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0. Introduction

0.1. Background

Let R be a Noetherian ring, complete with respect to a filtration topology, and let (σ, δ) be a continuous 
skew derivation of R. Assuming that the filtration is positive and (σ, δ) is compatible with the filtration in 
the appropriate sense defined below (Definition 1.8), we are able to define the skew power series ring:

R[[x;σ, δ]] :=

⎧⎨⎩∑
n≥0

rnx
n : rn ∈ R

⎫⎬⎭ , (0.0.1)

a complete ring whose multiplication is given by xr = σ(r)x + δ(r) for each r ∈ R.
We consider the question: under what conditions is R[[x; σ, δ]] a prime ring? More generally, we aim to 

address and partially prove the following conjecture:

Conjecture 0.1. If P is a prime, (σ, δ)-invariant ideal of R, and S := R[[x; σ, δ]], then SP is a prime ideal of 
S.

The case when δ = 0 is already known in many cases: see [20, Proposition 2.8(ii)] and [17, 1.4.5].
Note that since SP is a two-sided ideal of S, in the notation of the conjecture, and the quotient of S by 

SP is a skew power series ring defined over R/P (cf. [16, Lemma 3.14]), this conjecture is equivalent to the 
statement that any skew power series ring over a prime ring is prime.

A related question was asked by Letzter [16, 3.19]. In the setting of [16], R is i-adically complete with 
respect to some ideal i, and we have σ(in) ⊆ in and δ(in) ⊆ in+1 for all n. Letzter asks, under the assumption 
that σ extends to compatible automorphisms of R[x; σ, δ] and R[[x; σ, δ]]: is R[[x; σ, δ]] a σ-prime ring?

We will primarily restrict ourselves to the case where δσ = σδ. This is satisfied in the cases of many 
natural skew power series rings of interest, including Iwasawa algebras: see Examples 4.12–4.13 below. In 
this setting, σ does indeed extend to compatible automorphisms of R[x; σ, δ] and R[[x; σ, δ]] by setting 
σ(x) = x, so Letzter’s hypotheses are satisfied.

(Some of our intermediate results, which may be of independent interest, extend easily to the setting 
where (σ, δ) is a q-skew derivation: that is, δσ = qσδ for some unit q ∈ R× satisfying σ(q) = q and δ(q) = 0. 
We will give the more general results where applicable.)

A positive answer to Conjecture 0.1 would be interesting for two reasons. Firstly, corresponding results 
in the case of skew polynomial rings are foundational in all developments of the theory: the similar results 
proved as e.g. [12, Theorem 4.2], [13, Theorem 2.2], [8, Proposition 3.3], [9, Proposition 3.3] are all used 
crucially in the contexts of those papers. Secondly, the corresponding result in the case of polycyclic group 
algebras is a key lemma that plays an important role in our understanding of their prime ideals: see [19, 
Lemma 9]. Unfortunately, their non-discrete analogues – in the world of filtered skew power series rings, 
and the world of completed group rings of compact p-adic Lie groups (i.e. Iwasawa algebras), respectively 
– are missing.



A. Jones, W. Woods / Journal of Pure and Applied Algebra 229 (2025) 107800 3
We note that Bergen and Grzeszczuk have studied similar questions for discrete skew power series rings 
[3]. However, in order to ensure that their skew power series rings exist, they impose the extra hypothesis 
that δ should be locally nilpotent. In general, this will not be the case for the examples of interest to us. For 
instance, the Fp-linear derivation δ on R = Fp[[x]] defined by δ(x) = xp+1 is topologically nilpotent (so that 
the skew power series ring R[[y; δ]] may be defined) but is not locally nilpotent. In the setting of Iwasawa 
algebras, δ is almost never locally nilpotent.

0.2. Results

Throughout the paper, fix a prime number p. Our main result, stated below, gives strong evidence for 
Conjecture 0.1.

In the statement of this result, and elsewhere in the paper, we will write Rb[[x; σ, δ]] for the bounded
skew power series ring over R, as defined in §1.4 below. This ring is the necessary analogue of R[[x; σ, δ]]
in the case when the filtration is not necessarily positive, and does not necessarily contain arbitrary power 
series with coefficients in R, but only those whose coefficients satisfy an appropriate convergence condition. 
However, note that if R is positively filtered then Rb[[x; σ, δ]] = R[[x; σ, δ]] always, which is usually the case 
of greatest interest to us.

Theorem A. Let R be a prime Noetherian algebra over Zp, and w : R → Z ∪ {∞} a complete, separated 
Zariskian filtration, such that

• grw(R) is finitely generated as a module over a central, Noetherian, graded subring A, containing gr(p).
• w(pn) = nw(p) ≥ n for all n ∈ N.
• The non-zero graded part A �=0 contains a non-nilpotent element.

Suppose also that (σ, δ) is a skew derivation on R compatible with w and satisfying σδ = δσ.

(a) If p = 0 in R (i.e. R is an Fp-algebra), then there exists N ∈ N such that Rb[[xpN ; σpN

, δp
N ]] is prime.

(b) If δ = σ−id, then there exists N ∈ N such that Rb[[x(N); σ(N), δ(N)]] is prime, where x(N) = (x +1)pN−1, 
σ(N) = σpN and δ(N) = σ(N) − id.

Remarks. We comment on the various hypotheses of this theorem.

(i) In most cases of interest, grw(R) is commutative, and hence A = grw(R), but we include the more 
general setting since the proof is identical and we anticipate that it will be useful in the future. The 
hypothesis that A �=0 contain a non-nilpotent element is required in §4.1 to choose the minimal prime 
there called q. All of these hypotheses are mild in our primary cases of interest, as in Examples 4.12–4.13.

(ii) Statement (a) makes sense because if R has characteristic p and σδ = δσ then (σpm

, δp
m) is a skew 

derivation, compatible with w, for all m ∈ N. The characteristic 0 case appears to require different 
treatment, so in statement (b) (which holds in characteristic p and characteristic 0) we restrict to the 
case δ = σ − id, as it is the case of interest for Iwasawa algebras (see Example 4.13). Note that, if 
char(R) = p and δ = σ − id, then statements (a) and (b) are equivalent.

Of course, if we could take N = 0 then Conjecture 0.1 would follow immediately, at least in positive 
characteristic. In characteristic 0, unfortunately, some issues arise in the case where δ �= σ − id which may 
prove difficult to resolve.

In the case where δ = σ− id, however, we can deduce an immediate corollary to Theorem A by realising 
Rb[[x; σ, δ]] as a crossed product of the appropriate sub-skew power series ring with Z/pnZ. Explicitly:
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Rb[[x; σ, σ − id]] =
pN−1⊕
i=0

(
Rb[[x(N);σ(N), δ(N)]]

)
(x + 1)i.

(See Example 4.13 below for an example of this.) Now we may apply [18, Theorem 4.4, Proposition 16.4]
to get:

Corollary 0.2. Let R be a prime, Noetherian algebra over Zp satisfying the hypotheses of Theorem A, and 
suppose that δ = σ − id. Then:

• If char(R) = p, then Rb[[x; σ, δ]] has prime nilradical.
• If char(R) = 0, then Rb[[x; σ, δ]] is semiprime. �

In fact, in the case where char(R) = 0 in the above corollary, we should in fact be able to prove that 
Rb[[x; σ, σ − id]] is in fact prime, but we hope to include this proof in a later article which develops on the 
ideas in this paper further.

The proof of Theorem A uses non-commutative valuation theory. Roughly speaking, we show that the 
skew power series ring is prime by showing that it carries a complete filtration f , with a prime associated 
graded ring, from which the result follows. The filtration f = fu depends on a filtration u on R, and the 
appropriate choice of u is given by our main technical result:

Theorem B. Let R be a prime Noetherian algebra over Zp, and w : R → Z ∪ {∞} a complete, separated 
Zariskian filtration satisfying the same hypotheses of Theorem A. Suppose also that (σ, δ) is a skew derivation 
on R compatible with w and satisfying σδ = δσ.

Then (σ, δ) extends to the Goldie ring of quotients Q(R), and there exists a separated filtration u on 
Q(R) such that the embedding (R, w) → (Q(R), u) is continuous, gru(Q(R)) is prime and Noetherian, and:

(a) If char(R) = p, then there exists N ∈ N such that (σpN

, δp
N ) is compatible with u.

(b) If δ = σ − id, then there exists N ∈ N such that (σpN

, σpN − id) is compatible with u.

The key difficulty in the proof of Theorem B is the construction of the filtration u. Roughly speaking, we 
follow the construction of [1, Theorem C], which uses techniques in non-commutative algebra to construct 
well behaved filtrations on various ring extensions of Q(R). Our major addition to the argument is the 
involvement of the skew derivation.

We will occasionally need to consider skew derivations (σ, δ) on rings R that are artinian but not semisim-
ple. In these cases, we hope to be able to pass to R/N(R), where N(R) is the (prime) radical of R, in order 
to use the well-established theory of semisimple artinian rings. However, while N(R) is preserved by σ, it 
will not necessarily be preserved by δ even in the nicest cases, as the following counterexample (in which σ
is the identity automorphism) shows:

Example 0.3. [4, Introduction] Let R = Fp[X]/(Xp), so that N(R) = (X). Then there exists an Fp-linear 
derivation δ such that δ(X) = 1 �∈ N(R).

Our final technical result, however, shows that the situation is not hopeless:

Theorem C. Let R be a Noetherian algebra over a field, (σ, δ) a skew derivation on R with σδ = δσ, and I
a minimal σ-prime ideal of R.

(a) If R is artinian, and char(R) = 0, then δ(I) ⊆ I.
(b) If char(R) = p > 0, then there exist J ⊇ I and M ∈ N such that
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(i) J is a minimal σpM -prime ideal of R,
(ii) I =

⋂
n∈Z σn(J), and this intersection is finite,

(iii) δp
M (J) ⊆ J . �

This is enough to imply that N(R) is a (σ, δ)-ideal in case (a), and N(R) is a (σpM

, δp
M )-ideal for some 

M in case (b).

0.3. Applications

There are many examples of classes of rings whose prime quotients satisfy the hypotheses of our Theo-
rem A, and which are independently of great interest. We hope that this will ensure the broad applicability 
of our results. The examples mentioned below are discussed in detail in §4.5:

1. many iterated local skew power series rings,
2. completed group algebras (Iwasawa algebras) of uniform pro-p groups.

0.4. Structure of the paper

After introducing some preliminary definitions and results in §1, we will show in §2 that, in the case 
where Q(R) carries a suitable filtration u satisfying certain compatibility relations with (σ, δ), and such 
that gru(Q(R)) is itself a prime ring, we can deduce that the skew power series ring Rb[[x; σ, δ]] is prime. 
This demonstrates how we will deduce Theorem A from Theorem B. In §3, we will take an interlude and 
describe invariant ideals under skew derivations, in both characteristic 0 and positive characteristic, which 
require very different treatment. We will conclude §3 by proving Theorem C. Finally, in §4 we will prove 
Theorem B, and we will conclude §4.4 with a proof of Theorem A. Detailed calculations of our example 
applications follow in §4.5.

In a subsequent work, we hope to build on these ideas further, with a view to proving that Rb[[x; σ, δ]] is 
prime in more general cases, such as the cases in which σ and δ commute or q-commute. We do hope that 
the techniques employed in this paper can be developed, and we have observed that with a small refinement 
of them it should be possible to prove that Rb[[x; σ, σ − id]] is prime in characteristic 0, but in general we 
believe that new methods are needed.

Acknowledgements: The authors are grateful to Konstantin Ardakov for his very thorough and helpful 
comments on an early draft of this paper, and to the anonymous referee at the Journal of Pure and Applied 
Algebra for several constructive suggestions. They would also like to thank the Heilbronn Institute for 
Mathematical Research for supporting and partially funding this work.

1. Preliminaries

1.1. Skew derivations and ideals

Let R be a Noetherian ring. A skew derivation on R is a pair (σ, δ), where σ is an automorphism of R
and δ is a left σ-derivation of R, by which we mean that δ(ab) = δ(a)b + σ(a)δ(b) for all a, b ∈ R.

It is not currently possible to deal with all skew derivations in full generality, so we focus on the important 
special case where σ and δ commute. The following formula can then be obtained by induction on n.

Lemma 1.1. Suppose that σδ = δσ. Given a, b ∈ R, n ∈ N, we have

δn(ab) =
n∑(n

k

)
δkσn−k(a)δn−k(b). �
k=0
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(As will be standard throughout this paper, for ease of notation, we will often write function composition 
as concatenation: δkσn−k := δk ◦ σn−k.)

Remark 1.2.

(i) If R has characteristic p, and (σ, δ) is a skew derivation on R satisfying σδ = δσ, then for any m, we 
have that (σpm

, δp
m) is a skew derivation on R. This follows immediately from Lemma 1.1, noting that 

the binomial coefficients 
(
pm

i

)
≡ 0 (mod p) for 1 ≤ i ≤ pm − 1.

(ii) Regardless of the characteristic of R, if we are in the special case δ = σ − id, then for any n, we have 
that (σn, σn − id) is a skew derivation on R.

We remind the reader of the following standard definitions.

Definition 1.3.

(i) An ideal I of R is called a σ-ideal if σ(I) ⊆ I. We may also say that such an ideal is preserved by σ. We 
define similarly a δ-ideal (i.e. δ(I) ⊆ I) and a (σ, δ)-ideal (i.e. both σ(I) ⊆ I and δ(I) ⊆ I).

(ii) A σ-ideal I of R is σ-prime if, whenever any two σ-ideals A and B satisfy AB ⊆ I, we must have either 
A ⊆ I or B ⊆ I. (We similarly define δ-prime and (σ, δ)-prime.)

Remarks 1.4.

(i) As R is Noetherian, an ideal I is σ-prime if and only if I =
⋂

n∈Z σn(P ) for some prime ideal P , and in 
fact this σ-orbit is finite [7, Remarks 4* and 5*].

(ii) The claim that a proper σ-ideal I is σ-prime is equivalent to the following condition: let a, b ∈ R, and 
suppose that σn(a)Rb ⊆ I for all n ∈ Z; then we must have either a ∈ I or b ∈ I. This is proved in [8, 
Lemma 2.1(a)].

1.2. Filtrations, associated graded rings, and skew derivations

If R is an arbitrary (even Noetherian) ring admitting a skew derivation (σ, δ), it is not generally the case 
that we can define the skew power series ring R[[x; σ, δ]] without some extra hypotheses, due to convergence 
issues. We will usually be interested in the case when R is a complete filtered ring. This is similar to the 
“i-adic” case studied in [16], but in some sense very different from the “locally nilpotent” case studied in 
[4].

The following definitions are all well known, but will set up our notational conventions for the paper. 
Our standard reference for filtered and graded rings is [11].

Definition 1.5. A (ring) filtration on R is a function u : R → Γ ∪ {∞}, where Γ is a totally ordered abelian 
group, satisfying the following properties:

(a) u(0) = ∞,
(b) u(x + y) ≥ min{u(x), u(y)} for all x, y ∈ R,
(c) u(xy) ≥ u(x) + u(y) for all x, y ∈ R.

In the usual way, we can associate to u a collection {FλR}λ∈Γ of additive subgroups of R by defining 
FλR = u−1([λ, ∞]). It will sometimes be useful to use the term filtration to refer to this collection {FλR}λ∈Γ, 
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rather than the function u, and we will call FλR the λth level set of the filtration u. Conversely, given the 
level sets {FλR} of a filtration u, we can recover u by setting u(x) = min{λ : x ∈ FλR} for x �= 0.

We also adopt the following conventions throughout this paper:

(a) Filtrations are always separated: u(x) = ∞ ⇔ x = 0.
(b) Γ will always be a discrete ordered group of rank 1, and as such we will often identify it with Z (or eZ

for some e > 0 where necessary).
(c) Our filtrations are written as descending filtrations, i.e. if m, n ∈ Γ with m ≤ n, then FmR ⊇ FnR. 

(Notice that [11] uses the opposite convention.)

Definition 1.6. Suppose u : R → Γ ∪ {∞} is a filtration on R. Write FλR = u−1([λ, ∞]) and Fλ+
R =

u−1((λ, ∞]). Then the associated graded ring (denoted gru(R), or sometimes just gr(R) where the filtration 
u is clear) is defined as

gru(R) =
⊕
λ∈Γ

(FλR/Fλ+
R).

Notation 1.7. For any x ∈ R \ {0}, we will write gru(x) (or just gr(x)) to denote the element x +Fu(x)+R ∈
gru(R). This is sometimes called the principal symbol of x in gru(R).

If (R, u) is a filtered ring, and d is a filtered endomorphism of R, we define the degree of d to be the 
element degu(d) := inf{u(d(x)) − u(x) : x ∈ R} ∈ Γ (or degu(d) = −∞ if this infimum does not exist, but 
this will not happen in this paper).

The following definition will underpin most of the work of this paper.

Definition 1.8. Suppose u : R → Γ ∪ {∞} is a filtration on R, and (σ, δ) is a skew derivation on R. We say 
that (σ, δ) is compatible with u if degu(σ − id) > 0 and degu(δ) > 0. (Note that this implies that σ and δ
are filtered maps, and hence continuous with respect to the filtration topology on R.)

In other words: identify Γ ∼= eZ for some e > 0. Then (σ, δ) is compatible with u if, for all λ ∈ Γ and all 
x ∈ R with u(x) = λ, we have

• u(σ(x) − x) ≥ λ + e and
• u(δ(x)) ≥ λ + e.

The importance of this definition will become clear in the next subsection. For now, we note simply that 
this implies gru(x) = gru(σ(x)) for all x ∈ R.

Remark. This (relatively strong) notion of compatibility is useful for our purposes, but we note here that 
other (weaker) forms of compatibility are very common in the literature. For instance, it is common to insist 
simply that degu(σ) = 0, rather than degu(σ − id) > 0.

Lemma 1.9. Let (R, u) be a filtered Zp-algebra and (σ, σ − id) a skew derivation on R compatible with u. 
Suppose u(p) ≥ 1 and degu(σ − id) ≥ 1. Then degu(σpn − id) ≥ n.

Proof. Rewriting σ as (σ − id) + id and expanding using the binomial theorem:

σpn − id = ((σ − id) + id)p
n − id

=
pn∑(pn

i

)
(σ − id)i.
i=1
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By assumption, degu(σ − id) ≥ 1, so degu((σ − id)i) ≥ i. Hence it remains to show that u 
((

pn

i

))
≥ n − i. 

Writing vp for the p-adic valuation on Zp, we have vp(pn − k) = vp(k) for all 1 ≤ k ≤ pn − 1; and, as

i!
(
pn

i

)
= pn

i−1∏
k=1

(pn − k),

we may take vp of both sides to see that vp(i!) + vp

((
pn

i

))
= n + vp((i − 1)!). From here we may conclude 

that u 
((

pn

i

))
≥ vp

((
pn

i

))
= n − vp(i) ≥ n − i as required. �

We will also need the following fact:

Lemma 1.10. Let A be a ring admitting a filtration u, and let (σ, δ) be a skew derivation on A compatible 
with u. Let Â be the completion of A with respect to u, and û the induced filtration. Then there is a unique 
extension of (σ, δ) to a skew derivation (σ̂, ̂δ) on Â which is compatible with û.

Proof. Identify Γ ∼= Z. The existence of maps (of filtered abelian groups) σ̂ and δ̂, and the claims that 
degû(σ̂ − id) ≥ 1 and degû(δ̂) ≥ 1, follow from [11, Chapter I, Theorem 3.4.5]. σ̂ is an automorphism of 
Â by [11, Chapter I, Corollary 3.4.8], and δ̂ is a σ̂-derivation by an application of [11, Chapter I, Theorem 
3.4.7]. �
1.3. Microlocalisation

Let R be a ring carrying a separated filtration w : R → Z ∪ {∞}, with associated level sets {FnR}n∈Z. 
Define the Rees ring R̃ to be the graded ring given by

R̃ :=
⊕
n∈Z

FnR · t−n,

where (at−n) · (bt−m) := abt−(n+m). Note that t = 1 · t1 ∈ R̃ is central, and despite the notation, t is not 
actually a unit in R̃.
Recall from [11, Definition 2.1.1] that w is a Zariskian filtration if the Rees ring R̃ is Noetherian, and the 
Jacobson radical of the ring F 0R contains the ideal F 1R. In the case where R is complete with respect to 
w, it follows from [11, Theorem 2.1.2] that w is Zariskian if and only if the associated graded ring grw R is 
Noetherian, so throughout this paper our filtrations are usually Zariskian.

So, suppose w is a Zariskian filtration. Following the approach in [10], we will show in this section how 
we can lift a homogeneous localisation of the associated graded ring grw R to an Ore localisation of R, in a 
process known as microlocalisation.

Firstly, we will explore how to realise both the ring R and its associated graded ring as quotients of the 
Rees ring:

Lemma 1.11. There exists a surjective ring homomorphism ρ1 : R̃ → R defined by rt−n �→ r with kernel 
(t − 1)R̃, and a surjective homomorphism of graded rings ρ2 : R̃ → grw(R) defined by rt−n �→ r + Fn+1R

with kernel tR̃.

Proof. It is clear that ρ1 and ρ2 are well defined, surjective ring homomorphisms, so it remains to calculate 
their kernels.
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Clearly (t −1)R̃ is contained in ker(ρ1), since ρ1(t) = 1 = ρ1(1). On the other hand, if ρ1

(
M∑

n=−N

rnt
−n

)
=

0 for a given set of elements rn ∈ FnR with r−N , rM �= 0, then 
M∑

n=−N

rn = 0, and so since r−N =

− 
M∑

n=−N+1
rn ∈ F−N+1R, we see that r−N tN ≡ r−N tN−1 (mod (t − 1)R̃).

Therefore, 
M∑

n=−N

rnt
−n ≡ (r−N + r−N+1)tN−1 +

M∑
n=−N+2

rnt
−n (mod (t − 1)R̃), so by induction on −N

we may assume that 
M∑

n=−N

rnt
−n ≡ st−M (mod (t − 1)R̃) for some s ∈ FMR. Thus s = ρ1(st−M ) = 0, and 

M∑
n=−N

rnt
−n ∈ (t − 1)R̃ as required.

Since ρ2 is graded, it remains to check that ρ2(rt−n) = 0 for r ∈ FnR if and only if rt−n ∈ tR̃. But 
ρ2(rt−n) = r + Fn+1R is zero if and only if r ∈ Fn+1R, i.e. if and only if rt−n = (rt−(n+1))t ∈ tR̃ as 
required. �

Now, let T be a multiplicatively closed, homogeneous, left Ore-localisable subset of grw(R), let T−1 grw(R)
be the corresponding localisation, and let α : grw(R) → T−1 grw(R) be the natural map, so that every 
element of T−1 grw(R) can be written as α(X)−1α(A) for some A ∈ grw(R), X ∈ T .

Let S be the saturated lift S := {r ∈ R : gr(r) ∈ T} of T to R, and let S̃ be the saturated lift 
S̃ := {s ∈ R̃ : s homogeneous, ρ2(s) ∈ T} of T to R̃. It follows immediately that ρ1(S̃) = S.

Lemma 1.12. S and S̃ are left Ore-localisable subsets of R and R̃ respectively.

Proof. This follows from [10, Lemma 2.1]. �
Therefore, we can define the localisations S̃−1R̃ and S−1R, and let τ : R → S−1R and τ̃ : R̃ → S̃−1R̃

be the natural maps, so that every element of S−1R has the form τ(s)−1τ(r) for some r ∈ R, s ∈ S, and 
similarly for S̃−1R̃. Also, S̃−1R̃ is a graded ring, where

(S̃−1R̃)n := {τ̃(s)−1τ̃(r) : r ∈ R̃, s ∈ S̃, r homogeneous, deg(r) − deg(s) = n}.

Here, deg means the degree within the graded ring R̃, e.g. deg(t) = −1.
From now on, we will assume that τ is an injection, i.e. that sr �= 0 for all s ∈ S, r ∈ R \ {0}. This is 

always true in the case where R is a prime ring.
In this case, S−1R is a ring extension of R, so we may identify R with its image under τ and simply 

write τ(r) as r. Moreover, since S̃ is homogeneous, it follows that if s̃r̃ = 0 for some s̃ ∈ S̃, r̃ ∈ R̃, then 
s̃ = st−n for some s ∈ S. But it follows from the proof of [1, Lemma 3.3] that S consists of regular elements: 
therefore, sr �= 0 whenever r �= 0, and so we see that r̃ = 0. Hence τ̃ is also an injection, and we may 
consider S̃−1R̃ a ring extension of R̃.

However, we cannot assume that the natural graded map α : grw(R) → T−1 grw(R) is an injection: in 
fact in general it will not be, even when R is prime.

Proposition 1.13. The maps ρ1, ρ2 extend to ring homomorphisms on S̃−1R̃, namely ρ1 : S̃−1R̃ → S−1R

and ρ2 : S̃−1R̃ → T−1 grw(R), with kernels (t − 1)S̃−1R̃ and tS̃−1R̃ respectively, and ρ2 is graded.
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Proof. Define ρ1 : S̃−1R̃ → S−1R by ρ1(s̃−1r̃) = ρ1(s̃)−1ρ1(r̃). We show first that this is well defined. Note 
that ρ1(S̃) = S, so it makes sense to take the inverse of ρ1(s̃); and if s̃−1r̃ = s̃′ −1r̃′, then we may find 
ũ ∈ R̃, ṽ ∈ S̃ such that ũr̃ = ṽr̃′ and ṽ−1ũ = s̃′s̃−1. This gives ρ1(ũ)ρ1(r̃) = ρ1(ṽ)ρ1(r̃′), which we may 
rearrange to see that ρ1(s̃)−1ρ1(r̃) = ρ1(s̃′)−1ρ1(r̃′). A similar proof shows that ρ2 : S̃−1R̃ → T−1 grw(R), 
s̃−1r̃ �→ α(ρ2(s̃))−1α(ρ2(r̃)) is well defined.

It is readily checked that ρ1, ρ2 are ring homomorphisms, and surjectivity is obvious.
Again, it is clear that (t −1)S̃−1R̃ is contained in the kernel of ρ1, and if ρ1(s̃)−1ρ1(r̃) = 0 then ρ1(r̃) = 0, 

so r̃ ∈ (t − 1)S̃−1R̃ by Lemma 1.11, and hence s̃−1r̃ ∈ (t − 1)S̃−1R̃. The same argument shows that the 
kernel of ρ2 is tS̃−1R̃, so it remains to prove that ρ2 is graded.

Given s̃−1r̃ with r̃ homogeneous and deg(r̃) − deg(s̃) = n, we know that ρ2(r̃) = 0 or deg(ρ2(r̃)) −
deg(ρ2(s̃)) = n in grw(R). But the natural localisation map α : grw(R) → T−1 grw(R) is graded, so if 
X ∈ grw(R) is homogeneous of degree d then either X ∈ ker(α) and α(X) = 0, or else α(X) has degree d
in T−1 grw(R).

In particular, if ρ2(r̃) lies in the kernel of α then ρ2(s̃−1r̃) = 0, otherwise deg(α(ρ2(r̃))) = deg(ρ2(r̃)). 
Furthermore, since ρ2(s̃) ∈ T , it does not lie in the kernel of α, so deg(α(ρ2(s̃))) = deg(ρ2(s̃)), and hence we 
can deduce that deg(α(ρ2(r̃))) − deg(α(ρ2(s̃))) = n in T−1 grw(R), hence this extension of ρ2 is graded. �

Using this proposition, we define a new filtration w′ on S−1R whose nth level set is given by FnS−1R :=
ρ1((S̃−1R̃)n).

Proposition 1.14. The map w′ : S−1R → Z ∪{∞} is a filtration with Rees ring S̃−1R̃ and associated graded 
ring grw′(S−1R) = T−1 grw(R). Moreover, w′ satisfies:

• For all x ∈ S−1R, w′(x) = max{w(r) − w(s) : r ∈ R, s ∈ S, x = s−1r}.
• For all r ∈ R, w′(r) ≥ w(r), with equality if r ∈ S.
• For all r ∈ R, s ∈ S, w′(s−1r) = w′(r) − w(s).

Proof. To prove that w′ is a filtration, we need only prove that the level sets FnS−1R satisfy Fn+1S−1R ⊆
FnS−1R and FnS−1R · FmS−1R ⊆ Fn+mS−1R for all n, m ∈ Z.

The second property is clear since FnS−1R = ρ1((S̃−1R̃)n), we have that (S̃−1R̃)n · (S̃−1R̃)m ⊆
(S̃−1R̃)n+m, and ρ1 is a ring homomorphism. For the first, note that if x ∈ Fn+1S−1R then x = ρ1(s̃−1r̃)
for some r̃ ∈ R̃ homogeneous, s̃ ∈ S̃ with deg(r̃) − deg(s̃) = n + 1, and since t − 1 lies in the kernel of ρ1, it 
follows that x = ρ1(s̃−1tr̃), and deg(tr̃) − deg(s̃) = deg(r̃) − deg(s̃) − 1 = n. Thus x ∈ FnS−1R and hence 
Fn+1S−1R ⊆ FnS−1R.

Let ˜S−1R =
⊕
n∈Z

(FnS−1R)t−n be the Rees ring, and define a map ˜S−1R → S̃−1R̃ by

(s−1r)t−n �→ (st−a)−1(rt−b)

when w′(s) = a, w′(r) = b and b − a = n. This is a well defined ring isomorphism.
Similarly, we can define a map grw′(S−1R) → T−1 grw(R) by

s−1r + Fn+1S−1R �→ α(s + F a+1R)−1α(r + F b+1R),

which is an isomorphism of graded rings.
Now, given x ∈ S−1R, we see that

w′(x) = max{n ∈ Z : x ∈ FnS−1R} = max{n ∈ Z : x ∈ ρ1((S̃−1R̃)n)}.
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Suppose x = ρ1(s̃−1r̃), where s̃ ∈ S̃ has degree a and r̃ ∈ R̃ has degree b. Then s̃ = st−a for some s ∈ S

with w(s) = a (by definition of S̃) and r̃ = rt−b for some r ∈ R with w(r) ≥ b, so that s̃−1r̃ ∈ (S̃−1R̃)n
is homogeneous of degree n = b − a, and x = s−1r ∈ FnS−1R. Taking the maximum over all such 
representations of x,

w′(x) = max{b− a ∈ Z : x = s−1r, w(s) = a,w(r) ≥ b}.

Clearly b − a is only maximal if b is maximal, in which case w(r) = b, and we have

w′(x) = max{w(r) − w(s) : x = s−1r}

as required.
Now, if r ∈ R and w(r) = n then r = ρ1(rt−n) ∈ ρ1(R̃n), so r ∈ ρ1((S̃−1R̃)n) and hence w′(r) ≥ n = w(r). 

Moreover, if w′(r) > w(r) then under the natural map α, r + Fn+1R is sent to r + Fn+1S−1R = 0, i.e. 
r + FnR lies in the kernel of α. So by standard properties of the localisation, there exists a ∈ T such that 
a(r + Fn+1R) = 0, i.e. there exists s ∈ S such that sr ∈ Fn+w(s)+1R, and hence w(rs) > w(r) + w(s).

In particular, if r ∈ S then this means that b := r+Fn+1R ∈ T , and it follows that ab = 0 with a, b ∈ T , 
and hence 0 ∈ T – contradiction. Therefore if r ∈ S, w′(r) = w(r).

Finally, if s ∈ S with w(s) = n then s + Fn+1S−1R is a unit in grw′(S−1R), and hence we see that 
w′(sr) = w′(s) + w′(r) for all r ∈ R. It follows that w′(s−1r) = w′(r) − w′(s) for all r ∈ R as required. �

Note: It is proved in [10] that w′ is in fact a Zariskian filtration on S−1R.
Now, suppose that R carries a skew derivation (σ, δ) such that (σ, δ) is compatible with the initial filtration 

w. We will prove that (σ, δ) extends to a skew derivation of S−1R, and that the extension is compatible 
with w′.

Firstly, it is standard that any automorphism σ and any σ-derivation δ extend uniquely to a localisation, 
by defining σ(s−1r) = σ(s)−1σ(r), and δ(s−1r) = σ(s)−1(δ(r) − δ(s)s−1r), so it remains to prove that the 
extension is compatible.

We can also extend σ and δ to the Rees ring R̃ by:

σ̃

(∑
n∈Z

rnt
−n

)
=
∑
n∈Z

σ(rn)t−n, δ̃
(∑

n∈Z
rnt

−n

)
=
∑
n∈Z

δ(rn)t−n

Lemma 1.15. The pair (σ̃, ̃δ) is a graded skew derivation of R̃ such that σ(t) = t and δ̃(t) = 0. In particular, 
the extensions of σ̃ and δ̃ to S̃−1R̃ are graded, and they preserve the ideals generated by t and t − 1.

Proof. This follows from the fact that (σ, δ) is compatible with w. �
Theorem 1.16. The natural extension of (σ, δ) to S−1R is compatible with w′.

Proof. By Lemma 1.15, (σ̃′, ̃δ′) is a skew derivation of S̃−1R̃ which preserves the ideals generated by t and 
t − 1, so it follows from Proposition 1.13 and Proposition 1.14 that it induces a skew derivation (σ′, δ′) of 
S−1R, and this will coincide with the extension of (σ, δ) to S−1R.

To prove compatibility, note that if we let d be either δ or σ − id, then w(d(r)) > w(r) for all r ∈ R by 
compatibility, from which it follows that d̃(rt−n) = d(r)t−n = t(d(r)t−(n+1)) ∈ tR̃. Thus d(R̃) ⊆ tR̃, and 
hence d̃′(S̃−1R̃) ⊆ tS̃−1R̃, and thus the induced map d′ is zero on the associated graded ring grw′ S−1R =
S̃−1R̃/(t). Therefore (σ′, δ′) is compatible with w′. �



12 A. Jones, W. Woods / Journal of Pure and Applied Algebra 229 (2025) 107800
1.4. Bounded skew power series rings

Suppose we are given a skew derivation (σ, δ) on a ring R. The skew polynomial ring R[x; σ, δ] is defined 
to be equal to R[x] as a left R-module, with the (unique) ring structure determined by extending its left 
R-module multiplication to a ring multiplication map R[x] ×R[x] → R[x] by the rule

xa = σ(a)x + δ(a) (1.4.1)

for all a ∈ R.
We would like to form the skew power series ring in the same way, beginning with the left R-module R[[x]]

and providing it with a unique ring structure by extending the rule (1.4.1) to a (continuous) multiplication 
extending the left R-module structure. If this ring structure does indeed exist, we call the ring a skew 
power series ring, and denote it R[[x; σ, δ]]. However, in general, this ring structure may fail to exist due to 
convergence issues. To fix this, we will need some extra hypotheses on R, σ and δ:

Proposition 1.17. Suppose that u : R → Z ∪ {∞} is a separated filtration on R, that R is complete with 
respect to u, and that (σ, δ) is a skew derivation on R compatible with u.

(i) The left R-module

Rb[[x;σ, δ]] = Rb
u[[x;σ, δ]] =

⎧⎨⎩∑
n≥0

rnx
n : rn ∈ R, u(rn) + 1

2n → ∞ as n → ∞

⎫⎬⎭
is in fact a ring, with multiplication given by extending the rule (1.4.1) to a continuous R-linear mul-
tiplication in a unique way. Unless the filtration on R is not apparent, we will usually write this as 
Rb[[x; σ, δ]].

(ii) Define the function fu : Rb
u[[x; σ, δ]] → 1

2Z ∪ {∞} as follows: for all choices of ri ∈ R, set

fu

( ∞∑
i=0

rix
i

)
= inf

i≥0

{
u(ri) + 1

2 i
}
.

Writing r ∈ R as the “constant” series r + 0x + 0x2 + · · · ∈ Rb[[x; σ, δ]], we may identify R with 
a subring of Rb[[x; σ, δ]]. Then fu is a ring filtration with fu|R = u, Rb[[x; σ, δ]] is complete with 
respect to fu, and the identity automorphism on gru(R) extends to an isomorphism of graded rings 
grfu(Rb[[x; σ, δ]]) → (gru(R))[Z] mapping x to Z.

Proof. Part (i) follows exactly as in [16, §3.4], replacing in with FnR, the nth level set of the filtration u. Part 
(ii) then follows as in [22, Lemma 1.13, Remark 1.14], except for the claim that Rb[[x; σ, δ]] is complete. 
To show this, take a sequence of elements s(j) =

∑
i≥0 r

(j)
i xi ∈ Rb[[x; σ, δ]] such that fu(s(j)) → ∞ as 

j → ∞. Then, as j → ∞, by definition we have infi≥0{u(r(j)
i ) + 1

2 i} → ∞, from which we may conclude 

that u(r(j)
i ) + 1

2 i → ∞ for each i, and hence u(r(j)
i ) → ∞ for each i. But as R is complete with respect to 

fu|R = u, we are done. �
We call Rb[[x; σ, δ]] a bounded skew power series ring. Note that if R is positively filtered, i.e. u(r) ≥ 0

for all r ∈ R, then the requirement that u(rn) + 1
2n → ∞ becomes vacuous. In this case, we just call the 

resulting ring the skew power series ring, denoted by R[[x; σ, δ]], and it contains all power series in R.



A. Jones, W. Woods / Journal of Pure and Applied Algebra 229 (2025) 107800 13
Corollary 1.18. If u : R → Z ∪ {∞} is a complete, separated filtration and gru(R) is Noetherian, then 
Rb[[x; σ, δ]] is Noetherian.

Proof. Using Proposition 1.17, we see that Rb[[x; σ, δ]] is complete, and grfu(Rb[[x; σ, δ]]) ∼= (gru(R))[Z], 
which is clearly a Noetherian ring. Therefore, it follows from [11, Ch. I Lemma 7.1.2] that Rb[[x; σ, δ]] is 
Noetherian. �
Remarks 1.19.

(i) We could replace 1
2 with any 0 < ε < 1 in Proposition 1.17, and it would make no difference to the 

proof or anything that follows. However, since varying the choice of ε would yield a different Rb[[x; σ, δ]]
(as a set), we consider it neater to work with a fixed choice throughout.

(ii) If T is any positively filtered, (σ, δ)-invariant subring of R, then T [[x; σ, δ]] is a subring of Rb[[x; σ, δ]].
(iii) It is worth mentioning that the bounded skew power series ring is often far too large for many purposes. 

For instance, if G is a compact p-adic Lie group, the appropriate notion of its Iwasawa algebra over 
Qp is usually taken to be QpG := (ZpG)[ 1p ], an incomplete ring. However, if a complete filtered ring is 
prime, then any dense subring is also prime, so our results for bounded skew power series rings can also 
provide information about these incomplete subrings.

2. Extending prime ideals

In this section, we will explore how to prove under certain conditions that the bounded skew power series 
ring Rb[[x; σ, δ]] is prime, which will be important for the proof of our main result Theorem A.

2.1. Ideals in skew power series rings

Let R be a ring, carrying a complete, separated filtration w : R → Z ∪{∞}, let (σ, δ) be a skew derivation, 
compatible with w, and let S = Rb

w[[x; σ, δ]] be the bounded skew power series ring. Note that the well-
definedness of the multiplicative structure on S depends on some notion of compatibility between (σ, δ) and 
the topology of R, but the following result ensures that we can change the filtration without losing the ring 
structure. In the statement, we use the notation fu from Proposition 1.17.

Proposition 2.1. Suppose that R carries a complete filtration v : R → Z ∪{∞}, such that (σ, δ) is compatible 
with v, and there exist α, β ∈ R with 0 < α ≤ 1 such that v(r) ≥ αw(r) + β for all r ∈ R. Then there 
is a continuous inclusion of rings (Rb

w[[x; σ, δ]], fw) → (Rb
v[[x; σ, δ]], fv) which restricts to the identity on 

R[x; σ, δ].

Proof. Define θ : Rb
w[[x; σ, δ]] → Rb

v[[x; σ, δ]], 
∑
n≥1

rnx
n �→

∑
n≥1

rnx
n. To show that this map is well-defined, 

we know that w(rn) + n
2 → ∞ as n → ∞, so suppose for contradiction that there exists M > 0 such that 

v(rn) + n
2 ≤ M for infinitely many n.

For any such n,

M ≥ v(rn) + n

2 ≥ αw(rn) + n

2 + β = α
(
w(rn) + n

2α

)
+ β = α

(
w(rn) + n

2 + (1 − α)n
2α

)
+ β

But we may choose this n such that w(rn) + n
2 > M−β

α , and since 0 < α ≤ 1, we see that (1−α)n
2α ≥ 0, 

so α
(
w(rn) + n

2 + (1−α)n
2α

)
+ β > M − β + β = M , and hence M > M , which is the desired contradiction. 

Thus v(rn) + n
2 must also tend to infinity, so 

∑
rnx

n ∈ Rb
v[[x; σ, δ]].
n≥1
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If s :=
∑
n≥1

rnx
n and fw(s) ≥ R then

fv (θ(s)) = fv

⎛⎝∑
n≥1

rnx
n

⎞⎠ = inf
{
v(rn) + n

2 : n ∈ N
}

≥ inf
{
α

(
w(rn) + n

2 + (1 − α)n
2α

)
+ β : n ∈ N

}
≥ α inf

{
w(rn) + n

2 : n ∈ N
}

+ β = αfw(s) + β ≥ αR + β,

thus θ is continuous.
Finally, clearly θ is injective and restricts to the identity map on R[x; σ, δ], so since R[x; σ, δ] is dense in 

(Rb
w[[x; σ, δ]], fw) and (Rb

v[[x; σ, δ]], fv) and θ is continuous, it follows that θ is a ring homomorphism. �
Now, let us suppose that w is a Zariskian filtration. In this case, for any closed two-sided ideal I, the 

quotient ring R/I is complete with respect to the natural quotient filtration w(r+I) = sup{w(r+y) : y ∈ I}, 
which is still a Zariskian filtration.

Lemma 2.2. Let I be a closed, (σ, δ)-invariant ideal of R, and let (σ, δ) be the induced skew derivation of 
R/I, then (σ, δ) is compatible with the quotient filtration w. The closure IS is a two-sided ideal of S and 
S/IS ∼= (R/I)b[[x; σ, δ]].

(Compare [16, Lemma 3.14].)

Proof. Let d be either σ − id or δ. To prove that (σ, δ) is compatible with w, we just need to show that 
w(d(r + I)) > w(r + I) for all r ∈ R. But

w(d(r + I)) = w(d(r) + I)

= sup
y∈I

w(d(r) + y)

≥ sup
z∈I

w(d(r) + d(z)) as d(I) ⊆ I

> sup
z∈I

w(r + z) as d has positive w-degree

= w(r + I).

Clearly IS is a closed, right ideal of S. Consider the natural map

Rb[[x; σ, δ]] → (R/I)b[[x; σ, δ]], rxn �→ (r + I)xn.

This is clearly a surjective ring homomorphism, and its kernel is the set of all power series 
∑
n∈N

rnx
n such 

that rn ∈ I for all n, which is clearly equal to the closure of IS in S. Therefore IS is a two-sided ideal, and 
the quotient S/IS is isomorphic to (R/I)b[[x; σ, δ]] as required. �

Hence, given a prime (σ, δ)-ideal P of R, this lemma tells us that the induced ideal PS is prime in S if 
and only if the skew power series ring (R/P )b[[x; σ, δ]] is a prime ring. So we may reduce to the case P = 0
throughout.

Note: If we assume that w is positive, then fw is also positive and Zariskian, so it follows from [11, 
Corollary 2.1.5] that all one-sided ideals in R[[x; σ, δ]] are closed, so we may just write PS as PS.
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2.2. Criterion for primeness

Again, let R be a ring carrying a separated filtration v : R → eZ ∪ {∞}. The following result is [11, Ch 
II. Lemma 3.2.7], but we repeat the proof for the convenience of the reader.

Lemma 2.3. If the associated graded ring grv R is a prime ring, then R is prime.

Proof. Suppose that I, J are two-sided ideals of R such that IJ = 0, then let gr I be the additive subgroup 
of grv R generated by elements of the form gr(y) for y ∈ I, and let grJ be defined similarly. Then gr I and 
grJ are two-sided ideals of grR, and (gr I)(grJ) = 0. So since grR is prime, we may assume that gr I = 0, 
and hence gr(y) = 0 for all y ∈ I.

So since v is a separated filtration, this implies that I = 0, and hence R is prime. �
Using Proposition 1.17, we see that the associated graded ring of Rb[[x; σ, δ]] with respect to fv is 

(grv R)[X], so it follows that if grv R is prime then grfv R
b[[x; σ, δ]] is also prime, and hence Rb[[x; σ, δ]] is 

a prime ring by the lemma.
So, from now on, we will assume that R is a prime Noetherian ring, and we will assume that w : R →

Z ∪ {∞} is a Zariskian filtration, and that (σ, δ) is compatible with w. Let Q(R) be the simple Goldie ring 
of quotients of R, and recall that there is a unique extension of (σ, δ) to a skew derivation of Q(R).

Assumption: We suppose that Q(R) carries a separated filtration u such that (σ, δ) is compatible with 
u, there exists α, β ∈ R with 0 < α ≤ 1 such that u(r) ≥ αw(r) + β for all r ∈ R, and gru Q(R) is a prime, 
Noetherian ring.

Let Q be the completion of Q(R) with respect to u. Then (σ, δ) extends uniquely to a skew derivation 
of Q by Lemma 1.10, and this extension will still be compatible with u. Since gru Q = gru Q(R) is prime 
and Noetherian, and grfu Qb[[x; σ, δ]] ∼= (gru Q)[Z], it follows from Corollary 1.18 and Lemma 2.3 that 
Qb[[x; σ, δ]] is prime and Noetherian.

From now on, set T := Qb[[x; σ, δ]]. Note that since u(r) ≥ αw(r) + β for all r ∈ R, it follows that the 
identity (R, w) → (R, u) is continuous, and using Proposition 2.1 we see that Rb[[x; σ, δ]] = Rb

w[[x; σ, δ]] is 
a subring of T . Using this, we will prove that the skew power series ring S := Rb[[x; σ, δ]] is prime.

Proposition 2.4. If I is a closed, two-sided ideal of S then TI is a two-sided ideal of T .

Proof. Clearly TI is a left ideal of T and TIS ⊆ TI, so it remains to prove that TIT ⊆ TI.
Since we know that TIxn ⊆ TI for all n ∈ N, it suffices to prove that TIq ⊆ TI for all q ∈ Q, meaning 

that TI is right Q[x; σ, δ]-invariant, and hence right Qb[[x; σ, δ]]-invariant by density.
Since Q(R) is dense in Q and TI is closed in T , we can assume that q ∈ Q(R), so q = rs−1 for some 

r, s ∈ R, s regular. But TIr ⊆ TI so we only need to prove that TIs−1 ⊆ TI.
Consider the chain of left ideals TI ⊇ TIs ⊇ TIs2 ⊇ · · · in T . Then multiplying on the right by s−n

for any n ∈ N gives TI ⊆ TIs−1 ⊆ TIs−2 ⊆ · · · , and since T is Noetherian, this chain must terminate. So 
TIs−(n+1) = TIs−n for some n, and it follows that TIs−1 = TI as required. �
Corollary 2.5. Rb[[x; σ, δ]] is a prime ring.

Proof. Suppose S has closed ideals I, J such that IJ = 0. Then by Proposition 2.4, TI and TJ are two-sided 
ideals of T , and (TI)(TJ) ⊆ TIJ = 0. But we know that T is a prime ring, so either TI = 0 or TJ = 0, 
meaning that either I = 0 or J = 0 as required. �

So, altogether, we have proved the following key result:
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Theorem 2.6. Let R be a prime, Noetherian ring carrying a complete Zariskian filtration w : R → Z ∪ {∞}
and a compatible skew derivation (σ, δ). Suppose further that the Goldie ring of quotients Q(R) carries a 
filtration u such that:

• There exist α, β ∈ R such that 0 < α ≤ 1 and u(r) ≥ αw(r) + β for all r ∈ R.
• gru Q(R) is prime and Noetherian.
• The unique extension of (σ, δ) to Q(R) is compatible with u.

Then the skew power series ring Rb[[x; σ, δ]] is prime.

For the remainder of this paper, we will focus on constructing this filtration u.

3. Minimal σ-prime ideals

Continue to suppose that R is a Noetherian ring admitting a skew derivation (σ, δ).

3.1. The characteristic 0 case

We begin by reminding the reader of the following two results, both essentially taken from [4]. In the 
following, if q is a central invertible element of R and n ∈ N, we will write the useful element {n!}q :=
(1)(1 + q)(1 + q + q2) . . . (1 + q + · · · + qn−1) ∈ R.

Lemma 3.1. [4, Lemma 3(i)] Let R be a ring, and (σ, δ) a skew derivation on R. If I is a σ-ideal of R, then 
I + δ(I) is an ideal of R. �

Recall that the prime radical of a ring R is the intersection of all its (minimal) prime ideals [15, 4.10.13]; 
equivalently, as R is Noetherian, it is the unique largest nilpotent two-sided ideal of R [15, 4.10.30].

Proposition 3.2. Let R be a Noetherian ring, (σ, δ) a q-skew derivation on R for some central q ∈ R×, and 
N any σ-ideal of R. If δn(Nn) = 0 for some positive integer n, and {n!}q is invertible in R, then δ(N)n ⊆ N . 
In particular, if N is the prime radical of R, then δ(N) ⊆ N .

Proof. The following calculation is essentially identical to the one given in [4, Lemma 4(iii)]: if s1, . . . , sn ∈ N

are arbitrary and ri = σi−n(si) for all 1 ≤ i ≤ n, then

0 = δn(r1r2 . . . rn) ∈ {n!}q × σn−1δ(r1)σn−2δ(r2) . . . σδ(rn−1)δ(rn) + N

= {n!}q
q(n−1)n/2 δσ

n−1(r1)δσn−2(r2) . . . δσ(rn−1)δ(rn) + N

= {n!}q
q(n−1)n/2 δ(s1)δ(s2) . . . δ(sn−1)δ(sn) + N,

so if {n!}q is invertible, we see that δ(s1)δ(s2) . . . δ(sn−1)δ(sn) ∈ N , i.e. that δ(N)n ⊆ N .
Now suppose that N is the prime radical of R (a σ-ideal of R, as the automorphism σ permutes the 

minimal prime ideals of R): there exists n such that δn(Nn) = 0 as N is a nilpotent ideal [15]. Now 
Lemma 3.1 shows that J := N + δ(N) is an ideal of R. Since Jm ⊆ N + δ(N)m for any m, we see that 
Jn ⊆ N is a nilpotent ideal, and so J ⊆ N . �

Many examples satisfy the hypotheses of the above proposition, but we single out two broad and inter-
esting classes in particular:
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Corollary 3.3. Suppose R is a Noetherian algebra over a central subring A which is a domain, and (σ, δ)
is a q-skew derivation on R for some q ∈ A×. Assume also either that q is not a root of unity or that 
char(R) = 0 and q = 1. Then δ preserves the prime radical N of R.

Proof. Either hypothesis on q implies that 1 + q + · · · + qm �= 0 for all m ≥ 0, and so {n!}q �= 0 ∈ A for all 
n. �
3.2. Calculations in characteristic p > 0

In positive characteristic, the issue is less straightforward: if R is an algebra over some finite field Fpm , 
and q ∈ F×

pm , then {n!}q will only be nonzero for sufficiently small n. We are particularly interested in the 
case q = 1.

We now fix a prime p and turn to the case in which R is an Fp-algebra. In the characteristic p case, it is 
generally not true that δ will preserve the prime radical of R (see the counterexample in [4, Introduction]); 
as will be a recurring theme throughout the paper, we will have to replace (σ, δ) by something else.

Notation 3.4. Given n ∈ N, we can write n = a0 + a1p + · · ·+ arp
r, where 0 ≤ ai < p for all i. We will write 

[n] = [n]p to denote the element (a0, a1, . . . ) of N∞, where ai = 0 for all i > r. We say that [n] and [m]
share no common component if there is no i ∈ N such that the ith entry of both [n] and [m] is nonzero.

Lemma 3.5. Assume σδ = δσ. Suppose we are given i, j, k, n ∈ N such that [i] + [j] + [k] = [n]. Then 
i + j + k = n. Furthermore, for any a, b, x ∈ R, there exist αi,j,k ∈ F×

p such that

δn(axb) =
∑

[i]+[j]+[k]=[n]

αi,j,kδ
iσn−i(a)δjσk(x)δk(b). (3.2.1)

Proof. The first statement is clear, since if [i] + [j] + [k] = [n] then the p-adic coefficients of i, j and k sum 
to the corresponding coefficients of n. (The converse to this statement is false, of course.)

For the second statement, let rn be the index of the final nonzero entry of [n], or −1 if n = 0. When 
rn = −1 there is nothing to prove, as δ0(axb) = axb. So let us take an integer t ≥ 1 such that the result is 
known to hold for all m with rm < t, i.e. all m = a0 + a1p + · · · + asp

s with s < t. We will prove the result 
for arbitrary n = m + pty for some m, y ∈ N with rm < t and y < p, i.e. for all n with rn < t + 1, and then 
we will be done by induction.

By the inductive hypothesis,

δn(axb) = δp
ty(δm(axb)) = δp

ty

⎛⎝ ∑
[i]+[j]+[k]=[m]

αi,j,kδ
iσm−i(a)δjσk(x)δk(b)

⎞⎠ . (3.2.2)

Using the fact that δpt is a σpt-derivation, as in Remark 1.2, we may now apply Lemma 1.1 twice to each 
term on the right-hand side to get a “trinomial” expansion. Ignoring the scalars αi,j,k for now, we can 
calculate that

δp
ty(a′x′b′) =

∑
u+v+w=y

(
y

u, v, w

)
δp

tuσpt(v+w)(a′)δp
tvσptw(x′)δp

tw(b′),

into which we can substitute a′ = δiσm−i(a), x′ = δjσk(x) and b′ = δk(b) for each [i] + [j] + [k] = [m], to 
get
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δp
ty(δiσm−i(a)δjσk(x)δk(b))

=
∑

u+v+w=y

(
y

u, v, w

)
δi+ptuσm−i+pt(v+w)(a)δj+ptvσk+ptw(x)δk+ptw(b). (3.2.3)

Upon substituting equation (3.2.3) into equation (3.2.2), we get a sum over the indexing set

S = {(i, j, k, u, v, w) : [i] + [j] + [k] = [m] and u + v + w = y}.

However, what we want, as in equation (3.2.1), is a sum over the indexing set

T = {(i′, j′, k′) : [i′] + [j′] + [k′] = [n]}.

It is easy to see that setting i′ = i + ptu, j′ = j + ptv and k′ = k + ptw gives an explicit bijection S → T , 

and that this gives n − i′ = m − i + pt(v + w). Setting βi′,j′,k′ = αi,j,k

(
y

u, v, w

)
∈ F×

p and making all of 

these substitutions in equations (3.2.2)–(3.2.3), we get

δn(axb) =
∑

[i′]+[j′]+[k′]=[n]

βi′,j′,k′δi
′
σn−i′(a)δj

′
σk′

(x)δk
′
(b),

as required. �
Corollary 3.6. Assume σδ = δσ. Let I be an ideal, a, b ∈ I, and x ∈ R. Suppose also that there are r, s such 
that δr(a) �∈ I, δs(b) �∈ I, and take r and s to be the minimal such integers. If [r] and [s] share no common 
component, then there exists some α ∈ F×

p such that δr+s(axb) ≡ αδrσs(a)σs(x)δs(b) (mod I).

Proof. Lemma 3.5 implies that δr+s(axb) is a linear combination of elements of the form δiσr+s−i(a)δjσk(x)
δk(b), where i + j + k = r + s. But if we have either i < r or k < s, then δiσr+s−i(a)δjσk(x)δk(b) ∈ I, so 
after reducing modulo I, the only term of interest is the term corresponding to i = r, j = 0 and k = s. As 
[r] and [s] share no common component, we have that [i] + [j] + [k] = [r + s] for this term, and so in the 
notation of Lemma 3.5 we have α = αr,0,s �= 0. �
3.3. The δ-core of an ideal in characteristic p > 0

Notation 3.7. Suppose I is any σ-ideal. I will in general not be preserved by δ, and to account for this, we 
would like to define

δ-core(I) = {a ∈ I : δn(a) ∈ I for all n ≥ 0}.

It can be checked from the definition that this is the largest (σ, δ)-ideal contained within I.
However, δ-core(I) will usually be too small for our purposes, so we also make the following definitions. 

As R has characteristic p, we may take (σpm

, δp
m) to be our skew derivation of interest rather than (σ, δ). 

I is still a σpm -ideal, and we may then define δp
m-core(I), the largest (σpm

, δp
m)-ideal contained within I, 

for all m ≥ 0.
This is an ascending sequence, in the sense that δpm-core(I) ⊆ δp

m+1-core(I) for all m ≥ 0: so, finally, 
we will denote the directed limit by

δp
∞

-core(I) =
⋃

δp
m

-core(I).

m∈N
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Lemma 3.8. Fix a σ-ideal I of a Noetherian ring R of characteristic p. Then there exists M ≥ 0 such that 
δp

M -core(I) = δp
∞-core(I).

Proof. The sequence of ideals δ-core(I) ⊆ δp-core(I) ⊆ δp
2 -core(I) ⊆ . . . stabilises, as R is Noetherian. �

We look now at the special case where I is σ-prime and M = 0 in the above lemma.

Proposition 3.9. Suppose that I is a σ-prime ideal with the property that δ-core(I) = δp
∞-core(I). Then 

δ-core(I) is a σ-prime ideal.

Proof. Write J = δ-core(I). Suppose, for contradiction, that J is not σ-prime: then there exist elements 
a, b ∈ R \ J such that σn(a)Rb ⊆ J for all n ∈ Z. As J ⊆ I, and I is σ-prime, we must have either a ∈ I or 
b ∈ I by Remark 1.4(ii). We will treat the case b ∈ I: the case a ∈ I is similar.

As b ∈ I \J , there exists some minimal s ∈ N such that δs(b) �∈ I: fix this s. Choose also arbitrary n ∈ Z

and x ∈ R. By Lemma 1.1, we have δs(σn(a)xb) ≡ σn(a)xδs(b) (mod I). But as σn(a)Rb ⊆ J , by definition 
of J we have δs(σn(a)Rb) ⊆ I, implying that σn(a)Rδs(b) ⊆ I. But as δs(b) �∈ I, and n was arbitrary, we 
must have a ∈ I.

To obtain the necessary contradiction, we will show that in fact a ∈ J . To do this, it will suffice to show 
that there exists some N ≥ 0 such that a ∈ δp

N -core(I), i.e. that δlpN (a) ∈ I for all l ≥ 0. To do this, it 
will be enough to show that δr′(a) ∈ I for all r′ such that [r′] and [s] have no common component: then, 
choosing N so that pN > s, it will follow that [lpN ] and [s] will have no common component for all l ≥ 0. 
This is how we proceed.

Suppose, for contradiction, that this is not true: let r ≥ 0 be minimal such that [r] and [s] have no 
common component but δr(a) �∈ I. We may now apply Corollary 3.6 to see that, for arbitrary x ∈ R and 
n ∈ Z,

δr+s(σn(a)xb) ≡ αδrσs+n(a)σs(x)δs(b) (mod I)

for some nonzero α. Hence, as σn(a)xb ∈ J , we have δrσs+n(a)σs(x)δs(b) ∈ I.
But x ∈ R is arbitrary here, and σ is surjective, so this implies that δrσs+n(a)Rδs(b) ⊆ I. Finally, 

rewriting this as σn(δrσs(a))Rδs(b) ⊆ I and noting once more that n was arbitrary, we can deduce from 
Remark 1.4(ii) (as δs(b) �∈ I) that we must have δrσs(a) ∈ I, and hence δr(a) ∈ I. This is a contradiction. �

Proof of Theorem C.

(a) As I is a σ-prime ideal, Remark 1.4(i) tells us that it is an intersection of prime ideals of R, and hence 
it contains the (prime) radical N of R. From Corollary 3.3, we already know that δ(N) ⊆ N . As N is a 
(σ, δ)-ideal, we may define the induced skew derivation (σ, δ) on R := R/N : now δ(I) ⊆ I if and only if 
δ(I) ⊆ I. So, passing to the quotient if necessary, it will suffice to assume henceforth that N = 0, i.e. R
is a semisimple artinian ring.
By the standard theory of semisimple artinian rings [15, Exercise 1.1.7, Theorem 1.3.5ff.], all prime 
ideals of R are minimal (and maximal), and there is a finite set of centrally primitive idempotents 
{eP : P ∈ Spec(R)} whose sum is 1R, with the properties that ePR ∼= R/P and (1 − eP )R ∼= P as 
R-bimodules, each ePR is a simple artinian ring, and R =

⊕
P∈Spec(R)

ePR as a sum of two-sided ideals.

As I is a minimal σ-prime of R, there exists a σ-orbit X = {P1, . . . , Pt} of distinct minimal primes of 
R such that I = P1 ∩ · · · ∩ Pt. Write X ′ = {Pt+1, . . . , Ps} = Spec(R) \ X , and denote by ei the central 
idempotent associated to Pi: this means that I = et+1R ⊕ · · · ⊕ esR. But as X ′ is a union of σ-orbits, 
σ permutes the simple rings et+1R, . . . , esR. Now it follows from [5, Lemma 1.2] that δ(I) ⊆ I.
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(b) Firstly, fix one of the finitely many minimal primes P above I as in Remark 1.4(i), so that I =⋂
n∈Z σn(P ). Setting I1 = I and M0 = 0, we see that we have a σpM0 -prime ideal I1.

We now construct a sequence of ideals by induction. Suppose that we have defined a σpMj−1 -prime 
ideal Ij . Then, by Lemma 3.8, we choose the minimal Mj ≥ Mj−1 such that δp

Mj -core(Ij) is equal to 
δp

∞-core(Ij); and, by definition, the ideal Ij+1 =
⋂

n∈Z σnpMj (P ) is a σpMj -prime ideal.
By definition, we have I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ P . But as the σ-orbit of P is finite by Remark 1.4(i), and 
each Ij is defined to be the intersection of some prime ideals in the σ-orbit of P , this sequence must 
stabilise, say at Ik = Ik+1 = · · · . Let J = Ik and M = Mk: then J is a σpM -prime ideal satisfying 
δp

M -core(J) = δp
∞-core(J).

(i) As J is the intersection of the σpM -orbit of a minimal prime ideal, it is a minimal σpM -prime ideal.
(ii) We know already that I =

⋂
n∈Z σn(P ), and this intersection is finite. But I ⊆ J ⊆ P by construc-

tion, so the same is true upon replacing P by J .
(iii) We may apply Proposition 3.9, to see that δpM -core(J) is a σpM -prime ideal; but δpM -core(J) ⊆ J , 

so by (i), they must be equal. �
4. Constructing a filtration

Throughout this section, R will denote a prime algebra over Zp, and w : R → Z ∪ {∞} a complete, 
separated Zariskian filtration such that w(p) ≥ 1 and w(pn) = nw(p) for all n ∈ N.

We will also suppose that grw(R) is finitely generated as a module over a graded, commutative, Noetherian 
subring A, containing gr(p), such that the non-zero part A�=0 contains a non-nilpotent element. We will also 
assume that (σ, δ) is compatible with w.

Note: If p �= 0 in R then the condition that w(pn) = nw(p) ≥ n for all n implies that gr(p) is non-nilpotent 
of positive degree, and hence A �=0 contains a non-nilpotent element. So this latter condition only needs to 
be stated in the case where char(R) = p.

In this section, we give a proof of Theorem B. Our notation broadly follows that of [14].

4.1. Localisation and completion

Fix a minimal prime ideal q � A not containing A �=0, which we know exists since this set contains a 
non-nilpotent element, and hence cannot be contained in the nilradical. Moreover, if p �= 0 in R, we can 
assume that gr(p) does not lie in q.

Now, q is a graded ideal of A, so let T be the set of homogeneous elements in A \ q, a multiplicatively 
closed, homogeneous, localisable subset of gr(R), and let

S = {r ∈ R : grw(r) ∈ T}

be its saturated lift in R (in the sense of [10]). Then S is a left Ore-localisable subset of R by Lemma 1.12, 
and S−1R = Q(R) by the proof of [1, Lemma 3.3], as described in [14, Section 3.1].

Using Proposition 1.14, we can construct a Zariskian filtration w′ = w′
q on Q(R), which is known to 

satisfy the following conditions by the results of [10] and [1].

Properties 4.1.

(i) We have w′(x) = max{w(r) − w(s) : ∃s ∈ S, r ∈ R such that x = s−1r} for all x ∈ Q(R).
(ii) For all s ∈ S and r ∈ R, we have w′(s−1r) = w′(r) − w(s).
(iii) w′(r) ≥ w(r) for all r ∈ R, with equality if r ∈ S. In particular, w′(p) ≥ 1.
(iv) grw′(Q(R)) ∼= T−1 grw(R).
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(v) The completion Q′ of Q(R) with respect to w′ is artinian, as in [1, §3.4].

We will be interested in this completed ring Q′, with the natural filtration induced from w′ (which we 
continue to denote by w′).

Recall from Theorem 1.16 that the natural extension of (σ, δ) to Q(R) is compatible with w′, and hence 
(σ, δ) extends to a compatible skew derivation of the completion Q′ by Lemma 1.10. We will continue to 
denote this extension by (σ, δ).

Now set E = T−1 grw(R) and q′ = T−1q, and let U = {x ∈ Q′ : w′(x) ≥ 0} be the positive part of Q′. 
Write {FnQ′}n∈Z for the sequence of level sets associated to the filtration w′ on Q′.

With this notation, it is known that there exists a regular normal element z ∈ J(U) satisfying the 
following:

Properties 4.2.

(i) [11, Ch.II Lemma 2.1.4] [14, Lemma 3.2] U is Noetherian and z-adically complete,
(ii) [14, Lemma 3.2] znU = Fnw′(z)Q′.
(iii) [1, §3.14, Proof of Theorem C(a)] w′(z) is the minimal positive degree of an element in E/q′. Hence 

we can assume that w′(z) ≤ w′(p), so p ∈ zU .

We will now pass to the z-adic filtration with respect to U defined on Q′: that is, the filtration vz,U
defined by vz,U (x) = r if and only if x ∈ zrU \ zr+1U for all x ∈ Q′ \ {0}.

Proposition 4.3.

(i) If w′(z) = 1, then (σ, δ) is compatible with vz,U .
(ii) If char(Q′) = p, then (σpm

, δp
m) is compatible with vz,U for any m such that pm ≥ w′(z).

(iii) If δ = σ − id, then (σpm

, σpm − id) is compatible with vz,U for any m such that m ≥ w′(z).

Proof. The sequence of level sets associated to vz,U is {znU}n∈Z.

(i) Suppose w′(z) = 1, and write d for either σ− id or δ. Then, as w′ is known to be compatible with (σ, δ), 
we see that d(FnQ′) ⊆ Fn+1Q′ for all n. Now Properties 4.2(ii) and (iii) imply that znU = FnQ′, 
zn+1U = Fn+1Q′, from which it follows trivially that d(znU) ⊆ zn+1U as required.

(ii) Choose m such that pm ≥ w′(z), and write d for either σpm − id = (σ − id)pm or δpm . Then we 
have d(F kQ′) ⊆ F k+pm

Q′ ⊆ F k+w′(z)Q′ for all k, and Property 4.2(ii) implies that znU = Fnw′(z)Q′, 
zn+1U = F (n+1)w′(z)Q′, from which it again follows that d(znU) ⊆ zn+1U .

(iii) Since degw′(σ− id) ≥ 1 and w′(p) ≥ 1, it follows immediately from Lemma 1.9 that degw′(σpm − id) ≥
m ≥ w′(z), and hence degvz,U (σpm − id) ≥ 1 as required. �

Note: The construction of Q′, U, z, w′, vz,U from the initial data R, w is almost identical to that given in 
[1, Section 3], but that article assumed that gr(R) was commutative, while we work in the more general 
setting assumed in [14]. However, once Q′ was constructed, commutativity of gr(R) was not used again in 
[1], so in the following sections, we can use results from [1] without the danger that any aspects of the proof 
will fail to carry across to our setting.



22 A. Jones, W. Woods / Journal of Pure and Applied Algebra 229 (2025) 107800
4.2. Passing to a simple quotient

As in the previous subsection, Q′ is an artinian algebra over a field, w′ a Zariskian filtration on Q′, U
the w′-positive part of Q′, z ∈ J(U) a regular normal element, and vz,U the associated z-adic filtration. We 
will now further assume that some maximal ideal M of Q′ is a (σ, δ)-ideal, and we will set Q̂ = Q′/M , a 
simple artinian ring. Also set V = (U + M)/M , and z = z + M .

We now list some properties of Q̂, given in [1].

Properties 4.4.

(i) [1, Theorem 3.11] There exists a maximal order O ⊆ Q̂ equivalent to V .
(ii) [1, §3.6, Proposition 3.7(a)] V ⊆ O ⊆ z−rV for some r ≥ 0.
(iii) [1, Theorem 3.6] O is a prime hereditary Noetherian ring, with a unique maximal two-sided ideal J(O), 

and p ∈ J(O).
(iv) [1, Proof of Lemma 3.7(d)] There exists k ≥ 1 such that zkO ⊆ J(O).
(v) We will define J(O)n for all n ∈ Z. Indeed, if n ≥ 0, then the definition of J(O)n is standard: then 

we set J(O)−1 = {x ∈ Q̂ : J(O)x ⊆ O} and J(O)−n := (J(O)−1)n. The argument in [1, proof of 
Proposition 3.9] shows that J is left and right invertible, so it follows that J(O)aJ(O)b = J(O)a+b for 
all a, b ∈ Z.

Eventually, we aim to equip Q̂ with the J(O)-adic filtration u: that is, the filtration defined by u(x) = r

if and only if x ∈ J(O)r \ J(O)r+1 for all x ∈ Q̂ \ {0}.
However, in order to obtain interesting information about skew power series over Q̂, we need to understand 

how (σ, δ) interacts with this filtration.

Lemma 4.5. Suppose that τ is an automorphism of Q̂ fixing O, and let d be a τ -derivation satisfying 
d(O) ⊆ J(O) and d(J(O)) ⊆ J(O)2. Then d(J(O)n) ⊆ J(O)n+1 for all n ∈ Z.

Proof. We are given that the statement is true for n = 0 and n = 1. Note that τ must preserve J(O) by 
the uniqueness of Property 4.4.

When n ≥ 2, we may proceed by induction. Suppose d(J(O)n−1) ⊆ J(O)n. Let a ∈ J(O)n−1 and 
b ∈ J(O): then d(ab) = d(a)b + τ(a)d(b), and both terms on the right-hand side are contained in J(O)n+1. 
But as J(O)n is generated by elements of the form ab, we see that d(J(O)n) ⊆ J(O)n+1.

Now choose a ∈ J(O)−n for n ≥ 1. Given arbitrary b ∈ J(O)n, we have d(a)b = d(ab) − τ(a)d(b), which 
is an element of J(O), and hence d(a)J(O)n ⊆ J(O). Right-multiplying both sides by J(O)−1 and using 
Property 4.4(v) now shows that d(a)J(O)n−1 ⊆ O, and so by definition d(a) ∈ J(O)−n+1 as required. �

We will now show that the filtered ring (Q̂, u) inherits certain near-compatibility properties from 
(Q′, vz,U ). To do this, it will be convenient to pass through several intermediate filtrations, for which we 
immediately set up notation:

• the z-adic filtration with respect to U on Q′, denoted vz,U with level sets {znU}n∈Z,
• the z-adic filtration with respect to V on Q̂, denoted vz,V with level sets {znV }n∈Z,
• the z-adic filtration with respect to O on Q̂, denoted vz,O with level sets {znO}n∈Z,
• the J(O)-adic filtration on Q̂ as defined above, denoted u with level sets {J(O)n}n∈Z.

Note that znV = (znU + M)/M : that is, vz,V is just the quotient filtration induced by vz,U on Q̂.
The following result goes a long way towards demonstrating that the data (Q̂, u) satisfies the hypotheses 

required of Theorem 2.6.
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Theorem 4.6. gru(Q̂) is a prime, Noetherian ring, and there exists α, β ∈ R with 0 < α ≤ 1 such that 
u(q + M) ≥ αw′(q) + β for all q ∈ Q′.

Proof. The proof of [1, Theorem C] shows that gru(Q̂) is a prime, Noetherian ring, so we only need to 
consider the second statement. We want to compare the values attained by q under the filtrations w′, vz,U , 
vz,V , vz,O and u.

Firstly, since znU maps into znV and znV ⊆ znO for all n, it is clear that vz,U (q) ≤ vz,V (q + M) and 
vz,V (q + M) ≤ vz,O(q + M).

Using Properties 4.2(ii), we see that znU = Fnw′(z)Q′, which means that

vz,U (q) = max{n ∈ Z : q ∈ znU} = max{n ∈ Z : q ∈ Fnw′(z)Q′}

= max{n ∈ Z : w′(q) ≥ nw′(z)} =
⌊
w′(q)
w′(z)

⌋
≥ w′(q)

w′(z) − 1.

Finally, by Properties 4.4(iv), there exists k ≥ 1 such that zkO ⊆ J(O), so zkmO ⊆ J(O)m. Therefore, if 
N := vz,O(q +M) and N = kt + s for some t, s ∈ Z, 0 ≤ s < k, we see that q +M ∈ zNO ⊆ zktO ⊆ J(O)t, 

so u(q + M) ≥ t = N

k
− s

k
>

vz,O(q + M)
k

− 1.

So, let α := 1
kw′(z) , β := −1 − 1

k
, then 0 < α ≤ 1 and

u(q + M) ≥ 1
k
vz,O(q + M) − 1 ≥ 1

k
vz,V (q + M) − 1 ≥ 1

k
vz,U (q) − 1

≥ 1
kw′(z)w

′(q) − 1
k
− 1 = αw′(q) + β. �

So all that remains to apply Theorem 2.6 is compatibility of the skew derivation with u.

Proposition 4.7. Suppose that (σ, δ) is compatible with vz,U , and write (σ̂, ̂δ) for the skew derivation induced 
by (σ, δ) on Q̂. Then (σ̂, ̂δ) is compatible with vz,V .

Proof. Write d for either δ or σ − id, and d̂ for δ̂ or σ̂ − id respectively. By definition, we get

d̂(znV ) = d̂((znU + M)/M) = (d(znU) + M)/M ⊆ (zn+1U + M)/M = zn+1V. �
Proposition 4.8. Suppose that (σ̂, ̂δ) is compatible with vz,V . Then:

(i) If char(Q̂) = p, then there exists some � such that (σ̂p�

, ̂δp
�) is compatible with u.

(ii) If δ̂ = σ̂ − id, then there exists some � such that (σ̂p�

, ̂σp� − id) is compatible with u.

Proof. For simplicity of notation, we will identify Γ ∼= Z throughout this proof without loss of generality. 
Also write degV , degO and degJ(O) for degrees with respect to the filtrations vz,V , vz,O and u respectively. 
Write d̂ for either δ̂ or σ̂− id. Cases (i) and (ii) will be treated in parallel, as their methods are very similar.

Step 1. By assumption, degV (d̂) ≥ 1. Property 4.4(ii) tells us that V ⊆ O ⊆ z−rV for some r, and hence, 
multiplying through by zn, it follows that znV ⊆ znO ⊆ zn−rV for all n.

In case (i), choose some integer m such that pm ≥ r + 1: this implies that degV (d̂pm) ≥ pm ≥ r + 1, and 
so d̂p

m(znO) ⊆ d̂p
m(zn−rV ) ⊆ zn+1V ⊆ zn+1O: or, in other words, degO(d̂pm) ≥ 1.

In case (ii), choose some integer m ≥ r + 1. Then since p ∈ zV , we have that vz,V (p) ≥ 1, so applying 
Lemma 1.9 gives that degV (σ̂pm − id) ≥ m. We conclude similarly that degO(σ̂pm − id) ≥ 1.

Step 2. [1, §3.14, proof of Theorem C] tells us that zt ∈ J(O)2 for a large enough integer t: fix such a t.
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In case (i), let � be such that p�−m ≥ t, so that

d̂p
�

(O) ⊆ (d̂p
m

)p
�−m

(O) ⊆ zp
�−mO ⊆ ztO ⊆ J(O)2.

Now Lemma 4.5 shows that deg(d̂p�) ≥ 1.
In case (ii), we can apply Lemma 1.9 to show that degO(σ̂p� − id) = degO((σ̂pm)p�−m − id) ≥ � −m for 

any �: choosing � ≥ m + t allows us to conclude similarly that (σ̂p� − id)(O) is contained in J(O)2, and 
hence degJ(O)(σ̂p� − id) ≥ 1. �
4.3. Invariant maximal ideals

The results of the previous subsection are almost sufficient to complete the proof of Theorem B. The 
only obstacle is the need to find a maximal ideal M of Q′ that is (σ, δ)-invariant. In general, a maximal 
ideal M1 of Q′ will not be a σ-ideal, but will instead have a nontrivial σ-orbit {M1, . . . , Ms}, so we cannot 
pass to the quotient Q′/M1 without losing the skew derivation (σ, δ).

Write N :=
⋂s

i=1 Mi, a minimal σ-prime ideal, and set Q̂ = Q′/N , now a semisimple artinian ring, 
and let σ̂ be the automorphism of Q̂ induced by σ. In this section, we will prove that after raising σ to a 
sufficiently high p’th power, this construction produces a simple ring.

Now, even though Q̂ is σ̂-prime as defined, it may not be σ̂pm-prime for m ≥ 1: that is, the σ-orbit 
{M1, . . . , Ms} may break up into more than one σpm-orbit. This happens precisely when p divides s, so we 
begin by showing that we can restrict our attention away from this case.

Lemma 4.9. There exists some k ≥ 0 such that M ′
1 := M1 has σpk -orbit {M ′

1, M
′
2, . . . , M

′
t} for some t

coprime to p.

Proof. Suppose s = ps′. Write O = {1, 2, . . . , s} and oi = {pn + i : 0 ≤ n ≤ s′ − 1} for 1 ≤ i ≤ p: then O
is the disjoint union of the o1, . . . , op. These are index sets for σ-orbits and σp-orbits respectively: that is, 
each set {Mj : j ∈ oi} (for 1 ≤ i ≤ p) is a σp-orbit, and their disjoint union is the σ-orbit {Mj : j ∈ O}.

So we will replace σ by σp, and replace the σ-orbit {Mj : j ∈ O} with the σp-orbit {Mj : j ∈ o1}. This 
orbit has size s′, and so the result follows from induction. �

Replacing σ by σpk , if necessary, we may assume henceforth that p does not divide s.
Now, using the general theory of semisimple artinian rings, we see that Q̂ ∼= A1 × · · · × As, where 

Ai = Q′/Mi for each i. Furthermore, we may assume without loss of generality that σ(Mi) = Mi+1 for each 
i (indices taken modulo s), and hence the action of σ̂ on A1×· · ·×As is given by σ̂(a1 +M1, · · · , as+Ms) =
(σ(as) + M1, σ(a1) + M2, · · · , σ(as−1) + Ms).

Now, let us assume σ− id has positive degree with respect to vz,U , i.e. (σ, σ− id) is compatible with vz,U
as before. Set V = (U + N)/N ⊆ Q̂, and write z = z + N ∈ Q̂. We set up the remaining necessary objects 
and filtrations in advance:

• Vi ⊆ Ai be the image of V under the i’th projection Q̂ → Ai,
• W := V1 × V2 × · · · × Vs ⊆ Q̂,
• zi ∈ Vi the image of z under the projection Q̂ → Ai for each i,
• vz,V the z-adic filtration with respect to V on Q̂ with level sets {znV }n∈Z.

It follows from the proof of Proposition 4.7 that σ̂− id has positive degree with respect to vz,V . Since each 
Ai is simple, we are now back in the situation of the previous subsection, and we may choose a maximal 
order Oi ⊆ Ai equivalent to Vi satisfying Properties 4.4 (where Q̂ is replaced by Ai in the statement). In 
particular, Oi ⊆ z−ri

i Vi for some ri ≥ 0 for each i.
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So, write O = O1×· · ·×Os ⊆ A1×· · ·×As
∼= Q̂, and set r to be the maximum of the ri for 1 ≤ i ≤ s, so 

that O ⊆ z−r
1 V1 × · · · × z−r

s Vs. Note that since Ai = Q′/Mi, it follows that zi is the image of z ∈ U modulo 
the maximal ideal M1, and since Q̂ ∼= A1 × · · · ×As, it is clear that the image of z under this isomorphism 
is (z1, · · · , zs), and hence O ⊆ z−rW .

Also, [17, Proposition 3.2.4(ii)] implies that V ⊆ W and the two are equivalent as orders in Q̂. This 
implies that W ⊆ z−aV for some a ≥ 0, so O ⊆ z−(r+a)V , so we set x := r + a to get that O ⊆ z−xV .

Lemma 4.10. O is a maximal order equivalent to V inside Q̂.

Proof. Since V ⊆ W ⊆ O and each Oi is prime by Property 4.4(iii) applied to Vi, O is a maximal order by 
[17, Proposition 5.1.5], equivalent to W . �

Note that J(O) = J(O1) × · · · × J(Os), so we again consider the J(O)-adic filtration u on Q̂ with level 
sets {J(O)n}n∈Z. If we set ui as the J(Oi)-adic filtration on Ai, then it follows that

u(a1 + M1, · · · , us + As) = min{ui(ai + Mi) : i = 1, · · · , s},

i.e. u is the product filtration.
It follows from [1, §3.14, proof of Theorem C] that for each i we may choose some large enough integer 

ti such that ztii ∈ J(Oi)2, and setting t = maxi{ti} we see that

zt = (zt1, · · · , zts) ∈ J(O1)2 × · · · × J(Os)2 = J(O)2.

Therefore, since σ̂− id has positive degree with respect to vz,V , it follows from Lemma 1.9 that σ̂pt+x − id
has degree at least t + x with respect to vz,V , i.e.

(σ̂pt+x − id)(zmV ) ⊆ zm+t+xV

for all m ∈ Z.
In particular, (σ̂pt+x − id)(O) ⊆ (σ̂pt+x − id)(z−xV ) ⊆ ztV ⊆ J(O)2, and hence σ̂pt+x − id has positive 

degree with respect to the J(O)-adic filtration u by Lemma 4.5, i.e. u((σ̂pt+x − id)(q)) > u(q) for all q ∈ Q̂.
In particular, if we set ei = (0, · · · , 0, 1, 0, · · · , 0) ∈ A1 ×· · ·×As

∼= Q̂, where the 1 is in the i’th position, 
then u((σ̂pt+x − id)(e1)) > u(e1) = 0. But σ̂n(e1) = en+1, subscripts taken modulo s, so σ̂pt+x(e1) = ept+x+1, 
and hence u(ept+x+1 − e1) > 0, and since u is just the product filtration, this implies that e1 and ept+x+1
must share a common non-zero component, which is only possible if pt+x ≡ 0 (mod s).

But since we are assuming that p does not divide s, this is only possible if s = 1, and hence Q̂ = A1 is a 
simple ring, and N = M1 is maximal. So altogether, we have proved:

Theorem 4.11. If σ is an automorphism of Q′ such that (σ, σ− id) is compatible with vz,U , then there exists 
k ∈ N and a maximal ideal M of Q′ such that M is σpk -invariant. �
4.4. Proof of main results

As in previous subsections, and in the statement of Theorem B, R will denote a prime algebra over Zp, 
equipped with a complete, separated Zariskian filtration w : R → Z ∪{∞} such that w(pn) = nw(p) ≥ n for 
all n ∈ N, grw(R) is finitely generated as a module over a central, Noetherian graded subring A containing 
gr(p), and A �=0 contains a non-nilpotent element. We also assume that (σ, δ) is compatible with w and 
σδ = δσ.

Proof of Theorem B. Following [1], our construction goes as follows.
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Step 1. Let Q′ be the completion of Q(R) with respect to the filtration w′ constructed in §4.1, an artinian 
ring by Property 4.1(v). As we remarked below Properties 4.2, the induced skew derivation (σ, δ) on Q′

remains compatible with w′.
Step 2. Let U be the positive part of Q′, i.e. U = w′ −1([0, ∞]), and choose the regular normal element 

z ∈ J(U) satisfying Properties 4.2. Then the z-adic filtration vz,U with respect to U on Q′ satisfies Proposi-
tion 4.3: that is, if we are in case (a) (where R is an Fp-algebra), then we have some m such that (σpm

, δp
m)

is compatible with vz,U , and if we are in case (b) (where δ = σ − id), then we have some m such that 
(σpm

, σpm − id) is compatible with vz,U .
Step 3. In both cases, we now know that (σpm

, σpm − id) is compatible with vz,U , and so we may apply 
Theorem 4.11 to choose a maximal ideal M of Q′ such that M is σpk -invariant for some k ≥ m. It follows 
trivially that M is (σpt

, σpt − id)-invariant for t = k, which is what we need for case (b).
So assume we are in case (a). As M is a minimal σpk -invariant prime ideal, it is in particular a minimal 

σpk -prime ideal, and so it follows from Theorem C that there exists an ideal J ⊇ M such that J is σpt -prime 
for some t ≥ k, and δp

t(J) ⊆ J . But M is a maximal ideal of Q′, and hence J = M , meaning that M is 
(σpt

, δp
t)-invariant.

Step 4. Let Q̂ := Q′/M , a simple artinian ring. As M is invariant under (σpt

, δp
t) in case (a), there 

is an induced skew derivation 
(
σ̂pt , δ̂pt

)
on Q̂ in this case; similarly, there is an induced skew derivation (

σ̂pt , σ̂pt − id
)

on Q̂ in case (b).
Set V = (U + M)/M and z = z + M as in §4.2. Writing vz,V for the quotient filtration of vz,U as in 

that subsection, we see by Proposition 4.7 that our induced skew derivation on Q̂ is compatible with vz,V
in both cases.

Step 5. Let O be a maximal order in Q̂ equivalent to V as in Properties 4.4. Let u be the J(O)-adic 
filtration on V , and it follows from Theorem 4.6 that gru Q̂ is prime and Noetherian. Since Q(R) is simple, 
the composition Q(R) → Q′ → Q̂ is injective, so we will denote the restriction of u to Q(R) again by u: we 
have seen that Q̂ is in fact the completion of Q(R) with respect to this restriction, so gru Q(R) ∼= gru Q̂ is 
prime and Noetherian as required. Also, the map (R, w) → (Q(R), u) is continuous by [1, Theorem C].

Furthermore, applying Proposition 4.8, we may find some � such that the skew derivations(
(σ̂pt)p�

, (δ̂pt)p�
)

in case (a), resp. 
(
(σ̂pt)p�

, (σ̂pt)p� − id
)

in case (b), are compatible with u. But the 

restrictions of (σ̂pt)p� and (δ̂pt)p� to Q(R) are simply σpN and δp
N respectively, where N = t + �. The 

desired conclusions now follow. �
Finally, we conclude with a proof of our main result, which now follows easily from Theorem B and the 

results from §2.
Proof of Theorem A. By Theorem B, there exists a filtration u on Q(R) such that gru Q(R) is prime and 

Noetherian, and the map (R, w) → (Q(R), u) is continuous.
Moreover, by Theorem 4.6, there exist α, β ∈ R such that 0 < α ≤ 1 and u(q) ≥ αw′(q) + β for all 

q ∈ Q(R). So since w′(r) ≥ w(r) for all r ∈ R by Properties 4.1(iii), we see that u(r) ≥ αw(r) + β.
Also using Theorem A, we see that if R is an Fp-algebra then there exists N ∈ N such that (σpN

, δp
N ) is 

compatible with u, and if δ = σ − id then there exists N ∈ N such that (σpN

, σpN − id) is compatible with 
u.

Therefore, it follows from Theorem 2.6 that if R is an Fp-algebra then the skew power series ring 
Rb[[xpN ; σpN

, δp
N ]] is prime, and if δ = σ − id then Rb[[(x + 1)pN − 1; σpN

, σpN − id]] is prime, and this 
completes the proof. �
4.5. Applications

Example 4.12. Suppose that A is an iterated local skew power series ring (in the sense of [22]) with maximal 
ideal mA, i.e. A = k[[x1]][[x2; σ2, δ2]] . . . [[xn; σn, δn]], over k = Fp or Zp, such that grf (A) is an iterated 
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commutative polynomial ring over Fp. (Here, f can be taken to be the mA-adic filtration or other related 
filtrations – see the remark below.) Suppose (τ, ε) is a skew derivation on A which is compatible with the 
filtration. Write S = A[[y; τ, ε]]. Then, given any prime ideal P � A which is (τ, ε)-invariant, we will show 
that there exists a finite-index subring SN ⊆ S (containing A) such that PSN is a prime ideal of SN .

Remark. The assumption that grf (A) is commutative is reasonably mild: for example, the graded ring 
associated to the natural mA-adic filtration will be commutative if all of the (σi, δi) are compatible in the 
sense of Definition 1.8. Alternatively, we can construct such a filtration f if A is triangular – see [22, §0.3].

We proceed as follows. It is known already that mAS is a prime ideal of S [22], so take any non-maximal 
prime ideal P � A which is preserved by (τ, ε). We will show that R = A/P satisfies the hypotheses of 
Theorem A by induction on n – in particular, we need only show that gr(R)�=0 contains a non-nilpotent 
element.

So we begin with a base case. If A = Fp[[x1]] or Zp, then (as P is assumed non-maximal) we must have 
P = 0. Hence gr(R) ∼= Fp[X], and we are done by taking the element X.

For larger n, write B = k[[x1]][[x2; σ2, δ2]] . . . [[xn−1; σn−1, δn−1]] (again a local ring with maximal ideal 
mB), so that A = B[[xn; σn, δn]]. In this context, we know that (P ∩B)A is a two-sided ideal of A, and we 
write a for the image of a under the map A → A := A/(P ∩ B)A. So in the case where P ∩ B = mB , we 
know that R = A/P is a prime quotient ring of A ∼= Fp[[xn]] and that P is non-maximal, so R ∼= Fp[[xn]]
and gr(R) ∼= Fp[X] as above.

Hence we assume that P ∩ B �= mB . Continue to denote the filtration on A by f , and assume it takes 
values inside eN ∪ {∞} for some e > 0. Note that f induces separated filtrations fP on A/P (and on the 
subgroup (B + P )/P ) and f on B defined by

fP (a + P ) = sup{f(a + r) : r ∈ P},

f(b + P ∩B) = sup{f(b + r) : r ∈ P ∩B}

for all a ∈ A, b ∈ B. It is clear that, for any b ∈ B, we have f(b + P ∩B) ≤ fP (b + P ).
We may now invoke [16, Theorem 3.17(ii)], which holds with an identical proof even under our slightly 

weaker hypotheses. This tells us that P ∩B must be a (σn, δn)-prime ideal of B. In particular, it also cannot 
contain any power of mB , as mB is a (σn, δn)-invariant ideal. In particular, given any large N ∈ N, we can 
find an element b ∈ mN

B \(P ∩B), which must satisfy b +P �= 0 and fP (b +P ) ≥ f(b +P ∩B) ≥ eN . In other 
words: (B + P )/P ≤ A/P = R contains elements of arbitrarily large value under fP , which ensures that 
gr(R) cannot be finite-dimensional as an Fp-vector space. This implies that gr(R)�=0 contains a non-nilpotent 
element, and so we may apply Theorem A.

Example 4.13. Let G be a uniform pro-p group in the sense of [6], H a closed isolated normal subgroup 
satisfying G/H ∼= Zp, and k = Fp or Zp. Then we may consider the completed group algebra (Iwasawa 
algebra) kH. It is known (see e.g. [2,21]) that kG may be written as kH[[x; σ, δ]], where x = g − 1, σ is 
conjugation by g and δ = σ − id for any g ∈ G \H such that G = 〈H, g〉.

Now, for every G-invariant (= (σ, δ)-invariant) prime ideal P � kH, we may consider the ring kG/PkG

as a skew power series ring over kH/P by [16, Lemma 3.14(iv)]. If H is solvable, then kH/P satisfies 
the hypotheses of Example 4.12 (and hence of Theorem A) whenever P is not maximal; if not, a similar 
argument by considering the H-prime ideal P ∩ kK, where K is a maximal proper closed isolated normal 
subgroup of H, will suffice.

Remark. In this context, Theorem A tells us that the extension of P to the ring kH[[x(N); σ(N), δ(N)]] is 
prime. But note that x(N) = gp

N −1, σ(N) is conjugation by gp
N , and δ(N) = σ(N)− id: that is, if we set GP

to be the (open, normal) subgroup of G defined by GP := 〈H, gpN 〉, this ring is just the completed group 
algebra kGP , i.e. the extension P · kGP is prime. Moreover, kG = kGP ∗ (G/GP ), and G/GP

∼= Z/pNZ: 
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hence the ideal P · kG may be viewed as (P · kGP ) ∗ (Z/pNZ) as in the Introduction, and we may conclude 
Corollary 0.2 depending on the characteristic of kG/P .
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