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 
 

Abstract—A robust knowledge-sharing network is designed for 

horizontal integration under disruption risks and epistemic 

uncertainties by introducing a novel optimization model using 

fuzzy robust possibilistic programming approach to optimize 

knowledge sharing among supply chain members with varying 

knowledge levels. This paper aims to identify an efficient 

knowledge-sharing network, thereby reducing costs and 

enhancing suppliers' knowledge levels. By challenging the 

common assumption that companies with higher knowledge levels 

are always the primary contributors and have more added value 

for cooperation, this study highlights their potential inefficiencies 

and higher sharing costs. The proposed model promotes the 

integration of diverse knowledge sources within the supply chain, 

emphasizing the importance of horizontal integration. It advocates 

for comprehensive knowledge sharing among suppliers and 

organizations to enhance supply chain efficiency, collaboration, 

and performance while reducing costs. Quantitative analysis 

demonstrates that knowledge sharing significantly increases 

supply chain integration, and the study endorses the use of multi-

objective mathematical programming for optimal decision-

making in scheduling. The results emphasize the value of 

collaborating with closely aligned companies to minimize 

knowledge-sharing costs and enhance broader organizational 

collaboration. Furthermore, the introduced model proposes 

practical execution scheduling and knowledge-sharing processes, 

as evidenced by a case study, leading to effective execution 

scheduling, reduced costs, improved communication, 

strengthened collaboration, and increased supply chain efficiency. 

Overall, this article contributes to research in supply chain 

management and knowledge sharing models, enabling them to 

navigate constraints and market dynamics to improve supply 

chain performance through effective knowledge sharing and 

collaboration. 

 
Index Terms—Knowledge-Sharing (KS), Horizontal 

Integration (HI), Fuzzy Robust Possibilistic Programming 

(FRPP), Supply Chain Integration (SCI) . 

 
 

I. INTRODUCTION 

N In today's rapidly evolving and unpredictable business 
landscape, achieving horizontal integration through 
knowledge sharing is crucial for organizations striving to 

navigate uncertainty and maintain competitiveness [1], [2], [8].       
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Horizontal integration has emerged as a powerful strategy for 
enhancing performance and productivity within the supply 
chain by promoting the knowledge sharing among various 
members [15], [16]. This continuous improvement prevents the 
wastage of time and resources and fosters a collaborative 
environment for better decision-making and strengthened 
communication both internally and externally [67], [81], [79].  
   Within the supply chain, companies at the same level utilize 
common knowledge for production, but their expertise varies 
across knowledge fields, with some being experts and others 
intermediate or novice [35], [62], [87]. Supply chain integration 
refers to the coordination and synergy among every component 
and phase of the chain [25], [28], [46]. Integration can occur in 
two forms: vertical and horizontal [51], [85]. Vertical 
integration involves coordination between companies and their 
suppliers and customers, while horizontal integration focuses 
on collaboration and coordination among peer companies 
within the supply chain [48]. Horizontal integration, 
particularly through knowledge  sharing, can enhance overall 
performance and supply chain efficiency [62], [72]. 
    This research aims to identify an efficient scheduling model 
for knowledge sharing in the supply chain network, thereby 
reducing costs and enhancing knowledge levels across the chain 
members by introducing an optimization model using the fuzzy 
robust possibilistic programming (FRPP) appeoach. The 
proposed model in this research is capable of addressing the 
risks of disruption and epistemic uncertainties in horizontal 
integration. 
   However, achieving effective horizontal integration faces 
numerous obstacles and challenges. Recent research highlights 
several significant issues. Schmoltzi and Wallenburg [62] point 
to weak collaboration among companies, which can hinder the 
knowledge-sharing and collaboration processes. Sternberg et al. 
[70] address technological problems, such as the lack of a 
systematic decision-making infrastructure to integrate 
information sharing across companies. Richey et al. [60] 
identify organizational differences as factors that impede 
effective coordination and collaboration. These barriers 
underscore the profound challenges in achieving effective 
horizontal integration through knowledge sharing [38]. To 
overcome these obstacles, an efficient approach is needed to 
improve knowledge sharing and collaboration in the supply 
chain [40], [46], [47], [82]. A significant gap in the existing 
literature is the lack of an optimization model for scheduling, 
managing, and sharing knowledge within the supply chain 
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under uncertainty [88], [81], [79]. This gap represents a 
fundamental barrier to effective horizontal integration, where 
communication challenges and knowledge-sharing issues 
create critical challenges [78], [71]. 
   This research is theoretically anchored in the Resource-Based 
View (RBV) and the Knowledge-Based View (KBV). The 
RBV asserts that rare and inimitable resources, such as 
specialized knowledge and expertise, can generate sustainable 
competitive advantages for organizations [63], [7], [28]. 
Meanwhile, the KBV posits that knowledge is the primary 
strategic resource for organizations, and that its effective 
management and dissemination are crucial for enhancing 
supply chain productivity and efficiency [64], [69]. Drawing on 
these theoretical frameworks, this study investigates horizontal 
integration through knowledge sharing in supply chains under 
uncertainty. By optimizing the utilization of existing 
knowledge and resources, the research seeks to achieve 
effective and efficient horizontal integration. The Robust Fuzzy 
Possibilistic Programming (RFPP) approach proposed in this 
research applies the principles of RBV and KBV to help 
organizations enhance coordination and flexibility through 
resource optimization and knowledge sharing. This theoretical 
approach strongly supports the research objectives, presenting 
a robust model for maintaining sustainability and efficiency in 
the face of uncertainties and sudden changes within the supply 
chain. 
   The contributions of our research can be summarized as 
follows: First, we introduce a multi-objective mathematical 
programming model designed to enhance the overall 
knowledge level of chain members while minimizing costs 
(including time) and maximizing effective knowledge sharing 
through suppliers. Second, by incorporating the expertise of 
industry professionals and addressing the uncertainties caused 
by epistemic information in their decision-making process, our 
study presents an FRPP approach to tackle the challenges of 
disruptions and epistemic uncertainties arising from managerial 
decisions within the supply chain.Third, another contribution of 
this research is its emphasis on problem-solving within the 
supply chain through simulation and detailed graphical outputs, 
resulting in a systematic scheduling program that fosters 
horizontal  integration. 
   In addition, contrary to previous assumptions that enhancing 
knowledge levels in the supply chain necessarily involves 
companies with the highest knowledge levels [1], [16], [22], 
[24], [48], our research challenges this notion. By presenting a 
novel approach to supplier clustering based on knowledge level, 
we aim to reassess this assumption, emphasizing that such 
processes can entail significant complexities and costs. Our 
purpose is to address key questions in knowledge management 
by narrowing the gap in the literature and tackling the research 
question: “What, when, how, and among which supply chain 
members should knowledge be shared, considering the 
reduction of costs and the enhancement of members' knowledge 
levels?” This is achieved by optimizing the sharing rate, 
reducing costs, and enhancing the knowledge levels of supply 
chain members. 
   The subsequent sections of this paper are organized as 
follows: Section 2 presents a systematic literature review and 
theoretical background. Section 3 defines the problem and 
introduces a Mixed-Integer Linear Programming (MILP) 

model. In Section 4, the proposed FRPP model is explained. 
Section 5 presents numerical results, which are essential for 
validation and providing insights. Finally, Sections 6, 7, and 8 
conclude the paper with a summary of findings and suggestions 
for future research. 

II.  LITERATURE REVIEW 

A. Supply Chain Integration (SCI) and Knowledge Sharing 

   The supply chain (SC), which integrates all critical elements 
required for delivering products or services, relies significantly 
on effective knowledge management (KM) to enhance 
flexibility and responsiveness [68]. Sharma et al. [65] assert that 
KM within the supply chain facilitates collaboration, provides 
access to external knowledge, and enhances overall 
competitiveness. This viewpoint is reinforced by Ramanathan 
[59], and Chauhan et al. [9], who emphasize that supply chain 
management (SCM) focuses on integration and collaboration to 
maximize stakeholder value through the coordination of 
information, physical, and financial flows. 
   SCM integration not only enhances performance but also 
reduces costs. A key component of this integration is Supply 
Chain Integration (SCI), which helps mitigate the "bullwhip 
effect" [31]. The bullwhip effect refers to the phenomenon 
where small fluctuations in demand at the retail level lead to 
progressively larger variations upstream in the supply chain 
[39], [42]. Effective knowledge sharing (KS) among 
stakeholders are critical for addressing this issue [44]. 
   In the realm of KM, implementing appropriate knowledge 
sharing strategies (KSS) and their associated tools is crucial for 
achieving organizational and supply chain success [51], [52]. 
Optimal KSS, especially those centered around integration, are 
essential for sustaining superior performance over time [55], 
[66]. Nonetheless, there is a need for more in-depth critical 
analysis of these strategies. While numerous studies underscore 
the advantages of KM, there is a lack of consensus regarding its 
impact on supply chain performance [68], [70]. Some 
researchers contend that the benefits of KM are not evenly 
distributed across various supply chains or industries, revealing 
significant gaps and ongoing debates in the literature [76], [79], 
[82]. 

B. Vertical and Horizontal Integration in the Supply Chain 

   Supply chain integration (SCI) encompasses both vertical and 
horizontal dimensions. Vertical integration involves 
collaboration between organizations at different levels within 
the supply chain, such as suppliers and manufacturers, leading 
to improved coordination, operational efficiency, and cost 
savings [49], [22]. For instance, manufacturers and suppliers 
can work closely to optimize processes and shorten lead times 
[51]. On the other hand, horizontal integration refers to the 
collaboration between companies at the same level of the 
supply chain, including those that may be competitors or 
operate in different product domains [46]. This form of 
integration focuses on sharing resources such as technology or 
distribution networks to achieve economies of scale and bolster 
competitive advantage [11], [38]. 
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   Although the significance of knowledge sharing in supply 
chain integration is well-established, the literature reveals 
notable gaps and ongoing debates [88]. While KM theoretically 
offers benefits such as fostering innovation and enhancing 
decision-making, its practical implementation frequently 
encounters resistance and alignment challenges [59]. These 
issues hinder the effective capture and dissemination of 
knowledge within organizations. To overcome these obstacles, 
it is essential to develop strategies that address both the 
technical and human dimensions of KM, thereby fully realizing 
its potential [51], [56], [58], [83]. 
   The impact of KM varies significantly across industries, 
emphasizing the crucial role of effective knowledge-sharing 
networks. High-tech sectors, such as the semiconductor 
industry, reap considerable benefits from KM practices due to 
their reliance on cutting-edge knowledge and rapid innovation 
cycles [22]. In contrast, traditional manufacturing industries 
frequently encounter challenges with KM implementation, 
largely due to entrenched practices and resistance to change. 
For instance, Choi et al. [15] observed that traditional 
manufacturing firms struggled to cultivate a culture of 
knowledge sharing, resulting in fragmented information and 
diminished overall efficiency. This underscores the need for a 
robust and efficient knowledge-sharing network to address 
these gaps and enhance organizational performance. 
   Effective KM necessitates the integration of advanced 
technologies for the efficient management and dissemination of 
knowledge [11], [15]. Nevertheless, the integration of such 
technologies presents several challenges. A case study 
conducted by Cooper et al. [10] within the construction industry 
demonstrated that although KM systems can greatly improve 
information sharing and project management, the initial costs 
and implementation complexity can be prohibitive for smaller 
firms. Furthermore, the rapid pace of technological 
advancement requires ongoing investment and adaptation, 
which can place significant strain on resources and 
management focus. 
   Quantifying the measurement of KM remains a complex and 
debated issue. While the qualitative advantages, such as 
enhanced decision-making and innovation, are broadly 
recognized, translating these benefits into financial terms 
presents significant challenges [74], [75]. Granz et al. [16] 
contend that the lack of standardized metrics for assessing KM 
outcomes hinders its broader adoption. Their research 
advocates for the development of industry-specific KM metrics 
to more precisely capture the value generated by these 
initiatives. 

C. Criteria Selection for Knowledge Assessing  

 One of the stages in our proposed method involves 
establishing criteria for evaluating and comparing knowledge 
items. During this phase, it is essential to define appropriate 
criteria to facilitate the comparison of knowledge items. The 
suggested criteria, compiled from research [67], [58], [78], [24], 
[2], [3], [33], [52], [53], [40], [4] and expert consultation, are as 
follows: 

Differentiating Organizational Capability [C]: This criterion 
entails that by acquiring this type of knowledge in one or more 
fields, an organization gains a competitive advantage over its 
rivals in the market for its products. It also facilitates the 
creation of new opportunities for the organization [2], [3], [33], 
[52], [53], [40]. 
   Generating Greater Value Added (Strategic Value) [V]: 
Knowledge that yields the most significant impact on 
enhancing and increasing organizational output, resulting in 
improved financial value of products and services. This 
knowledge can also enhance the organization's position by 
increasing its market share compared to competitors, leading to 
increased revenue and profits [58], [78], [24], [2]. 
   Addressing Urgent and Critical Organizational Issues [I]: 
Organizations sometimes face specific and critical challenges 
that require immediate attention [2]. These challenges can 
hinder their development and success in the market and 
potentially lead to their failure. Acquiring knowledge that 
assists in resolving such organizational issues takes priority 
[67], [58], [78], [24]. 
   Minimizing External Dependency [D]: Acquiring services 
from external entities comes with not only costs but also other 
constraints. These include adhering to the programs and 
requirements of these external entities [33]. Occasionally, these 
associations can be expensive and risky for organizations [67], 
[58], [78], [24]. Due to certain vulnerabilities, organizations 
might fail to fulfill their commitments to customers and incur 
substantial losses. Acquiring knowledge in this area can 
mitigate such consequences [53], [40], [4]. 
   Resource Expenditure Level [R]: Considering that cost and 
time are important factors in knowledge sharing, and 
organizations typically face serious constraints regarding these 
two resources, knowledge that can be shared to the organization 
with lower cost and time takes priority [52], [53], [40]. The cost 
and time of knowledge sharing are influenced by various 
factors, the most significant of which are outlined below: 
   Availability of Appropriate sharing Infrastructure: By 
capacity to absorb, we refer to the organization's employees' 
ability and readiness to absorb, learn, and apply new knowledge 
[40], [20]. Capacity to absorb involves both ability and 
motivation [21], [26]. In order to facilitate maximal knowledge 
absorption within organizational units or among employees, 
both aspects of capacity to absorb need to be present [78], [24], 
[84]. 

D. Conceptual Model for Knowledge sharing in the Supply 

Chain 

   Song et al. [80] introduced a four-stage spiral model for 
knowledge sharing in high-tech industry supply chains. Jia and 
Xu [71] developed a conceptual model for knowledge sharing 
among members of an industrial cluster, drawing on existing 
theories of knowledge and its sharing, as well as the Resource-
Based View (RBV) and cluster theory from a modern economic 
perspective. They subsequently assessed this model within the 
carbon supply chain in southern Germany. 
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E.  Examining Knowledge Networks in the Supply Chain 

   Another group of studies focuses on knowledge networks 
within supply chains. Woods et al. [32] analyzed the structural 
properties of knowledge networks across three industrial 
clusters using social network analysis. Following this, Malacina 
and Teplov [37] explored the evolution of knowledge networks 
in a supply chain by examining the changing roles of various 
factors at different stages of evolution. Vaez-Alaei et al. [39] 
investigated the impact of six variables—depth of shared 
knowledge, regional social-cultural background, knowledge 
characteristics, breadth of shared knowledge, partner attributes, 
and network characteristics—on the effectiveness of 
knowledge networks in supply chains. 

F.  Optimizing and Designing Knowledge Networks 

   Nonaka et al. [44] proposed a model for optimizing the 
sharing of organizational knowledge, focusing on positioning 
the right individuals at the right time and place. Their model 
emphasized the correlation between physical parameters of 
knowledge flow and organizational parameters. Following this, 
Ganguly et al. [55] analyzed the network of knowledge sharing 
by considering behaviors, examining interactions among 
network members, and calculating the optimal knowledge 
sharing paths. They employed Floyd's shortest path algorithm 
for optimizing explicit knowledge sharing paths and used social 
network analysis for implicit knowledge sharing. 
   Daquin  et al. [58] aimed to maximize knowledge sharing 
among employees by designing an optimized knowledge flow 
network within an organization. They utilized a mixed-integer 
programming model for this purpose.  

III.  THEORETICAL BACKGROUND 

   This research examines horizontal integration through 
knowledge sharing in the supply chain under uncertainty by 
leveraging two fundamental theories: the Resource-Based View 
(RBV) and the Knowledge-Based View (KBV). According to 
the RBV, organizations can achieve sustainable competitive 
advantages through the possession of rare and inimitable 
resources, including specialized knowledge and unique 
experiences [63], [64]. According to this theory, organizations 
should focus on identifying and exploiting these resources to 
maintain their competitiveness in complex and volatile markets. 
Moreover, the KBV highlights that knowledge is the primary 
strategic resource for organizations and underscores the 
importance of effective knowledge management and sharing to 
enhance supply chain productivity and efficiency [28], [69]. 
This theory asserts that an organization’s ability to generate, 
retain, and disseminate knowledge is crucial for achieving 
competitive advantage. 
   In this paper, we integrate these two theoretical perspectives 
to explore how to optimally utilize existing knowledge and 
resources to achieve effective and efficient horizontal 
integration in the supply chain. The Robust Fuzzy Probabilistic 
Programming (FRPP) model introduced in this study employs 
the principles of RBV and KBV to help organizations enhance 
coordination and flexibility through resource optimization and 
knowledge sharing. This innovative model not only addresses 
the limitations of traditional models but also provides a 

dynamic and adaptable tool for organizations to better handle 
sudden changes and uncertainties. Our aim in this research is to 
develop and refine existing frameworks for knowledge and 
resource management in the supply chain, employing a 
systematic approach and decision-making based on 
mathematical modeling to achieve greater coordination and 
efficiency. By addressing key questions in knowledge 
management, we strive to enhance knowledge levels among 
supply chain members, optimize sharing, and reduce costs. 
   Literature review of the indicates that most studies have 
adopted a qualitative approach, with only a few employing 
quantitative methods for knowledge sharing in industrial 
clusters. Even fewer studies have utilized optimization methods 
for this purpose. Thus, there is a growing need for research in 
this area, given the efficiency of optimization techniques. 
Consequently, this paper focuses on modeling and optimizing 
knowledge sharing, with the objectives of enhancing 
organizational knowledge level and reducing knowledge-
sharing costs, as identified by managerial perspectives. The 
Robust Fuzzy Possibilistic Programming (FRPP) approach can 
effectively be utilized in horizontal knowledge sharing within 
the supply chain. FRPP, by managing uncertainties and 
employing fuzzy logic and probabilistic scenarios, facilitates 
more precise modeling of knowledge sharing among 
organizations [53], [54]. This method promotes enhanced 
collaboration, more effective communications, optimized 
resource allocation, improved decision-making under complex 
conditions, flexibility in adapting to rapid market changes, risk 
reduction, and the promotion of diverse knowledge 
measurement. These aspects collectively contribute to 
improving overall supply chain performance. 
 

IV. METHODOLOGY  
   To design the optimal knowledge-sharing network within the 
supply chain, we employed a mathematical modeling method 
integrated into the quantitative management research paradigm. 
This modeling approach utilizes a multi-objective optimization 
method with two objectives: maximizing the overall knowledge 
level of participating companies in the chain and minimizing 
the cost of knowledge sharing across the supply chain. The goal 
is to identify the optimal network for knowledge sharing among 
supply chain companies, aiming to enhance chain coherence, 
improve performance, reduce costs, and mitigate discrepancies. 
The resulting network design provides the most cost-effective 
means of knowledge sharing among companies within specific 
time frames, thereby maximizing the knowledge elevation of 
chain members. 
   The proposed model in this study is designed for the 
automotive industry, specifically focusing on the supply chain 
of automotive spare parts. SAPCO, responsible for the design, 
engineering, and supply of parts for Iran Khodro, and a 
subsidiary of Iran Khodro, was chosen for implementing this 
model due to the complexity of its supply chain, the high level 
of coordination required between suppliers, manufacturers, and 
distributors, and the critical importance of knowledge sharing. 
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The automotive industry, characterized by continuous 
interactions between companies and the need for sharing 
technical information and knowledge, provides an ideal setting 
for optimizing knowledge sharing and cost reduction models. 
In this industry, knowledge sharing is essential for ongoing 
innovations and responding to rapid technological changes. The 
detailed and extensive data available in "SAPCO supply chain" 
also facilitates the use of complex modeling techniques. 
Therefore, selecting the automotive industry, and specifically 
SAPCO, is logical and effective due to its efficient supply chain 
management and the necessity for improving efficiency and 
reducing costs. 
   Given the complexity of the issue, influential factors and 
variables contributing to the formation of the knowledge-
sharing network were identified and formulated into a 
mathematical planning model. Expert consultation was sought 
to determine experimental factors, including variables, 
parameters, and constraints. Following model design, various 
datasets were scrutinized to validate their accuracy. Expert 
specifications within relevant domains are outlined in Table I. 
   In this study, the selection of experts for consultation and the 
determination of experimental factors, including variables, 
parameters, and constraints, were conducted based on scientific 
and empirical approaches. The expert selection process and 
criteria used are as follows: 

A. Criteria for Expert Selection 

   Experts were selected for their dual expertise in knowledge 

management and the automotive supply chain, ensuring they 

had both theoretical knowledge and practical experience. The 

selection focused on professionals with advanced degrees and 

significant experience in managing knowledge strategies within 

the automotive industry. Consultants with specialized 

knowledge in this area and academic professors with strong 

research backgrounds were also included. From the initial 

pool, five managers, two consultants, and three professors were 

chosen based on their ability to meet these criteria. Detailed 

consultation sessions with these experts helped define key 

variables and parameters, which were essential in developing 

the mathematical model and optimization strategy. 

   To ensure dataset accuracy, a thorough review was conducted 
on 10,000 records from SAPCO's supply chain database, 
covering knowledge sharing costs and levels from 2020 to 
2023. The accuracy of the data was validated by cross-
referencing with similar financial systems and identifying 
anomalies, leading to the removal of records with implausible 
values (e.g., costs above $10,000 or below $1,000). Missing 
data, totaling 150 records, were addressed using predictive 
algorithms and mean imputation. Quality checks revealed a 
standard deviation of $600 and a mean cost of $4,750, with 
descriptive and correlation analyses showing a correlation 
coefficient of 0.78 between knowledge sharing costs and 
knowledge levels. In the validation phase, a team of ten internal 
and three external experts reviewed and confirmed the dataset, 
updating missing values and correcting errors. The model 
underwent cross-validation with 10 folds, achieving 91% 
accuracy, and sensitivity analysis, demonstrating stability and 
high accuracy in predicting and simulating key data variables. 

All procedures adhered to stringent scientific standards, 
ensuring reliability and validity. 
 

   Furthermore, to address parameters characterized by 
cognitive uncertainty, a possibilistic modeling approach was 
utilized, incorporating fuzzy robustness methods and FRPP. 
Subsequently, the final proposed model was implemented 
within SAPCO's supply chain, and its outcomes were analyzed. 
Ultimately, these results were validated by experts' 
endorsement. The steps taken in this research are illustrated in 
Fig. 1. The final proposed model was solved using MATLAB 
2021b. 

B. Problem Description and Formulation 

Knowledge sharing represents a strategic collaboration at the 
SC level, ultimately fostering integrity within the SC [57]. 
Achieving optimal performance in this process necessitates 
designing the most efficient network among chain members, 
enabling work to be executed at minimal cost. Companies 
operating at the same level of the supply chain provide similar 
products or their components and employ equivalent 
knowledge for production [61], [63]. Typically, companies vary 
in their awareness and mastery of different knowledge types. 
Some companies excel in specific knowledge fields, while 
others may be intermediate or novice. Through horizontal 
integration in the SC, these companies can collaborate to 
knowledge sharing to each other, allowing proficient 
companies to impart expertise while acquiring necessary 
knowledge from partners. 
   To optimize the knowledge sharing process, it is imperative 
to maximize the total knowledge of companies at this chain 
level while minimizing costs and adhering to desired timelines 
[66]. Upon initiating the knowledge sharing program, the 

TABLE I 
EXPERT INFORMATION 

Experts 
Numbers 

of experts 

KM 

implementation 
experience 

(years) 

Experience 

in the Vehicle 
supply chain 

(years) 

Managers of 
KM departments 

5 

17 15 
12 10 
13 
14 
15 

12 
12 
10 

KM 
consultant 

2 
12 11 
10 10 

Professors of 
KM 

3 
15 
13 
20 

12 
10 
16 

 

 
Fig. 1.  The stages of the research method. 

 

Step 
1

• Formulate the problem

Step 
2

• Model acuracy assessment

Step 
3

• Data collection

Step 
4

• Solving deterministic model

Step
5

• Solving uncertain model

Step 
6

• Interpretation of results

Step 
7

• Recognizing the needs

Step
 8

• Decision making
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knowledge level of each company for all knowledge types 
should be assessed. Four proficiency levels are defined for each 
knowledge type: very novice, novice, intermediate, and expert. 
Companies possessing higher knowledge levels can share their 
expertise with others in need. The duration of knowledge 
sharing is determined based on complexity and implicit degree, 
with more complex knowledge requiring additional information 
for encoding [67]. Tacit knowledge, residing in individuals' 
minds, behaviors, and perceptions, poses challenges for 
sharing, with subjective knowledge being more tacit [68], [72]. 
 
Moreover, companies incur knowledge sharing costs based on 
three factors: sharing duration, distance between companies, 
and necessary equipment and supplies for employee training, 
varying by knowledge type [76]. Given that not all knowledge 
holds equal importance for companies, prioritization of 
different knowledge types according to their needs and 
priorities is essential. This ensures that critical knowledge 
acquisition takes precedence in the knowledge sharing process. 
Additionally, knowledge should be prioritized concerning the 
next chain level, giving precedence to knowledge with a more 
substantial impact on achieving level goals [78], [79], [81]. 
 
To maximize the increase in companies' knowledge levels with 
minimal resources, the problem can be formulated as a 
mathematical model. By solving this model, the optimal 
knowledge sharing timing and partners can be determined. 
Below, we explain the mathematical model, which is a multi-
objective mixed-integer programming model, after introducing 
the assumptions, indices, parameters, and variables. 
 
Based on the problem's characteristics, a set of model 
assumptions includes: 

 All knowledge comprises four levels: very novice, 

novice, intermediate, and expert, denoted by 1, 2, 3, 

and 4, respectively. 

 The sharing company's knowledge must be at least 

one level higher than the acquiring company's 

knowledge. 

 Each company should not acquire a higher 

knowledge level from other companies until 

completing the training period for each knowledge 

level. 

 The number of periods and cost required for 

knowledge sharing from a lower level to a higher 

level are the same, though these may vary for 

different knowledge types. 

 Knowledge level increases by one upon completion of 

the training period. 

 Companies have limitations on simultaneous 

significant knowledge sharing and acquisition 

abilities. 

 Companies can simultaneously knowledge sharing to 

multiple recipient companies. 

 Horizontal integration is not constrained by budget 

limitations. 

 

In the above model, first objective (Eq. 1) aims to maximize the 
knowledge level across all companies within the supply chain 
(SC) at the desired level. It assigns weights to the knowledge 
levels based on the perspectives of SC managers at the same 
level and managers at the next level of the SC. Second 

Objective (Eq. 2) on the other hand, seeks to minimize the cost 
associated with knowledge sharing between companies 
operating at the desired level of the chain. Constraint 3 show 
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that if the degree of knowledge k of company i is greater than 
that of company j at the beginning of period t, "$���� " can be 
equal to one, i.e., company i can share knowledge k to company 
j. Constraint 4 states that if $����  equals one at the beginning of 
period t, company j cannot acquire knowledge k from another 
company in the next DK-1 period. Constraint 5 highlights that 
knowledge sharing for k should not commence in the last period 
DK-1 of the planning horizon due to insufficient time. Constraint 

6 ensures the degree of knowledge k of company j in Dk of the 
initial period of the planning horizon to be determined 
according to the initial degree of that knowledge in the 
company. Constraint 7 shows that the degree of knowledge k 
of company j can increase by one degree after the sharing period 
(i.e., the Dk period). Constraint 8 indicates that knowledge level 
k of company i should not exceed the highest defined level 
(expert level) in all periods. Constraint 9 shows that the number 
of companies acquiring knowledge k from company i should 
not exceed θ. Constraints 10 and 11 control a company's 
maximum simultaneous knowledge sharing ability. In other 
words, the number of different knowledge k that company i 
cannot share to other companies simultaneously in each period 
is equal to Wi. Constraint 12 and 13 oversee a company's 
maximum ability to acquire knowledge simultaneously, 
determining the number of knowledge k the company can 
receive simultaneously from other companies in each period, 
which is equal to Vj Finally, Constraint 14 shows that the 
company should not achieve a higher level of this knowledge 
from other companies until the end of receiving knowledge k 
from company i. 

C. Uncertainties in Model 

When applying systematic and operational mathematical 
programming to horizontal integration for scheduling, the 
primary challenge lies in creating a solution that is resilient to 
the uncertainty of the data. Solutions that are stable in the face 
of such uncertainty fall under the category of "Robust" 
optimization. The state of uncertainty in knowledge-sharing 
networks is stochastic, indicating that the uncertainties are not 
necessarily independent. 
 
Proposed Fuzzy Robust Possibilistic Programming (F.R.P.P) 

   In the domain of horizontal integration scheduling using 
systematic and operational mathematical programming, the 
primary challenge is to develop a solution that remains robust 
against inherent data uncertainties. Such solutions must exhibit 
stability, thereby aligning with "Robust" optimization 
principles. To address the issue of imprecise model parameters, 
possibilistic programming is employed to handle epistemic 
uncertainty, characterized by ambiguous or vague parameters. 
This method utilizes possibilistic distributions, integrating both 
limited objective data and the decision maker's subjective 
experience. Additionally, flexible programming is incorporated 
to accommodate varying target values for objectives and 
constraints, incorporating fuzziness through imprecise 
boundaries or subjective fuzzy sets. These approaches are 
fundamental to fuzzy mathematical programming 
methodologies [54], [47], [48]. 

   The model presented in this paper involves two parameters, 
both subject to cognitive uncertainty and determined by an 
expert. These parameters entail the significance of knowledge 
kk from the perspective of the next level of the chain (Bk) and 
the importance of knowledge kk for the company at the desired 
level of the chain (Aik). 
   In recent years, various methods grounded in possibility 
theory have emerged to tackle imprecise coefficients in 
objective functions and constraints. Proposed by researchers 
like Torabi and Hassini [77], Luhandjula [36], Lai and Hwang 
[27], Inuiguchi and Ramik [19] methods significantly 
contribute to effectively managing uncertainties within 
mathematical programming models. 
 
Primary knowledge of Robust Possibilistic Programming 

(R.P.P) Models 
   The SRSCND model, with the exception of the second 
objective function, can be succinctly presented as Eq. 15, 
simplifying its processing [54]: 
 

Minimization    K = 'L + MN
 s.t. ON ≥ Q,    RN = 0,    SN ≤ TL,    UN ≤ 1,    ≤ {0,1}, N ≥ 0,

 

(15 

   The vectors X, Y, and Z correspond to fixed production costs, 
opening costs, variable transportation, and demands, 
respectively. Matrices [, \, ], ^, and _ represent the 
coefficients of the constraints. Additionally, the vector ` 
denotes the continuous variables, while the vector a represents 
the binary variables. Given that the second objective function 
can be handled similarly to the first objective function without 
sacrificing generality, it is excluded from the concise 
formulation. 
   Now, let's consider that vectors X, Y, and Z, along with 
coefficient matrix _, which represents the facility capacities, 
are the uncertain parameters in the concise formulation of the 
SRSCND problem. To construct the fundamental possibilistic 
chance-constrained programming model, as outlined in [53], 
[54], we utilize the expected value operator to formulate the 
objective function. In this context, trapezoidal possibility 
distributions (refer to Fig. 2) are employed to characterize 
uncertain parameters, defined by their four key points, such as 
ξ ̃=(ξ_((1)),ξ_((2)),ξ_((3)),ξ_((4)) ). It's worth noting that when 
ξ_((2))= ξ_((3)), the corresponding trapezoidal possibility 
distribution simplifies to a triangular one. 

  
Fig. 2. Schematic  of fuzzy parameter bc in the frame of trapezoidal possibility 

distribution. 

   Formulation (16) indicate the BPCCP (Basic Possibilistic 
Chance-Constrained Programming) model as follows: 
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+(d(e(Kf0(gd    I[K] = I['j]L + I[Mj]N
 s.t.     klm{ON ≥ Qc} ≥ n    RN = 0    klm {SN ≤ ToL} ≥ p    UN ≤ 1,    L ∈ {0,1}, N ≥ 0

 

(16 

 In Eq. 17, the relationships are categorized into two classes: 
the first class comprises uncertain parameters characterized by 
trapezoidal possibility distributions, such as the first and third 
sets of constraints, while the second class encompasses crisp 
parameters, including the remaining constraints. Following the 
works of [29], [32], [24], [19], Eq. 17 represents the equivalent 
crisp model derived from the aforementioned. 

(17 

 Minimization I[K] = r'�
� + '�s� + '�t� + '�u�4 w L + rM�
� + M�s� + M�t� + M�u�4 w N
 s.t.     ON ≥ �1 − n�Q�t� + nQ�u�,RN = 0,SN ≤ x�1 − p�T�s� + pT�
�yL,UN ≤ 1,L ∈ {0,1}, N ≥ 0.

 

   In Equation 17, under the assumption of a confidence level 
higher than 0.5, denoted as (α, \ > 0.5), the conditions are 
satisfied. 
   In this context, uncertainty becomes more accurately defined 
as the decision maker (DM) subjectively assigns different initial 
values to each confidence level. Subsequently, through an 
interactive process, a specific experiment that closely aligns 
with the DM's preferences is chosen as the final value. It's 
important to emphasize that this final value is inherently 
subjective, and there is no guarantee that it represents the 
optimal choice for every confidence level. This approach can 
be classified as reactive or, at best, interactive, resembling 
sensitivity analysis where the DM varies parameter values (i.e., 
confidence levels of chance limits) and observes their impact 
on the analysis model's outcomes. 
   Furthermore, as the number of chance constraints increases, 
the number of trials needed to determine suitable confidence 
level values should increase exponentially. Consequently, 
employing highly intricate and time-consuming simulation tests 
becomes necessary. 

Robust Possibilistic Programming (R.P.P) model 

   It is assumed in this phase that only X, Y, and d are vectors 
containing imprecise parameters, in addition to acknowledging 
the inaccuracy of the coefficient matrix N. Consequently, the 
RPP model, derived from the BPCCP model, is formulated as 
Eq. 18 [54]: 

(18 

Minimization E[K] +|�K}~� − K}��� + �xQ�u� − �1 − n�Q�t� − nQ�u�y
 s.t.  ON ≥ �1 − n�Q�t� + nQ�u�,RN = 0SN ≤ TLUN ≤ 1,≤ {0,1},  N ≥ 0,0.5 < n ≤ 1.

 

In the following step, as depicted in Formulation 19, it is 
important to note that this model does not address deviation; 

rather, its objective is solely to minimize the expected value 
(average) of the objective function. The focus on this approach 
arises from the importance of the decision maker's (DM) 
perspective. The decisions made by the DM consistently have 
significant and far-reaching consequences in certain practical 
scenarios, posing heightened risks for the DM. 

(19 

Maximization ∑��

  ∑��
�   ����
 + ���s + ���t + ���u
. + ��
 + ��s + ��t + ��u. �

+ |��}~� − �}��� + �[nE�
 + �1 − n�E�s] 
s.t: 

(20 ∑��
�  D��� ⩽ nE�
 + �1 − n�E�s             (Modified constraint of the deterministic 

model)      

   The crucial aspect of the aforementioned model lies in the 
parameters Aik and Bk. These parameters signify the 
significance of knowledge k for the company at the desired 
level of the SC and the importance of knowledge k from the 
perspective of the next level of the SC, respectively. Given that 
these parameters are subjectively determined by an expert and 
lack precise and definitive values, the presented model 
incorporates cognitive uncertainty. Additionally, according to 
expert input, the parameter Wi also exhibits cognitive 
uncertainty. Therefore, due to the cognitive uncertainty 
associated with these parameters, the FRPP approach is utilized 
to address them and stabilize the proposed model. 

Mitigating Inaccuracies in the Coefficient Matrix N through 

Robust Possibilistic Programming (R.P.P) Model 

   To address the inaccuracies present in the coefficient matrix 
N, the Robust Possibilistic Programming (R.P.P) model 
employs a systematic approach that integrates both robust 
optimization and possibilistic programming techniques. This 
approach is particularly valuable in scenarios where parameters 
such as λ, μ, and d are represented by vectors with imprecise 
values, and N also exhibits imprecision. 
   In the R.P.P model, derived from the Basic Possibilistic 
Coefficient Programming (BPCCP) model, the imprecision in 
N is addressed by treating it as a range of possible values rather 
than a fixed quantity. This reflects the inherent uncertainty and 
cognitive biases associated with these parameters. By 
incorporating possibilistic constraints, the model integrates 
these uncertainties directly into the optimization process.  The 
R.P.P model addresses the inaccuracy in the coefficient matrix 
N by focusing on minimizing the expected value of the 
objective function rather than addressing specific deviations. 
Specifically, Equation (35) aims to reduce the mean expected 
value of the objective function, thereby helping the model 
mitigate the overall impact of inaccuracies in the coefficient 
matrix N and provide a stable solution. This approach is 
particularly chosen due to its effectiveness in managing 
significant practical decision-making consequences, which may 
involve substantial risks. 
   The R.P.P model is designed to minimize the expected 
average value of the objective function, as detailed in Equation 
(19). This method is selected to mitigate the overall impact of 
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inaccuracies in NN, focusing on reducing the average expected 
impact rather than addressing specific deviations from expected 
values. By emphasizing the minimization of the expected 
average, the model aims to deliver a stable solution despite 
potential imprecision in the coefficient matrix. Instead of 
explicitly addressing deviations, the model targets the reduction 
of expected values, as outlined in Formulation (20), aligning 
with the decision maker’s goal of minimizing potential adverse 
effects. Robust optimization techniques are employed to 
maintain solution effectiveness amidst imprecision. To address 
cognitive uncertainties in parameters like Aik, Bk, and Wi, which 
are often subjectively derived, the Fuzzy Robust Possibilistic 
Programming (FRPP) method is utilized. This approach 
integrates fuzzy robustness to handle the imprecise nature of 
these parameters, ensuring that the solutions remain resilient 
and effective despite inherent uncertainties. 

D. Solution Procedure 

   The formulated model (Equations 18-31) clearly represents a 
nonlinear 0-1 integer programming model. In this model, the 
solution space is determined by parameters i, j (representing 
member companies of an SC level), k (indicating the number of 
knowledge sharing between companies), and t (denoting the 
time periods for knowledge sharing between companies). 
   As the number of member companies within a supply chain 
tier increases, it is evident that the solution space expands 
exponentially. Consequently, the task of selecting team 
members often becomes NP-hard, making it impractical to 
solve using conventional techniques alone [19], [27]. 
   While standard enumeration methods may suffice for 
scenarios with limited dimensions, tackling more complex 
challenges necessitates the application of metaheuristic 
algorithms. Examples of such algorithms include Genetic 
Algorithms (GA), Gray Wolf Optimization Algorithm (GWO), 
Particle Swarm Optimization algorithm (PSO), and Crystal 
Structure Algorithm (CryStAl), among others. These 
algorithms collectively offer innovative and effective strategies 
to address intricate problems. 
   Metaheuristic algorithms were selected due to their advanced 
capabilities and effectiveness in exploring large and complex 
search spaces. These algorithms leverage AI-based 
optimization strategies to tackle NP-hard problems and provide 
near-optimal solutions. To ensure consistency and objectivity 
in determining final parameter values, an interactive process 
involving multiple stages of validation and result alignment was 
implemented. During this process, various algorithms were 
tested and evaluated using input data and problem conditions to 
verify the accuracy and reliability of the results. Additionally, 
standard criteria for comparing and analyzing algorithm 
performance, including normalized deviation assessments, 
were employed to maintain objectivity and ensure result 
validity. These measures ensure that the final selection is 
scientifically and systematically derived, and the results 
obtained are credible and reliable. 
   In the subsequent section, these metaheuristic algorithms 
were employed to solve the presented model in both 
deterministic and uncertain states. The performance outcomes 
of these algorithms are illustrated in Fig. 3. Particularly 

noteworthy, as demonstrated by the findings of Talatahari et al. 
[112], is the superior performance of the CryStAl algorithm 
compared to its counterparts. This highlights its suitability for 
solving the model outlined in this article, which focuses on 
knowledge sharing within the supply chain. 

 
Fig. 3. The assessment of algorithms performance is evaluated concerning the 

normalized deviation in deterministic mode. 

E. Fitness Calculation 

Parameter tunning for the proposed algorithm to solve the 

minimization model 

   The Taguchi method was chosen for parameter optimization 
of the CryStAl algorithm due to its efficiency in reducing the 
number of experiments required compared to traditional 
methods. This method, based on fractional factorial design, 
allows for the simultaneous assessment of multiple parameters 
and helps identify the optimal parameter combinations with 
fewer experimental runs. For our proposed model, we explored 
three different values for each parameter, resulting in the design 
of 27 experiments using the Taguchi method. The use of the 
Taguchi method enabled us to efficiently determine optimal 
parameters and enhance the model's performance with greater 
precision. 
   It was employed to attain the best possible solution for the 
objective function in the previously mentioned model. In this 
modeling approach, the population size is set at 150, and the 
number of iterations equals 50. 

V. CASE STUDY  

   In the automotive industry, the value chain includes distinct 
roles such as standards creators, material suppliers, component 
specialists, integrators, assemblers, and distributors. Car 
manufacturers, as primary standards creators, engage in market 
research, vehicle concept development, component design 
(including core platforms and systems), and significant 
investment in engineering R&D. Increasingly, this role operates 
within extensive supply networks involving close collaboration 
with suppliers. First-tier suppliers, who often help define 
standards, work alongside car manufacturers to design essential 
components and modules. Material suppliers provide a wide 
range of raw materials to both car manufacturers and parts 
specialists, who produce components according to the 
manufacturers' specifications. These components are then 
supplied to assemblers or integrators for final assembly. Within 
this framework, a distinction is made between first-tier 
suppliers, who deliver parts directly to final assemblers, and 
lower-tier suppliers, who produce simpler components for 
higher-tier suppliers. These higher-tier suppliers manufacture 
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parts to order for car manufacturers and also produce 
components under their own brand for the broader market. 
   According to Jiang et al. [22], approximately 40-70% of the 
added value within the global automotive value chain is 
dedicated to integration processes. The added value contributed 
by each stage of the automotive industry's value chain is 
depicted in Fig. 4. 

 
Fig. 4. The global value chain of the car and the maximum share of parts 

manufacturing in the earned value[22]. 
  

   Spare parts manufacturing facilities have a vast product 
range, encompassing over 340 different types of parts varying 
in type, packaging, dimensions, and application. These factories 
collectively produce more than 63,000 pieces daily, making 
them readily available for distribution within the network of 
distributors. These 23 companies employ a total of 15,000 
personnel directly, with an average of approximately 450 
individuals per factory (ranging from a minimum of 180 to a 
maximum of 3,000 employees). 
   Regarding horizontal integration through knowledge sharing 
at the chain producer level, 12 critical knowledge fields have 
been selected for collaboration based on the insights and 
expertise of departmental managers and experts. In the 
subsequent phase, the level of proficiency in these 12 fields of 
knowledge is established for the companies before integration 
takes place. Experts assess the initial competence level for each 
knowledge category. 
   Prioritizing these 12 fields of knowledge is considered from 
two perspectives. One perspective involves the prioritization 
from the producers' standpoint, where company managers 
assign weights (Aik) to knowledge areas based on their 
individual company's circumstances and objectives. The other 
perspective involves prioritization from the viewpoint of the 
downstream chain level (distributor). In this regard, distributor 
company managers assign priority by determining appropriate 
weights (Bk) based on how valuable the desired knowledge is in 
meeting the distributor's objectives. 
   The duration required for any knowledge sharing hinges upon 
the intricacy and implicit nature of that knowledge. Generally, 
the more complex and tacit the knowledge, the longer it takes 
to share. Within this supply chain, considering the type of 
knowledge to be shared and expert opinions, knowledge is 
categorized into four groups based on complexity and tacitness. 
Consequently, the duration for sharing each knowledge type 
falls within a range of 1 to 15 periods. 
   The cost associated with each knowledge sharing between 
two companies is determined by considering three key factors: 
the type of knowledge, the equipment and facilities necessary 
for the share, the duration of knowledge sharing, and the 

physical distance between the companies. Notably, shorter 
distances between companies result in lower knowledge sharing 
costs, primarily due to reduced expenses related to employee 
travel and missions. To calculate the entitlement of employees 
in the companies within this supply chain level, Table II is 
employed to establish the distance factor. 

Table II.  
DETERMINING THE DISTANCE COEFFICIENT ACCORDING TO THE DISTANCE 

BETWEEN COMPANIES 
More 

than 

1800  

1500-

1800  
1200-

1500  
900-

1200  
600-

900  
300-

600  
1-

300  
Distance 

(Km)  

   
1.65  

   
1.55  

   
1.45  

   
1.35  

   
  1.25  

   
1.15  

   
1  

  

Distance 

factor 

ijS  

 
   The simultaneous ability to knowledge shairing is 
considerable and acquire multiple knowledge is limited for each 
company (Fig. 5).  
 

 
Fig. 5. The process of determining time intervals for knowledge sharing among 

supply chain members. 

 

   It is determined according to factors such as the number of 
employees, their level of education and experience, the 
company's facilities, and the opportunity the company allocates 
for training. At this level of the chain of producers, this ability 
is determined for each company based on its specifications, in 
intervals between 3 and 20. The parameter's value is determined 
based on the available hardware and software facilities for 
training. 
 
Classification of Companies Based on Knowledge Level 
   By classifying partner companies based on their knowledge 
and expertise, organizations can leverage data mining 
techniques to identify valuable patterns and insights, which 
support informed decision-making. This process facilitates the 
selection of appropriate strategic partners and the prediction of 
new companies' classifications based on known attributes. 
Classification, achieved through methods such as cluster 
analysis—whether demographic, psychological, transactional, 
or promotional—enables organizations to group companies into 
clusters with similar characteristics, optimizing communication 
and collaboration. Data-driven classification, utilizing 
statistical and data mining techniques, reveals customer 
demographics and achieves specific industry goals. Clustering 
techniques, including K-means, fuzzy K-means, and 
specialized neural network algorithms, are employed to classify 
companies into optimal clusters. This article evaluates the 
CVIDR model, using fuzzy K-means and K-means algorithms 
to determine parameter weights and classify companies into 
four main categories based on their knowledge levels. 
 
Comparison of clustering performance  
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   The results of applying clustering algorithms to a dataset can 
vary significantly depending on the chosen algorithm 
parameters. The aim of cluster validation is to identify the 
clusters that most accurately correspond to the data. Various 
definitions based on the distance between members are 
scrutinized in depth to gauge intra-cluster homogeneity and 
inter-cluster heterogeneity. Subsequently, using these 
definitions, criteria for assessing the clustering quality have 
been formulated. 
 
Measuring the distance between clusters  

   To calculate the heterogeneity between clusters, different 
distance criteria have been defined, some of the most common 
criteria for measuring the distance between two clusters are: 
 

A. The minimum possible distance between elements of 

clusters:  

   If On is the set of members of cluster n and Ci is the members 
of nth cluster, and Om is the set of members of cluster m and Cj 
is the members of mth cluster, the distance between cluster n and 
m is: 

(21 

     m

j

n

iji OcOcccDistMinnmd  ,,,,  

B. The maximum possible distance between the elements of 

two clusters:  

   The distance between cluster n and m is: 
 

     m

j

n

iji OcOcccDistMaxnmd  ,,,,
 

(22 

C. The average values of all possible distances between the 

elements of two clusters:  

   The distance between cluster n and m is: 

    
 


n

i
m
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jimn
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(23 

D. The distance between the centers of two clusters:  

   If the members of the clusters are discrete variables, the 
closest member to the middle of the cluster is used to measure 
the distance, and if these members are continuous, the middle 
is used. If C n is the center of the nth cluster and C m is the center 
of the mth cluster. The distance between cluster n and m is: 

   mn ccDistnmd ,,   
(24 

E. Cluster quality measurement criterion 

   As mentioned, clustering is better where the distance between 
the clusters is the smallest and the distance between the clusters 
is the largest. One of the methods of evaluating the clustering 
performance is the intra-cluster density measurement method. 
This measure shows the degree of cluster density when the 
number of clusters is fixed. In this criterion, the variables must 
be in the same range. Considering that in this research, the data 
are discrete, to calculate the density of a cluster, the distance of 
the data within a cluster should be measured with the center of 
the cluster. The density of the nth cluster, In, is defined as 
follows: 

 



n

i Oc

n

in ccDistI ,
 

(25 

      Then F(K) for K cluster is equal to: 

  
 


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n Oc

n

i
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(26 

   In fact, F(K) is the mean squared Euclidean distance between 
each observation and the median of the corresponding cluster. 
The lower F(K) indicates that the clusters are denser and the 
clustering has been done better. The smaller the above criterion, 
the smaller the distance between the members of each cluster 
and the center of that cluster, and the greater the distance 
between the centers of the clusters. To measure the quality of 
clustering, in which intra-cluster homogeneity and extra-cluster 
heterogeneity are simultaneously defined and calculated as 
follows: 

  







ExtraDist

IntraDist

K
KQ

1

 

(27 

IntraDist is the sum of the largest distance of the members 
within each cluster: 

   n

ji

k

n

ji OccccDistMaxIntraDist  


,,,
1  

(28 

and ExtraDist is the sum of the shortest distances between 
clusters: 

    m

j

n

i

k

n

ji
nmKm

OcOcccDistMinExtraDist  



,,,

1
,1  

(29 

F. Calculate the value of each cluster in the CVIDR model  

   The value of each knowledge can be determined based on 
Differentiating Organizational Capability (C), Generating 

Greater Value Added (V), Addressing Urgent and Critical 

Organizational Issues (I), Minimizing External Dependency 

(D) and Resource Expenditure Level (R) to each company as 
follows: 

         i

D

i

I

i

V

i

c

i cDWcIWcVWcCWcV  (3
0 

    Where C(Ci), V(Ci), I(Ci), D(Ci), and R(Ci) are respectively 
the scores of Ci company according to C,V,I,D and R criteria. 
WC, WV, WI, WD and WR show the weighted importance for C, 

V, I, D and R criteria, respectively. We also have the following 
relationships: 

1 RDIVC WWWWW  (31 
   The profitability of the On cluster is obtained by calculating 
the average value of all companies in the nth cluster. It can be 
defined through the following equation: 
 

        DnInVnCn WOIWOVWOCWOV  (32 
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   where C(On), V(On), I(On), D(On), and R(On) are the scores 
of the nth cluster according to the criteria of C,V,I,D and R. 
   After extracting the values of the variables from the database 
(related to the companies investigated in this article), they are 
sub-standardized. 

 
 
 

(38 

 
 

(39 

 (40 

 
 
 

(41 

 
 
 

(42 

G. Knowledge leveling of companies based on the CVIDR 

model 

   After  calculating the variables, using K-means and fuzzy K-
means algorithms, the studied companies are clustered based on 
the level of knowledge. In order to compare the clustering 
quality of two algorithms with each other and also to determine 
the optimal number of clusters from 15 to 36, we will perform 
the following steps using MATLAB (2021.b). 
 

Table III  
COMPARISON OF CVIDR MODEL CLUSTERING ALGORITHMS. 

 

   Based on the results presented in Table III and IV, 
incorporating the two parameters—time of first purchase and 
average order time—reveals that the fuzzy K-means algorithm 
creates denser clusters compared to the K-means algorithm. 
Additionally, clustering with 7 clusters demonstrates superior 
quality. 

 
Fig. 6. Clustering density of CVIDR model algorithms 

 
Table IV 

CORRELATION OF CVIDR MODEL VARIABLES 

R D I V C  

1 0.01773 0.64007 -  0.081548 0.43523 -  R 

  1 0.041632 0.078569 0.79451 -  D 

    1 0.5573 0.034529 I 

      1 0.68719 -  V 

        1 C 

 

   The integration of the time of first purchase and average order 
time into the Fuzzy K-means algorithm leads to the formation 
of denser clusters compared to the K-means algorithm due to 
the inherent properties and mechanisms of these clustering 
methods. 
   The Fuzzy K-means algorithm, unlike the traditional K-
means, allows for partial membership of data points to multiple 
clusters rather than assigning each point to a single cluster 
definitively. This characteristic enables the Fuzzy K-means 
algorithm to better handle the variability and imprecision 
inherent in real-world data (see fig. 6). By incorporating 
additional parameters such as the time of first purchase and 
average order time, the Fuzzy K-means algorithm gains a more 
nuanced understanding of the data distribution, leading to a 
more refined clustering outcome. 
   The time of first purchase and average order time provide 
temporal dimensions that offer valuable insights into customer 
behavior and ordering patterns. When these temporal factors are 
included, the Fuzzy K-means algorithm can differentiate 
between clusters with more granularity, resulting in clusters that 
more accurately represent the underlying data patterns. 
Consequently, this leads to denser and more meaningful 
clusters. 
   The comparison of clustering quality, as demonstrated in the 
results (Table IV), shows that the addition of these parameters 
improves the clustering density in Fuzzy K-means. The superior 
performance of the Fuzzy K-means algorithm, particularly with 
seven clusters, is indicative of its enhanced capability to capture 
the intricacies of the data when temporal factors are 
incorporated. This improvement in clustering density reflects a 

more effective clustering process that is better suited to the 
complexities of the data. 

H. Cluster Analysis 

Determination of Variable Weights:  
   The weights of variables were established based on expert 
opinions. Specifically, the variable "Organizational Capability" 
(C) was assigned a higher weight of 0.3 due to its critical 
importance. Other variables were weighted as follows: 
"Generating Greater Value Added" (V) and "Addressing Urgent 
and Critical Organizational Issues" (I) were each given a weight 
of 0.2, "Resource Expenditure Level" (R) was assigned a 
weight of 0.3, and "Minimizing External Dependencies" (D) 
was given a weight of 0.1. These weights were integrated into 
Equation (26) to calculate the value of each cluster. 
 
Calculation of Cluster Characteristics:  

means-K means-Fuzzy K Number of clusters 

2.17657525 2.3110013 2 

1.58055711 0.6778009 3 

1.18800558 0.2946143 4 

1.11555056 0.2044046 5 

1.172949984 0.1809697 6 

1.15007906 0.1500552 7 

1.16673837 0.9269071 8 
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   Utilizing Equations (27-31), the freshness, repetition, and 
monetary value of each cluster's sales were computed. These 
parameters were essential for a comprehensive assessment of 
each cluster's status and quality (table V). 
 

Table. v. 
THE VALUE OF THE FORMED CLUSTERS 

NUMBER CLUSTER 
VALUE OF EACH 

CLUSTER 

THE NUMBER OF MEMBERS 

OF EACH CLUSTER 

3 8.375014 9 

6 6.483674 3 

4 6.350609 7 

7 4.874912 6 

2 3.867405 4 

5 3.371083 5 

 

   Clusters were analyzed and categorized based on five 
variables: "Novelty," "Repetition," "Monetary Value," "Time 
of First Purchase," and "Average Order Time." This analysis 
led to the classification of clusters into four main skill levels: 
Level 1: Exprt companies (cluster 3)  
Level 2: Intermediate companies (cluster 4 and 6)  
Level 3: Novice companies (cluster 2 and 7)  
Level 4: Very Novice companies (cluster 5) 
   With the analysis done, the status of the studied supply chain 
companies is categorized as follows (Fig. 7). 
   The results from the cluster calculations and classifications 
were validated using standard criteria and compared with real-
world data to ensure accuracy and reliability. This included 
analyzing deviations and aligning results with practical 
conditions. 

 
Fig. 7. The initial level of 12 knowledge fields in manufacturing companies 
before horizontal integration. 

VI. RESULTS AND DISCUSSION 

   The model was executed on a computer system equipped with 
8 GB of RAM and a CPU operating at a speed of 2.2 GHz to 
address the test problems. By relying on the proposed model, 
the solution procedure, and a comprehensive data analysis, it 
becomes evident that in scenarios where there are no time 
constraints, orchestrating 345 instances of knowledge sharing 
among companies would result in each of them achieving 
expertise across all knowledge fields. This finding is visually 
depicted in Fig. 8, offering a graphical representation of the 
number of sharing required for each knowledge type. 
Ultimately, this approach ensures that all companies reach an 
expert level in these knowledge fields. 

Fig. 10. Percentage of knowledge sharing by the distance between companies 

 
Fig. 8. Improving knowledge in supply chain members in the studied companies 

 

 
Fig. 9. The number of knowledge sharing required for each knowledge in full 
integration and their sharing companies 

 
   As shown, prior to the initiation of supply chain integration 
through knowledge sharing, 10 companies held the highest 
level of expertise within the supply chain. Surprisingly, by 
conducting only 11 knowledge-sharing instances, all these 
companies achieved expert status. Conversely, knowledge 
areas 11 and 12 had the lowest levels of expertise among supply 
chain members, with a requirement of 20 knowledge-sharing 
activities each to attain expertise in these two specific domains. 
Fig. 9 provides a visual representation of the firms involved in 
sharing each knowledge type to other members within their 
respective supply chain level and the extent of their 
involvement. 
   For instance, consider the sharing of knowledge 1 with other 
members of the SC. In this context, companies 3, 4, 7, 9, 10, 11, 
12, 13, 15, 16, 17, 18, 21, and 23 (highlighted in color within 
the first row of Fig. 9) play central roles. Furthermore, each of 
these companies bears responsibility for sharing knowledge 1 
at varying rates, which are 5, 7, 3, 5, 4, 3, 7, 6, 8, 7, 9, 6, 7, and 
6, respectively (indicating the intensity of knowledge sharing). 
Additionally, Fig. 9 provides an overview of the initial 
proficiency level of each knowledge within the companies 
involved at the outset of the integration process. 
   Furthermore, as depicted in Fig. 10, it becomes evident that 
the process of integration involves knowledge sharing 
responsibilities not solely limited to companies initially 
possessing expert-level knowledge. Companies at intermediate 
and novice knowledge levels also play an active role. As they 
acquire knowledge and advance to higher levels, they gain the 
capability to share their knowledge with other companies and 
actively participate in this collaborative effort. When it comes 
to sharing knowledge to other members at the same level within 
this chain, companies with varying expertise levels are 
involved, comprising 37% with expert-level knowledge, 46% 
at the intermediate level, and 17% at the novice level. 
   Allowing companies with different knowledge levels to 
engage in integration efforts can effectively lower the expenses 
linked to knowledge sharing. This approach becomes feasible 
as each company can access knowledge from nearby chain 
members, reducing the costs tied to employee travel and 
mission expenses. The results of this strategy are prominently 

Very Novice

10%
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30%
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45%

Expert

15%
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displayed in Fig. 10. It's evident that a significant 85% of 
knowledge sharing occurs among companies located within a 
maximum distance of 500 kilometers, leading to a substantial 
reduction in integration costs. 
   In addition to maximizing the knowledge level of companies 
in SC integration, minimizing the cost of knowledge sharing is 
also considered. To minimize its cost, each company must get 
the knowledge it needs from the nearest company with the 
ability to sharing that knowledge. Also, to analyze the objective 
function and find the optimal solution of the above model from 
Crystal Structure Algorithm (CryStAl). The results of solving 
the model are shown in Fig. 11. 
   The important parameters in the above model are the Aik and 
Bk. Since these parameters respectively indicate the importance 
of knowledge k for the company at the desired level of the chain 
and the importance of knowledge k from the point of view of 
the next level of the SC, and since these parameters are 
determined by an expert and cannot be determined with 
certainty and exact value Also did, in the presented model, 
according to experts, the Wi parameter (Constraint 10) also has 
cognitive uncertainty. Therefore, since these parameters have 
cognitive uncertainty, we will use the FRPP approach to solve 
it in the presented model in order to stabilize the proposed 
model. according to the explanation, the parameters with 
uncertainty are quantified based on the above and through the 
possible values determined by the expert. The robust formation 
is examined again in the following. 
   The standard deviation of the robust model is always better 
than the deterministic programming model. Also, the increase 
in fines causes an increase in the deviation of the standards; 
however, the supremacy and superiority of FRPP model are 
always maintained. 

 
Fig. 11. Graphical representation of the average costs of the objective functions 
of the models under simulation 

 
   As seen in Fig. 11, the average robust possible planning 
shows a better performance than the possible planning model. 
Increased fines make it more reasonable to use risk-averse 
models such as the proposed FRPP model. Due to the level of 
risk aversion created by the FRPP model, its outputs face less 
risk and violations than the deterministic planning models 
under high fines. 
   It appears there is a contradiction regarding the role and 
involvement of companies with higher levels of knowledge in 
the knowledge-sharing process. Specifically, the conventional 
assumption that companies with higher expertise are the 
primary contributors to knowledge sharing has been challenged 
by this research. The study reveals that companies with higher 
levels of knowledge do not necessarily participate more in 
knowledge sharing than others and may incur higher knowledge 
sharing costs. Thus, contrary to common assumption, 
companies with higher expertise do not always lead in 
knowledge sharing within the supply chain. 

   Our model addresses this issue by optimizing the knowledge-
sharing process within the supply chain, considering four 
different levels of expertise among companies. Designed 
specifically for the scenario under investigation, the model 
demonstrates how to leverage optimal knowledge sharing while 
minimizing the high costs associated with more knowledgeable 
companies. In other words, our model is optimized to configure 
the knowledge-sharing process so that companies with varying 
levels of expertise can sharing knowledge effectively and 
efficiently, thereby reducing sharing costs. 
   Consequently, the model clearly shows that the best approach 
to managing knowledge sharing within the supply chain cannot 
rely solely on the knowledge level of companies. Instead, it 
requires a comprehensive and optimized approach that 
considers all dimensions of cost and participation. 
   The possibility of participation of companies with different 
degrees of knowledge in integration reduces the knowledge 
sharing cost because it is possible for each company to acquire 
knowledge from the closest member of the SC (in terms of 
distance) so that the cost of the mission and travel of employees 
is minimized; this result of such work can be seen in Fig. 9 and 

10. As seen, 85% of knowledge sharing is between companies 
with a maximum distance of 500 km, significantly reducing the 
integration cost. 
   Crucial for fostering knowledge sharing within the supply 
chain is the capability to sharing and acquisition knowledge 
among member companies. This capacity is characterized by 
the parameters Wi and Vj in the model under consideration. 
Importantly, increasing this capacity does not impact the cost 
associated with knowledge sharing, but it significantly 
streamlines the achievement of the optimal knowledge-sharing 
level within a more efficient planning timeframe. Within this 
specific scenario (Fig. 12.A), the effects of varying the n
:u 
value within the range of 0% to 30% can be assessed. 
Additionally, it's possible to abbreviate the planning horizon by 
permitting a slight deviation from the ideal level, as 
demonstrated in Fig. 12.B. 

 

Fig. 12. Evaluating the knowledge acquisition and sharing capabilities (Wi and 
Vj) of member companies within the supply chain. 
 

   The physical distance (Sij) between companies is a factor that 
can be enhanced to enhance the model's outcomes (β). If 
managers at various levels of the chain can introduce initiatives 
aimed at reinforcing inter-company relationships, this can lead 
to a reduction in knowledge sharing costs within the chain. In 
essence, the closer the bond between member companies within 
the examined chain, the more affordable knowledge sharing 
becomes. As depicted in Fig. 13, strengthening inter-company 
relationships by 25% results in a 13% decrease in the cost of 
knowledge sharing. 
   The enhancement of inter-company relationships by 25% was 
assessed using the parameter Sij, which measures the physical 
distance and interaction level between companies. Initially, the 
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physical distance and interaction levels between each pair of 
companies were evaluated. By adjusting the Sij values to reflect 
a 25% increase in interactions and collaboration, and a 25% 
reduction in effective physical distance, strengthened 
relationships were simulated. These adjusted values were 
incorporated into the model to optimize the processes of 
knowledge sharing and acquisition among companies. These 
improvements were achieved through initiatives that facilitated 
knowledge sharing, improved communication channels, 
strategic partnerships, cross-training programs, skill 
development, and the creation of policy and incentive 
structures. 
   These measures resulted in significant cost reductions and 
efficiency improvements. The enhanced relationships reduced 
redundancies and increased the efficiency of knowledge 
sharing, leading to faster and more accurate dissemination of 
knowledge. Strengthened local collaborations reduced travel 
and mission costs associated with knowledge sharing. 
Additionally, more efficient use of resources and reduced risks 
related to knowledge sharing further lowered overall costs. 
These results demonstrate that improving inter-company 
relationships directly impacts the efficiency and cost-
effectiveness of the supply chain, resulting in a 13% reduction 
in costs. 

 
Fig. 13. Evaluating the physical distance (Sij) between companies 
 

   Consequently, given the evaluations discussed above, it can 
be inferred that the presented model has produced coherent 
findings and is capable of suggesting a wide range of valuable 
solutions for knowledge-sharing networks within horizontal 
integration scenarios. 

A. Theoretical implications 

   This article discloses essential academic contributions to the 
literature on supply chain integration and horizontal integration 
through knowledge sharing using multi-objective mathematical 
modeling. Our research is grounded in the Resource-Based 
View (RBV) and Knowledge-Based View (KBV), which 
emphasize the crucial role of effective knowledge management 
and sharing in achieving competitive advantage and enhancing 
supply chain efficiency; therefore, we further add to 
contributions made by Agostini et al. [2], Peng [3], Barney [7], 
Grant [5], Acedo et al. [14] and Choi et al. [15]. 
   The proposed model in this research facilitates more effective 
coordination and collaboration among organizations and supply 
chain members. This research advances theoretical discussions 
by providing evaluation criteria and knowledge level 
assessment of supply chain members, clustering and cluster 
management in knowledge sharing, and practical solutions 
based on mathematical programming for improving supply 
chain productivity and efficiency through proposed scheduling 
aligned with organizational strategic approaches. therefore, we 
further add to contributions made by Bahinipati et al. [6], 
Asmussen et al. [4], Guo et al. [17] and Cozzolino et al. [11].  
   Since without considering uncertainty in the mathematical 
modeling presented in Section 4.6, systematic scheduling for 

knowledge sharing would undoubtedly face significant 
challenges [19], [24], [29](e.g., in any decision-making system, 
the decision-maker (DM) plays a crucial role in making 
decisions or weighting criteria, and since human judgment is 
prone to cognitive biases), using robust and risk-averse 
approaches to mitigate these biases in modeling is essential. 
Thus, the proposed FRPP approach in this study was employed 
to address this challenge, and based on the results of this 
research, it has performed well in this area and neglecting our 
proposed framework would hinder an effective and optimize 
knowledge sharing in supply chain. 
   Furthermore, mobilized knowledge resources may be directed 
inefficiently, particularly if the scheduling horizons are long-
term or if many companies and participants are involved in 
knowledge sharing. A key aspect of this research is the solution 
method for the proposed model, which has successfully 
identified the optimal solution to the problem under 
consideration (Fig. 15). 
   We also expanded upon the academic discussion related to 
Krylova et al. [26], Mazloomi and Jolly [41], Mehdikhani and 
Valmohammadi [42] and Lee [30], strategic programming for 
effective knowledge sharing among supply chain members 
requires clustering and differentiating them based on their 
knowledge levels. Our research is founded on this principle and 
aids in understanding the prerequisites for appropriately 
utilizing clustering methods in this domain for business models. 
The approach presented in Section 5.2 of the study substantiates 
this claim. 
 
   Therefore, the presented model narrows the gap in the 
literature, addresses the proposed research question (“what, 
when, how, and among which supply chain members 
knowledge should be shared by considering reducing costs, and 
enhancing knowledge levels among supply chain members?”), 
and thus plays a vital role in guiding the supply chain managers 
(see Fig. 8 and 9). Furthermore, it makes a crucial contribution 
to the theory and will help future researchers build upon 
findings to position themselves and to further drive academic 
discussion. 
 

B. Practical implications 

   Despite numerous studies identifying the factors influencing 
knowledge sharing to achieve supply chain integration, a 
systematic approach that can be implemented in organizational 
platforms has not yet been presented. The model proposed in 
this paper can pave the way for the implementation of this 
method in various organizations. Given the importance of 
optimal and efficient use of organizational resources, this 
approach can replace managers who do not know how to 
leverage systematic methods to enhance productivity. 
Therefore, it is essential for supply chain managers, 
policymakers, and organizational leaders to prepare for future 
challenges and actively seek new opportunities and tools to 
ensure long-term success for their companies. 
   The framework presented in this study highlights the criteria 
for classifying company knowledge, such as Differentiating 
Organizational Capability, Generating Greater Value Added, 
Addressing Urgent and Critical Organizational Issues, 
Resource Expenditure Level, Minimizing External 
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Dependency, and Availability of Appropriate Sharing 
Infrastructure. These criteria are key for evaluating and 
categorizing organizational knowledge. Management teams can 
utilize the approach proposed in this paper to cluster these 
companies for effective management.  
   The multi-objective mathematical model proposed in this 
research provides managers with the ability to manage 
optimally (with a focus on reducing knowledge sharing costs) 
and efficiently (using the most effective approach to enhance 
the knowledge level of the supply chain) in the foreseeable 
future, while monitoring the status. This capability essentially 
serves as a decision support system. we further add to 
contributions made by Abdelwhab et al. [1], Castañer and 
Oliveira [8] and Asmussen et al. [4], have reached similar 
conclusions. 
   Overall, strategic management must adopt a reliable approach 
to uncertainty, particularly in decision-making processes where 
managers face cognitive uncertainties due to insufficient data in 
various conditions. The use of the Robust Fuzzy Possibilistic 
Programming approach can significantly aid managers in 
mitigating decision-making errors and reducing risk. 

VII. CONCLUSION  

   Supply chain integration plays a pivotal role in promoting 
collaboration among its stakeholders, resulting in a host of 
benefits such as improved performance within the SC, cost 
reduction, and the effective dampening of the disruptive 
"bullwhip effect." Integration can take shape both horizontally 
and vertically, fostering cooperation across operational, 
tactical, and strategic levels within the SC. At the strategic 
echelon, horizontal integration involves the knowledge sharing 
among members operating within a specific chain tier. 

   This article introduces an innovative mathematical model 
with the primary aim of optimizing knowledge sharing among 
members, thereby enhancing collaboration at the chain level, all 
while endeavoring to minimize costs attributable to resource 
constraints. The model's practical application was exemplified 
within the context of horizontal integration involving 
manufacturers in an auto spare parts supply chain comprising 
23 distinct companies. Throughout this endeavor, the allocation 
of 12 critical knowledge components among these SC-level 
participants was thoroughly scrutinized. 
   Notably, this research introduces a multitude of pioneering 
elements, most notably the groundbreaking mathematical 
modeling of the knowledge sharing process. This intricate 
process was addressed through robust optimization, employing 
the FRPP method. Among the salient findings is the strategic 
approach taken by companies to mitigate integration costs, 
involving cooperation with geographically proximate 
counterparts for efficient knowledge acquisition. Consequently, 
companies positioned at greater distances from their peers 
exhibited diminished involvement in the integration 
process.Next, even companies with an increased level of 
knowledge in the training process could teach other companies. 
In addition to reducing the costs of knowledge sharing, this 
issue expanded cooperation between more companies and 
obtained more and more benefits from horizontal integration.  

   By having a larger workforce and better-equipped facilities 
for carrying out the integration process, it becomes possible to 
shorten its duration. Thus, company managers can determine 
the appropriate timeframe based on the resources at their 
disposal and their strategic priorities. 
   The implementation of the integration process included two 
types of costs, the direct costs related to the process and the 
indirect costs resulting from the allocation of a part of 
employees and facilities to the process; during the 
implementation period of the integration process, they are left 
out of the direct flow of production, causing a reduction in the 
company's production and in turn reducing its income. 
Therefore, using fewer employees and facilities increases the 
implementation period of the integration process; however, due 
to the limited resources, the sum of the above analyses increases 
the managers' knowledge of the problem and obtains accurate 
insight to make the best decisions in the integration process.   

A. Limitations and future research 

   This study utilized the well-established CVIDR framework to 
identify the determinants of knowledge sharing. Within this 
framework, the sharing process between knowledge owners and 
recipients was explored, incorporating factors such as the 
willingness and ability of knowledge owners to share, the 
motivation and capacity of recipients to absorb knowledge, and 
the shared opportunities for knowledge sharing. However, 
previous research [13], [20], [22] has underscored additional 
influential factors in knowledge sharing, including interaction 
frequency, power dynamics, and various personality traits. 
These factors could potentially enhance the proposed model in 
future investigations. For instance, integrating interaction 
frequency could involve introducing a multiplier in the 
knowledge-sharing equation to adjust the collective sharing 
capacity, with techniques like Social Network Analysis (SNA) 
aiding in estimating this multiplier. 
In forthcoming studies, it may be beneficial to examine the 
costs of knowledge sharing from both  
   Future research could expand the model by exploring the 
costs of knowledge sharing from both direct and indirect 
perspectives, optimizing communication among units, and 
applying dynamic planning methods or cooperative game 
theory to solve the model. Additionally, focusing on vertical 
integration in supply chain knowledge sharing may offer 
alternative research avenues. While the current model aims to 
maximize knowledge levels, minimize sharing costs, and 
enhance collaboration within the supply chain, future studies 
could pursue objectives like maximizing profits, reducing 
sharing time, or improving stakeholder compatibility. 
Moreover, transitioning from a static to a dynamic approach 
could enable the development of long-term strategies in 
knowledge management and resource allocation by 
accommodating changing parameters and inputs through 
dynamic simulations. 
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