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Abstract

We propose a new class of modified regression-based tests for detecting asset price
bubbles designed to be robust to the presence of general forms of both conditional
and unconditional heteroskedasticity in the price series. This modification, based
on the approach developed in Beare (2018) in the context of conventional unit
root testing, is achieved by purging the impact of unconditional heteroskedas-
ticity from the data using a kernel estimate of volatility before the application
of the bubble detection methods proposed in Phillips, Shi and Yu (2015) [PSY].
The modified statistic is shown to achieve the same limiting null distribution as
the corresponding (heteroskedasticity-uncorrected) statistic from PSY would ob-
tain under homoskedasticity, such that the usual critical values provided in PSY
may still be used. Versions of the test based on regressions including either no
intercept or a (redundant) intercept are considered. Representations for asymp-
totic local power against a single bubble model are also derived. Monte Carlo
simulation results highlight that neither one of these tests dominates the other
across different bubble locations and magnitudes, and across different models of
time-varying volatility. Accordingly, we also propose a test based on a union of
rejections between the with and without intercept variants of the modified PSY
test. The union procedure is shown to perform almost as well as the better of
the constituent tests for a given DGP, and also performs very well compared to
existing heteroskedasticity-robust tests across a large range of simulation DGPs.
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1 Introduction

Asset price bubbles tend to be characterised by a sudden and explosive increase in

the price of an asset without a corresponding increase in the fundamental value of

the asset (thereby representing a misallocation of resources), usually followed by a

subsequent destruction of value through a sharp and catastrophic price collapse. As

such, bubbles often presage economic recessions; indeed, the 2007/08 Global Financial

Crisis was preceded by suspected price bubbles in the U.S. housing, commodity and

stock markets. In the aftermath of the crisis, policymakers reacted by considering new

rules for macroprudential regulation and intervention.

As a result, the development of econometric methods to empirically identify asset

price bubbles has been the focus of much recent research. Explosive behaviour in

financial asset price series is closely related to the theory of rational bubbles, with a

rational bubble deemed to have occurred if explosive characteristics are manifest in

the time path of prices, but not dividends. Accordingly, Phillips et al. (2015) [PSY]

model potential bubble behaviour using a time-varying autoregression which allows

for explosive autoregressive regimes within distinct subsets of the data. PSY propose

bubble detection tests based on a double supremum of forward and backward recursive

right-tailed Dickey-Fuller (DF) statistics, a generalisation of the original and widely-

used Phillips et al. (2011) [PWY] test that employed a single supremum of forward-only

recursive DF statistics.

A key assumption underlying both the PWY and PSY bubble detection procedure is

that the innovations driving the asset price series are conditionally and unconditionally

homoskedastic. While the presence of conditional heteroskedasticity, such as GARCH,

in a wide range of financial variables, including asset returns, is a well-established

stylised fact, a number of recent empirical studies have also questioned the reasonable-

ness of the unconditional homoskedasticity assumption. In particular, strong evidence

of structural breaks in the unconditional variance of asset returns is reported in, inter

alia, Rapach et al. (2008), McMillan and Wohar (2011), Calvo-Gonzalez et al. (2010)

and Vivian and Wohar (2012). Harvey et al. (2016) demonstrate that the asymptotic

1



null distribution of the PWY test depends on the time-path of the underlying uncon-

ditional volatility. As a result if the test is compared to critical values derived under

a homoskedastic error assumption, its size is not in general controlled if volatility is

time-varying, with a higher than expected probability of spurious bubble identification

resulting. Harvey et al. (2016) propose a wild bootstrap implementation of the PWY

test, which delivers correct asymptotic size in the presence of time-varying volatil-

ity. A similar wild bootstrap approach can be applied to the tests proposed in PSY

to allow for unconditionally heteroskedastic errors and is considered in Harvey et al.

(2020) [HLZ] as a comparator for their sign-based version of the PSY test. HLZ find

that, under heteroskedasticity, their sign-based approach generally outperforms these

bootstrap PSY tests.

Our contribution in this paper is to develop a bootstrap-free approach to obtaining

heteroskedasticity-robust versions of the PSY bubble detection tests. To that end, we

follow the volatility re-scaling approach developed by Beare (2018) in the context of

conventional full sample unit root tests directed against a stationary alternative. This

entails calculating the PSY test statistic not from the original data, denoted yt, but

instead from the series of cumulated first differences, ∆yt, of the data standardised by

a kernel estimate σ̂t of σt, the volatility of ∆yt. That is, we cumulate ∆yt/σ̂t and treat

this volatility-purged cumulated series as the data that we input into the calculation

of the PSY statistic. This approach has parallels with the approach taken in HLZ

who, instead of cumulating ∆yt/σ̂t, base the PSY statistic on the cumulation of ∆yt/

|∆yt| = sign(∆yt), a quantity which is by construction exact invariant to the pattern

of time-varying volatility in ∆yt under the null. HLZ show that this approach leads

to power gains when compared to a wild bootstrap implementation of the usual PSY

test. The main aim of this paper is a comparison of the performance of the two non-

bootstrap approaches to gauge whether using ∆yt/σ̂t in place of the binary quantity

∆yt/ |∆yt| might lead to further improvements in bubble detection efficacy. We would

anticipate a gain in power, given that σ̂t uses more sample information to estimate σt

than in HLZ, where σt is essentially proxied by |∆yt| alone.

Under the unit root null and alternative of a single locally explosive bubble regime,
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we derive the asymptotic distribution of the two variants of PSY tests based on ∆yt/σ̂t:

one which most closely follows Beare (2018) and fits an intercept term in the underlying

DF regression, and another which omits this term which is in fact redundant under our

model specification. Using a number of different specifications for a bubble/collapse

DGP and pattern of time-varying volatility, we find that the local asymptotic power

of our new tests compare very well with that of the HLZ tests, with the better of our

two new tests outperforming the better of the HLZ tests for a given DGP. Between

our two new tests, we find that which offers the better power performance depends

on the bubble/collapse/volatility specification under consideration. This prompts us

to consider a union of rejections testing strategy that combines the with-intercept and

without-intercept test variants. We find that this strategy performs very well, capturing

almost all of the power available from the better performing of the two individual tests

across the full range of bubble/collapse/volatility specifications that we examine. As

such, it also outperforms the better performing of the two HLZ tests.

The remainder of the paper is organised as follows. Section 2 outlines the het-

eroskedastic bubble DGP we work with and the assumptions under which we will

operate. Section 3 introduces our heteroskedasticity-modified version of the PSY test.

Here we also establish the limit distributions of the re-scaled PSY statistics under local

alternatives for the case of a single bubble episode. Asymptotic local powers of our new

tests are numerically compared with the HLZ tests in section 4. A union of rejections

procedure is outlined in section 5. The results from a Monte Carlo study exploring the

finite sample properties of the tests are discussed in section 6. Section 7 concludes.

Proofs of our asymptotic results are provided in an appendix. An accompanying on-

line supplementary appendix contains the finite sample simulation results discussed in

in section 6.

In what follows ‘⌊.⌋’ denotes the integer part of its argument, ‘1(·)’ denotes the

indicator function, ‘
p→’ and ‘⇒’, respectively, denote convergence in probability and

weak convergence, in each case as the sample size diverges, and ‘x := y’ (‘x =: y’)

denotes that x (y) is defined by y (x).
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2 The Heteroskedastic Stochastic Bubble Model

To keep the contents of the paper as tractable as possible, we focus attention on the case

where a single bubble episode is present under the alternative. However, it is important

to stress that the modified heteroskedasticity-robust versions of PSY’s GSADF test

that we develop in this paper are, like the original GSADF test, also valid tests for

models where multiple bubbles are present under the alternative. We will also only

discuss volatility re-scaled modifications of the leading doubly recursive GSADF test

from PSY. The same re-scaling principle can be applied to the (singly) forward and

backward recursive tests, SADF and BSADF respectively, discussed in PSY (the

former coinciding with the test developed in PWY).

To that end, we follow HLZ and focus attention on the time series process {yt}

generated according to the following DGP,

yt = µ+ ut, t = 1, ..., T (1)

ut = ρtut−1 + εt, εt = σtzt, t = 2, ..., T (2)

where ρt := ρ(t/T ) with

ρ(t/T ) =



1 t = 2, ..., ⌊τ 1T ⌋,

1 + δ1 t = ⌊τ 1T ⌋+ 1, ..., ⌊τ 2T ⌋,

1− δ2 t = ⌊τ 2T ⌋+ 1, ..., ⌊τ 3T ⌋,

1 t = ⌊τ 3T ⌋+ 1, ..., T

(3)

where δ1 ≥ 0 and δ2 ≥ 0, and where 0 ≤ τ 1 < τ 2 < τ 3 ≤ 1. We assume that the

initial condition u1 is such that u1 = op(T
1/2). In the context of (2), εt is a zero-

mean innovation process with (possibly) time-varying volatility function, σt, precise

conditions on which are given in Assumptions 1 and 2 below.

The DGP given by (1)-(3) imposes a unit root on yt up to time ⌊τ 1T ⌋, after which yt
is an explosive bubble process when δ1 > 0 until time ⌊τ 2T ⌋. Notice that this explosive

regime would originate at the beginning of the sample if τ 1 = 0. If τ 2 < 1, the explosive
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regime then ends in-sample, at which point the model permits a possible collapse, with

δ2 > 0 creating a collapse regime modelled by stationary mean-reverting behaviour.

The null hypothesis, H0, is that no bubble is present in the series and yt follows a unit

root process throughout the sample period i.e. H0 : δi = 0, i = 1, 2. The alternative

hypothesis is H1 : δ1 > 0 and δ2 ≥ 0. In its most general form, where δ2 > 0 with

τ 3 < 1, the alternative is that yt is unit root, followed by bubble, then collapse, before

returning to a unit root regime. Special cases of this alternative are clearly permitted

within the framework of (3). For example, if δ2 = 0 the bubble regime does not collapse

but terminates in a unit root regime; if δ2 > 0 with τ 3 = 1, the collapse period runs

to the end of the sample. Under H1 we will consider locally explosive alternatives (and

collapses) of the form δi = ciT
−1, ci ≥ 0, i = 1, 2, the scaling by T−1 providing the

appropriate Pitman drift for asymptotic power comparisons of the tests when c1 > 0

and c2 ≥ 0. Throughout our analysis, we assume that a collapse does not occur without

the presence of a prior bubble, i.e. when c1 = 0, we assume c2 = 0.

With respect to the error process, εt, in (1), we make the following assumptions:

Assumption 1. (a) Let zt be a martingale difference sequence [MDS] with respect to

the natural filtration, Ft, generated by {zs, s ≤ t}, with unit unconditional variance,

E(z2t ) = 1, and where T−1
∑T

t=2 z
2
t

p→ 1. (b) For all integers q such that 2 ⩽ q ⩽ 8 and

for all integers r1, . . . , rq−1 ⩾ 0, the qth order cumulants κq(t, t − r1, . . . , t − rq−1) of

(zt, zt−r1 , . . . , zt−rq−1) satisfy the condition that supt

∑∞
r1,...,rq−1=−∞ |κq(t, t− r1, . . . , t −

rq−1)| <∞.

Assumption 2. The volatility function satisfies σt := σ(t/T ) where σ(·) is a determin-

istic function with support [0, 1] and is uniformly bounded by a constantM . It is strictly

positive and continuous, other than at a countable number of points of discontinuity.

Remark 2.1. Part (a) of Assumption 1 ensures that a MDS functional central limit

theorem [FCLT] holds on the innovations {zt}; cf. Assumption 1 of Chang and Park

(2002,p.433). Part (b) of Assumption 1 coincides with Assumption 1 (iii) of Goncalves

and Kilian (2007). These conditions allow for conditional heteroskedasticity of an

unknown and quite general form. An implication of the restrictions placed on the
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cumulants by Assumption 1(b) is that suptE(ε
8
t ) < ∞. This moment assumption

appears standard in the related literature where a kernel smoothed estimate of the

volatility function is required and is also imposed by, inter alia, Xu and Phillips (2008),

Harvey et al. (2019), CNT, Boswijk and Zu (2018, 2022). An exception is Beare (2018)

whose method of proof only requires a finite fourth moment assumption. The trade-off

for this weaker moment condition is that Beare (2018) needs to impose a continuous

differentiability condition on σ(·) which is rather stronger than our Assumption 2 which

allows for a discontinuous unconditional volatility function. The large sample results

given in this paper should also hold under the mixing and moment conditions on εt

and the continuously differentiable condition on σ(·) adopted in Beare (2018). ♢

Remark 2.2. Assumption 2 implies that σt is the unconditional volatility of εt. Un-

der Assumption 2 the volatility process can display (possibly) multiple instantaneous

volatility shifts (which need not be located at the same point in the sample as the

putative regimes associated with bubble behaviour), polynomially (possibly piecewise)

trending volatility and smooth transition variance breaks, among other things. The

conventional homoskedasticity assumption, that σt = σ for all t, is also permitted with

σ(t/T ) = σ for all t. Consequently both the conditional and unconditional variance of

εt are allowed to display time-varying behaviour under Assumptions 1 and 2. ♢

Remark 2.3. Broadly similar conditions to those placed on σ(·) by Assumption 2 are

adopted in Assumption 1(b) of CNT who allow σ(·) to be a càdlàg function, which

allows for a countable number of jumps. Our conditions on σ(·) are rather weaker

than those imposed by, for example, Assumption (i) of Xu and Phillips (2008) which

requires σ(·) to satisfy a uniform first-order Lipschitz condition with at most a finite

number of discontinuities. ♢

Remark 2.4. It is also instructive to compare our assumptions with those made in the

extant bubble testing literature. PWY and PSY impose that εt ∼ IID(0, σ2). Harvey

et al. (2016) develop wild bootstrap implementations of the PWY tests which allow for

unconditional heteroskedasticity in εt of a similar form to Assumption 2, but impose

conditional homoskedasticity on zt. Similarly, although HLZ allow for unconditional
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heteroskedasticity in developing their sign-based tests for explosive bubbles, they also

impose conditional homoskedasticity on zt. Harvey et al. (2019) also impose conditional

homoskedasticity on zt in their weighted least squares implementation of the PWY test.

To the best of our knowledge then, this paper develops the only regression-based bubble

detection tests currently available in the literature that allow for both conditional and

unconditional heteroskedasticity in the errors. Given the empirical findings on the

nature of volatility in financial price series discussed in section 1, this should render

these methods attractive to practitioners. ♢

3 Volatility Re-scaled PSY Tests

To obtain a volatility-robust version of the GSADF test developed in PSY, rather than

calculating the statistic directly from the observed data series, yt, we instead propose

calculating it from the series of cumulated first differences of the data, ∆yt, re-scaled

by a kernel estimate of the volatility of ∆yt. That is, we cumulate ∆yt/σ̂t, where σ̂t

denotes the kernel estimate of σt, and treat this volatility-adjusted cumulated series as

the data for the GSADF statistic. This approach follows in the spirit of Beare (2018),

who used cumulated standardised differences in the context of full sample unit root

testing against a stationary alternative in the presence of heteroskedasticity.

We first define a nonparametric variance estimator of the form

σ̂2
t :=

T∑
j=2

wt,j(yj − yj−1)
2 (4)

where the kernel weights, wt,j, are given by

wt,j :=
K
(
j−t
Th

)∑T
j=2K

(
j−t
Th

)
where K(·) is a kernel function and h the associated bandwidth, precise conditions on

both of which will be given later.
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Next we construct the cumulated first differences of ∆yt standardised by σ̂t, i.e.:

xt :=
t∑

j=2

∆yj
σ̂j

, t = 2, . . . , T. (5)

Notice that the volatility-robust test of HLZ is based on ∆yt/ |∆yt|, which arises as a

special case of ∆yt/σ̂t if we set wt,j = 1(j = t). This is therefore essentially equivalent

to imposing a bandwidth of zero in the kernel function.

Our proposed statistic is then a volatility re-scaled version of PSY’s GSADF statis-

tic, constructed from xt rather than yt; that is,

PSYσ := sup
λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

DFσ(λ1, λ2)

where, using generic notation, DFσ is the t-ratio for ϕ̂(λ1, λ2) in the (with-intercept)

fitted Dickey-Fuller OLS regression

∆xt = α̂(λ1, λ2) + ϕ̂(λ1, λ2)xt−1 + et (6)

calculated over the sub-sample period t = ⌊λ1T ⌋, ..., ⌊λ2T ⌋, i.e.

DFσ(λ1, λ2) :=
ϕ̂(λ1, λ2)√

ŝ2(λ1, λ2)/
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1 (xt−1 − x̄)2
(7)

where x̄ := (⌊λ2T ⌋ − ⌊λ1T ⌋)−1
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1 xt−1 and ŝ2(λ1, λ2) := (⌊λ2T ⌋ − ⌊λ1T ⌋ −

2)−1
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1 e
2
t , with et being the residuals in (6). The PSYσ statistic is the supre-

mum of a double sequence of statistics with minimum sample length ⌊πT ⌋; we assume

that τ 1 ≥ π, such that the onset of a bubble regime (should one occur) begins after

the shortest sub-sample considered.1

In the fitted regression (6), we have followed Beare (2018) and included an intercept

term. However, the xt are, by construction, numerically invariant to the nuisance pa-

rameter µ in the DGP (1) and so there is no requirement to include this intercept term.

1In practice, in view of (5), we need to impose a minimum value of 2/T on λ1, such that the earliest
possible starting time index in the regression in (6) is t = ⌊T (2/T )⌋+ 1 = 3.
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As such, we also consider the corresponding statistic that excludes the intercept term

in (6). Denoting the corresponding without-intercept version of (7) by DF ∗
σ (λ1, λ2),

the corresponding PSY statistic is given by

PSY ∗
σ := sup

λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

DF ∗
σ (λ1, λ2).

In order to obtain the asymptotic distributions of the two statistics, we first need

to establish the large sample behaviour of the partial sum process, xt. This requires

us to place certain conditions on the kernel and bandwidth used in constructing the

nonparametric variance estimator, σ̂2
t in (4). Specifically, we make the following as-

sumptions, both of which are typical in the literature; see, for example, Xu and Phillips

(2008), Harvey et al. (2019), CNT, and Boswijk and Zu (2018, 2022). Notice, however,

that Assumption 4 is less restrictive than the corresponding bandwidth rate condition

imposed in Beare (2018), which requires that Th4 → ∞.

Assumption 3. The kernel function K(·) is a bounded, non-negative and continuous

function defined on the real number line and
∫∞
−∞K(x)dx = 1.

Assumption 4. The bandwidth h is such that as T → ∞, h→ 0 and Th2 → ∞.

We are now in a position to detail the large sample behaviour of the partial sum

process xt under the most general form of the model in (1)-(3):

Theorem 1. Let yt satisfy (1)-(3) and let Assumptions 1-4 hold. Then, under H1 :

δi = ciT
−1, ci ≥ 0, i = 1, 2,

T−1/2x⌊Tr⌋ ⇒ X (r) =:



W (r) r ⩽ τ 1

W (r) + c1
∫ r

τ1

V1(s)
σ(s)

ds τ 1 < r ⩽ τ 2

W (r) + c1
∫ τ2
τ1

V1(s)
σ(s)

ds− c2
∫ r

τ2

V2(s)
σ(s)

ds τ 2 < r ⩽ τ 3

W (r) + c1
∫ τ2
τ1

V1(s)
σ(s)

ds− c2
∫ τ3
τ2

V2(s)
σ(s)

ds r > τ 3

(8)

where V1(r) := e(r−τ1)c1
∫ τ1
0
σ(v)dW (v)+

∫ r

τ1
e(r−v)c1σ(v)dW (v), V2(r) := e−(r−τ2)c2V1(τ 2)+∫ r

τ2
e−(r−v)c2σ(v)dW (v), and where W (r) is a standard Brownian motion on [0, 1].
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Remark 3.1. Theorem 1 establishes the limiting distribution of xt under both the

null hypothesis and local alternatives. Under H0, c1 = c2 = 0 and X (·) reduces to

the standard Brownian motion, W (·), and hence does not depend on the underlying

volatility process, σ(·). Under H1 the asymptotic distribution of X (r) depends on the

constants c1 and c2, and also on the volatility process σ(·). ♢

Next, in Theorem 2, we detail the large sample behaviour of PSYσ and PSY ∗
σ under

both the null and local alternative hypotheses.

Theorem 2. Let the conditions of Theorem 1 hold. Then,

PSYσ ⇒ sup
λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

Lc1,c2,σ(λ1, λ2) =: Gc1,c2,σ

PSY ∗
σ ⇒ sup

λ1∈[0,1−π]

sup
λ2∈[λ1+π,1]

L∗
c1,c2,σ

(λ1, λ2) =: G∗
c1,c2,σ

where

Lc1,c2,σ(λ1, λ2) :=
X̃ (λ2)

2 − X̃ (λ1)
2 − (λ2 − λ1)

2
√∫ λ2

λ1
X̃ (r)2dr

L∗
c1,c2,σ

(λ1, λ2) :=
X (λ2)

2 −X (λ1)
2 − (λ2 − λ1)

2
√∫ λ2

λ1
X (r)2dr

with X̃ (r) := X (r)− (λ2 − λ1)
−1
∫ λ2

λ1
X (v)dv, where X (r) is defined in Theorem 1.

Remark 3.2. The limit distributions of PSYσ and PSY ∗
σ under the null hypothesis

H0 are given by G0,0,σ and G∗
0,0,σ, respectively, which do not depend on σ(s). For PSYσ,

G0,0,σ coincides with the limiting null distribution given for the GSADF statistic in

Theorem 1 of PSY (p.1049) for the case where εt ∼ IID(0, σ2). Consequently, for

any volatility process satisfying Assumption 2, the limiting null distribution of PSYσ

coincides with the limit null distribution of the standard GSADF statistic proposed

in PSY (based on yt) that would obtain were the volatility constant, with the same

applying for PSY ∗
σ . Under H1, the limiting distributions of PSYσ and PSY ∗

σ depend

on c1 and c2 and on the volatility process σ(·). ♢
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Remark 3.3. We have assumed thus far that εt is serially uncorrelated. More gen-

erally, we might wish to allow it to admit a finite autoregressive representation of the

form2

εt =

p∑
i=1

θiεt−i + σtzt (9)

with the autoregressive coefficients θi, i = 1, ..., p, satisfying standard stability condi-

tions, such that εt would be covariance stationary in the unconditionally homoskedastic

case where σ2
t = σ2, for all t. In this situation, in constructing PSYσ and PSY ∗

σ the

subsample regression (6), and its without-intercept equivalent, respectively, need to be

augmented with the p lagged difference terms ∆xt−1, ..., ∆xt−p. The nonparametric

variance estimator defined in (4), based on first-differences, can still be used to con-

struct the sample data {xt}, as in (5). Under the null, in this context σ̂2
t provides

an estimate of V ar(∆yt), and so the resulting ∆xt = ∆yt/σ̂t sequence will follow an

approximate AR(p) model with homoskedastic innovations. Under the conditions of

Theorem 1, our proof can in principle be extended, to show that the limiting null distri-

butions of the resulting augmented PSYσ and PSY ∗
σ statistics are still given by G0,0,σ

and G∗
0,0,σ, respectively. Notice that V ar(∆yt) under specification (9) is approximately

equal under the null to σt multiplied by a (time-invariant) constant determined by the

AR coefficients θj, j = 1, ..., p, from (9). In view of this, one could alternatively esti-

mate σt nonparametrically directly using the residuals from estimating a full-sample

ADF regression (that is, the regression of ∆yt on a constant, yt−1, and p lags of ∆yt)

and use this residual-based estimate to construct the sample {xt}. The resulting {xt}

sample will also follow an approximate homoskedastic AR(p) model under the null. ♢

For the setting π = 0.1, asymptotic upper-tail critical values of the null distributions

G0,0,σ and G∗
0,0,σ are given in Table 1 for the usual significance levels. Here, and

throughout our asymptotic analysis, we approximatedW (r) using NIID(0, 1) random

variates with discretised normalised sums of 1000 steps. Table 1 also provides finite

2At a practical level, the doubly recursive nature of the PSY-type approach, which includes rela-
tively short subsample sizes, means that only a small fixed value of p should be used, in line with the
recommendation of PSY. In any case, substantial serial correlation would not be expected in εt, given
that under the null this process represents asset returns which should, at least in theory, be serially
uncorrelated.
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sample null critical values of PSYσ and PSY ∗
σ based on generating εt as NIID(0, 1)

and using a Gaussian kernel forK(·) with bandwidth setting h = 0.1T−0.25 (in line with

our setting for the finite sample simulations below). Monte Carlo results throughout

this paper are based on 2000 replications.

In the next section we examine the asymptotic local powers of the PSYσ and PSY ∗
σ

tests, comparing these with the sign-based tests of HLZ, and explore the extent to which

any gain is obtained by excluding the intercept term in the underlying DF regressions.

4 Asymptotic Local Power Comparisons

We examine the asymptotic power of the PSYσ and PSY ∗
σ tests under the locally

explosive alternative H1. By way of comparison, we also simulate the asymptotic

powers of the two sign-based tests of HLZ: sPSY and s̄PSY , using HLZ’s notation.3

The sPSY test relies on an assumption of a zero median in the distribution of zt,

while s̄PSY , which is based on recursively demeaned sign(∆yt) rather than simply

sign(∆yt), controls size irrespective of whether the median is zero or not. We consider

both a benchmark case of homoskedasticity, σ(r) = 1, and also heteroskedastic setting

with volatility functions σ(r) = S(r, σ1, σ2, τσ, γ) where S(r, σ1, σ2, τσ, γ) is a logistic

smooth transition function of the form

S(r, σ1, σ2, τσ, γ) := σ1 +
σ2 − σ1

1 + exp{−γ(r − τσ)}
.

This function transitions from the value σ1 to σ2 over r, with midpoint fraction τσ and

transition speed γ. Specifically, we set γ = 30, σ1 = 1 and consider σ2 ∈ {1/6, 1/3, 3, 6}

allowing downshifts and upshifts in volatility with τσ ∈ {0.4, 0.8} to represent earlier

and later volatility midpoint timings. For the locally explosive alternatives (and pos-

sible collapses) we have {τ 1, τ 2, τ 3} = {0.1, 0.4, 0.6}, {0.3, 0.6, 0.8} and {0.5, 0.8, 1.0}

for early, middle and late explosive episodes, respectively, with explosive magnitudes

c1 ∈ {2, 4, 6, 8, 10} and collapse magnitudes c2 = kc1 with k ∈ {0, 0.5, 1}, such that an

explosive episode is either unaccompanied by a collapse, or accompanied by a collapse

3 Given that HLZ find that sPSY generally outperforms a wild bootstrap implementation of the
PSY test under heteroskedasticity, we do not consider bootstrap-based tests in our present comparison.
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with a parameter value of half or equal to the explosive magnitude. We simulate the

asymptotic powers of upper-tail nominal 0.05-level tests using limit null critical values

for PSYσ and PSY ∗
σ taken from Table 1. For sPSY and s̄PSY we use the limit null

critical values in Table 1 of HLZ.4 Here σ(r), like W (r), is discretised over 1000 steps.

Consider first the homoskedastic case of Table 2a. Comparing PSYσ and PSY ∗
σ , we

see that PSY ∗
σ is generally more powerful than PSYσ, particularly when the explosive

episode occurs early in the sample, where power gains of up to around 0.11 can be

seen. In turn, PSYσ is generally more powerful than sPSY (with some exceptions for

the earlier explosive cases), while sPSY is always more powerful than s̄PSY . Here

then, PSY ∗
σ emerges pretty unambiguously as the preferred test.

Turning to the first heteroskedastic specification in Table 2b, S(r, 1, 1/6, 0.4, 30)

(early large downward shift in volatility) a rather more involved picture emerges. While

there are some cases where the power of PSY ∗
σ exceeds that of PSYσ, the reverse

pattern can arise when a collapse is present, with the power of PSYσ actually much

higher than that of PSY ∗
σ when the explosive episode occurs early in the sample, with

power differences up to around 0.22. Notice also that s̄PSY is more powerful than

sPSY and PSY ∗
σ in this early explosive episode with collapse environment. PSYσ

almost always has higher power than the better of sPSY and s̄PSY , and therefore

emerges as arguably the best test overall for these settings. For S(r, 1, 1/3, 0.4, 30)

(early small downward shift in volatility), much the same overall comments apply. For

the heteroskedastic specifications in Table 2c, S(r, 1, 3, 0.4, 30) (early small upward shift

in volatility) and S(r, 1, 6, 0.4, 30) (early large upward shift in volatility), the pattern

of results is broadly in line with the homoskedastic case, with PSY ∗
σ representing the

best performing test, almost without exception.

In Table 2d, the timing of the volatility change is now later, with S(r, 1, 1/6, 0.8, 30)

(late large downward shift in volatility) and S(r, 1, 1/3, 0.8, 30) (late small downward

shift in volatility). Here, we see that PSY ∗
σ is the best performing test when the

explosive episode timing is early or central, but PSYσ performs best when the explosive

4Local asymptotic powers of sPSY and s̄PSY depend on the probability density function of zt.
For the purposes of this compaison exercise we assume, as in HLZ, that zt is normally distributed.
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episode occurs late in the sample. Lastly, for the heteroskedastic specifications in Table

2e S(r, 1, 3, 0.8, 30) (late small upward shift in volatility) and S(r, 1, 6, 0.8, 30) (late

large upward shift in volatility) the results are once more similar to the homoskedastic

case, where PSY ∗
σ represents the best performing test.

On the basis of our asymptotic simulations, what is clear is that for any given

DGP, the better performing of the new PSYσ and PSY ∗
σ tests dominates the better

performing of the sPSY and s̄PSY tests, with gains of up to about 0.13 (outside of

very low power cases where very small losses of up to 0.01 are observed). Between

PSYσ and PSY ∗
σ , there is no clear winner unless we are prepared to take a stance

on a particular form of bubble and/or volatility DGP setting being present in the

data. This might seem counterintuitive since PSYσ involves fitting what might be

considered a redundant intercept term. In reality though, these matters are not easily

resolved because PSYσ and PSY ∗
σ are based on the double-supremum of DFσ(λ1, λ2)

and DF ∗
σ (λ1, λ2), and the magnitude and locations of the double-supremum involves

a very complex (essentially intractable) interaction of the values of the parameters c1,

c2, τ 1, τ 2, τ 3 and the volatility path σ(r). Given that each test offers power gains over

the other for some areas of the parameter constellation considered, and the particular

parameter settings would be unknown to a practitioner, it makes sense to consider

a procedure that aims to harness the higher power that is available from PSYσ and

PSY ∗
σ in any particular DGP setting by employing a union of rejections strategy. We

detail this approach in the next section.

5 A Union of Rejections Based Strategy

We now consider a union of rejections testing strategy based on inference from both

PSYσ and PSY ∗
σ , in line with the initial work on this approach in Harvey et al. (2009)

in the context of left-tailed unit root testing under uncertainty regarding the presence

or otherwise of a linear trend. Specifically, denoting the asymptotic ξ level null critical

value of PSYσ by cvξ (from the G0,0,σ distribution) and that of PSY ∗
σ by cv∗ξ (from the
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G∗
0,0,σ distribution), a union of rejections strategy can be written as the decision rule

Reject H0 if {PSYσ > ψξcvξ or PSY
∗
σ > ψξcv

∗
ξ}

where ψξ is a scaling constant that ensures the decision rule yields an asymptotic size

of ξ under H0. Defining a single statistic UPSYσ as

UPSYσ := max

(
PSYσ,

cvξ
cv∗ξ

PSY ∗
σ

)

the decision rule is then equivalent to

Reject H0 if UPSYσ > ψξcvξ.

An application of the continuous mapping theorem along with the results in Theo-

rem 2 shows that

UPSYσ ⇒ max

(
Gc1,c2,σ,

cvξ
cv∗ξ

G∗
c1,c2,σ

)
.

Note that there is no need to explicitly calculate the scaling constant ψξ as, for a given

value of cvsξ/cvξ, all we require is the critical value cv
U
ξ := ψξcvξ which can be obtained

directly from the limiting null distribution of UPSYσ; that is, max(G0,0,σ, (cvξ/cv
∗
ξ )G

∗
0,0,σ).

Asymptotic and finite sample critical values for cvUξ are provided in Table 1.

The asymptotic local power results for UPSYσ are also given in Table 2. Through-

out, we see that the local powers of UPSYσ track very closely the better power that

is available from PSYσ and PSY ∗
σ individually. Indeed, across the whole of Table 2,

the mean power loss for UPSYσ compared to the better of PSYσ and PSY ∗
σ is only

0.010 with a standard deviation of less than 0.008, and the largest power deficit is only

0.033. Given that the performance of the union of rejections strategy is so close to that

of the best of PSYσ and PSY ∗
σ , it is unsurprising to see that UPSYσ dominates the

better performing of the sPSY and s̄PSY tests across almost all parameter settings

(the only exceptions being cases where all tests have very low power).
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6 Finite Sample Simulations

We now turn to an examination of the finite sample properties of the tests. Our

simulations are based on the model in (1)-(3) with T = 200. We set µ = 0 (without

loss of generality) and u1 = ε1, where εt = σtzt with the zt generated as NIID(0, 1)

random variates. Here the limit volatility functions σ(r) are discretised to σt(t/T )

over 200 steps. In the nonparametric variance estimator σ̂2
t used in constructing xt for

PSYσ and PSY ∗
σ we again employ the Gaussian kernel for K(·) and set the bandwidth

to h = 0.1T−0.25. We use finite sample critical values for all tests, i.e. those in Table 1

for PSYσ, PSY
∗
σ and UPSYσ, and critical values simulated in the same way for sPSY

and s̄PSY . Table S1 in the Supplementary Appendix reports 0.05-level finite sample

sizes and powers over the same set of volatility patterns as for the asymptotic power

analysis of Table 2; for the powers we consider the same constellation of bubble/collapse

parameter settings as Table 2.

First we note that throughout Table S1, the sizes of all tests are close to the

nominal level across the different volatility patterns. Some very modest over-size is

observed in the case of PSYσ, up to 0.058, but even this feature is largely absent

when considering the union of rejections strategy UPSYσ, which has a maximum size

of 0.053. The sPSY and s̄PSY sizes are invariant to σt here, since the statistics are

based on sign(∆yt) = sign(εt) = sign(zt) under the null.

Turning to finite sample power, it is clear from a comparison of Tables 2 and S1

that, in the main, the finite sample rejection frequencies bear a very close resemblance

to the corresponding local asymptotic results. There are some individual settings for

which the correspondence deviates from this general pattern, but these are rare. Hence,

the overall patterns of results, the rankings of the tests for different volatility patterns

and bubble/collapse timings, and the magnitudes of the relative power differences are

largely the same as in the local asymptotic case. In particular, the powers of UPSYσ are

very close to the better power that is available from PSYσ and PSY ∗
σ , with the mean

power loss for UPSYσ compared to the better of PSYσ and PSY ∗
σ only 0.007 across

the Table S1 results, with a standard deviation of less than 0.008, and a largest power
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deficit of 0.037. In these finite sample results, UPSYσ power continues to dominate the

better performing of the sPSY and s̄PSY tests across almost all parameter settings,

as with the corresponding asymptotic local power results in Table 2.

In addition to these finite sample results that use IID errors, we also investigate

finite sample size robustness under departures from this assumption. First, we consider

the case where zt is a conditionally heteroskedastic GARCH(1,1) process, with zt =
√
htηt, where ηt ∼ NIID(0, 1), and ht = 0.1 + 0.1z2t−1 + 0.8ht−1 (with h0 = z0 = 0).

Sizes are simulated for the same volatility functions as considered in Table S1, using

simulated finite sample critical values obtained under conditional and unconditional

homoskedasticity. The results are presented in Table S2 for T = 200 and T = 400.

Reliable finite sample size is generally observed for the new procedures across the

different DGPs, particularly for PSY ∗
σ . Some modest over-size is displayed, but this

reduces with the sample size, as would be expected. As in Table S1, the sPSY and

s̄PSY sizes are exactly 0.05 since here sign(∆yt) = sign(ηt).

The second departure from IID errors that we consider is serial correlation in εt,

using the AR(1) specification εt = θεt−1 + σtzt. In line with the discussion in Remark

3.3, we augment the subsample regression (6), and its without-intercept equivalent,

respectively, with one lagged difference term ∆xt−1 and construct xt as in (5) continuing

to use the first-differences based estimator given in (4).5 The comparator sign-based

tests are also adjusted for serial correlation using the recursive pre-whitening method

outlined in HLZ. Finite sample critical values for the lag-augmented/pre-whitened tests

are simulated using NIID(0, 1) errors. The results are presented in Table S3 for

T = 200 and T = 400. We see that the new procedures generally display decent

finite sample size control under these serial correlation settings. Some modest over-

size is seen, particularly when θ = 0.4 and T = 200, although the over-size reduces

for T = 400 as expected. The sign-based comparator procedures also display some

over-size, with the degree broadly in line with that observed for the new tests.

5We also considered the analogous tests based on the residual-based alternative to the first-
differences based estimator discussed in Remark 3.3, but found these to display inferior finite sample
performance to the reported tests.
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7 Conclusions

In this paper we have proposed modified versions of the seminal bubble detection

methods developed in Phillips et al. (2015) that work effectively in the presence of

non-stationary volatility. The modification purges unconditional heteroskedasticity

from the data under the null by re-scaling the first differences of the data by a kernel

estimate of volatility and then recumulating. The procedures developed in Phillips et al.

(2015) are then applied to this recumulated data, rather than the original data. Finite

sample simulations indicate that our new tests perform well relative to extant bubble

detection tests that allow for non-stationary volatility. A union of rejections procedure

based on versions of our statistics from regressions with and without an intercept was

found to perform especially well across a wide range of simulation settings.
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Appendix

A.1 Lemma 1 and Proof

We begin by stating and proving a preparatory lemma that will subsequently be re-

quired for the proof of Theorem 1.

Lemma 1. Let the conditions of Theorem 1 hold. Then,

T∑
j=2

(σ̂2
j − σ2

j)
2 = Op(h

−1) + op(T ).

Proof. Defining σ̃2
t :=

∑T
j=2wt,j(σjzj)

2 and σ̄2
t :=

∑T
j=2wt,jσ

2
j , notice first that

T∑
j=2

(σ̂2
j − σ2

j)
2 ⩽ 3

(
T∑

j=2

(σ̂2
j − σ̃2

j)
2 +

T∑
j=2

(σ̃2
j − σ̄2

j)
2 +

T∑
j=2

(σ̄2
j − σ2

j)
2

)
.

Using the same argument as used by Harvey et al. (2019) in deriving equation (9) in

the proof of their Theorem 1, we obtain that
∑T

j=2(σ̂
2
j − σ̃2

j)
2 = Op(T

−1). By Lemma

S.1 (b) of CNT,
∑T

j=2(σ̃
2
j − σ̄2

j)
2 = Op(h

−1). Using the argument as in the proof of

Lemma S.1 (a) of CNT and Lemma A(l) of Xu and Phillips (2008), we have that∑T
j=2(σ̄

2
j − σ2

j)
2 = op(T ). In summary, the first term is dominated by the second

and third terms, while the relative magnitude of the second and the third terms is

indeterminate, and so
∑T

j=2(σ̂
2
j − σ2

j)
2 = Op(h

−1) + op(T ).

A.2 Proof of Theorem 1

Under H1 we can write

T−1/2x⌊Tr⌋ = T−1/2

⌊Tr⌋∑
j=2

uj − uj−1

σ̂j

= T−1/2

⌊Tr⌋∑
j=2

(ρj − 1)uj−1

σ̂j

+ T−1/2

⌊Tr⌋∑
j=2

σjzj
σ̂j

.

To establish the limit of T−1/2x⌊Tr⌋ stated in (8), we will first show that for r > 0,

sup
0⩽r⩽1

∣∣∣∣∣∣T−1/2

⌊Tr⌋∑
j=2

(ρj − 1)uj−1

σ̂j

− T−1/2

⌊Tr⌋∑
j=2

(ρj − 1)uj−1

σj

∣∣∣∣∣∣ = op(1), (A.1)
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and

sup
0⩽r⩽1

∣∣∣∣∣∣T−1/2

⌊Tr⌋∑
j=2

σjzj
σ̂j

− T−1/2

⌊Tr⌋∑
j=2

zj

∣∣∣∣∣∣ = op(1), (A.2)

and then derive

T−1/2

⌊Tr⌋∑
j=2

(ρj − 1)uj−1

σj

+T−1/2

⌊Tr⌋∑
j=2

zj ⇒



W (r) r ⩽ τ 1

W (r) + c1
∫ r

τ1

V1(s)
σ(s)

ds τ 1 < r ⩽ τ 2

W (r) + c1
∫ τ2
τ1

V1(s)
σ(s)

ds− c2
∫ r

τ2

V2(s)
σ(s)

ds τ 2 < r ⩽ τ 3

W (r) + c1
∫ τ2
τ1

V1(s)
σ(s)

ds− c2
∫ τ3
τ2

V2(s)
σ(s)

ds r > τ 3

.

(A.3)

From (A.1)-(A.3), (8) then follows.

For (A.1), we only demonstrate the result when r > τ 3; for r in other regimes the

results can be shown in a similar way and, hence, are omitted. Notice that, from the

definition of ρj,

sup
r>τ3

∣∣∣∣∣∣T−1/2

⌊Tr⌋∑
j=2

(ρj − 1)uj−1

σ̂j

− T−1/2

⌊Tr⌋∑
j=2

(ρj − 1)uj−1

σj

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣c1T−3/2

⌊Tτ2⌋∑
j=⌊Tτ1⌋+1

uj−1

(
1

σ̂j

− 1

σj

)∣∣∣∣∣∣+
∣∣∣∣∣∣c2T−3/2

⌊Tτ3⌋∑
j=⌊Tτ2⌋+1

uj−1

(
1

σ̂j

− 1

σj

)∣∣∣∣∣∣
=: A1 + A2.

Using the Cauchy-Schwarz inequality,

A1 ⩽

∣∣∣∣∣∣∣c1T−3/2

 ⌊Tτ2⌋∑
j=⌊Tτ1⌋+1

u2j−1

1/2 ⌊Tτ2⌋∑
j=⌊Tτ1⌋+1

(
1

σ̂j

− 1

σj

)2
1/2

∣∣∣∣∣∣∣
⩽ c1T

− 3
2 ( min

⌊Tτ1⌋+1⩽j⩽⌊Tτ2⌋
|σ̂jσj(σ̂j + σj)|)−1

 ⌊Tτ2⌋∑
j=⌊Tτ1⌋+1

u2j−1

 1
2
 ⌊Tτ2⌋∑

j=⌊Tτ1⌋+1

(σ̂2
j − σ2

j)
2

 1
2

.

Using the argument in the proof of Lemma A(h) and A(j) in Xu and Phillips (2008), we

have that (min⌊Tτ1⌋+1⩽j⩽⌊Tτ2⌋ |σ̂jσj(σ̂j + σj)|)−1 = Op(1). It is also straightforwardly

seen that
∑⌊Tτ2⌋

j=⌊Tτ1⌋+1 u
2
j−1 = Op(T

2). Using Lemma 1 we have
∑⌊Tτ2⌋

j=⌊Tτ1⌋+1(σ̂
2
j − σ2

j)
2 =
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Op(h
−1)+ op(T ). In total, A1 = op(1). Similarly we also have A2 = op(1), and so (A.1)

is verified.

To establish (A.2), consider the decomposition

T−1/2

⌊Tr⌋∑
j=2

(
σjzj
σ̂j

− zj

)

= T−1/2

⌊Tr⌋∑
j=2

(
σjzj
σ̂j

− σjzj
σ̃j

)
+ T−1/2

⌊Tr⌋∑
j=2

(
σjzj
σ̃j

− σjzj
σ̄j

)
+ T−1/2

⌊Tr⌋∑
j=2

(
σjzj
σ̄j

− zj

)
=: B1 +B2 +B3.

For the first term, B1, we have that

|B1| ⩽ T−1/2 max
1⩽j⩽⌊Tr⌋

∣∣∣∣ σj

σ̂jσ̃j(σ̃j + σ̂j)

∣∣∣∣
⌊Tr⌋∑

j=2

(σ̃2
j − σ̂2

j)
2

1/2⌊Tr⌋∑
j=2

z2j

1/2

. (A.4)

From the proof of Lemma 1, we have that
∑⌊Tr⌋

j=2 (σ̃
2
j − σ̂2

j)
2 = Op(T

−1). It is also

straightforwardly seen that
∑⌊Tr⌋

j=2 z
2
t = Op(T ) and max2⩽j⩽⌊Tr⌋

∣∣∣ σj

σ̂j σ̃j(σ̃j+σ̂j)

∣∣∣ = Op(1).

It then follows that B1 = op(1) for all 0 ⩽ r ⩽ 1. This result can be strengthened to be

uniform over the same interval by noticing that the magnitude of the right hand side

of (A.4) is non-decreasing in r, and so sup0⩽r⩽1 |B1| = op(1).

Turning next to B2, using the equality p−1 − q−1 = (q − p)q−2 + (q − p)2p−1q−2,

consider the following decomposition

B2 = T−1/2

⌊Tr⌋∑
j=2

σjzj(1/σ̃
2
j − 1/σ̄2

j)

= T−1/2

⌊Tr⌋∑
j=2

σjzj(σ̄
2
j − σ̃2

j)σ̄
−4
j + T−1/2

⌊Tr⌋∑
j=2

σjzj(σ̄
2
j − σ̃2

j)
2σ̄−4

j σ̃−2
j

=: B21 +B22.
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Consider first B21. We evaluate

E|B21|2 = T−1E

⌊Tr⌋∑
j=2

σjzj

(
T∑
i=2

wj,iσ
2
i (z

2
i − 1)

)
σ̄−4
j

2

= T−1E

⌊Tr⌋∑
j=2

T∑
i=2

wj,iσjσ
2
i σ̄

−4
j zj(z

2
i − 1)

2

= T−1E

⌊Tr⌋∑
j,j′=2

T∑
i,i′=2

wj,iwj′,i′σjσj′σ
2
iσ

2
i′σ̄

−4
j σ̄−4

j′ (zjzj′(z
2
i − 1)(z2i′ − 1))

⩽ T−1

T∑
j,j′=2

T∑
i,i′=2

wj,iwj′,i′σjσj′σ
2
iσ

2
i′σ̄

−4
j σ̄−4

j′ |E(zjzj′(z
2
i − 1)(z2i′ − 1))|.

Using the Assumption 1 and applying the standard formula representing joint moments

by summation of different products of joint cumulants (see Section 1.3 of Novak (2014)

and Section 2.3 of Brillinger (2001)), we can show that

T∑
j,j′=2

T∑
i,i′=2

|E(zjzj′(z2i − 1)(z2i′ − 1))| = O(T 2).

It then follows that EB2
21 = O(1/(Th2)) = o(1). Notice that the above derivation

also goes through for sup0⩽r⩽1 |B21|2 and it follows that sup0⩽r⩽1B21 = Op(1/(Th
2)) =

op(1).

For B22, using the Cauchy-Schwarz inequality for the sum we have

∣∣∣∣∣∣T−1/2

⌊Tr⌋∑
j=2

σjzj(σ̄
2
j − σ̃2

j)
2σ̄−4

j σ̃−2
j

∣∣∣∣∣∣ ⩽ C

 1

T

⌊Tr⌋∑
j=2

(σjzj)
2

1/2⌊Tr⌋∑
j=2

(σ̄2
j − σ̃2

j)
4

1/2

.

It is straightforwardly seen that sup0⩽r⩽1 T
−1
∑[τT ]

j=2(σjzj)
2 = Op(1). Notice that sup0⩽r⩽1∑⌊Tr⌋

j=2 (σ̄
2
j − σ̃2

j)
4 =

∑T
j=2(σ̄

2
j − σ̃2

j)
4, which is Op

(
1

Th2

)
by Lemma S.1 (e) in the on-line

supplement accompanying CNT. Therefore we have that sup0⩽r⩽1 |B22| = op(1). In

total, we therefore have that sup0⩽r⩽1 |B2| = op(1).

Turning finally to B3, using the fact that σj’s and σ̄j’s are both deterministic, we
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have that

E|B3|2 = E

T−1/2

⌊Tr⌋∑
j=2

1

σ̄j(σj + σ̄j)
(σ̄2

j − σ2
j)zj

2

= T−1

⌊Tr⌋∑
j=2

1

σ̄2
j(σj + σ̄j)2

(σ̄2
j − σ2

j)
2Ez2j

⩽ max
2⩽j⩽⌊Tr⌋

1

σ̄2
j(σj + σ̄j)2

T−1

⌊Tr⌋∑
j=2

(σ̄2
j − σ2

j)
2.

From the proof of Lemma 1, we have that T−1
∑⌊Tr⌋

j=2 (σ̄
2
j−σ2

j)
2 = o(1) and so maxj

1
σ̄2
j (σj+σ̄j)2

is clearly O(1) and hence E|B3|2 = o(1). It follows from the Markov inequality that

B3 = op(1) and the result is also uniform over 0 ⩽ r ⩽ 1, and so (A.2) is verified.

We next establish (A.3). First, by a standard MDS FCLT (see, e.g., Hall and Hyde,

1980), we have that T−1/2
∑⌊Tr⌋

j=2 zj ⇒ W (r), r ∈ [0, 1], where W (r) is a standard

Brownian motion. For T−1/2
∑⌊Tr⌋

j=2

(ρj−1)uj−1

σj
, the limit will depend on the regime r lies

in. Again here we only give the derivation of the result when r > τ 3; the derivation of

the results for r in the other regimes is similar and therefore omitted. When r > τ 3,

by approximation of the Riemann integral,

T−1/2

⌊Tr⌋∑
j=2

(ρj − 1)uj−1

σj

= c1T
− 3

2

⌊Tτ2⌋∑
j=⌊Tτ1⌋+1

uj−1

σj

− c2T
− 3

2

⌊Tτ3⌋∑
j=⌊Tτ2⌋+1

uj−1

σj

⇒ c1

∫ τ2

τ1

V1(s)

σ(s)
ds− c2

∫ τ3

τ2

V2(s)

σ(s)
ds.

A.3 Proof of Theorem 2

In the following, we detail the proof for the no-intercept version PSY ∗
σ . The with-

intercept version result for PSYσ can be derived analogously and, hence, is omitted.

Using Theorem 1, the stated result for the no constant version follows if we can

show that ŝ2(λ1, λ2)
p−→ 1. By definition of the variance estimator ŝ2(λ1, λ2) and the
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least squares estimator ϕ̂(λ1, λ2), we have the following expansion,

ŝ2(λ1, λ2) = (⌊λ2T ⌋ − ⌊λ1T ⌋ − 1)−1

⌊λ2T ⌋∑
t=⌊λ1T ⌋+1

(∆xt − ϕ̂(λ1, λ2)xt−1)
2

= (⌊λ2T ⌋ − ⌊λ1T ⌋ − 1)−1

 ⌊λ2T ⌋∑
t=⌊λ1T ⌋+1

(∆xt)
2 −

(∑⌊λ2T ⌋
t=⌊λ1T ⌋+1∆xtxt−1

)2
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1 x
2
t−1

 .

From (8) it is easily seen that
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1∆xtxt−1 = Op(T ) and
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1 x
2
t−1 =

Op(T
2), and we therefore have that

(⌊λ2T ⌋ − ⌊λ1T ⌋ − 1)−1

(∑⌊λ2T ⌋
t=⌊λ1T ⌋+1 ∆xtxt−1

)2
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1 x
2
t−1

= op(1).

Notice also that
⌊λ2T ⌋∑

t=⌊λ1T ⌋+1

(∆xt)
2 =

⌊λ2T ⌋∑
t=⌊λ1T ⌋+1

(
∆ut
σ̂t

)2

.

Using the same argument as we used in deriving (A.1), we therefore have that

1

⌊λ2T ⌋ − ⌊λ1T ⌋ − 1

∣∣∣∣∣∣
⌊λ2T ⌋∑

t=⌊λ1T ⌋+1

(
∆ut
σ̂t

)2

−
⌊λ2T ⌋∑

t=⌊λ1T ⌋+1

(
∆ut
σt

)2

∣∣∣∣∣∣ = op(1).

Then, by the definition of ut, we have that

∆ut =



εt t ⩽ ⌊τ 1T ⌋

(c1/T )ut−1 + εt ⌊τ 1T ⌋ < t ⩽ ⌊τ 2T ⌋

(−c2/T )ut−1 + εt ⌊τ 2T ⌋ < t ⩽ ⌊τ 3T ⌋

εt t > ⌊τ 3T ⌋

.

It is then straightforward to show that (⌊λ2T ⌋− ⌊λ1T ⌋− 1)−1
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1

(
∆ut

σt

)2 p−→ 1.
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Consequently,

ŝ2(λ1, λ2) = (⌊λ2T ⌋ − ⌊λ1T ⌋ − 1)−1

⌊λ2T ⌋∑
t=⌊λ1T ⌋+1

(
∆ut
σt

)2

+ op(1)
p→ 1.

We are now in a position to derive the distribution of the DF statistic over the

(λ1, λ2) subsample. To that end,

DF ∗
σ (λ1, λ2) =

T−1x2⌊λ2T ⌋ − T−1x2⌊λ1T ⌋ − T−1
∑⌊λ2T ⌋

t=⌊λ1T ⌋+1(∆xt)
2

2
√
ŝ2(λ1, λ2)T−2

∑⌊λ2T ⌋
t=⌊λ1T ⌋+1 x

2
t−1

⇒ X (λ2)
2 −X (λ1)

2 − (λ2 − λ1)

2
√∫ λ2

λ1
X (r)2dr

. (A.5)

The large sample result in (A.5) holds formally only for fixed λ1, λ2. However,

following the same approach (which is based on the proof strategy adopted by Zivot

and Andrews, 1992, to prove their Theorem 1) as that used to establish Equation (A.6)

on p.1072 in the proof of Theorem 1 in PSY (pp.1072-1075), the stated result for the

limiting null distribution of the PSY ∗
σ statistic can be shown to follow by means of the

Continuous Mapping Theorem from the fixed λ1, λ2 representation in (A.5).
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Table 1. Asymptotic and finite sample critical values for ξ-level tests.

PSYσ PSY ∗
σ UPSYσ

ξ = 0.10 ξ = 0.05 ξ = 0.01 ξ = 0.10 ξ = 0.05 ξ = 0.01 ξ = 0.10 ξ = 0.05 ξ = 0.01

T = 100 1.629 1.828 2.392 3.637 4.158 5.553 3.950 4.527 6.129
T = 200 1.608 1.789 2.140 3.226 3.595 4.330 3.468 3.804 4.589
T = 400 1.712 1.935 2.296 3.167 3.446 4.007 3.361 3.598 4.145
T = ∞ 1.875 2.094 2.486 2.978 3.296 3.859 3.186 3.486 3.951
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Table 2a. Local asymptotic power of nominal 0.05-level tests.

σ(r) = 1

τ1 τ2 τ3 c1 c2 PSYσ PSY ∗
σ UPSYσ sPSY s̄PSY

0.1 0.4 0.6 2 0 0.072 0.105 0.087 0.108 0.061
1 0.068 0.091 0.079 0.098 0.070
2 0.068 0.084 0.076 0.092 0.082

4 0 0.183 0.292 0.263 0.244 0.107
2 0.181 0.268 0.242 0.222 0.136
4 0.209 0.263 0.251 0.214 0.176

6 0 0.466 0.547 0.527 0.487 0.262
3 0.469 0.524 0.512 0.464 0.306
6 0.486 0.518 0.513 0.462 0.371

8 0 0.720 0.754 0.743 0.705 0.538
4 0.715 0.735 0.728 0.684 0.560
8 0.722 0.731 0.730 0.679 0.591

10 0 0.856 0.869 0.861 0.840 0.765
5 0.854 0.861 0.856 0.832 0.776
10 0.855 0.861 0.855 0.831 0.782

0.3 0.6 0.8 2 0 0.099 0.139 0.126 0.121 0.050
1 0.097 0.126 0.119 0.111 0.063
2 0.104 0.120 0.117 0.105 0.078

4 0 0.334 0.403 0.382 0.336 0.117
2 0.334 0.384 0.368 0.315 0.165
4 0.353 0.380 0.374 0.309 0.219

6 0 0.634 0.656 0.643 0.602 0.427
3 0.628 0.641 0.631 0.587 0.461
6 0.644 0.637 0.639 0.581 0.496

8 0 0.808 0.815 0.806 0.779 0.686
4 0.803 0.806 0.800 0.767 0.700
8 0.805 0.804 0.800 0.763 0.713

10 0 0.895 0.896 0.894 0.870 0.837
5 0.889 0.893 0.888 0.867 0.842
10 0.892 0.890 0.890 0.866 0.845

0.5 0.8 1.0 2 0 0.120 0.164 0.145 0.139 0.050
1 0.119 0.151 0.140 0.128 0.055
2 0.126 0.145 0.140 0.123 0.072

4 0 0.433 0.474 0.457 0.406 0.192
2 0.428 0.456 0.448 0.390 0.212
4 0.448 0.453 0.457 0.387 0.264

6 0 0.710 0.726 0.715 0.669 0.543
3 0.705 0.717 0.710 0.656 0.558
6 0.709 0.716 0.710 0.654 0.590

8 0 0.858 0.863 0.858 0.838 0.778
4 0.857 0.859 0.854 0.829 0.785
8 0.858 0.857 0.856 0.829 0.803

10 0 0.932 0.935 0.931 0.918 0.894
5 0.931 0.931 0.929 0.914 0.896
10 0.931 0.931 0.929 0.913 0.902

Notes: τ1 and τ2 denote the sample fraction at which the explosive period begins and ends; τ3 denotes the end of the
collapse regime; c1 and c2 denote the locally explosive and collapse magnitudes; σ(r) denotes the volatility function.
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Table 2b. Local asymptotic power of nominal 0.05-level tests.

σ(r) = S(r, 1, 1/6, 0.4, 30) σ(r) = S(r, 1, 1/3, 0.4, 30)

τ1 τ2 τ3 c1 c2 PSYσ PSY ∗
σ UPSYσ sPSY s̄PSY PSYσ PSY ∗

σ UPSYσ sPSY s̄PSY

0.1 0.4 0.6 2 0 0.074 0.115 0.096 0.113 0.061 0.074 0.113 0.092 0.111 0.061
1 0.152 0.092 0.139 0.100 0.151 0.085 0.094 0.090 0.097 0.099
2 0.321 0.103 0.296 0.127 0.276 0.145 0.086 0.131 0.097 0.152

4 0 0.233 0.343 0.314 0.290 0.124 0.216 0.330 0.297 0.278 0.119
2 0.515 0.318 0.496 0.298 0.438 0.323 0.294 0.325 0.257 0.267
4 0.667 0.523 0.648 0.489 0.572 0.475 0.293 0.447 0.280 0.404

6 0 0.554 0.605 0.588 0.548 0.344 0.535 0.591 0.574 0.534 0.320
3 0.765 0.631 0.749 0.615 0.673 0.625 0.568 0.610 0.517 0.517
6 0.837 0.778 0.828 0.745 0.766 0.718 0.579 0.700 0.570 0.620

8 0 0.783 0.800 0.790 0.757 0.637 0.771 0.787 0.779 0.746 0.616
4 0.886 0.835 0.881 0.816 0.835 0.814 0.778 0.803 0.742 0.736
8 0.910 0.883 0.905 0.861 0.869 0.853 0.787 0.842 0.775 0.786

10 0 0.894 0.896 0.893 0.875 0.821 0.884 0.891 0.886 0.867 0.810
5 0.943 0.920 0.941 0.910 0.916 0.910 0.886 0.904 0.862 0.856
10 0.954 0.940 0.951 0.921 0.927 0.921 0.892 0.916 0.875 0.875

0.3 0.6 0.8 2 0 0.472 0.519 0.493 0.443 0.229 0.257 0.321 0.294 0.273 0.085
1 0.481 0.501 0.487 0.423 0.302 0.266 0.301 0.292 0.250 0.135
2 0.545 0.497 0.533 0.425 0.414 0.306 0.294 0.310 0.246 0.208

4 0 0.796 0.808 0.795 0.770 0.677 0.656 0.681 0.662 0.624 0.481
2 0.795 0.795 0.786 0.761 0.703 0.659 0.665 0.656 0.610 0.516
4 0.811 0.793 0.803 0.766 0.738 0.679 0.660 0.668 0.609 0.570

6 0 0.904 0.908 0.903 0.878 0.855 0.836 0.841 0.834 0.811 0.751
3 0.900 0.905 0.899 0.874 0.861 0.831 0.835 0.828 0.804 0.766
6 0.906 0.903 0.902 0.878 0.872 0.838 0.834 0.832 0.805 0.779

8 0 0.951 0.951 0.950 0.942 0.926 0.915 0.921 0.915 0.896 0.872
4 0.949 0.949 0.947 0.939 0.930 0.914 0.918 0.913 0.888 0.877
8 0.950 0.948 0.948 0.940 0.934 0.916 0.917 0.913 0.890 0.884

10 0 0.977 0.977 0.977 0.971 0.967 0.953 0.953 0.951 0.947 0.929
5 0.978 0.977 0.977 0.970 0.970 0.950 0.950 0.948 0.942 0.931
10 0.978 0.977 0.977 0.971 0.972 0.951 0.950 0.948 0.942 0.934

0.5 0.8 1.0 2 0 0.587 0.616 0.595 0.556 0.353 0.343 0.406 0.386 0.350 0.114
1 0.584 0.610 0.591 0.547 0.371 0.340 0.390 0.373 0.332 0.134
2 0.607 0.607 0.603 0.545 0.434 0.369 0.383 0.386 0.329 0.201

4 0 0.844 0.847 0.841 0.826 0.747 0.719 0.738 0.721 0.692 0.560
2 0.843 0.842 0.838 0.820 0.753 0.717 0.729 0.715 0.682 0.573
4 0.850 0.840 0.843 0.818 0.776 0.730 0.727 0.723 0.680 0.612

6 0 0.938 0.939 0.933 0.924 0.901 0.875 0.878 0.871 0.855 0.807
3 0.936 0.934 0.932 0.922 0.903 0.874 0.875 0.868 0.852 0.806
6 0.938 0.933 0.934 0.921 0.908 0.875 0.873 0.871 0.850 0.820

8 0 0.974 0.974 0.973 0.965 0.956 0.942 0.943 0.942 0.927 0.908
4 0.973 0.972 0.971 0.963 0.956 0.941 0.941 0.940 0.924 0.911
8 0.974 0.972 0.972 0.964 0.957 0.941 0.940 0.940 0.925 0.914

10 0 0.987 0.986 0.987 0.981 0.980 0.971 0.970 0.970 0.966 0.956
5 0.987 0.986 0.986 0.980 0.979 0.971 0.970 0.970 0.964 0.960

10 0.988 0.986 0.987 0.980 0.980 0.972 0.970 0.970 0.965 0.961

Notes: τ1 and τ2 denote the sample fraction at which the explosive period begins and ends; τ3 denotes the end of the
collapse regime; c1 and c2 denote the locally explosive and collapse magnitudes; σ(r) denotes the volatility function,
with S(r, σ1, σ2, τσ, γ) denoting a smooth transition function from σ1 to σ2 with midpoint τσ and speed γ.
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Table 2c. Local asymptotic power of nominal 0.05-level tests.

σ(r) = S(r, 1, 3, 0.4, 30) σ(r) = S(r, 1, 6, 0.4, 30)

τ1 τ2 τ3 c1 c2 PSYσ PSY ∗
σ UPSYσ sPSY s̄PSY PSYσ PSY ∗

σ UPSYσ sPSY s̄PSY

0.1 0.4 0.6 2 0 0.070 0.093 0.081 0.101 0.063 0.068 0.086 0.080 0.095 0.061
1 0.066 0.086 0.075 0.094 0.063 0.063 0.081 0.075 0.091 0.062
2 0.064 0.081 0.072 0.088 0.064 0.060 0.077 0.070 0.087 0.061

4 0 0.142 0.249 0.220 0.204 0.099 0.121 0.219 0.190 0.182 0.092
2 0.135 0.234 0.203 0.194 0.101 0.115 0.206 0.179 0.172 0.091
4 0.134 0.226 0.196 0.185 0.111 0.111 0.198 0.173 0.167 0.092

6 0 0.365 0.470 0.449 0.409 0.194 0.294 0.426 0.400 0.361 0.171
3 0.357 0.451 0.435 0.396 0.204 0.286 0.412 0.387 0.347 0.174
6 0.356 0.447 0.432 0.393 0.213 0.283 0.408 0.383 0.343 0.173

8 0 0.630 0.676 0.659 0.623 0.414 0.539 0.624 0.605 0.563 0.333
4 0.623 0.660 0.647 0.610 0.418 0.532 0.611 0.594 0.552 0.335
8 0.620 0.658 0.646 0.604 0.423 0.531 0.610 0.591 0.547 0.335

10 0 0.805 0.825 0.816 0.783 0.652 0.742 0.777 0.767 0.734 0.560
5 0.795 0.815 0.806 0.776 0.654 0.736 0.769 0.758 0.725 0.558
10 0.795 0.814 0.805 0.772 0.655 0.735 0.766 0.755 0.721 0.558

0.3 0.6 0.8 2 0 0.070 0.088 0.082 0.086 0.050 0.066 0.074 0.073 0.074 0.053
1 0.070 0.081 0.073 0.079 0.054 0.065 0.067 0.066 0.069 0.054
2 0.068 0.073 0.069 0.073 0.057 0.063 0.061 0.063 0.065 0.057

4 0 0.153 0.201 0.180 0.172 0.065 0.119 0.149 0.137 0.131 0.059
2 0.146 0.182 0.167 0.157 0.076 0.113 0.136 0.121 0.117 0.067
4 0.149 0.178 0.165 0.148 0.091 0.112 0.131 0.119 0.112 0.071

6 0 0.334 0.407 0.384 0.339 0.123 0.235 0.293 0.271 0.246 0.089
3 0.331 0.386 0.366 0.314 0.155 0.228 0.274 0.252 0.223 0.104
6 0.339 0.381 0.368 0.308 0.189 0.227 0.270 0.249 0.215 0.124

8 0 0.576 0.606 0.597 0.550 0.356 0.422 0.473 0.464 0.407 0.195
4 0.566 0.588 0.582 0.528 0.388 0.413 0.455 0.443 0.383 0.218
8 0.570 0.584 0.580 0.522 0.409 0.419 0.449 0.441 0.378 0.243

10 0 0.760 0.774 0.766 0.733 0.622 0.634 0.652 0.646 0.596 0.433
5 0.752 0.758 0.752 0.715 0.642 0.628 0.639 0.635 0.571 0.454
10 0.754 0.754 0.751 0.711 0.649 0.625 0.636 0.632 0.568 0.467

0.5 0.8 1.0 2 0 0.093 0.111 0.103 0.096 0.054 0.090 0.102 0.098 0.089 0.057
1 0.090 0.102 0.097 0.090 0.054 0.087 0.094 0.091 0.085 0.056
2 0.088 0.096 0.096 0.087 0.061 0.087 0.087 0.087 0.083 0.058

4 0 0.266 0.311 0.287 0.264 0.114 0.239 0.279 0.262 0.234 0.112
2 0.263 0.290 0.277 0.244 0.125 0.229 0.261 0.249 0.216 0.119
4 0.272 0.285 0.281 0.241 0.149 0.239 0.257 0.254 0.214 0.136

6 0 0.533 0.565 0.546 0.506 0.347 0.503 0.524 0.514 0.469 0.317
3 0.534 0.546 0.537 0.488 0.362 0.491 0.503 0.497 0.449 0.323
6 0.544 0.543 0.544 0.482 0.394 0.503 0.501 0.505 0.444 0.353

8 0 0.744 0.752 0.749 0.705 0.622 0.715 0.719 0.718 0.671 0.593
4 0.739 0.744 0.743 0.691 0.632 0.712 0.707 0.712 0.656 0.605
8 0.744 0.744 0.746 0.690 0.655 0.715 0.705 0.713 0.656 0.623

10 0 0.864 0.868 0.865 0.843 0.808 0.846 0.855 0.850 0.819 0.773
5 0.864 0.865 0.862 0.838 0.809 0.846 0.848 0.846 0.809 0.781

10 0.863 0.865 0.863 0.838 0.818 0.847 0.847 0.847 0.809 0.792

Notes: τ1 and τ2 denote the sample fraction at which the explosive period begins and ends; τ3 denotes the end of the
collapse regime; c1 and c2 denote the locally explosive and collapse magnitudes; σ(r) denotes the volatility function,
with S(r, σ1, σ2, τσ, γ) denoting a smooth transition function from σ1 to σ2 with midpoint τσ and speed γ.
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Table 2d. Local asymptotic power of nominal 0.05-level tests.

σ(r) = S(r, 1, 1/6, 0.8, 30) σ(r) = S(r, 1, 1/3, 0.8, 30)

τ1 τ2 τ3 c1 c2 PSYσ PSY ∗
σ UPSYσ sPSY s̄PSY PSYσ PSY ∗

σ UPSYσ sPSY s̄PSY

0.1 0.4 0.6 2 0 0.072 0.105 0.087 0.108 0.061 0.072 0.105 0.087 0.108 0.061
1 0.068 0.091 0.079 0.098 0.070 0.068 0.091 0.079 0.098 0.070
2 0.068 0.084 0.076 0.092 0.082 0.068 0.084 0.076 0.092 0.082

4 0 0.183 0.292 0.263 0.244 0.107 0.183 0.292 0.263 0.244 0.107
2 0.181 0.268 0.242 0.222 0.136 0.181 0.268 0.242 0.222 0.136
4 0.209 0.263 0.251 0.214 0.176 0.209 0.263 0.251 0.214 0.176

6 0 0.466 0.547 0.527 0.487 0.262 0.466 0.547 0.527 0.487 0.262
3 0.469 0.524 0.512 0.464 0.306 0.469 0.524 0.512 0.464 0.306
6 0.486 0.518 0.513 0.462 0.371 0.486 0.518 0.513 0.462 0.371

8 0 0.720 0.754 0.743 0.705 0.538 0.720 0.754 0.743 0.705 0.538
4 0.715 0.735 0.728 0.684 0.560 0.715 0.735 0.728 0.684 0.560
8 0.722 0.731 0.730 0.679 0.591 0.722 0.731 0.730 0.679 0.591

10 0 0.856 0.869 0.861 0.840 0.765 0.856 0.869 0.861 0.840 0.765
5 0.854 0.861 0.856 0.832 0.776 0.854 0.861 0.856 0.832 0.776
10 0.855 0.861 0.855 0.831 0.782 0.855 0.861 0.855 0.831 0.782

0.3 0.6 0.8 2 0 0.099 0.139 0.126 0.121 0.050 0.099 0.139 0.126 0.121 0.050
1 0.100 0.126 0.120 0.111 0.066 0.098 0.126 0.119 0.111 0.065
2 0.107 0.120 0.120 0.105 0.086 0.106 0.120 0.120 0.105 0.083

4 0 0.334 0.403 0.383 0.336 0.117 0.334 0.403 0.383 0.336 0.117
2 0.338 0.384 0.369 0.315 0.176 0.337 0.384 0.368 0.315 0.172
4 0.363 0.381 0.378 0.309 0.241 0.357 0.381 0.377 0.309 0.235

6 0 0.634 0.656 0.643 0.602 0.427 0.634 0.656 0.643 0.602 0.427
3 0.633 0.641 0.632 0.587 0.469 0.631 0.641 0.632 0.587 0.467
6 0.652 0.637 0.643 0.581 0.513 0.650 0.637 0.641 0.581 0.507

8 0 0.808 0.815 0.806 0.779 0.686 0.808 0.815 0.806 0.779 0.686
4 0.803 0.806 0.800 0.767 0.706 0.803 0.806 0.800 0.767 0.705
8 0.806 0.804 0.800 0.764 0.717 0.805 0.804 0.800 0.763 0.716

10 0 0.895 0.896 0.895 0.870 0.837 0.895 0.896 0.895 0.870 0.837
5 0.890 0.893 0.889 0.866 0.844 0.890 0.893 0.889 0.866 0.844
10 0.893 0.890 0.891 0.867 0.846 0.893 0.890 0.891 0.867 0.846

0.5 0.8 1.0 2 0 0.133 0.189 0.164 0.159 0.051 0.129 0.182 0.161 0.153 0.051
1 0.294 0.165 0.270 0.146 0.203 0.160 0.160 0.168 0.139 0.103
2 0.514 0.169 0.487 0.212 0.387 0.288 0.157 0.264 0.140 0.205

4 0 0.487 0.521 0.504 0.458 0.275 0.477 0.508 0.494 0.444 0.255
2 0.696 0.504 0.677 0.495 0.574 0.550 0.486 0.531 0.431 0.400
4 0.809 0.697 0.797 0.661 0.722 0.661 0.485 0.643 0.473 0.542

6 0 0.754 0.771 0.755 0.725 0.633 0.740 0.757 0.738 0.710 0.610
3 0.877 0.786 0.869 0.777 0.808 0.785 0.744 0.771 0.702 0.699
6 0.910 0.881 0.905 0.853 0.867 0.847 0.753 0.838 0.745 0.771

8 0 0.888 0.894 0.887 0.868 0.819 0.879 0.885 0.878 0.862 0.809
4 0.936 0.908 0.933 0.906 0.910 0.899 0.879 0.895 0.864 0.861
8 0.955 0.938 0.952 0.928 0.931 0.922 0.887 0.917 0.880 0.890

10 0 0.953 0.953 0.953 0.936 0.917 0.951 0.950 0.947 0.932 0.914
5 0.977 0.964 0.975 0.954 0.958 0.955 0.945 0.950 0.933 0.934

10 0.982 0.972 0.980 0.963 0.964 0.964 0.947 0.961 0.936 0.944

Notes: τ1 and τ2 denote the sample fraction at which the explosive period begins and ends; τ3 denotes the end of the
collapse regime; c1 and c2 denote the locally explosive and collapse magnitudes; σ(r) denotes the volatility function,
with S(r, σ1, σ2, τσ, γ) denoting a smooth transition function from σ1 to σ2 with midpoint τσ and speed γ.
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Table 2e. Local asymptotic power of nominal 0.05-level tests.

σ(r) = S(r, 1, 3, 0.8, 30) σ(r) = S(r, 1, 6, 0.8, 30)

τ1 τ2 τ3 c1 c2 PSYσ PSY ∗
σ UPSYσ sPSY s̄PSY PSYσ PSY ∗

σ UPSYσ sPSY s̄PSY

0.1 0.4 0.6 2 0 0.072 0.105 0.087 0.108 0.061 0.072 0.105 0.087 0.108 0.061
1 0.068 0.091 0.079 0.098 0.070 0.068 0.091 0.079 0.098 0.070
2 0.068 0.084 0.076 0.092 0.082 0.068 0.084 0.076 0.092 0.082

4 0 0.183 0.292 0.263 0.244 0.107 0.183 0.292 0.263 0.244 0.107
2 0.181 0.268 0.242 0.222 0.136 0.181 0.268 0.242 0.222 0.135
4 0.209 0.263 0.251 0.214 0.176 0.208 0.263 0.251 0.214 0.176

6 0 0.466 0.547 0.527 0.487 0.262 0.466 0.547 0.527 0.487 0.262
3 0.469 0.524 0.512 0.464 0.306 0.469 0.524 0.512 0.464 0.306
6 0.486 0.518 0.513 0.462 0.371 0.486 0.518 0.513 0.462 0.370

8 0 0.720 0.754 0.743 0.705 0.538 0.720 0.754 0.743 0.705 0.538
4 0.715 0.735 0.728 0.684 0.560 0.715 0.735 0.728 0.684 0.559
8 0.722 0.731 0.730 0.679 0.591 0.722 0.731 0.730 0.679 0.591

10 0 0.856 0.869 0.861 0.840 0.765 0.856 0.869 0.861 0.840 0.765
5 0.854 0.861 0.856 0.832 0.776 0.854 0.861 0.856 0.832 0.776
10 0.855 0.861 0.855 0.831 0.782 0.855 0.861 0.855 0.831 0.782

0.3 0.6 0.8 2 0 0.099 0.139 0.126 0.121 0.050 0.099 0.139 0.126 0.121 0.050
1 0.096 0.127 0.118 0.111 0.059 0.096 0.127 0.117 0.112 0.057
2 0.098 0.120 0.115 0.107 0.072 0.096 0.121 0.114 0.108 0.068

4 0 0.333 0.401 0.382 0.336 0.117 0.333 0.401 0.382 0.336 0.117
2 0.333 0.384 0.367 0.317 0.150 0.331 0.385 0.365 0.317 0.141
4 0.340 0.379 0.369 0.309 0.201 0.337 0.379 0.366 0.309 0.178

6 0 0.634 0.655 0.642 0.602 0.426 0.633 0.655 0.642 0.601 0.424
3 0.626 0.641 0.630 0.587 0.446 0.626 0.640 0.629 0.588 0.438
6 0.637 0.637 0.634 0.580 0.473 0.633 0.635 0.632 0.581 0.457

8 0 0.808 0.814 0.806 0.778 0.686 0.808 0.814 0.806 0.777 0.685
4 0.803 0.806 0.799 0.768 0.692 0.801 0.805 0.799 0.767 0.685
8 0.805 0.804 0.800 0.764 0.704 0.804 0.804 0.798 0.763 0.700

10 0 0.895 0.896 0.894 0.870 0.837 0.895 0.896 0.893 0.870 0.837
5 0.889 0.893 0.888 0.867 0.840 0.889 0.892 0.887 0.866 0.837
10 0.892 0.890 0.889 0.865 0.843 0.891 0.890 0.887 0.865 0.841

0.5 0.8 1.0 2 0 0.106 0.146 0.129 0.126 0.047 0.098 0.131 0.120 0.116 0.046
1 0.102 0.137 0.125 0.119 0.047 0.096 0.126 0.118 0.113 0.045
2 0.100 0.134 0.122 0.117 0.049 0.094 0.124 0.115 0.109 0.043

4 0 0.366 0.414 0.395 0.351 0.135 0.313 0.376 0.353 0.318 0.111
2 0.356 0.401 0.383 0.338 0.136 0.305 0.365 0.344 0.308 0.108
4 0.352 0.396 0.378 0.334 0.141 0.303 0.359 0.339 0.305 0.110

6 0 0.640 0.668 0.651 0.605 0.433 0.585 0.622 0.599 0.548 0.355
3 0.631 0.658 0.641 0.594 0.431 0.580 0.613 0.591 0.541 0.353
6 0.629 0.654 0.638 0.592 0.433 0.578 0.611 0.588 0.538 0.353

8 0 0.822 0.833 0.822 0.791 0.708 0.772 0.797 0.776 0.740 0.636
4 0.817 0.827 0.815 0.782 0.708 0.768 0.791 0.770 0.733 0.633
8 0.816 0.825 0.813 0.781 0.709 0.765 0.785 0.767 0.731 0.633

10 0 0.908 0.909 0.905 0.890 0.847 0.885 0.888 0.884 0.865 0.801
5 0.905 0.907 0.903 0.888 0.846 0.883 0.887 0.881 0.860 0.800

10 0.904 0.906 0.903 0.888 0.848 0.882 0.886 0.881 0.859 0.800

Notes: τ1 and τ2 denote the sample fraction at which the explosive period begins and ends; τ3 denotes the end of the
collapse regime; c1 and c2 denote the locally explosive and collapse magnitudes; σ(r) denotes the volatility function,
with S(r, σ1, σ2, τσ, γ) denoting a smooth transition function from σ1 to σ2 with midpoint τσ and speed γ.
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