the fuzzy controller is {KS, KL, DS, DL}, corresponding to the controller IDs
{1, 2, 3, 4}. Considering the advantages of KNMPC, such as fewer parameters and simpler
calculations, the rules are primarily designed to preferentially select KNMPC whenever
possible. DLMPC is chosen only when the kinematic cost value is greater than the dynamic
cost value. Additionally, larger values of control horizon and predictive horizon enable the
controller to achieve smaller tracking errors during steering [28]. Therefore, the controller
with larger values of control horizon and predictive horizon is chosen when the cost value
is large. The fuzzy rules are established as shown in Table 2.

Table 2. The fuzzy rules to select controllers.

Controller ID.
Switching Cost Js(D)

S M L

Switching cost Js(K)
S KS KS KS
M DS KL KL
L DS DL KL

Figure 8 shows the output of the fuzzy controller for various combinations of switching
cost inputs. We employ a Sugeno fuzzy inference system utilizing AND rules. The final
output of the controller is represented as:

S(Js) =

RA
∑

i=1
Rj

K
∏
j=1

µ(Js)

RA
∑

i=1

K
∏
j=1

µ(Js)

(26)

where RA is the number of activated rules, K is the number of input variables, Rj is the
output value of the jth rule.
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Figure 8. The output of the fuzzy controller.

The overall flow chart of fuzzy switched MPC algorithm is summarized in Figure 9.

Figure 9. The overall flow chart of fuzzy logic switched MPC.

5. Results and Discussion

The tests in the paper are conducted utilizing MATLAB/Simulink and ADAMS. They
are run within an Intel Core i7-13700 CPU with 32 GB RAM. The ADAMS model is based
on a 1:4 articulated engineering vehicle prototype, as shown in Figure 10. Detailed parame-
ters of the ADAMS model are listed in [29]. In the ADAMS environment, the tire model
utilizes the magic formula tire model, with parameters such as tire radius, lateral stiffness,
longitudinal stiffness defined. The road surface utilizes a customizable surface with ad-
justable coefficients of friction. By modifying the adhesion coefficient for corresponding
road segments, simulations under various adhesion coefficients can be conducted. The
models and controller’s parameters are shown in Tables 3 and 4, respectively.

Figure 10. The ADAMS model.
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Table 3. The model parameters.

Symbol and Unit lf
(m)

lr
(m)

Loa
(m)

Lor
(m)

mf
(kg)

mr
(kg)

I
(kg·m2)

Cs
(N·rad−1)

Cα

(N·rad−1)

Value 0.28 0.47 0.18 0.29 30.71 34.85 18,600 12,500 20,000

Table 4. The controller parameters.

Parameters T Np1, Nc1 Np2, Nc2 Qd, Qθ R ρ γmax

Value 0.05 s 10, 2 20, 5 10, 10 5 0.001 0.52 rad

To validate the performance of the switched controller, a variable adhesion road
surface condition was constructed in ADAMS in conjunction with a U-shaped desired
path. The adhesion coefficient parameters were set as shown in Figure 11. As described in
Section 4, the system is composed of four basic controllers, defined as Mi1 to Mi4. Mi1 is
a KNMPC with parameters Np1 and Nc1, Mi2 is a KNMPC with parameters Np2 and Nc2,
Mi3 is a DLMPC with parameters Np1 and Nc1, and Mi4 is a DLMPC with parameters Np2
and Nc2. The displacement error and the solution time per for each control input are used
to evaluate the tracking accuracy and algorithm efficiency.

Figure 11. Adhesion coefficient parameters of the desired path.

The choice of models in the different sections of the path during the tracking task is
shown in Figure 12a. The blue and green points represent KNMPC with different control
parameters, while the yellow and red points represent DLMPC with different control
parameters. First, the vehicle speed is set to 1 m/s. Based on the distribution of the
points, when the adhesion coefficient is µ = 0.8, the KNMPC is primarily chosen. As the
adhesion decreases to µ = 0.6 and µ = 0.4, the DLMPC starts to be adopted during turning.
Additionally, on the straight path, control parameters with shorter prediction and control
horizons are selected, whereas when tracking the turning path, control parameters with
larger prediction and control horizons are chosen.

When the vehicle speed is 2 m/s, the results are shown in Figure 13. Compared to the
speed of 1 m/s, the number of points using DLMPC during turns significantly increases.
Additionally, as the speed increases, the proportion of controllers Mi2 and Mi4 with larger
Np2 and Nc2 increases. As stated in reference [27], the parameters Np and Nc in the MPC
should grow as v increases. Compared to using a single KNMPC, the switched controller
can maintain higher accuracy. And it has a lower average solution time compared to using
a single DLMPC.
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Figure 12. Tracking performance at 1 m/s.

Figure 13. Tracking performance at 2 m/s.

Table 5 summarizes the results of single controllers and the switched controller on low
adhesion road. The switched controller effectively improves the accuracy and stability of
KNMPC on low-adhesion road, as well as the real-time performance of DLMPC. Under
high-speed conditions, the average error of switched MPC is reduced by 62.5% compared
to that of KNMPC. The processing time of our switched MPC is 57.9% less than that of
DLMPC. Furthermore, as seen from the solution times in Table 5, the introduction of
fuzzy switching strategy did not significantly increase the algorithm’s solution time. This
indicates that the time complexity of the proposed algorithm is like that of a single KNMPC,
and it can meet the real-time requirements in practical applications.
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Table 5. Results of tracking path.

KNMPC DLMPC Switched MPC
V = 1 m/s V = 2 m/s V = 1 m/s V = 2 m/s V = 1 m/s V = 2 m/s

Average Error (m) 0.14 0.16 0.03 0.05 0.02 0.06
Max Error (m) 0.56 0.63 0.07 0.19 0.06 0.17

Average Solution times (s) 0.0071 0.0082 0.0172 0.0192 0.0075 0.0084

6. Conclusions

This study provides an efficient switching control framework designed for driving
conditions with varying adhesion coefficients. Firstly, a kinematic model incorporating
slip angle and a 4-DOF dynamic model were established. Subsequently, a fuzzy-based
switched MPC strategy was implemented to facilitate controller switching. Experimental
results have demonstrated the superior overall performance of the proposed switched MPC
framework. The proposed fuzzy logic switched model predictive control (MPC) model
can dynamically switch controllers based on a cost function that considers predictive error,
solution time, and heading angle increments.

In future works, we will consider additional switching cost function indicators, such
as lateral stability indicators and actuator response time. Additionally, the selection of
parameters in a fuzzy logic control system has a significant impact on the performance of the
system. Therefore, adaptive parameter adjustment by a reinforcement learning algorithm
will be introduced to enhance the controller’s adaptability to different tracking demands.
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