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Abstract. Malware represents a significant cyber threat that can potentially disrupt any 
activities within an organization. There is a need to devise effective proactive methods 
for malware detection, thereby minimizing the associated risks. However, this task is 
challenging due to the ever-growing volume of malware data and the continuously evolv-
ing techniques employed by malicious actors. In this context, machine learning models 
offer a promising approach to identify key malware features and facilitate accurate de-
tection. Machine learning has proven to be effective in detecting malware and has re-
cently gained widespread attention from both the academic and research sectors. Despite 
their effectiveness, current research on machine learning (ML) models for malware de-
tection often lacks necessary explanations for the selection of key features. This opacity 
of ML models can complicate the understanding of the outputs, errors, and decision-
making processes. To address this challenge, this research uses Explainable AI (XAI), 
particularly the SHAP framework, to enhance transparency and interpretability. By 
providing extensive insights into how each feature contributes to the model’s conclu-
sions, the approach further improves the model’s accountability. An experiment was con-
ducted to demonstrate the applicability of the proposed method, beginning with the train-
ing of the chosen machine learning models, including Random Forest, Adaboost, Support 
Vector Machine and Artificial Neural Network, for detecting malware, and concluding 
with the explanation of the decision-making process using XAI techniques. The results 
showed high accuracy in malware detection, along with comprehensive explanations of 
the feature contributions, which justifies the outputs produced by the models. 
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1 Introduction  

In the ever-changing environment of digital security, the evolving nature of malware 
attacks poses a significant increase in sophisticate  threats, which can disrupt the resil-
ience of organizational business continuity. Recent data from Statista reveals a 
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staggering 5.5 billion malware attacks in 2022 alone [1], with notorious incidents like 
WannaCry [2] underscoring the urgent need for advanced detection strategies. Both 
industry and research communities are actively engaged in the development of methods 
for malware detection, highlighting the pressing need to identify and manage potential 
digital infrastructure risks. Machine learning stands out as a promising approach for 
malware detection, particularly given the vast volume of malware data [3]. By enabling 
systems to learn from data, machine learning offers a proactive means to detect threats 
and continually adapt to evolving malware variants. However, the issue of explainabil-
ity in malware detection using machine learning is a significant concern [4], particularly 
in the domain of cybersecurity where the stakes are high and the need for trust and 
transparency is paramount. Machine learning models, especially those based on com-
plex algorithms like deep learning, can often function as "black boxes,” providing little 
to no insight into how they arrive at their predictions [5]. This limited consideration for 
explainability can impact the informed decision-making and hampers with the wider 
adoption of ML in various critical security applications. Addressing this vital gap, our 
research focuses on understanding the decision-making process of ML models by 
adopting Explainable Artificial Intelligence (XAI) to interpret the model’s outputs. This 
paper presents a novel malware detection method using a number of ML models and 
explains the results using the SHAP framework. XAI offers many advantages like im-
proving the transparency and interpretability of the decision process. The feature im-
portance analysis technique of the XAI can help in understanding the factors that affect 
the model’s predictions and any possible errors. This kind of transparency can enhance 
the trust in the model’s output.  

This paper  makes three main contributions. Firstly, it makes use of several machine 
learning models like Random Forest, Adaboost, Support Vector Machine (SVM) and 
Artificial Neural Network (ANN), in order to ensure thorough training. The perfor-
mance of the models was evaluated to analyze their accuracy in malware detection. 
Secondly, the main component of the research, XAI with focus on SHAP was em-
ployed. SHAP makes effective use of cooperative game theory to credit the output of 
the models to their input features. The average marginal contribution of a feature, taking 
into account all potential combinations, is then computed to yield the Shapley value. 
These values are then utilized to gauge the local and global importance of features in 
the dataset. This will offer a clear understanding of how and why a model arrives at a 
specific result.Finally, an experiment was conducted to demonstrate the applicability 
and accuracy of the proposed model. The findings reveal that the models, bolstered by 
XAI insights, achieve high accuracy rates in malware detection. The integration of 
SHAP into our models not only sheds light on their internal mechanics but also estab-
lishes a stronger basis for trust in AI, underscoring its significance in advancing cyber-
security measures. 
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2 Related Work 

2.1 Evolution of Malware 

The evolution of malware has exhibited increased sophistication, complexity, and 
adaptability over time. In 1949, John Von Neumann introduced the concept of a self-
replicating code sequence, laying the foundation for the earliest notion of a computer 
virus capable of autonomously generating updated versions [6]. Initially, malware's pri-
mary purpose was not malicious destruction or data theft but rather the highlighting of 
vulnerabilities in MS-DOS systems [7]. During this period, the damage caused by mal-
ware often resulted in brief system crashes due to excessive resource consumption. No-
tably, malware from this era was transparent to the user, often displaying visible mes-
sages or graphics on the monitor. The Creeper worm [8], created by Robert H. Thomas 
in 1971, though more of an experimental self-replicating program and not intended to 
be malicious, marked the emergence of new digital concerns [9]. Over time, malware 
evolved into more advanced forms, including trojans, spyware, and ransomware, often 
driven by financial motives. The development of polymorphic and metamorphic mal-
ware introduced the ability to alter code to avoid detection [10]. The rise of targeted 
attacks, like Advanced Persistent Threats (APTs), marked a shift towards highly so-
phisticated, state-sponsored cyber espionage. More recently, the Internet of Things 
(IoT) has expanded the attack surface, leading to the evolution of IoT-specific malware 
[11]. The integration of AI and machine learning in malware has also emerged, enhanc-
ing its ability to evade detection and optimize attack strategies. 

2.2 Adoption of Machine Learning for Malware Detection  

The rise in cyber threats has necessitated the development of advanced malware detec-
tion methods. In 2001, Schultz et al. [12] introduced a novel approach that combined 
data mining with machine learning for malware detection. Their study utilized a dataset 
of 4,266 programs, comprising both malicious (3,265) and clean (1,001) binaries. These 
binaries were sourced from various FTP sites and a Windows 98 system. The dataset 
was divided into training and test sets, with the former used to generate classifiers and 
the latter for performance evaluation. The classifiers were trained using static features 
extracted from binary profiles, including system resource information, strings, and byte 
sequences, without needing to execute the binary.  

The paper by Firdausi et al. [13] addresses the inadequacy of traditional signature-
based antivirus systems in detecting new and polymorphic malware. It proposes a com-
bination of dynamic malware analysis and machine learning for more effective detec-
tion. The study assesses five classifiers, with the J48 Decision Tree showing the best 
performance. However, the paper's focus is limited to behavior-based techniques and 
does not include other malware detection methods. There is also a concern about the 
adaptability of their approach to rapidly evolving malware and the generalizability of 
their results, given the absence of multiple datasets or cross-validation.  

Machine learning in malware detection, while promising [14], faces several notable 
limitations. One of the primary concerns is the vulnerability of models to adversarial 
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attacks. Attackers can manipulate input data in subtle ways that cause these models to 
make errors, a significant risk in an area where adversaries are constantly devising new 
evasion techniques. Another challenge is the heavy reliance on substantial amounts of 
labeled data [15, 16]. Obtaining and labeling this data for training can be resource-
intensive and sometimes impractical, especially when dealing with the vast and evolv-
ing landscape of malware.  

2.3 Explainable AI for Malware Detection   

Explainable AI methods are being used in malware detection to address the lack of 
transparency and understandability in black-box models. These methods aim to provide 
explanations for the decisions made by the models, increasing trust and accountability. 
Various techniques, such as XAI, attention maps, and explainability scores, have been 
proposed to achieve high detection accuracy and interpretability [17]. The unique hy-
brid strategy devised by Demertzis et al. [18], combines the Lipschitz constant and 
Shapley values to strengthen machine learning models against adversarial assaults 
while also improving explainability. The technique underscores the significance of 
global and local interpretability (GLI), shedding light on the decision-making processes 
and the intricate interactions among features within intelligent models. The paper by 
Kumar et al. [19] introduces XAISM-CTH, an XAI-based mechanism for cyber threat 
hunting, enhancing detection and understanding of threats while improving system se-
curity and performance. This model demonstrated a higher performance when assessed 
with the already existing models through practical implementation.  Poddar et al. [20] 
proposed a two-stage stacked ensemble learning models that utilizes both, gradient 
boosting, and random forest. The models had a notable accuracy of 97% in detecting 
malicious URLs. They had also employed XAI to gain better perceptive of the model’s 
decision-making process. It provided a clear justification of the impact of 21 features 
on the predictions that consists of different URL classes, including benign, phishing 
and malware. This method increased the model’s interpretability and effectiveness.  

In summary, malware continues to become more complex and has evolved over 
time. Existing works have contributed to the development of techniques for effective 
malware detection methods by using various  machine learning models. However, there 
is a lack of focus on transparency and interpretability of the model output. As a conse-
quence, the outcome of the model cannot effectively support the decision-making of 
models to tackle malware.  This work contributes towards this direction by adoption of 
XAI to explain the model and support the decision-making. 

3 Proposed Approach  

The proposed method consists of three well-defined sequential steps, represented in 
Figure 1, that adopts XAI in the final step. This method, paired with various ML mod-
els, aids in visualizing model outcomes and clarifying the decision steps by spotlight-
ing the most trusted and detailed traits. An overview of each of the steps is described 
in this section.  
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Step 1 (Data-Preprocessing):  The initial step of the approach focuses on Data Pre-
processing, which includes importing a publicly available dataset and then refining it 
using the Synthetic Minority Oversampling Technique (SMOTE) to correct the issue 
of class imbalances, thereby making the data fit for analysis. This step also involves a 
rigorous feature selection procedure that use the Extra Trees Classifier to identify prom-
inent features, simplifying the dataset for subsequent analysis.  
  Step 2 (Malware Classification and Performance Evaluation using ML Models): 
Once the data has been preprocessed, the next step involves classifying the malware. 
The research utilizes four ML models including Random Forest, AdaBoost, SVM, and 
ANN for this purpose. These models were selected based on diverse strengths they have 
to offer. Random Forest can improve accuracy as it leverages ensemble techniques, 
Adaboost can improve performance by targeting the misclassified samples; and SVM 
and ANN can provide powerful techniques for different learning tasks. Together, these 
models allow the system to handle various malware forms and data attributes effi-
ciently, improving its capacity to recognize and neutralize cybersecurity hazards. 

 
Fig. 1. Proposed Model 

Step 3 (Interpretability of the models using XAI): The final step of the approach tar-
gets at Explainability, where the results from the trained machine learning models are 
not only evaluated but also interpreted using XAI techniques, especially the SHAP 
framework. SHAP (Shapley Additive Explanations) gives a clear understanding of how 
a model makes decisions. It calculates each input feature's contribution to the model's 
output predictions using a game theory mechanism known as Shapley values. This 
transparent approach helps to clarify the reasons behind the model's decision. These 
values assess each feature's contribution to the prediction by considering all possible 
feature combinations, offering a detailed insight into how each one influences the mod-
el's decisions. By integrating SHAP, the system goes beyond simple malware classifi-
cation; it unveils the rationale behind these classifications. This transparency is crucial, 
as it demystifies the predictive mechanism, allowing users to grasp the significance and 
impact of each feature within the model's reasoning, thereby fostering trust and confi-
dence in the system's predictions. 
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4 Experiment  

This section details the implementation and goals of our methodology, leveraging a 
widely adopted dataset for this analysis. The experiment aims to: 

• Detect malware using machine learning models and assess the accuracy.  
• Demonstrate the impact of incorporating XAI and SHAP in enhancing the 

transparency and interpretability of malware detection processes. 

4.1 Dataset Description  

The "MalwareData.csv" dataset [21], has been used for model training. It consists of 
extracted static features from portable executable files. The dataset boasts a commend-
able size, with a total of 138,047. Notably, it encompasses 41,323 legitimate files, with 
the remaining samples being malicious. One of the salient features of this dataset is its 
comprehensive feature set, each mined through both static and dynamic analyses of 
software binaries. These features are curated to capture the intricate nuances and po-
tential signatures that could differentiate benign software from malicious counterparts. 

4.2 Data Pre-processing 

Data pre-processing is a critical step in machine learning, ensuring consistent, unbiased, 
and effective model performance. The imbalance in dataset can pose a serious threat to 
the efficacy of the detection system as it could become more prone to overlooking 
harmful entities. To address this critical issue, researchers and practitioners often turn 
to the Synthetic Minority Over-sampling Technique (SMOTE). Unlike basic over-
sampling techniques that simply replicate minority samples, SMOTE generates syn-
thetic data points by interpolating between existing minority samples in the feature 
space [22].  

Feature selection is a critical process in machine learning that involves selecting a 
subset of the most informative features from the original dataset. By eliminating irrel-
evant or redundant features, the model not only becomes simpler, mitigating the risk of 
overfitting, but also often witnesses an improvement in accuracy, as superfluous fea-
tures can sometimes misguide the learning algorithm. In this study, the feature selection 
phase was optimized using a method known as Extra Trees Classifier. This classifier, 
which is an ensemble technique, was trained on the dataset to identify the significance 
of each feature. Then, a filtering process was conducted to pick out only those features 
that had a certain level of importance.  

4.3 Model Training  

Random Forest, AdaBoost, SVM, and ANN are models, each with their own strength, 
that can be utilized to detect malwares. Random Forest is a technique that creates sev-
eral decision trees from a dataset's subsets. By averaging the predictions of these indi-
vidual trees, the technique improves the overall accuracy of the dataset predictions. 
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This approach is based on ensemble learning, where multiple classifiers work together 
to tackle a complex problem and boost model performance. AdaBoost, or Adaptive 
Boosting, is a supervised learning technique that classifies data by merging many weak 
or base learners into a strong learner. It emphasizes improving identification of chal-
lenging cases by adjusting weights for misclassified instances, increasing sensitivity to 
subtle malware indicators. SVM excels at classifying data in high-dimensional spaces, 
enabling effective differentiation between malware and benign software. ANN is a 
computational model that was inspired by the neural structure of the human brain. It 
comprises of linked nodes that are divided into layers. Information travels via these 
nodes, and the network changes the link weights during training to learn from data, 
allowing it to recognise patterns, and make predictions. These models together can im-
prove the accuracy and precision for malware detection.  

4.4 Model Evaluation  

For the evaluation of the models, 5-fold cross validation was used to see how models 
perform on unseen data [23]. Important performance metrics such as accuracy, preci-
sion, recall, F1-measure, False Positive Ratio (FPR), and False Negative Ratio (FNR) 
were calculated [24,25]. These metrics play a pivotal role in evaluating the model's 
sensitivity-specificity equilibrium. Each fold assesses the model's performance inde-
pendently, and the overall performance metrics are obtained by averaging across all 
experiments. 

5 Experimental Result  

5.1 Evaluation Metrics 

Table 1 provides a comprehensive evaluation of four models. Each model's perfor-
mance is assessed based on several key metrics. Among the classifiers evaluated, Ran-
dom Forest, SVM and ANN exhibited the highest accuracy, achieving a score of 99%. 
It also boasted the lowest error rate among all classifiers, with just 0.01. Furthermore, 
Random Forest displayed the lowest False Positive Ratio (FPR) of 0.070 and a rela-
tively low False Negative Ratio (FNR) of 0.031. AdaBoost followed closely behind 
Random Forest in terms of accuracy, with a score of 0.98. While AdaBoost had a 
slightly higher error rate of 1.38 compared to Random Forest, it maintained a com-
mendable precision, recall, and F1-score. However, AdaBoost had a slightly higher 
False Positive Ratio (FPR) of 0.080 and a lower False Negative Ratio (FNR) of 0.013 
compared to Random Forest. SVM and ANN both achieved an accuracy of 0.99, similar 
to Random Forest. However, SVM displayed a concerning performance with a False 
Positive Ratio (FPR) of 1.000, indicating that all negative samples were incorrectly 
classified as positive. On the other hand, ANN exhibited a lower False Positive Ratio 
(FPR) of 0.147 and a relatively higher False Negative Ratio (FNR) of 0.052 compared 
to the other classifiers. 
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Table 1. Performance of different classifiers and ensemble learning techniques 

Classifiers  AC ER PR RE F1 FPR FNR 
Random Forest 0.99 0.01 0.99 0.99 0.99 0.070 0.031 
AdaBoost 0.98 1.38 0.98 0.97 0.98 0.087 0.013 
SVM 0.99 0.01 0.97 0.98 0.98 1.000 0.000 
ANN 0.99 0.01 0.98 0.99 0.98 0.146 0.052 

5.2 ROC Curve  

Figure 2 depicts a Receiver Operating Characteristic (ROC) curve, assessing the per-
formance of four models. The graph marks the true positive rate against the false posi-
tive rate, with the models significantly outperforming a random classifier, represented 
by the diagonal dashed line. The curves for Random Forest, AdaBoost, and ANN indi-
cate perfect classification with AUC scores of 1.00, while the SVM shows a high AUC 
of 0.94. These high scores suggest excellent model performance. 

 

 
Fig. 2. ROC Curve of models 

6 SHAP Analysis 

SHAP analysis is a technique used in machine learning to explain the output of a model 
by attributing the prediction to the contribution of each feature. It provides insights into 
the importance and impact of individual features on the model's predictions. SHAP 
analysis helps in understanding the inner workings of complex machine learning mod-
els and provides interpretability by explaining why a model made a specific prediction. 
It mainly has two types of feature importance, global and local importance. Global fea-
ture importance provides an overview of the influence of each feature on the whole 
dataset. In contrast, local feature importance focuses on the contribution of each feature 
to the prediction of individual instances or observations. Combining global and local 
feature importance leads to a better knowledge of model behaviour. This can also fur-
ther aid in model explanation, and trustworthiness in numerous applications. Overall, 
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SHAP analysis enhances the interpretability of machine learning models and fosters 
trust and understanding among users and stakeholders. 

6.1 Global Importance of Features of Models  

SHAP measures the contribution of each feature to the prediction of a particular in-
stance relative to a baseline prediction, offering a way to interpret complex models – 
often referred to as the global importance of features. When visualized in a graph, 
SHAP values offer an intuitive display of each feature's impact: features are listed on 
the y-axis, and their corresponding SHAP values are on the x-axis. The color of the bars 
indicates the predicted class, and the length of the bar shows the magnitude of a feature's 
impact.  

For the Random Forest depicted in Figure 3-a), ‘SizeofHeaders’ (Feature 23), 
‘SizeOfStackReserve’ (Feature 27), ‘SizeOfCode’ (Feature 7) and ‘ MajorSubsys-
temVersion’ (Feature 20) emerges as a significant predictor for both classes, with a 
substantial balanced impact on Class 0 and Class 1. However, ‘Characteristics’ (Feature 
4) has the least influence on the model's output. Figure 3-b) corresponding to the Ada-
Boost model, again places ‘SizeofHeaders’ (Feature 23) at the forefront for both the 
class predictions. The distribution of feature impacts is slightly more balanced between 
positive and negative compared to the Random Forest model. The SVM model repre-
sented in Figure 3-c), we notice that the feature ‘ MajorSubsystemVersion’ (Feature 
20) is the most influential for Class 1 predictions, while ‘SizeOfHeapReserve’ (Feature 
29) appears to have a negligible effect. This indicates a variation in how the SVM model 
interprets the features as compared to the Random Forest model. Lastly, the Artificial 
Neural Network model shown in the Figure 3-d) also indicates ‘SizeofHeaders’ (Fea-
ture 23) as a significant driver for Class 1 predictions, with a pronounced bias towards 
this class. The ANN model exhibits a different scale of SHAP values, pointing to a 
higher sensitivity to certain features compared to the other models. 

6.2 Local Importance of Features of Models  

The interpretability of machine learning models is a pivotal aspect of their development 
and deployment, particularly when decisions need to be understood and justified. 
Among the tools used for this purpose, force plots stand out as a powerful means of 
visualizing local feature importance. These plots illustrate how each feature value con-
tributes to the overall prediction for a single data instance, compared to a baseline pre-
diction. The force plot is akin to a tug-of-war, where features pull the prediction higher 
or lower, allowing us to see the relative influence of each feature within the context of 
a specific prediction. 
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Fig. 3. Cluster Plot Global Importance 

Figure 4-a) corresponds to a Random Forest model’s output. In this graphic, features 
depicted in red to the left are indicative of a negative influence on the model’s predic-
tion, while those in blue to the right positively contribute to the outcome. Notably, ‘Mi-
norSubsystemVersion’ (Feature 21) and ‘MD5’ (Feature 1) exert substantial negative 
pressure, whereas ‘SizeofHeaders’ (Feature 23)  ‘SizeofImage’ (Feature 22) and ‘Ma-
jorSubsystemVersion’ (Feature 20) are observed to have the most significant positive 
impact. Figure 4-b) corresponds to the AdaBoost model’s output. This plot shares sim-
ilarities with the Random Forest model in terms of the direction of influence exerted by 
the features; however, the magnitudes of their impacts vary, suggesting a differential 
feature importance in this model as compared to the Random Forest model. Features 
‘MD5’ (Feature 1) and ‘MinorSubsystemVersion’ (Feature 21) are again seen to dimin-
ish the prediction score, while ‘SizeofImage’ (Feature 22), ‘ImageBase’ (Feature 13) 
and ‘MajorSubsystemVersion’ (Feature 20) elevate it. In Figure 4-c), SVM model, fea-
ture ‘MajorLinkerVersion’ (Feature 5) marginally detracts from the prediction, whereas 
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features ‘SizeOfHeaders’ (Feature 23), ‘SizeOfOptionalHeader’(Feature 3) 
‘SizeOfImage’ (Feature 22) and ‘ImageBase’ (Feature 13) augment it. The balance in 
the magnitude of these effects is more pronounced, highlighting a relatively equalized 
influence of features in this model, which is a contrast to the previous models. In Figure 
4-d), for the ANN model, the features ‘Machine’ (Feature 2) and ‘SizeOfHeaders’ (Fea-
ture 23) have a diminishing effect on the prediction, suggesting a sway towards a neg-
ative class.  

 
Fig. 4. Force Plot for Local Importance 

6.3 Summary of the SHAP Results 

In summary, combining the results from both the global and local SHAP analysis, we 
can get an overview of the SHAP value interpretations for the four different models: 
Random Forest, AdaBoost, SVM, and ANN. However, the SHAP results cannot pro-
vide any evidence of prediction quality, but to address this issue, we have considered 
additional performance metrics such as accuracy, precision, recall, and the F1 score, 
alongside cross-validation scores to ensure robustness and reliability of our model pre-
dictions. These metrics allow us to quantitatively evaluate the models' performance and 
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validate the predictive power of the features identified by the SHAP analysis. The in-
sights we have inferred from the various plots are: 
• Across models, certain features stand out as having consistently high importance 

for predictions, particularly for Class 1(Ref to Figure 3). The features ‘SizeOf-
Headers’ (Feature 23) and ‘SizeOfStackReserve’ (Feature 27) are repeatedly sig-
nificant for Class 1, i.e., Malware ,  predictions, although its impact varies across 
the  models. For instance, SVM has higher contribution to the class 1 comparing 
to Random Forest. This indicates the importance of these features in malware de-
tection. However, their impact varies when looking at the SVM model.  

• The models seem to agree on the importance of several features, though the mag-
nitude of their impact can differ, suggesting that while the features themselves are 
critical, their interpretation by each model can vary due to the intrinsic model com-
plexities. 

• The SHAP analyses enhance transparency by revealing which features drive model 
decisions. SHAP plots don't directly measure performance, they offer clues about 
model complexity and the potential trade-off between accuracy and interpretabil-
ity. Features with large SHAP values may be key levers for predictive perfor-
mance, yet they could also contribute to model complexity, affecting the ease of 
interpretation. 

7. Conclusion  

In response to the ever-evolving cyber threat landscape and the widespread adoption of 
malware for malicious activities, this research endeavors to advance the field of mal-
ware detection through a novel approach. Our proposal integrates Machine Learning 
with the XAI framework, specifically leveraging the SHAP methodology. This ap-
proach significantly enhances the explainability of ML models by offering a transparent 
view into their decision-making processes. This facilitates the detection of the  key  
features and their contributions to the model’s output. In doing so, it enhances the ac-
curacy and fairness of the decision from the models while and limiting bias that could 
occur. The proposed approach  significantly improves malware detection with accuracy 
rates above 98%. Additionally, the adoption of XAI enhances transparency, allowing 
for a better understanding of model decisions. It also fosters user trust by justifying ML 
decision-making processes. This kind of transparency is critical in the field of cyberse-
curity, where understanding the reasoning behind a model's prediction is as important 
as the prediction's accuracy itself. By using SHAP for XAI, cybersecurity professionals 
receive insight into not just the binary assessment of a file's maliciousness, but also the 
key factors that influence such decisions.  

The proposed approach utilizes static malware detection, however it is necessary to 
adopt these models for real time malware detection which could offer a quicker and 
more reliable defense against malware attacks. It is also necessary to consider addi-
tional deep learning models for enhancing the quality of training and testing of the 
model. Finally, future works also needs to focus on assurance of Responsible AI 
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properties to ensure that models are fair, reliable, unbiased and secure for informed 
decision making. 
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