
SEAMLESS HANDOVER FOR PERVASIVE SPEECH
COMMUNICATION

By

Vijaya Nirmala Mitnala

A thesis submitted for the degree of Doctor of Philosophy

School of Computer Science and Electronic Engineering

University of Essex

September 2024



The intended audience for this thesis comprises scholars, researchers, and professionals

in the fields of network engineering, audio signal processing, and machine learning. It is

designed to offer a comprehensive exploration of Seamless Handover for Pervasive

Speech Communication and is particularly relevant to those with a vested interest

in device detection based on multivariate audio features and application layer session

handovers. Additionally, this work may be of interest to educators and students seeking

a deeper understanding of applying machine learning techniques for processing audio

data. The thesis thoroughly examines and analyses session handling and audio features

using machine learning techniques, providing a valuable resource for those aiming to

expand their knowledge in this area and for practitioners seeking insights to inform

their work in pervasive speech.
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Abstract

The consistent growth of smartphones and the smart speaker market has played a vital

role in establishing high-quality, far-field speech communication as a feasible alterna-

tive to traditional handsets. The prevalence of smartphones, multiple smart speakers

and various computing platforms in many homes has led to much greater flexibility in

how and where users communicate. This trend is expected to persist as next-generation

voice and media services, such as Augmented Reality (AR)/Virtual Reality (VR), be-

come more common. Additionally, key services such as financial and healthcare, for

which flexible, high-quality communications are crucial components, are transitioning

online. Despite these trends, comparatively little has been done to offer a converged

communications experience once a speech call session is in progress. For example, the

simple act of switching an ongoing call from a smartphone to a smart speaker is often

a highly manual process. Pervasive communication systems aim to address this by pro-

viding a seamless, flexible communication experience across multiple devices and, where

required, multiple networks. The primary contributions of this thesis provide solutions

for both vertical handovers (transitions between heterogeneous networks) and horizon-

tal handovers (transitions within a homogeneous network domain, specifically involving

smart devices connected to the same network). This work uses a supervised machine

learning based approach to predict user’s transitions between the networks, and thus,

overcome interruptions in speech due to signalling handover. For device handovers, this

work proposes processing multivariate signalling features with time-series prediction al-

gorithms and the deep learning techniques to accurately determine the most suitable

device for the user for the handover. Additionally, this thesis considers how the Session

Initiation Protocol (SIP) can be used in IP telephony systems where a seamless transi-

tion is required in a scope of handover between the networks and between the devices,

while also proposing new solutions to achieve seamless session handovers.
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1
Introduction to Thesis

In this chapter, an exploration is undertaken regarding the pervasive speech system,

problem statement, its motivation, and the objectives underpinning the work presented

in this thesis. This chapter also delves into the principal contributions and the overview

of the work presented in this thesis. Subsequently, a comprehensive breakdown is pro-

vided regarding the organization of the ensuing sections of this thesis.

1



Chapter 1. Introduction to Thesis 2

1.1 Problem Statement

Given the continuous advancement of the Internet and heterogeneous communication

networks, along with the growing trend of utilising diverse devices, the way we access

speech communication provided by technology and devices is about to shift to a perva-

sive audio view. This future trend, and associated technical challenges, are predicted

by industry but with less coverage in academic venues. Thus, this first chapter will

draw upon industry statements before moving to the underpinning academic research in

Chapter 2.

The prevalence of smartphones, multiple smart speakers, and various computing

platforms in many households has introduced greater flexibility in how and where users

engage in communication. This trend is expected to persist, especially with the growing

prevalence of the next generation of voice and media services [1]–[3], AR/VR 1, and

the migration of several services like healthcare to online platforms, emphasizing the

need for flexible, high-quality communications. Despite these evolving patterns, there

has been relatively little effort to provide a unified communications experience once a

speech call session is under progress. There is session handover latency when there

is a network switch, resulting in speech interruptions also the process of switching an

ongoing call from a smartphone to a smart speaker is often a manual and cumbersome

task. This opens up the research scope to seek solutions for seamless handovers to

achieve a pervasive speech experience.

1.2 Motivation

This thesis introduces the term pervasive speech communication which aims to deliver a

seamless audio and/or video experience based on situational context – such as the pre-

ferred end device or best available network – both before and during a call session. It is

said to be pervasive as it moves away from a single dedicated end-terminal and instead,
1Augmented Reality (AR) is an interactive experience that overlays digital content onto the real

world, enhancing the user’s perception through visual, auditory, and other sensory elements. Virtual
Reality (VR) creates a completely immersive environment that replaces the real world with a simulated
one, allowing users to interact solely within a computer-generated space.
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an appropriate end-terminal is automatically selected for the user to enable a smooth

user experience. In order to achieve this, pervasive speech systems need to facilitate

seamless transitions between various access and backhaul networks as needed (such as

5G and 4G Radio Access Network (RAN), and private or public Wireless Fidelity (Wi-Fi)

with broadband backhaul), a process known as vertical handover. Additionally, these

systems must support different audio presentation systems (such as one or more smart

speakers, smartphones, tablets, and PCs) within the same network, referred to as hor-

izontal handover. Despite the tremendous growth of IP telephony in recent years, and

the diversity of devices and networks on which it is now used [4]–[6], support for per-

vasive communications remains limited. Mobile network standards [7] acknowledge the

significance of IP mobility management mechanisms in facilitating a seamless transition

between network types. However, these standards do not address transitions between

devices, and also there are still instances of handover interruptions due to session transi-

tion latency. Smart speaker providers have added new features to their respective smart

speaker offerings [8]–[11] to share communication sessions across multiple devices. How-

ever, they still do not take all the advantages of having multiple devices to improve the

user communication experience. There exists an opportunity to substantially enhance

speech communication across multiple devices by:

• Making decisions to transfer communication speech between devices independently

of conscious user behavior i.e. to be able to switch devices independent of user

interaction and not simply switch at an arbitrary fixed proximity to a device

• Using a variety of measurements associated with each smart device (not necessarily

made on the device) in order to assess its suitability for providing communication

at any one point in time

• Optimising the user experience by allowing more than one device to be used si-

multaneously to account for differing acoustic capabilities

This thesis aims to tackle and offer solutions to the aforementioned scope of speech

communication across multiple devices. The focus of this work is to provide a solution
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for the seamless speech transition between the devices within the same network domain,

i.e. addressing horizontal handovers between devices. Additionally, considering the

inclusive scope of the pervasive speech system, which extends to handovers between dif-

ferent networks, referred to as vertical handovers, this thesis also puts forward solutions

for seamless vertical handovers. This will be achieved by proposing effective solutions

through the application of advanced techniques. The ultimate goal is to provide a perva-

sive communication experience by eliminating handover interruptions and avoiding the

need for manual call transfers across multiple devices. Figure 1.1 illustrates the scope

of this thesis’s pervasive speech system, with prominent use cases including:

1. Seamless session handover during vertical network transition

(a) For example: LTE to Wi-Fi network transition

2. Device detection and seamless session handover during horizontal device transition

(a) For example: Smartphone to Smart speaker

This study will concentrate on offering solutions for the mentioned use-cases. The re-

search considers SIP for application layer session handling. SIP is a heavily used and

widely accepted application layer protocol in Voice Over IP (VOIP) and IP Multimedia

Subsystem (IMS) systems. Chapter 2 provides an in-depth examination of SIP. This

study extensively explores SIP’s essential mobility features concerning session manage-

ment and media transmission across networks and devices. Various methods can ac-

complish these multiple transmissions, such as repeated unicast transmissions, layer 3

multicast, or layer 4 multipath. Section 2.2.2 explores these alternatives in detail. How-

ever, this thesis concentrates exclusively on multiple unicast transmissions, providing

modified SIP solutions for seamless media delivery, as other techniques are not widely

supported by current networks. The research capitalizes on all available SIP features

and suggests strategies to reduce or prevent session handovers with minimal alterations

to the existing SIP protocol. The author is already an expert on SIP operations, hav-

ing worked on the SIP stack for BT (British Telecommunications Plc.). However, the

extensions presented in this thesis are beyond the existing SIP standards and systems.
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Additionally, this research explores machine learning techniques, both supervised

and deep learning, along with the domain of audio signal processing. The first use-

case involves employing machine learning techniques on SIP signalling, while the second

use-case utilises deep learning and time-series predictors on audio signal features. Fur-

thermore, SIP signalling is employed for session handover across devices in this second

use case. This pervasive speech system does not exist so far and thus outcome of this

thesis meets the upcoming user requirements.

Figure 1.1: Pervasive speech system

1.3 Research Questions

Can SIP-based speech communication have seamless handover between networks?

• Can we avoid the SIP call establishment time of >=280 ms?

• Can we do a change in the attachment through just SIP application layer

processing?

Can SIP-based speech communication have seamless handover between acoustically

far-field terminals (e.g. smart speakers) in the same network?

• Can media interruptions during SIP session handover be avoided?

• Can the appropriate smart speakers be detected from speech signals alone

without knowing the device locations?
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1.4 Contribution

The following subsections summarise the primary contributions, addressing the research

questions outlined in Section 1.3. They highlight the novel insights, objectives, and

advancements presented in this thesis, which aim to achieve the two use cases of the

pervasive speech system. In Figure 1.1, the left side i.e. vertical network handover

covers the use-case 1, and the right side i.e. horizontal device handover covers the

use-case 2. In addressing the requirements of these use-cases, this study answers the

mentioned research challenges.

1.4.1 Use-case 1: seamless vertical handover

To fulfill the requirements of use-case 1, this thesis proposes a proactive network han-

dover solution for optimising session handling during network handovers. A supervised

machine learning approach is presented to predict network mobility, allowing media de-

livery to be established before the actual physical transition, referred to as "make before

move". As depicted in Figure 1.2, during a call transition from network N1 to Ni with

the physical transition occurring at network attachment point p, this study suggests a

strategy of forecasting one or two most likely future network attachment points (p1, p2 )

and transmitting the media to p, p2, and p3. Subsequently, the speech is conveyed to

the anticipated network endpoints prior to the physical move, a technique referred to

as Bicasting/TriCasting. This proactive speech transmission facilitates a make-before-

break handover, effectively preventing speech interruptions throughout the transition.

The proposed solution is designed for application layer session handling using SIP, mak-

ing use of SIP’s terminal mobility feature and SIP supported extension headers. This

proposed solution is evaluated using a real-world vehicular mobility dataset. Further

details of this proposed solution is available in Chapter 3. This work has been pub-

lished in a conference paper at IEEE International Conference and Expo on Real Time

Communications at IIT (RTC), 2021 [C1].



Chapter 1. Introduction to Thesis 7

Figure 1.2: Proactive media handover to the future network attachment points p1 and
p2 alongside with p

1.4.2 Use-case 2: seamless horizontal handover

Use-case 2 necessitates a smooth call transfer during horizontal handover, involving the

transition between devices within the same network domain, such as within a confined

space like a room, referring to the right side of Figure 1.1. To fulfil this requirement,

two key steps are identified: firstly, the automatic identification of a suitable device, and

secondly, the seamless transfer of the ongoing call to the detected device.

This research drew inspiration from a proof of concept conducted at the BT lab,

where speech signal features like the direction of arrival (DOA) were used to identify the

device. However, upon validating the results from the lab experiment, it was evident

that the proposed solution does not effectively address real-world scenarios character-

ized by locus user movements, room reflections, and uncalibrated systems. In response,

the initial research for this thesis conducted a literature review, as described in Chap-

ter 2, to understand methodologies for audio location techniques. This revealed that

the Magnitude Squared Coherence (MSC) is the most promising technique used in the

literature for determining the location from audio signals alone. The MSC will be fully

described in Chapter 2, however, it can be briefly described as a method to determine

how much an audio source has been influenced by the audio environment. and thus the

solution leverages the MSC signal data captured on the devices to identify the suitable

device. The talker’s voice serves as the signal source, and MSC is computed from all

scoped devices at each talker’s position, even while in motion. No calibration is required

for this solution, unlike other systems which rely upon external measurements and cal-

ibration [12]. The difference in MSC values across devices is calculated and the device



Chapter 1. Introduction to Thesis 8

with higher MSC will be the most suitable device to continue the conversation. To assess

the viability of this proposed solution, simulations were conducted. The experimental

results revealed significant variations in raw speech signal features due to environmen-

tal factors, particularly room effects. To address this challenge, the smoothing out of

MSC values using a double exponential smoothing predictor was introduced, resulting

in improved performance. To facilitate session handover to the identified device, this

study suggests parallel sessions and proposes alternatives to SIP signalling. It explores

the utilisation of the SIP personal mobility feature to achieve a smooth transition of me-

dia. Additional information about this suggested approach can be found in Chapter 4.

This work has been published in a conference paper in 5th International Conference on

Communications, Signal Processing, and their Applications (ICCSPA), Cairo, Egypt,

2022 [C2].

Additional exploration has been conducted to address real-world scenarios in this

use-case. This has resulted in the formulation of a robust solution that addresses issues

not covered by the above base solution. Deep learning techniques are employed on

speech signalling features for device detection. Various audio features are analyzed for

potential use in device detection. Given the non-linearity of these audio features, One-

Dimensional Convolutional Neural Networks (1DCNN) are deemed suitable as the deep

learning technique of choice. The required training data is collected by simulating a room

layout furnished with multiple smart devices with microphone arrays. Simulated sound

sources are introduced, and various reverberation times are incorporated to emulate

authentic sound environments. A thorough assessment involving different datasets with

various audio signals, movement patterns, and different room scenarios establishes the

efficacy of the proposed approach in accurately predicting the most suitable device.

Further details regarding this proposed approach are available in Chapter 5. This work

has been submitted to the IEEE Transactions on Consumer Electronics, 2024 [J1].
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1.4.3 Summary of research contributions

The research contributions described above over the two use cases can be summarised

as:

• A modified SIP signalling is proposed for seamless media transmission during both

vertical and horizontal session handovers. These SIP modifications require only

local i.e. home gateway level changes, rather than network-wide changes (This

work is covered in Chapters 3 and 4).

• Seamless vertical session handover (Use-case 1) between the networks using super-

vised machine learning (This work is covered in Chapter 3).

• Seamless horizontal session handover in far-field (Use-case 2) using:

⋄ MSC to predict the best smart device (This work is covered in Chapter 4).

⋄ A 1DCNN deep learning technique to improve the MSC based predictor (This

work is covered in Chapter 5).

1.5 Research Methodology

This research adopts a data-driven approach, an evidence-based methodology that relies

on data analysis and interpretation to inform decision-making processes and strategies.

The methodology is detailed by the authors, Maass et al. in their work [13]. Unlike

theory-driven approaches, it is particularly useful for machine learning techniques to

extract meaningful patterns, trends, and insights from data sets. This study utilises real-

world mobility datasets, acoustic datasets, and data generated through acoustic room

simulation. In the absence of a pervasive speech system, a realistic vehicular mobility

dataset from the city of Cologne in Germany [14], [15] is employed to validate the vertical

handover solution, with detailed information available in Chapter 3. For the validation of

the device handover solution, an acoustic dataset is generated by simulating the acoustic

room using Pyroomacoustics [16], an open-source Python library designed for simulating

room acoustics and sound propagation. The talker’s movements are simulated using a
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cubic Bezier curve, and various audio signals from [17], replicating the talker’s voice, are

examined. Additionally, the solution is verified using a real room/talker dataset obtained

from [18], [19]. The audio signal processing and feature extraction are conducted using

the Scipy Python libraries [20] and Librosa Python libraries [21]. Further insights into

the acoustic room simulation and acoustic data extraction are presented in Chapters 4

and 5. Subsequently, established machine learning algorithms from SciKit Learn [22] and

Tensorflow Keras [23] are employed to predict network handover and device handover

scenarios.

1.6 Outline

The subsequent sections of this thesis are structured as follows. The chapter titled ‘Re-

lated Work’ delves into the literature related to the domain and technologies employed

in this research. Additionally, this chapter offers an overview of essential background

concepts and technologies that form the foundation for this study. ‘Chapter 3’ details

the session improvements during heterogeneous networks vertical handovers. Then in

‘Chapter 4’ we present the base solution for device detection and session improvements

during horizontal handovers. Next in ‘Chapter 5’ we provide robust solution for de-

vice detection, considering real-world scenarios. Finally, in ‘Chapter 6’, we outline the

discussion and conclusions drawn in this thesis, the main contributions of our work,

and some potential future research directions. The thesis concludes with a ‘References’

section listing the cited sources.



2
Related Work

This chapter delves into the relevant literature and conducts a survey of associated

works pertaining to the technologies and domain under consideration in this thesis.

The principal domains and technologies encompassed are the Pervasive speech system,

Session Initiation Protocol (SIP), Machine Learning (ML), and audio signalling features.

This is necessary to provide the foundation knowledge required to understand the work

done in later chapters. This chapter also discusses similar research works which have

been carried out in the area of machine learning based session handling and sound source

localisation. It also sheds light on the existing gaps in literature and technology that

this thesis aims to fill.

11
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2.1 Pervasive Speech

Since 2015 there has been rapid and sustained growth in the number of connected devices

around the home; by 2025 it is expected to reach over 20 billion globally [24]. Many

of these devices - such as smart speakers, laptops, tablets, smartphones, and electronic

portals - can support video and/or audio communication sessions. Whilst this has led to

much greater flexibility in how and where we communicate, little effort has been made

to unify or simplify the user experience when it is across multiple devices and multiple

environments. For example, until recently the only option to switch devices during a

call was, to end the session manually on the active device and start a new one on the

target device i.e. an inherently ‘non-pervasive’ communications experience, and many

of the services related to smart devices remain in siloed ecosystems. However, there are

promising signs of the industry moving towards open connectivity standards with the

adoption of Matter [25]. This could open up new opportunities for device manufacturers

and telecommunications providers alike to deliver features that enhance user experience

without being bound to a single brand or service silo [3].

In a move towards ‘pervasive’ communications, both Amazon and Apple have added

features to their respective smart speaker offerings. Amazon has developed the ‘group

chat’ feature [8], [9] for Alexa smart speakers. This uses a broadcast method to join

all devices within a specified group to the same call. Apple has taken a slightly dif-

ferent approach by including basic proximity detection in its HomePod smart speaker

and iPhones [10]. When a user approaches the HomePod with an iPhone it will handoff

audio (for example music or calls) from their iPhone to the HomePod. To transfer audio

back again the user taps the HomePod with their iPhone. Both approaches offer incre-

mental improvements to usability in a multi-device setting as basic forms of ‘pervasive’

communications and still do not take all the advantages of having multiple devices to

improve the audio experience. It should be noted that the information provided about

these products is sourced from the vendor’s online documentation, and the author is not

aware with the specific implementation details of the mentioned products.



Chapter 2. Related Work 13

The authors, Yannick Körber et al. in their research work [26], describe a framework

for managing audio playback that supports synchronisation, device selection, and pro-

cessing that’s chosen with respect to user and environmental context. The use of motion

controllers (Bluetooth beacons) to detect users and discover devices is discussed (among

other commercial solutions for indoor positioning) but the authors deliberately ‘abstract

from the technical challenges of indoor positioning’ by using a manual method for the

purposes of experimentation. In their experiment, the authors simulate loudspeaker se-

lection and volume adaptation in a multi-room scenario – essentially test subjects are

moved into set positions and the volume of several loudspeakers is adapted manually

to try to maintain constant loudness at the different user locations. The authors only

address pervasive audio in a music listening context (it does not cover the solution for

two-way communications in any way) and the framework does not offer a solution to

the device and user orchestration necessary to achieve pervasive communications using

anything other than basic user location. The same authors, Yannick Körber et al., in

their another work [27], provided a high-level solution for detecting the most suitable

playback device for audio playback. This work again does not provide the solution for

two-way communication as addressed in this thesis.

To achieve pervasive speech a number of technologies are required, these include the

end-delivery system, the method of detecting that a speaker has moved, and signalling

systems that can move the necessary audio streams. This thesis will not consider the

end systems and will assume that either a mobile device is used in Chapter 3 or that

smart speakers are used in Chapters 4 and 5. This thesis will however consider how

the switching is decided and how the signalling mechanisms can be made to perform

the switching. Consequently, this chapter will first look at SIP as it is the predominant

signalling mechanism used for speech and later it will look at methods to detect aspects

such as location.
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Figure 2.1: SIP Architecture

2.2 Session Initiation Protocol

The Session Initiation Protocol (SIP) [28], [29] has been standardized by the Internet En-

gineering Task Force (IETF), accepted as a 3rd Generation Partnership Project (3GPP)

and widely been used as an application layer signalling protocol in VoIP [29]–[32] and

IMS systems [33]. As a signalling protocol, SIP is used to establish, modify and tear

down multimedia sessions, which may be audio, video, or even text. SIP is associated

with a large number of VOIP applications such as IPTV, instance messaging, online

gaming, audio/video conferences, and presence. The key advantage of SIP is, it is inde-

pendent of the underlying network technology i.e. it can be used by both TCP and UDP

transport layers. Signalling in SIP is composed of text-based messages. SIP is similar

to Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP),

where each message can be either a request or a response. The SIP architecture is as

shown in Figure 2.1. The main logical entities in SIP consist of Registration, Location,

Proxy servers, Redirect servers, and the communicating end-points, namely User Agent

Client (UAC) and User Agent Server (UAS). User agents initiate and terminate sessions.

SIP architecture supports a total of 88 messages for session management, 14 are

used as requests, and the remaining are the responses. SIP defines an extensible set
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Figure 2.2: SIP Proxy/B2BUA successful call set up message flow

Figure 2.3: SIP Proxy/B2BUA failure call set up message flow

of request methods, currently including in the base specification REGISTER for the

registration of a user agent (UA), INVITE to initiate a session, ACK to confirm a session

establishment, BYE to terminate a session, OPTIONS to determine capabilities and

CANCEL to terminate a session that has not been established yet. SIP also supports,

additional extension methods SUBSCRIBE to subscribe for notifications, NOTIFY to

notify a particular subscribed event, INFO to send call signalling information, REFER

for call transfers, UPDATE to modify the existing session, PRACK to acknowledge 1xx

responses and MESSAGE, for instance, messaging services. The basic message sequence
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for successful call setup and call failure due to destination not found is as shown in

Figures 2.2 and 2.3. There are a minimum of nine messages, flow between the calling

and called entity to set up a session, assuming one SIP system between them. This count

increases if many SIP systems and also if re-invites are required for call forwarding or for

media negotiation. The exchange of several messages over the IP network could cause

latency and security issues.

The session itself is typically described using the Session Description Protocol (SDP)

that lists media stream addresses, ports, and the encoding. The SIP Registrar receives

REGISTER requests from the User Agents (UA) and stores their location information

in the Location server for routing the incoming requests to the appropriate network

domain.

The SIP server can function fundamentally in two modes: the proxy mode and the

Back-to-Back User Agent (B2BUA) mode. The SIP proxy server is used to establish a

call session using details from the location server, responsible for routing call requests and

assisting in billing operations. A proxy server can be stateless or stateful. A stateless

proxy server will only forward incoming requests and responses. A stateful proxy on

the other hand will maintain a state for each transaction, that is which requests and

responses belong to that transaction. Redirect servers receive requests and respond to

the requester where it should send its request.

A B2BUA is a logical entity that receives a request and processes it as a user agent

server on one side. On the other side it acts like a user agent client and generates

requests. It maintains a dialog state and must participate in all requests sent on the

dialog it has established. A B2BUA can also terminate and bridge the media stream

and thus have full control over the whole session. This makes B2BUAs well suited for

transcoding between two call legs, to hide network internals, for network inter-working,

and applying any intelligent session handling as it can have protocol adaptation. This

study considers the B2BUA-based SIP server because of its strong features among proxy-

based SIP servers.

SIP supports various Application layer mobility such as terminal mobility, personal
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mobility, and service mobility [34], using basic and extension methods. Personal mobility

allows a user to be identified by the same logical address even if the user is at different

terminals i.e. user can register a number of devices (smartphones, smart speakers,

PCs) to a single SIP address. The Pre-call personal mobility is supported using Call

Parallel or Sequential forking. The mid-call personal mobility is supported using SIP

REFER extension. Terminal mobility allows a device to move between subnets. SIP

supports pre-call terminal mobility by re-REGISTER of the new terminal and mid-

call terminal mobility is supported through re-INVITE. Service mobility allows a user

to maintain access to their services for example dial lists or address books etc., while

moving or changing the devices and network providers. This is supported either by

storing the personal information in home servers or carrying the information using SIM

or memory cards. This research extends the studies about the terminal mobility and

personal mobility features and proposes solutions for seamless session handovers.

2.2.1 SIP terminal mobility session handling

This research proposes a solution to avoid or minimize the session handover interruptions

during handover between the networks i.e. during vertical handover, using SIP terminal

mobility feature. Several studies in the past analysed the session interruption using SIP

especially for mid-call terminal mobility [35] and improving interruption using proactive

handover schemes with SIP extensions [36], [37]. A handover delay comparison study in

vertical handover with SIP and without SIP is carried out by authors, Vijayshree et al.

in their work [38]. Adapting Machine Learning (ML) techniques in SIP have recently

emerged as an alternative to traditional models to improve QoS in SIP. For example,

recent work describes using ML to detect attacks against SIP-based services [39]–[41].

However, in this thesis, we are concerned with alternative uses of ML for predicting

handover.

Although the author is not aware of any papers directly addressing session handover

for SIP using ML, using ML-based user movement prediction in vehicular communica-

tion and networks has been studied previously. However, such ML-based user movement
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has not been applied to the field of study of this thesis, namely pervasive audio com-

munication, specifically session handover in SIP based communication. In particular, it

has been widely studied for the purpose of effective routing towards achieving seamless

traffic flow. The work in [42] proposes a supervised ML approach to predict cell and

link association duration using cell position and cell load. The motivation for carrying

out the work is to anticipate network control decisions in Software Defined Vehicular

Networks. However, the paper does not describe how these predictions could provide the

control decisions. Consequently, our work describes how the handover interruptions can

be reduced using the network transition predictions at the application layer. The work

in [43] details an ML approach to predict the handover in heterogeneous networks in an

IoT environment. In the study by Memon et al., a Recurrent Neural Network (RNN)

incorporating LSTM methods is applied to predict nodes in a Fog network, as detailed

in [44]. The machine learning predictive analysis of downlink throughput conducted by

Kousias et al. in [45] for Mobile Broadband networks has significantly enhanced the

Quality of Service (QoS) for end users in video streaming. These works differ from this

research work in that they approach either only position information or addressing rout-

ing issues, whereas this work specifically aims at solving the session transition which

although related, has important differences.

2.2.1.1 SIP personal mobility session handling

The standard SIP protocol supports personal mobility for horizontal handovers during

pre-call or even mid-call; SIP personal mobility [46], [47] allows, registering multiple

devices to one SIP address for session handling. A call session can be initiated on

multiple devices with the same SIP address using the existing SIP support of either

parallel or sequential call forking [29]. This facility can be used in dynamic session

handover between the devices. The use of SIP personal mobility has been studied in the

past for various smart home applications [48], [49]. This thesis uses SIP personal mobility

feature for session handling and introduces a novel solution for seamlessly handling

sessions during device handovers.
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2.2.2 SIP media broadcasting

This thesis considers how media can be sent to multiple end devices. There are multiple

ways to do this such as send multiple times by unicast or use layer 3 multicast or layer

4 multipath, the latter two are described below. However this thesis only considers,

multiple transmissions in a unicast manner, as other techniques are not widely supported

by current networks.

2.2.2.1 Layer 3 multicast

Layer 3 multicast [50] is a method used in networking to efficiently deliver data from one

sender to multiple receivers. Operating at the network layer, it uses multicast addresses

to manage the distribution of packets to a group of destinations simultaneously, rather

than sending separate copies to each receiver. This approach conserves bandwidth and

reduces network load by allowing a single stream of data to be replicated at various

points within the network. Protocols such as Internet Group Management Protocol

(IGMP) [51], for IPv4 and Multicast Listener Discovery (MLD) [52], for IPv6 facilitate

the management of multicast group memberships, while Protocol Independent Multicast

(PIM) [53], is used to route multicast traffic efficiently. By leveraging these protocols,

Layer 3 multicast supports applications like live video streaming, online gaming, and

real-time data feeds, ensuring scalable and efficient network performance.

2.2.2.2 Layer 4 multipath

Layer 4 multipath [54] refers to the technique used in transport layer protocols to enhance

data transmission efficiency and reliability by simultaneously utilising multiple network

paths. This approach, implemented in protocols like Multipath TCP (MPTCP) [55], en-

ables a single data connection to distribute its packets across multiple available routes.

By leveraging diverse network paths, Layer 4 multipath improves load balancing, in-

creases bandwidth utilisation, and enhances fault tolerance, as the connection can seam-

lessly continue over alternative paths if one route fails. This technique is particularly

beneficial for mobile devices, where network conditions frequently change, and for ap-
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plications requiring high availability and performance, such as video streaming, online

gaming, and cloud services. By optimising the use of available network resources, Layer

4 multipath contributes to more robust and efficient data transmission.

2.2.2.3 SIP behaviour to support multicast and multipath

SIP session establishment for supporting Layer 3 multicast or Layer 4 multipath involves

a combination of SIP signalling and media transport setup using the Session Description

Protocol (SDP) [56]. It leverages SIP-based conference call setup for this functionality

support. For Layer 3 multicast, SIP initiates the session by negotiating media parame-

ters through SIP messages containing SDP details, including multicast IP addresses and

ports. Once participants agree on the multicast address, routers use protocols like IGMP

and PIM to manage multicast group membership, allowing efficient media distribution

to all participants. For Layer 4 multipath, SIP negotiates multiple transport paths by

incorporating SDP extensions, like the Alternative Network Address Types (ANAT) in

SDP [57] or using mechanisms like the Multipath TCP (MPTCP). The SIP signalling

coordinates the use of multiple network paths for increased redundancy or throughput,

ensuring that the media streams can utilise these paths seamlessly once the session is

established. This setup allows SIP to effectively support robust and scalable communi-

cation in environments leveraging multicast or multipath networking. SIP involvement

in both multicast and multipath functionality, includes multiple session setup sand me-

dia broadcast on multiple IP addresses/paths at once. This research proposes parallel

session establishment on all the devices, but media transmission on only one device at a

time, although can be achieved through layer 3 multicast or through layer 4 multipath,

but as stated above, we recommend multiple transmissions in a unicast manner, as other

techniques are not widely supported by current networks.

2.3 Machine Learning

We are interested in how the SIP personal mobility session handling, described above,

can be automated and we have used Machine Learning (ML) to enable this. ML is a sub-
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field of artificial intelligence, the field of study that gives computers the ability to learn

without explicitly being programmed. ML approach mainly consists of two main phases:

the training phase and decision making phase. One of the machine learning techniques

is illustrated in Figure 2.4. At the training phase, machine learning methods are applied

to learn the system model using the training dataset. In the decision making phase, the

system can obtain the estimated output for each new input by using the trained model.

Identifying the key features in the training dataset, called feature engineering plays a

major role in getting the accurate prediction results from ML methods. Machine learning

algorithms are mainly classified into five sub-categories: supervised, unsupervised, semi-

supervised, reinforcement and deep learning. Figure 2.5, an extension of the figure from

authors, Thomas Rincy et al. in [58], depicts the classification of the machine learning

system. Supervised learning is a machine learning task that assumes a function from the

labeled training data. In unsupervised learning the data is not labeled, more precisely

we have unlabelled data. Semi-supervised learning is a merger of labeled and unlabeled

data. In reinforcement learning the software agent gathers from the interaction with

the environment to take actions that would maximize the reward. A brief discussion

about these algorithms are described in the sub-sections below and further discussions

on machine learning theory and its classical concepts are available in the relevant research

literature [59]–[63].

2.3.1 Supervised learning

Supervised learning is a labeling learning technique. The labels are mostly called tar-

get or ground-truth labels. In these algorithms, the model is trained with the labeled

dataset. After training, when a new input is fed into the system, the trained model can

be used to get the expected output [64], [65]. Some of the widely-used supervised learning

algorithms are Decision tree, Random forest, K-nearest neighbor, Neural networks, Rule

based classifiers, Support vector machine, Bayes classifier, and Hidden markov models.

Supervised learning is further divided into two major types, Regression and Classifi-

cation algorithms. Classification algorithms are used to predict categorical or discrete
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Figure 2.5: Machine learning techniques

class labels and Regression algorithms are used to predict continuous numeric variables.

The machine learning technique used in addressing use-case 1, in Section 1.4.1, is based

on a comparison of various supervised learning methods. Among them, Random for-

est demonstrated superior performance for the specified dataset. More comprehensive
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information can be found in Chapter 3 of this document.

2.3.2 Unsupervised learning

Unsupervised learning algorithm [66] deals with inputs without labels i.e. with no target

or ground-truth labels. An unsupervised learning algorithm aims to find patterns, struc-

tures, or knowledge in unlabeled data by clustering sample data into different groups

according to the similarity between them. Unlike supervised learning, where the algo-

rithm is provided with labeled examples to learn from, unsupervised learning is more

exploratory in nature and is often used when the goal is to gain insights into the under-

lying structure of the data or to discover hidden patterns without predefined targets. Its

wide application includes tasks such as clustering, density estimation, and dimensional-

ity reduction [67], [68]. Some of the widely used unsupervised learning algorithms are:

K-means clustering, Gaussian mixture model, Hidden markov model [64]. This work

does not use this technique because unsupervised learning is well-suited for tasks such

as anomaly detection, where a baseline is established, and deviations from this baseline

need to be identified. However, it may be less effective in scenarios involving systems

with non-linear behavior, where precise classification into known classes is crucial.

2.3.3 Semi-supervised learning

Semi-supervised learning is a combination of supervised and unsupervised learning tech-

niques. It uses both labeled and unlabeled data to build models. In semi-supervised

learning, a small portion of the data is labeled, and a large portion is unlabeled. This is

mostly used in real-world applications where some label data and some unlabeled data is

available for learning. These algorithms make use of the advantages of both supervised

and unsupervised techniques. Further details can be referred in [69]–[71]. This technique

was not used as the current scope of this thesis, but could potentially be employed for

vertical handover predictions as described in Section 3.2.3.
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2.3.4 Reinforcement learning

Reinforcement learning [72]–[74] is a training method based on rewarding desired behav-

iors and/or punishing undesired ones. In general, a reinforcement learning agent is able

to perceive and interpret its environment, take actions, and learn through a trial and er-

ror process, exploring different actions and observing the consequences. Key components

of reinforcement learning include states, actions, rewards, and a learning algorithm such

as Q-learning or Policy Gradient methods. The application of reinforcement learning

includes robotics, game playing, and optimisation problems. This work does not use this

technique because the frameworks do not have feedback mechanisms to reward/punish

behaviors; however, it could be a consideration for further work.

2.3.5 Deep learning

Deep learning [75]–[77] is one of the machine learning techniques that focuses on artificial

neural networks, specifically deep neural networks with multiple layers. Deep learning

models are designed to automatically learn hierarchical representations of data by lever-

aging complex architectures and large amounts of labeled data. The neural networks,

which are part of deep learning models, consist of multiple layers of interconnected nodes,

called neurons, that mimic the structure of the human brain. Each layer learns to ex-

tract increasingly complex features from the input data, allowing the model to learn very

complicated patterns and relationships. Convolutional Neural Networks (CNNs) for im-

age processing, non-linear time-series data predictions, and Recurrent Neural Networks

(RNNs) [78]–[80] for sequential data are popular types of deep learning architectures. In

this study, CNNs are employed for the detection of smart devices in Chapter 5. Conse-

quently, additional information regarding CNNs is described in the following sections.

2.4 Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) [81], [82], as a leading paradigm in deep

learning, excel in time-series analysis, image, and video processing, and have found utility
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in a broad spectrum of domains, encompassing applications such as human activity

recognition and speech recognition. They operate by employing convolutional layers to

automatically learn and extract intricate features from data. Convolutional layers in

CNNs typically consist of multiple filters with varying kernel sizes, enabling the network

to extract a hierarchy of features at different levels of abstraction. Filters and kernel sizes

play a fundamental role in feature extraction and pattern recognition. 1DCNN is one

of the types of CNNs architecture that is particularly effective for processing sequences

or time-series data. While traditional CNNs are widely used for image data, 1DCNN

are designed to capture patterns in one-dimensional sequences, such as those found in

audio signals and time-series data. In this study, the 1DCNN technique is employed

for device detection, as discussed in Chapter 5. Further elaboration on the majority of

key components within CNNs is provided, with specific mention of certain components

utilised in the research detailed below:

2.4.1 Convolutional layer

Convolution operation: CNNs use convolutional layers to perform convolution op-

erations on input data. Convolution involves sliding a filter (also called a kernel) over

the input data, element-wise multiplying the filter values with the overlapping input

values, and summing up the results. This operation helps the network learn hierarchical

features.

Filters and Feature maps: Filters act as feature detectors, and the output of the

convolution operation is a feature map. Multiple filters are employed to capture various

features in the input.

2.4.2 Activation function

Rectified Linear Unit (ReLU): The output of the convolutional layer is often passed

through a non-linear activation function like ReLU. For a review of all currently sup-

ported activation functions, refer to the work by Rasamoelina et al. in [83]. ReLU

introduces non-linearity by setting all negative values to zero, allowing the network to
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learn complex relationships in the data. Without this non-linearity, a neural network

would essentially behave like a linear model, regardless of the number of layers, signifi-

cantly limiting its ability to capture intricate patterns. By incorporating non-linearity,

ReLU allows the network to learn and represent a much broader range of functions.

Unlike other activation functions, such as sigmoid and tanh, ReLU does not saturate

in the positive domain, which helps mitigate the vanishing gradient problem to some

extent. This is crucial for maintaining a strong gradient and ensuring effective learn-

ing during backpropagation. Additionally, ReLU is computationally efficient due to its

simple thresholding operation, making it faster to compute than more complex activa-

tion functions. ReLU also introduces sparsity into the network by outputting zero for

negative inputs, which can help prevent overfitting and improve model efficiency.

2.4.3 Pooling layer

Pooling operation: Pooling layers are used to downsample the spatial dimensions of

the input data and reduce its computational complexity. Common pooling operations

include max pooling (selecting the maximum value from a group of values) and average

pooling.

Spatial hierarchical features: Pooling helps retain the most relevant informa-

tion while discarding less important details. It also aids in creating spatial hierarchical

features.

2.4.4 Fully-Connected (FC) layer

Flattening: After several convolutional and pooling layers, the data is flattened into a

one-dimensional vector. This vector serves as the input for one or more fully connected

layers.

Dense layer: A dense layer is a fully connected layer where each neuron receives

input from all neurons of the previous layer, enabling the model to learn complex patterns

by adjusting weights through backpropagation.

Class scores: Fully connected layers are responsible for making predictions based
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on the learned features. The output represents class scores in classification tasks.

2.4.5 Softmax layer

Softmax activation: In classification problems, the final layer typically applies the

softmax activation function. Softmax converts the raw class scores into probabilities,

making it easier to interpret the network’s predictions.

2.4.6 Loss function

Loss functions, also known as objective functions or cost functions, play a crucial role

in training CNNs. The primary purpose of a loss function is to quantify the difference

between the predicted output of the model and the true target values. Some of the

standard or pre-defined loss functions are described below:

Mean Squared Error (MSE): Calculates the average squared difference between

predicted and actual values, mainly used to solve the regression problems.

Binary Cross-Entropy loss: Measures the binary classification error between pre-

dicted and true labels, mainly used to solve binary classification problems.

Categorical Cross-Entropy loss: Extends cross-entropy to multi-class classifica-

tion problems, mainly used to solve multi-class classification tasks.

Sparse Categorical Cross-Entropy loss: It is similar to categorical cross-entropy

but suitable when the target values are integers.

Custom loss function: A custom loss function refers to a user-defined mathemat-

ical function that quantifies the difference between the predicted output of a model and

the actual target values. Unlike standard or pre-defined loss functions provided by ma-

chine learning frameworks, a custom loss function is specifically tailored to address the

requirements or challenges of a particular task or application. Custom loss functions

are integrated into the training process of machine learning models. The effectiveness

of a custom loss function is validated through experimentation. This involves training

the model with the custom loss function and evaluating its performance on validation

datasets. Fine-tuning will be necessary to achieve optimal results. This crucial fea-
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ture serves as the foundation for delivering a robust solution for device detection, with

additional information accessible in Chapter 5.

2.4.7 Backpropagation and optimization

Backpropagation: The network adjusts its weights and biases during training using

backpropagation. This involves computing gradients of the loss with respect to the

network parameters.

Optimization algorithm: Optimization algorithms (e.g., stochastic gradient de-

scent) are used to minimize the loss function by updating the network’s parameters.

2.4.8 Regularization techniques

Dropout: Dropout is a regularization technique where randomly selected neurons are

ignored during training to prevent over-fitting.

Batch normalization: Batch normalization normalizes the inputs of a layer, mak-

ing training more stable and improving generalization.

2.5 Audio Signal Features

This research investigates and evaluates various audio signalling features. Rather than

creating new types of features, this thesis draws upon those that are commonly used

as described well by Mitrović et al. [84]. These features include Magnitude Squared

Coherence (MSC), Signal Magnitude (A), Mel Frequency Cepstral Coefficients (MFCC)

as potential features for device detection. An overview of these features is presented

in the following sections, with more in-depth details provided in subsequent Chapters 4

and 5 where their utilisation is discussed.

2.5.1 Magnitude squared coherence

Magnitude Squared Coherence (MSC) is widely used in speech recognition, audio anal-

ysis, and detection [85]. It is a signal processing technique that indicates how well

two time domain signals match one with the other by tracking linear dependencies in
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their spectral decomposition. The values of MSC range from 0 to 1, where 0 indicates

no correlation or coherence between the signals, and 1 indicates perfect correlation or

coherence. MSC accounts for the frequency distribution of the signals, making it suit-

able for analysing signals with varying spectral characteristics. This signal feature is

pivotal for device detection, and additional insights into its utilisation are described in

Chapters 4 and 5.

2.5.2 Signal magnitude

Signal Magnitude (A) represents the magnitude of a signal. It considers only the positive

magnitudes and removes the negative values of the signal. The absolute value operation

can be applied to various types of signals, including continuous-time signals, discrete-

time signals, and digital signals. It is a simple yet essential mathematical operation that

helps extract meaningful information and simplify audio analysis and processing tasks.

Additional information on the application of this feature is elaborated in Chapter 5.

2.5.3 Mel frequency cepstral coefficients

Mel Frequency Cepstral Coefficients (MFCC) is one of the audio features that can be used

for audio analysis and detection [86], [87]. They capture important information about

the spectral characteristics of the signal, focusing mainly on frequency components. The

computation of MFCC involves a series of steps. Initially, the signal is segmented into

frames. Subsequently, windowing is applied to mitigate disruptions in each frame. Fast

Fourier Transform (FFT) is then employed on each frame to compute the magnitude

spectrum. Following this, a filterbank consisting of triangular filters is applied to the

magnitude spectrum. These filters are spaced according to the Mel scale, a perceptual

scale of pitches. The Mel frequency scale, being logarithmic, more accurately reflects

the human ear’s response to varying frequencies. The next step involves taking the

logarithm of all filter bank energies. Finally, the Discrete Cosine Transform (DCT) is

calculated for the logarithm of filter bank energies. The resulting DCT output yields the

Mel Frequency Cepstral Coefficients (MFCC). Further details regarding the application
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of this feature, along with other signalling features, are elaborated in Chapter 5.

2.6 Sound Source Localisation

This thesis builds upon some of the concepts of Sound Source Localisation (SSL) for

device detection, although we aim to avoid using precise localisation which typically

requires either accurate calibration or external systems as described below. The subject

of SSL has been studied for various audio signal processing applications such as robotics,

video conferencing, smart home systems, speech enhancement, ocean engineering, and

military systems. SSL involves estimating two parameters of the acoustic signal, namely

direction of arrival (DoA) and distance of arrival estimation. Both classical and learning

based solutions have been proposed to solve the SSL problem. Classical approaches [88],

[89] require a priori knowledge of the acoustic source environment i.e., physical room

characteristics such as the room dimension, room impulse response, surface area of the

walls etc. Hence, learning based approaches have recently been proposed for localising

using sound distance estimation without these classical measurements [90]–[93]. Some of

the audio features such as Magnitude Squared Coherence (MSC), Signal magnitude (A),

Direct-to-Reverberant Ratio (DRR), Mel Frequency Cepstral Coefficients (MFCC) etc.

are considered to be the key features in learning based methods for sound localisation.

The work in [91] is a comparative study on calculating the distance of arrival based on

various acoustic source distance parameters and concludes that the MSC gives the best

method for distance calculation. The work in [94] describes the use of MSC to calculate

the DRR, a useful parameter in acoustic applications. The work in [90] proposes a Gaus-

sian mixture model (GMM) using magnitude squared coherence feature from a binaural

input for a distance of arrival estimation. Their work uses the MSC to estimate distance

using a priori calibration. While these methods provide good motivation for using the

MSC for distance estimation following calibration in static environments, they do not

solve the problem of generic device switching where calibration is not available. How-

ever, the finding that the MSC is a highly useful metric gives motivation for our work

in Chapter 4.2.2 using the MSC for finding the most suitable device without calibra-
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tion. Furthermore, these prior works do not consider generic techniques for optimising

switching between devices where the position of the devices is not closely controlled, and

do not address the signalling required to enable intelligent switching for smart devices.

However, relying solely on MSC for sound source localisation has limitations. Conse-

quently, this research delves deeper into the analysis of deep learning techniques for

device detection. As described in Section 2.4, CNNs, one of the dominating paradigms

in deep learning [95] have exerted a substantial influence on research across diverse do-

mains, such as Human activity recognition [96], [97], Image classification [98], various

time-series prediction applications [99]–[102] etc. In particular, the 1DCNN [81] has

achieved good results in processing time-series multivariate audio signal data. These

previous works provides motivation for this research in utilising a 1DCNN to provide

robust smart device location for pervasive speech communication.

2.7 Acoustic Room Simulation

This thesis uses acoustic simulation to test and evaluate the research. Pyroomacoustics

[16] is an open-source Python library that provides libraries for simulating room acoustics

and sound propagation. It was selected as it provides an accurate model while balancing

this with the computational requirements by using a highly optimised C-based library.

It can be used to model and simulate the behavior of sound sources in a given room

environment. Using libraries provided by Pyroomacoustics, a virtual room with desired

room dimensions, sound sources and microphones in desired positions can be modeled.

The libraries allow to place microphones, each with one or multiple microphone arrays,

at specific locations within the room and simulate their responses to sound sources. The

room can also be simulated with various Reverberation time (RT60) values [103], [104],

which can simulate the sound reflections and walls with different absorption coefficients

which are helpful in deep analysing room acoustics. The library can use both image

source and ray tracing simulation. As the thesis uses rectangular rooms, the image

source model was selected as it is the most efficient for this type of room, without

sacrificing any accuracy.
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2.8 Research gaps

Pervasive speech communication seeks to deliver a seamless audio and/or video expe-

rience based on the situational context, such as the preferred end device or the best

available network, both before and during a call session. After conducting a compre-

hensive literature survey, this research identifies significant gaps in achieving a pervasive

speech experience for users. Currently, if a user wants to switch devices during a call,

they generally need to manually end the session and initiate a new one on the target

device. There are still session latency and media disruptions during transfers between

devices and also between the networks. The overall research literature survey concludes

that:

• There are promising signs within the industry toward addressing this issue and

moving toward providing solutions for a ‘pervasive’ communication experience.

Companies such as Amazon and Apple have introduced features like ‘group chat’,

‘HomePad’ etc. solutions to their smart speaker offerings. Although these solu-

tions bring us closer to achieving a ‘pervasive’ experience, they still fall short of

meeting the requirements of pervasive speech, especially in scenarios where two-

way communication is not feasible with the current industry solutions.

• In academia, the author did not encounter any significant research specifically

focused on the pervasive speech experience.

• The existing SIP session handovers between the networks i.e. vertical handover

encounters session latency and media disruptions.

• The existing SIP session handovers between devices within the same network do-

main, known as horizontal handovers, experience session latency and media dis-

ruptions.

This research aims to address these challenges by proposing solutions to enable more

fluid and uninterrupted transitions, ultimately enhancing the overall user experience in
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pervasive speech communication. The following chapters in this research details the

propose solutions for the identified gaps.

2.9 Conclusions

In conclusion, the exploration of related work in this thesis has provided valuable insights

into existing research and methodologies in the fields of SIP signalling, machine learning,

audio signal features, and network handovers. This chapter provided a high-level view of

the SIP protocol, its architecture, and its special features which are considered for session

handovers in this thesis. This chapter also highlighted the various machine learning

techniques, their applications, and details about Convolutional Neural Networks, as this

is the key technique used in this work. This chapter also reviewed research related to

Sound Source Localisation, as this research builds upon some of its concepts for device

detection. The identified gaps, trends, and contributions outlined in the related work

not only inform the rationale for the current investigation but also lay the groundwork

for addressing unanswered questions and advancing the knowledge in these domains.



3
Seamless Vertical Handover using Machine

Learning

This work considers how session initiation protocol systems can operate in a pervasive

communication scenario, in particular when there is mobility causing vertical handover

between delivery networks. This work uses a machine learning based approach to predict

users’ transitions and thus overcome interruptions in speech due to signalling handover.

As pervasive communication systems are not currently available for measuring the per-

formance of the solution, the work is carried by using commonly available dataset for

vehicular mobility to assess likely handover performance. The results show that predic-

tion can reduce the more concerning interruptions (>2s) due to vertical handover events

by more than 99.9%.

34
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3.1 Introduction

The core concepts pervasive speech system and SIP have been introduced in Chapters 1

and 2, this chapter details the work related to session handling during network tran-

sitions. The main contributions of this chapter are towards understanding likely call

interruptions for SIP based speech when transitioning between heterogeneous networks

i.e. vertical handover, and improving on this problem using a Machine learning (ML)

approach to provide session continuity with no, or little interruption. This work uses a

data-driven approach by using existing mobility data from a real-world vehicular mo-

bility dataset to train the supervised machine learning model for predicting the next

network transitions. Using this prediction, a proactive network SIP session handover

can be triggered and with this advanced session establishment onto next likely network

attachment point, speech can be transmitted in advance to allow a make-before-break

handover in heterogeneous networks in a manner that we are familiar with from homoge-

neous networks, such as LTE. While this work uses a vehicular dataset for evaluating the

problem and solution, in the absence of existing real-world pervasive communication ap-

plication data, the approach is designed to operate across any type of IP networks where

IP connectivity may change during the conversation. Of course, in a current vehicular

scenario, a user tends to use a single network such as a 4G/5G mobile network, in such

a case that network handles all the mobility. Here, we are looking to a future applica-

tion which moves seamlessly between network types (For instance, as a user transitions

between being connected to 5G Long Term Evolution (LTE) in their car and connecting

to Wi-Fi at home, or vice versa). This work has been published in a conference paper in

IEEE International Conference and Expo on Real Time Communications at IIT (RTC),

2021 [C1].

3.2 Proposed Method

The subject of proactive vertical handover using SIP has already been studied for some

time in the past. However, the techniques for proactive handover were based on soft
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handover (“make-before-break”) in link-layer in heterogeneous networks [37]. In our

study, we are considering the handover execution at the application layer using SIP and

the handover decision is supported through ML processing by predicting the next likely,

attachment point and, optionally, the estimated time to move to this next attachment

point. It should be noted here that the bulk data processing power of ML is carried out

at the training stage and that the processing at the prediction stage is relatively simple

and this is helpful in handling a large number of handovers. The ML is carried out in

a central server for the proposed pervasive communication SIP application. A suitable

server is the SIP Registration server [30] which receives updates with user registrations

and change of point of attachment. This needs to identify only the local attachment

network that a device is connected to, for example, different Wi-Fi hot-spots; crucially,

the ML does not need actual geographical location data. While geographical data maybe

available in some horizontal handover systems, such as LTE/5G, this information is not

generally available in heterogeneous networks which is the focus here. In this work, we

are using a supervised learning approach as we are using an existing dataset i.e., mobility

data learned from a previous day with ground-truth labels. In practice, it is more likely

to be implemented as a semi-supervised algorithm with the model refined on a daily or

weekly basis from past data. The ML uses information about attachment networks and

times between changes of attachment to predict the next likely network attachment and

the time to change to this new attachment. Thus, SIP session continuity can now be

provided through the prediction from the ML using the features of point of attachment

and duration of attachment.

3.2.1 SIP session continuity

We have given, above, a brief high-level overview of the mechanism proposed in this

work, here we discuss one possible implementation of the mechanism in the context

of the SIP signalling. Vertical handover can occur during pre-call or during mid-call.

This work considers the mid-call mobility scenario, where session and media update is

expected for the existing session. A graphical representation of proposed solution is as
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Figure 3.1: SIP vertical handover-proposed solution

shown in Figure 3.1. The description below will introduce the solution in more detail

and explain some of the new concepts.

When the mobile node moves from one network to another it first contacts the

Registration server1 to de-register the previous IP address and register the new address

at the new point of attachment. When the Registration server coordinates with the

SIP Location Server to register this new address it queries the ML predictor using:

the previous point of attachment, the new point of attachment, and the time interval

between registration of the previous and new point of attachment. From this query, the

ML predictor then estimates the next point of attachment and, optionally, an estimate

of the time to change to the next point of attachment. Consequently, an agent at the

new attachment point is notified to expect a likely new attachment in the future and

replies back to the Registration server with the future IP address. Finally, the mobile

node is notified, via a SIP NOTIFY message, of the next likely point of attachment.

The existing SIP signalling dialog for a mid-call change of network attachment is

shown in Figure 3.2. It sends a re-INVITE to its corresponding node with its new IP
1Note, we use a singular form for a registration server; however, in practice, multiple actual servers

will be used, in this case, the daily updated ML model would need to be synchronised across the
registration servers.
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Figure 3.2: SIP mid-call flow when there is an address change due to handover between
a mobile node (MN) and a corresponding node (CN)

address as its new Contact [29]. There are challenges using re-INVITE in the exist-

ing dialog, due to the handover delay, SIP re-session overhead, Registration/Location

overhead and SIP message size; this is not helped by the text-based nature of SIP. Cru-

cially, media handover cannot happen until the signalling messages are complete and

consequently, there are interruptions to the speech during this handover when using an

existing SIP-based mechanism. Consequently, this work will propose modifications to

the signalling process.

In this work it is proposed that the media handover interruption is removed using

proactive media session handling using the previously described ML to predict the net-

work mobility so that media delivery is established before the physical move i.e., “make

before move.” The existing SIP standards [29] do not support, session and media on

two IP addresses. However, a session handover approach called bicasting using a SIP
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Extension is proposed by Toktam et al. [37] in the context of session setup using “make-

before-break”. While the original bicasting approach [37] does not solve all the problems

in a heterogeneous network, as it was designed to operate on the Link-layer only, the

signalling and media delivery can be re-utilised in this work. Specifically, bicasting is

used to maintain media continuity by sending media to both the current and the next

predicted point of attachment. The session call flow using bicasting, when the corre-

sponding node supports the Require:HANDOVER extension, is as shown in Figure 3.3.

In the case that the corresponding node does not support the Require:HANDOVER ex-

tension, then solutions like a back-to-back user agent (B2BUA) can be used as a bridge

for both session and media as proposed in [36] for backward compatibility.

3.2.2 Mobility dataset

To analyse our mobility prediction for a pervasive communication application we would

ideally need realistic data from a communication application operating over heteroge-

neous networks, for example moving between Wi-Fi hotspots or between an LTE mobile

phone and a Wi-Fi smart speaker. In the absence of realistic data from such a future

application, we have used a vehicular mobility dataset. The main difference between

the vehicular mobility dataset and the expected pervasive communication application is

that the former deals with a greater number of networks with fewer handovers while the

pervasive communication application is expected to deal with only one or two networks

(e.g. a user entering from outside to home and transition happening between a phone

in LTE network to the smart speaker in Wi-Fi at home) but more frequent handovers.

The handover prediction example used for this work is based upon actual mobility

data from the city of Cologne (described in more detail in Section 3.2.2.1 below). Paired

with this we used actual network locations (Section 3.2.2.2 below) from Cologne to

simulate where these actual users were connected as they moved in their vehicles. While

it would be possible, from this first dataset, to use the vehicle location for the purpose

of prediction, this is unrealistic in a practical networked application scenario as network

elements do not normally have access to this information. Consequently, for the ML



Chapter 3. Seamless Vertical Handover using Machine Learning 40

MN B2BUA CN

INVITE(Contact: IP Address = IP1)

100 TRYING
INVITE (IP1)

100 TRYING

180 RINGING

180 RINGING

200 OK
200 OK

ACK

       Verical handover happened along with ML prediction.
Two address: IP Address = IP2 (handover Network ID) and IP 
Address = IP3 (Future Network ID) are passed to Application layer 
for Re-Session. CN is supporting Require:HANDOVER Extension.
 

Re-INVITE(Contact: IP2, Require:HANDOVER: add,ip=IP3)

200/ACK

MEDIA SESSION (IP2)

MEDIA SESSION (IP3)

Re-INVITE(Contact: IP3, Require:HANDOVER:del:IP3,add:IP4)

200/ACK

MEDIA SESSION (IP4)

200/ACK

MEDIA SESSION (IP3)

Pysically moved to IP3 and predicted IP4

200/ACK

ACK

MEDIA SESSION (IP1)

        Bicasting

Figure 3.3: SIP mid-call flow with two IP addresses - BiCasting: Using SIP Extension

prediction we used only the previous network attachment identifier (ID), the current

network attachment ID and the duration in the previous network. This was then used

to predict the next network ID and duration at the current network ID i.e., the time until

the next transition. These features were determined from a second network attachment
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Table 3.1: Vehicular mobility dataset parameters

Parameter Description
Vehicle Id A unique vehicle identifier
Vehicle position X,Y coordinates of the vehicle position, used for

deriving the vehicle’s association to nearest wire-
less access point

Wireless access point position X,Y coordinates, that can be used to represent
a network attachment ID

First Timestamp Time of the vehicle joining a new network at-
tachment

Second Timestamp Time of the vehicle leaving a network attachment

Table 3.2: ML features generated from vehicular mobility dataset parameters shown in
Table 3.1

Feature Description
Previous network ID Previous network attachment ID
Previous attachment duration Duration that a device was connected with the

previous network
Current network ID Current network attachment ID
Future network ID The next predicted (or actual) network attach-

ment ID
Current network duration Duration predicted (or actual) that this MN will

be connected with the current network before
moving to the Future network ID

dataset that was generated from the vehicular mobility dataset as described below.

3.2.2.1 Vehicular mobility dataset

The mobility trace contains vehicle mobility information with a 1-second granularity

for an anonymised vehicle identifier, its position on the two-dimensional plane (X and

Y coordinates in meters), and its speed (in meters per second) taken over a 24 hour

duration in the greater urban area of the city of Cologne. This trace contains the

mobility behaviour of more than 650,000 vehicles of different types. The generation of

this realistic data set is clearly described in research papers associated with the dataset

[14], [15]. The parameters of this feature set are described in Table 3.1.
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3.2.2.2 Network attachment dataset

As noted earlier, it is not realistic for network elements to know precise MN locations and

speeds. Consequently, to generate the features for the ML we assume only knowledge of

network attachment. To simulate this for a future pervasive communication application

we used the base station location information from public German databases in 2012 us-

ing the same coordinate system as the vehicle positions. Applying a Voronoi Tessellation

on base station locations provides a good estimate for each network attachment point

in the region [105]. Using this approach we generated the network attachment dataset

directly from the realistic vehicular mobility dataset. This resulted in the features shown

in Table 3.2.

3.2.3 Machine learning approach

There are many machine learning algorithms and approaches, and detailed descriptions

are given widely in the literature [106], [107]. Analysis of the problem described in

this work means that a supervised (or rather semi-supervised) approach is appropriate.

Information about supervised machine learning is explained in Chapter 2, and a com-

parative survey, particularly focusing on this algorithm, is provided by [108], [109]. This

work compared a number of supervised machine learning techniques [108] including: lin-

ear regression, naive Bayes, decision trees, multi-layer neural networks, random forest

(RF), and k-nearest neighbour (KNN). After comparison, RF [110] and KNN [111] were

found to perform the best and are the only two shown in this work. While comparing in

detail the reasons for these algorithms success is beyond the scope of this work, it can be

noted that the problem is highly non-linear (mapping arbitrary network ID histories);

consequently, rule based approaches like random forests can perform well in these cases.

Additionally, random forests supports both classification and regression from the same

input dataset. It was noted that random forests can handle large datasets efficiently,

although this was less critical for this application. As noted at the start of Section 3.2

the ML would be implemented as a semi-supervised approach in practice by using data

from a previous day; or, day of the week, as mobility patterns vary weekly.



Chapter 3. Seamless Vertical Handover using Machine Learning 43

3.3 Results

To evaluate the performance of the proposed handover solution, the network attachment

dataset was generated as described in Section 3.2.2. The key metrics of the work are

to analyse the call interruption time caused by SIP session handovers. However, several

options were considered in the application of the ML prediction and these have various

impacts in the performance of the proposal in this work. The results were generated

according to the following scenarios:

no prediction (NP) the default using standard SIP handover with no bicasting;

next network prediction (1P) bicasting speech to both the current network and the pre-

dicted next network

next network prediction to two most likely (2P) bicasting (or rather "tricasting") to the

current network and the two most likely predicted next networks

next network prediction with regressor (Px) send speech to the current network and

then bicast to the predicted network x s before the regressor predicts the tran-

sition

In the above, the regressor was introduced in the Px scenarios to reduce the time

that duplicate traffic is sent to the next network. In practice we will see that, while

the regressor has good median prediction, it has a relatively wide variation around this

median performance which means that if the prediction is too long there will be an

interruption in the call as the transition happened earlier than the predicted transition.

This is shown in Figure 3.4 for two hypothetical transitions A and B. If the raw regressor

estimation estimated the transition too late (top dotted line) then there will be a break

in audio as it moves the audio after the transition to B. The estimation error margin

shows five different error margins with P5 (5 seconds) etc. P5 is a large error margin

and means we can be confident that it will transition in time, but there will be a longer

period of bicasting leading to less efficient network transport. Alternatively, P1 is too

low and leads to a late transition. Determining an optimal error margin x is likely to

be system-dependent. Here a range of values were added to the regressor predictor and
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Figure 3.4: A diagrammatic explanation of regressor error margins: A late transition
estimate leads to a media gap, while a larger margin, such as P5, results in more audio

waste but no media gap during the transition. In this figure, P2 achieves seamless
media transition with minimal audio waste

these are shown in the results as Px between 2 and 32 seconds.

3.3.1 Calculating the SIP session establishment time

We have performed measurements of SIP call session establishment latency using a SIP

test-bed under low load conditions, running on a local system i.e. such that additional

processes, link latencies or CPU limitations were not significant.

The session successful establishment latency for a single user repeated 100 times

is shown in Figure 3.5 indicating that median times for call establishment (or re-

establishment after handover) are in the order of 280 ms. In practice, there may be ad-

ditional factors that will increase this latency namely, additional proxies, re-registration

process, load on the proxies, distance from user to proxies etc. Our measurement of

280 ms is comparable with others that have measured SIP signalling latency [112]. Also,

we are assuming this session setup time includes the time required for re-registration and

location updates, again in practice this might cause higher latency. For the modelling

results, we sampled following the measured latency distributions shown in Figure 3.5 so
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Figure 3.5: Empirical cumulative distribution function showing SIP call set up latency t

that the results were based upon these real latency values.

3.3.2 Calculation of network attachment dataset

We have analysed handovers from approximately 650,000 vehicles across a total of 4.5

million handovers from one network attachment point to another attachment point. A

vehicle having at least 2 handovers was considered for processing i.e., static “mobile”

nodes were excluded. We assumed each handover is a vertical handover. While the

later may not be realistic for a true vehicular case it acts as a useful proxy of generated

events for a future pervasive communication application. In order to derive the vehicular

transitions, we have created a processing algorithm with inputs: the generated network

IDs from the Network attachment dataset, vehicle ID, and timestamps of transitions

to determine network attachment duration. The vehicle’s association with a nearest

network attachment point was determined from the vehicular mobility dataset using the

k-d Tree algorithm [113].
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Table 3.3: Performance of the Classifier

1 prev. net. 2 prev. net.
Metric RF KNN RF KNN
Classifier Accuracy 0.793 0.785 0.937 0.929
Classifier F1 score (macro) 0.747 0.737 0.904 0.907
Classifier F1 score (micro) 0.793 0.785 0.937 0.929
Classifier F1 score (weighted) 0.790 0.782 0.936 0.938

Table 3.4: Performance of the Regressor
RF KNN

Regressor Median Absolute Error 7.80 8.049
Regressor Median Relative Error 1.8% 1.9%
Regressor Coefficient of determination R2 0.299 0.296

3.3.3 Machine learning performance

In order to predict the next, likely, attachment point and the estimated time to move to

this next attachment point, we have trained our model with the history of vehicle tran-

sition i.e. previous network ID, duration in the previous network, and current network

ID. The estimated time to move to the next attachment point is predicted with RF and

KNN regressor algorithms and the next likely network attachment point prediction is us-

ing RF and KNN classifier algorithms with performance results shown in Tables 3.3 and

3.4. Note that due to a large number of classes, it is not straightforward to analyse the

ML performance using common metrics such as a confusion matrix or recall/precision;

however, a small portion of the confusion matrix is shown in Figure 3.6 which shows a

strong diagonal component which gives some confidence in the performance of the ML.

Considering the nature of our model as a multi-classifier, we have calculated both the

classifier accuracy: representing the ratio of correct predictions to total predictions, and

F1 scores (macro, micro, and weighted), representing the scores of precision and recall.

For the regressor we show median absolute and relative error and the coefficient of de-

termination, R2, showing the performance of the regressor model to predict the duration

of attachment:

R2 = 1−
∑

(yi − ŷi)∑
(yi − ȳ)

(3.1)



Chapter 3. Seamless Vertical Handover using Machine Learning 47

Figure 3.6: A small portion of the confusion matrix, extracted from a confusion matrix
of large number of classes, demonstrates a strong diagonal component, indicating high

confidence in the machine learning model’s performance

where y represents actual residence time and ŷ is the predicted residence time, a value

closer to 1 is considered as a good prediction model. We see from Table 3.4 that the

regressor performed very well in terms of median relative error (less than 2%) however

with R2 being low there was a relatively large variation of error around this median

value, hence the need for the error margin added to the regressor predictor.

We trained our ML model on a single core server and it took approximately 18

hours for 4,500,000 transactions i.e. 70 ML operations per a second. The statistics of

vehicular transitions indicate that median transition rate is one transition every 500 s

for each vehicle; i.e. a single core can handle 35,000 simultaneous calls. Considering a

typical European Nation like the UK may have approximately 1.5 million simultaneous

calls2 in a mobile network this means that less than 40 cores would be needed for a

nationwide prediction service using this ML solution.

3.3.4 Call interruption results

After using the above to model the realistic call interruption we can determine how many

calls have interruptions above a certain threshold as shown in Table 3.5.
2Estimated using data from Ofcom in the UK [114]
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Table 3.5: Number of calls with interruptions greater than 300msec, 1sec, and 2sec
respectively when considering the solutions with no prediction (NP), prediction of one
network ID from previous network (1P), prediction of two network IDs from previous

network (2P) and prediction with regressor and x second error margin (Px).

Scenario 300 ms 1 s 2 s
NP 598,518 468,029 309,945
1P 398,796 73,950 3,069
2P 145,241 2,304 15
P0 575,124 408,791 222,503
P2 563,410 352,343 135,022
P4 549,849 323,300 10,0745
P8 530,794 277,188 63,414
P12 513,637 235,098 39,733
P16 497,017 200,523 25,801
P32 444,940 118,136 7,647

Unlike packet loss in VoIP, there is little evidence to support what is an acceptable

call interruption time. We have chosen three values from a level that is likely to be

just perceptible in many conversations (300 ms, comparable to average word length) to

a level of 2 s where it is a considerable portion of a typical sentence. The results in

Table 3.5 indicate that call interruptions in the case of the longer interruptions of 2 s

can be reduced by more than 99.9%, by using the case where two network attachment

points are predicted (2P). Further detail on the call interruption times can be seen in

Figures 3.7 and 3.8 showing that the prediction of two target network attachments (2P)

gives substantially lower call interruption. It can further be seen that using the regressor

for predicting the transition without an error margin (P0) does not achieve satisfactory

reduction but that adding 32 s (P32) approaches the performance of the 1P case.

One of the costs of the mechanism proposed in this work is that there is additional

traffic in the network during the bicasting. For the cases without the regressor (1P, 2P)

this is when a mobile node moves to a new node. The overhead is shown in Figure 3.9

using the existing SIP handover without prediction (NP) as the baseline. For the case

where bicasting is to one node (1P) or two nodes (2P), there is up to 2 times (1P) and 3

times (2P) the amount of traffic. The reason for double and thrice the amount of traffic is

due to upfront media transmission on these predicted network attachment points during

the handover. The overall distribution of handovers across the network attachment
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Figure 3.7: Call interruptions for the cases of no prediction (NP), using classifier to
predict one (1P) or two (2P) network IDs, and using the regressor to predict residence

time (Px) with varying regressor error margins x

Figure 3.8: Interruption stats for calls with 2s interruption time

points is as shown in Figure 3.10 and the eCDF of network associated duration is shown

in Figure 3.11.

The transition through the network attachment points is also not uniform as shown

in Figure 3.12 showing that for some network locations, mobile nodes are attached to

that network for a much longer time than other network attachment points; this is caused
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Figure 3.10: Empirical cumulative distribution showing number of handovers n for a
call

by the diverse nature of network density across the geographical area with high density

in the city centre and many transitions and much larger areas in the outer city zones

with fewer transitions.
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Figure 3.12: Mean network duration across the network IDs

3.3.5 Practical considerations

In practice a deployer of this solution would need to trade off the overhead shown in

Figure 3.9 and the considerable benefit shown in Figure 3.13 and Table 3.5. Some
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further insight is given in Figure 3.13 which shows the probability of call interruptions

for the various options. It can be seen that there is a substantial benefit to deploying

the ML solution in this work. While the exact trade-off would be a deployment decision,

the author suggests that using the classifier with the regressor, using a suitable error

margin gives optimal performance. Indeed using the regressor with 32 s error margin

(P32) gives performance close to using the classifier alone (1P) but with substantially

less transmission overhead by selectively bicasting. It should be noted that the 32 s

suggested is significantly less than the median residence time of 423 s, as shown in

Figure 3.11. It should be noted that the model must be trained with the respective local

network transition dataset, incorporating up to 24 hours of transitions, when deploying

this solution. In practice this can be obtained from the SIP Location Services [115],

[116].

3.4 Conclusions

In this work, we have proposed a machine learning approach to avoid handover interrup-

tions during the session updates in the application layer for pervasive communication
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applications; this addresses the research gap and question on avoiding the SIP session

latency during network handovers i.e. vertical handover as highlighted in Sections 1.3

and 2.8. A proactive handover "make before move" with bicasting of media sessions

on two network attachment points; actual and predicted is proposed. Due to the un-

availability of pervasive communication application transition data, a readily available

user vehicular transition dataset is used for the handover analysis. This work compared

several supervised machine learning techniques and the experimental results indicate

that the random forests can perform well in these types of features due to the non-

linear nature of the dataset. Mean call interruption is calculated on no prediction and

prediction cases and results are plotted. The analysis shows that the more concerning

call interruptions can be reduced by more than 99.9% with a modest communication

transmission overhead. Our experiments conclude that the overhead of running the ML

for handover prediction is small and that a single core running can serve the peak load

of approximately 35,000 simultaneous pervasive communication sessions. Building on

this work, it would be valuable to carry out subjective studies of the acceptable limits of

temporal disturbance during handover. These limits could potentially be expressed in a

similar manner to the impact of one-way delay in the ITU-T G.114 [117] specification.

Following the successful implementation of seamless vertical handover, the subse-

quent chapters concentrate on optimising horizontal device handover in an end environ-

ment that allows pervasive communication within that environment.



4
Seamless Device Horizontal Handover using MSC

Predictor

Continuous growth in the smart speaker market has contributed to making high qual-

ity, far-field speech communications as a feasible alternative to the handset. Seamless

handover offers a simple but effective way of improving the far-field communication

experience by automatically switching to the best available device, in a single acoustic

environment, regardless of where a user is located within that environment. This chapter

proposes two significant solutions: reduction in media disruption during device handover

by introducing a parallel session on multiple devices through session initiation protocol

(SIP) call forking; and, coherence-based signal processing, MSC predictor, to more ac-

curately determine the most suitable device for the user. The solution proposed uses

the Magnitude Squared Coherence (MSC) and results verified through simulation and

54
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real datasets show it has excellent performance. However, the raw MSC is found to have

high variation due to room effects, consequently, this work shows that a smoothing pre-

dictor is needed to significantly reduce the extraneous transitions that would otherwise

be subjectively poor. Unlike a purely location based approach, the proposed solution se-

lects the best smart device without any environment specific calibration making it ideal

for the straightforward deployment of a pervasive speech application that uses smart

speakers.
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4.1 Introduction

Chapter 1 outlines the primary objective of achieving a seamless vertical network and

horizontal device handover in a pervasive speech system. The aim is to address the

research questions and gaps identified in the pervasive speech system, to enhance the

overall far-field communication experience by reducing handover latency and eliminating

the need for manual call transfers across multiple devices. Chapter 2 explores the funda-

mental domain concepts, and Chapter 3 presents solutions to minimize vertical network

handovers. The current chapter focuses on seamless horizontal device handovers, intro-

ducing, analysing, and providing a foundational solution for basic user movements. This

foundational work is expanded upon in Chapter 5, where complex real-world scenarios

are analysed. This chapter also proposes solutions for seamless session handover between

the devices using the SIP personal mobility feature; this differs from the SIP solution in

Chapter 3 as in this chapter we need to move the media within the same end-network i.e.

doing horizontal handover. For more information on the SIP personal mobility feature,

please refer the Section 2.2.1.1.

As a first step towards improving the horizontal handover, a basic seamless call

handover experience has been demonstrated in the lab by BT to the author (work not

yet externally described). The work by BT was carried out under the control of a call

orchestration script with smart speaker development kits that have been used to provide

basic user location information and an open-source call server used to perform call

session handover between standard session initiation protocol (SIP) clients without any

user intervention. While this demonstrated the technical merits of a pervasive speech

system, a key requirement in moving from the lab to realistic environments is how well

the user tracking works. While volume level and DoA (Direction of Arrival) angle have

been sufficient at the Poof of Concept stage that BT investigated, the ability to work in

realistic environments with no placement calibration is a significant challenge.

There are many ways to improve tracking reliability – such as making use of the

addition of IoT sensors around the smart home – however, it is highly desirable to try
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and derive this information from audio signals available from the devices that make

up the communications system itself without requiring input from external devices or

precise location calibration.

Consequently, this chapter addresses this need by using the coherence between audio

signals in the smart device microphones. Instead of using precise location tracking, our

work shows that correct transition between smart devices is possible using coherence

measurement without any form of calibration. Additionally, this work considers how

SIP can be used for mid-call session handover when using the audio features to identify

the suitable device for handover.

The main contributions of this chapter are: proposing alternative approaches for SIP

mid-call personal mobility; and, using the magnitude squared coherence, together with

predictive smoothing, to automatically detect the audio device for session handover.

This work has been published in a conference paper in 5th International Conference on

Communications, Signal Processing, and their Applications (ICCSPA), Cairo, Egypt,

2022 [C2].

4.2 Proposed Method

In Section 3.2.1, the author has proposed alternative approaches i.e. bicasting for SIP

session handling in order to achieve seamless session vertical handover using SIP terminal

mobility support. This chapter proposes alternative approaches for SIP session handling

in order to achieve seamless session horizontal handover using SIP personal mobility

support. The key difference between the signalling in Chapter 3 and this chapter is that

in this chapter we need to have multiple end device addresses handled in a transparent

manner for the corresponding node. This is enabled through the use of the B2BUA in

this chapter as a termination point. This means that the mobility can take place within

the local environment, under the control of the B2BUA, without the corresponding node

being aware.
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4.2.1 SIP signalling for device handover in pervasive speech

The standard SIP protocol accommodates both personal mobility and terminal mobility,

whether it occurs during pre-call or even mid-call. However, these methods do not

account for smooth media transitions. In the context of personal mobility, it is possible to

have several devices registered to a single SIP address for session management. Initiating

a call session on multiple devices sharing the same SIP address can be accomplished

through the existing SIP functionality, which supports either parallel or sequential call

forking. Call forking is the process of processing multiple requests by B2BUA from/to

the devices. In sequential call forking, the initial Invite is sent to a device and if the

device is not answered, then new initial Invite is sent to the next device. This process

continues until a device answers the call or all the devices registered under the same SIP

address are exhausted. In the case of parallel call forking, initial invites are sent to all

registered devices at once, and if one of the devices answers, then invites to other devices

are canceled by sending the Cancel requests. The type of call forking to use is solely

based on the requirement. This call forking capability can be leveraged for dynamic

session handover between the smart devices. While a call is in progress, i.e. during a

mid-call scenario, and a more suitable device is identified for handover, based on the

method proposed in Section 4.2.2, the session handover can be achieved using the below

methods:

Using existing SIP signalling: The existing session can be transferred to the new

device using SIP Re-Invite or REFER methods. The message sequence flow at a higher

level for this situation, involving call sequential forking and using REFER methods, is

illustrated in Figure 4.1. Further detailed description of session handover flow is available

in Appendix A.2.1.

Using modified SIP signalling: This thesis also introduces an alternative approach

for session handover, as depicted in Figure 4.2. Slight changes are required to the

existing B2BUA behaviour. However, this novel method eliminates media interruptions

and offers improved control over session management for devices within the handover

domain. A detailed description of session handover flow using this approach is available
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Figure 4.1: SIP mid-call horizontal device session handover using REFER/NOTIFY
between back-to-back user agent (B2BUA) and corresponding node (CN)
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Figure 4.2: SIP mid-call horizontal device session handover with modified back-to-back
user agent (B2BUA) and corresponding node (CN)

in Appendix A.2.2.

In practice media monitoring and switching is needed at a node in the network and it

makes sense to carry this out on the B2BUA with the proposed modified SIP signalling

which is straightforward to implement. In a practical deployment, this could be carried



Chapter 4. Seamless Device Horizontal Handover using MSC Predictor 60

out at the home/office gateway or in one of the smart devices, both of which are being

used as a B2BUA in emerging systems.

4.2.1.1 SIP message sequence for the improved handover proposal

The proposed signalling solution is a two step process to enable SIP personal mobility

i.e. multi device use in horizontal handover. The first step involves registering the

devices to one SIP address. The sequence of the message flow for registering the devices

to a SIP Registration is as described in Appendix A.1.0.1. Updating the SIP registry

is described in Appendix A.1.0.2. The second step is the session initiation on multiple

devices using initial Invite as described in Appendix A.1.0.3. The message flow for the

session describes the sequence of the message flow from/to the B2BUA to/from all the

registered devices in the new proposed solution. The flow uses the concept parallel call

forking and the main changes are: after one device sends 180 Ringing, the other devices

also sends 180 Ringing, and subsequent 200 OK and ACK messages are flown between

B2BUA and to all the devices as shown in Figure A.4. It should be noted that the author

is intimately familiar with SIP messages and the message flow is derived based on that

knowledge. However, this SIP session handling has not been actually implemented.

4.2.2 Nearest device estimation

Here we propose how to perform the intelligent switching between devices within a

single audio environment, for example, two smart devices (smart speakers) in a room

or meeting room. The scenario assumes that a voice call is in progress and that the

user wants to automatically swap between smart devices in the audio environment. We

will consider only one end of the communication here, although of course the system

could be used at both ends of the communication. As described in Section 4.2.1, the

signalling and detection only take place at one end of the communication so that the

other end (or ends in multi-party cases) is unaware. Additionally, we assume that the

smart devices have at least two microphones; in practice smart devices tend to have two

or more microphones.
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The basic process involves capturing the audio from the smart devices and using

the talker’s voice to determine which device is best to use for continuing an audio call.

While other techniques [118] propose using location identification, which usually involves

precise calibration and device placement, here we aim to perform the detection using only

the talker’s voice without knowledge of the placement or orientation of the devices. We

assume that the devices are equipped with two microphones, as is usual with most smart

devices for echo suppression. We also assume that the talker’s movement is relatively

slow compared to the distances between the smart devices, for example walking from

one end of a room to another (i.e., not running between two closely spaced speakers).

As described in Section 2.5.1 the MSC has been studied in the past for localisation

applications [90], [91], [94] and investigations have concluded that it is one of the best

features for this purpose. Consequently, it was selected as the best method for analysing

the audio in this chapter. Chapter 5 will consider some other features but broadly

confirms that the MSC is the most useful. One clear justification for using the MSC is

that it measures the coherence of the acoustic signals. When a talker is close to a device,

the reflections from different surfaces (walls, ceiling, floor, furniture, etc.) tend to be

much lower than the direct signal and thus the coherence between the signals received

at two microphones in a device tends to be higher. Instead, when a talker is further

away the multi-path signals from surface reflections tend to affect the speech signals at

each microphone to a greater amount and consequently give rise to differences, lowering

the coherence.

An overview of the proposed procedure is:

• Capture speech separately from the microphone pair from each device (Device 1

and Device 2 in examples later)

• Apply A-weighting to each audio signal to emphasise the key frequency components

of speech

• Calculate the MSC, ρ1, ρ2, on a microphone pair from each device over an audio

block (see the detailed explanation below)
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• Apply a predictor to the output of the MSC over time to remove the room effects

and low-level transient features due to room acoustics, obtaining the estimates ρ̂1,

ρ̂2

• Determine the best device using max(ρ̂1, ρ̂2)

• Switch the call media to the best device using the signalling described in Sec-

tion 4.2.1.

The above steps assume that the process is only taking place while the local user

is talking. In practice, voice activity detection is needed to determine when this phase

of the conversation is taking place, this is not considered in this work as this type of

detection has been widely considered in the literature [119]. We now formally state the

procedures.

4.2.2.1 Calculating the Magnitude Squared Coherence

The MSC is calculated using Welch’s cross-power spectral density [120] for the two

microphone signals from device i, xi,l(t) xi,r(t), for the left, l, and right, r, channels

respectively. Specifically the MSC ρi(t) for a block at time t is calculated using:

ρi(t) =

∣∣∣P̂ (Xl(f, t), Xr(f, t))
∣∣∣2

P̂ (Xl(f, t), Xl(f, t))P̂ (Xr(f, t), Xr(f, t))
(4.1)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t)) is calculated across an N

block Fourier transform of Xa(f, t) from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N−1∑
f=0

|X∗
a(f, t)Xb(f, t)| (4.2)

which denotes X∗(f, t) as the complex conjugate of X(f, t).

Finally the averaged MSC, ρ̂(t) at time across B blocks of size N with sample rate,

r is

ρ̂(t) =
1

B

k=B−1∑
k=0,τ=t+kN/r

ρk(τ) (4.3)
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Unfortunately, the MSC calculated using this method is highly dependent on re-

flections in the room, which cause frequency dependent constructive and destructive

interference, as will be shown in the results below. Consequently, we need to predict the

MSC ρ̂ from a number of previous noisy observations ρt, ρt−1, . . ..

4.2.2.2 MSC predictor

The MSC is predicted using the double exponential smoothing method [121], [122], a

popular time-series estimator that has been shown to be useful in location tracking

applications with considerably lower computation costs than other predictors such as a

Kalman filter [123]. The author attempted using a number of other time-series prediction

algorithms [124], [125] such as Autoregression (AR), Moving Average (MA), Autoregres-

sive Moving Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA

- The ARIMA model is a combination of two methods, AR and MA models). But due

to the non-stationary nature of the data, the exponential smoothing has produced good

results compared to the stationary time-series prediction algorithms.

The double exponential smoothing algorithm maintains level and trend estimates at

each period and prediction of ρ̂ is calculated based on weights α and β using:

Lt =αρt−1 + (1− α)(Lt−1 + Tt−1) (4.4)

Tt =β(Lt − Lt−1) + (1− β)Tt−1 (4.5)

ρ̂t =Lt + Tt (4.6)

where Lt represents the level and Tt represents the trend at time t. The values of α

and β will be dependent upon the sampling rate of the MSC, ρ, and typical variations

due to movement. In practice, it has been found that a Monte-Carlo optimisation with

a relatively coarse-grained search allows α and β to be obtained with values that work

well.
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Table 4.1: Simulation setup - Standard room

Parameter Description
Room dimensions 7m X 5.5m X 2.4m
Device positions Device1: 1.0m X 3.5m X 0.9m Device2:

5.5m X 3.5m X 0.9m
Device details 2 microphone arrays, left and right, sep-

arated by 0.1m
Source positions 110 positions starting from 1m to 6m

each with 0.05m steps
RT60 0.6s, 0.8s, 1.0s, 1.5s, 1.8s
Audio sample rate 16 kHz
Audio block size 1024 samples

Table 4.2: Simulation setup - Conference room

Parameter Description
Room dimensions 10m X 7m X 2.4m
Device positions Device1: 2.0m X 4.0m X 0.9m Device2:

5.0m X 4.0m X 0.9m
Device details 2 microphone arrays, left and right, sep-

arated by 0.1m
Source positions 115 positions starting from 1m to 7m

each with 0.05m steps
RT60 0.6s, 0.8s, 1.0s, 1.5s, 1.8s
Audio sample rate 16 kHz
Audio block size 1024 samples

4.3 Results

4.3.1 Simulation setup

Two rectangular rooms with characteristics listed in Tables 4.1 and 4.2 were simulated

using the Pyroomacoustics Python package [16]. One room represents a standard living

and the second room represents a conference room. Both are simulated without consid-

ering artifacts such as variable wall absorbance, windows, and furniture. While these

additional artifacts would change the specific MSC measured at a single point, this work

is more interested in the relative difference between MSC at the two devices rather than

the specific MSC value. In the standard and conference rooms, the two devices, Device

1 (D1) and Device 2 (D2) are simulated each with two omnidirectional microphones and

placed at opposite ends of the room with a distance of 4.5 meters between them in the
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Figure 4.3: Linear and locus source positions compared to fixed device positions (D1,
D2). A sample of six loci from the 400 generated are shown.

standard room and 3.0 meters distance in the case of conference room. The standard

room simulates an environment such as an open-plan living space with say a device in

the living room area and another in the kitchen area. The conference room simulates

a large room with a big conference table and two devices placed at each corner of the

table.

Movement of the sound source (the talker) within the environment is simulated using

two methods, as shown in Figure 4.3: linear movement where the sound source is moved

in 0.05 m steps from one end of the room to the other; and, locus movement where the

sound source is moved in a pseudo-random manner using a set of three random positions

(a minimum distance apart) that are connected using a cubic Bezier curve. For the locus

movement, a set of 400 loci were created with each locus sampled at 100 equally spaced

points along the curve. This simulates the talker moving with a purpose between two

locations while navigating around a third object such as furniture. A representative set

of six such loci are shown in Figure 4.3.
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4.3.2 Device transition results

The MSC using Welch’s method, along with applying A-weighting and double expo-

nential smoothing for prediction, as described in Section 4.2.2.1, is captured for each

position of the sound source on both devices. The device with higher MSC, max(ρ̂1, ρ̂2),

is considered as the best device to transfer the session. The experiments were performed

in simulated rooms with various reverberation time as described by the RT60 metric i.e.

moderate reverberation case (e.g. living room) to high reverberation conditions (e.g.

concert room). The Monte-Carlo parameterisation determined values of α = 0.05 and

β = 0.01 as suitable for the double exponential smoothing.

The performance is evaluated using two metrics:

number of extraneous transitions: the number of additional device transitions us-

ing the predicted talker location compared to the actual nearest device

weighted normalised error (WNE): an error metric Ê normalised to the difference

of the distance between the devices and the talker calculated across all the mea-

surements (the set P ):

Ê =
∑
i∈P

ei |di|
D

(4.7)

where
∑

i∈P
|di|
D is a normalisation, |di| is the absolute difference between the talker

and Device 1 and the talker and Device 2; D = |d1, d2|2 and ei is a 0,1 variable

which is zero if the predicted device is the same as the nearest device or one

otherwise.

The use of extraneous transitions as a metric is important as users would find switch-

ing that is unnecessary as subjectively disturbing, the ideal is for this to be zero. The

purpose of the WNE, Ê, is to compute an error that is higher if the device chosen is

significantly further away than the ideal device.

The results of the linear movement scenario compared to the ideal transition, and

for various simulated room RT60 values in a standard room, is shown in Table 4.3.

Additionally, examples of the output of the MSC output are shown in Figures 4.4, 4.5,

4.6 and 4.7 for RT60 of 0.6, 0.8, 1.0 and 1.5 respectively. These graphs show the ideal
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Figure 4.4: Device transition for Reverberation Time RT60 = 0.6s showing ideal
device transition (I), our, smoothed, solution (S), the non-smoothed case (NS) and the

relative MSC values used to derive transitions.
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Figure 4.5: Device transition for Reverberation Time RT60 = 0.8s showing ideal
device transition (I), our, smoothed, solution (S), the non-smoothed case (NS), and the

relative coherence values used to derive transitions.
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Figure 4.6: Device transition for Reverberation Time RT60 = 1.0s showing ideal
device transition (I), our, smoothed, solution (S), the non-smoothed case (NS), and the

relative coherence values used to derive transitions.
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Figure 4.7: Device transition for Reverberation Time RT60 = 1.5s showing ideal
device transition (I), our, smoothed, solution (S), the non-smoothed case (NS), and the

relative MSC values used to derive transitions.
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Table 4.3: Comparison between different simulation scenarios using proposed metrics
of weighted-normalised error (WNE) and number of extraneous transitions (ET) with

MSC predictor

RT60
Type 0.6s 0.8s 1.0s 1.5s 1.8s

WNE-NS 0.14 0.20 0.24 0.25 0.3
WNE-S 0 0.01 0.01 0.01 0.18
ET-NS 9 17 22 38 38
ET-S 0 0 0 0 0

Table 4.4: Comparison between different time-series predictors against MSC predictor
(Smoothed-MSC) using proposed metrics of weighted-normalised error (WNE) and

number of extraneous transitions (ET)

Type AR MA ARMA ARIMA Smoothed-MSC
WNE-NS 0.18 0.24 0.18 0.18 0.20
WNE-S 0.09 0.22 0.09 0.08 0.01
ET-NS 15 15 15 15 15
ET-S 7 35 5 3 0

(I) ground truth as the top blue line, then the results of using the proposed smoothed

are shown in the top red line (S) and the non-smoothed are shown in the second red line

(NS). Additionally, the MSC values (“coherence” on the graph) in Figures 4.4 and 4.7

show how the raw MSC values can vary significantly, with artifacts present due to

additive reflections at certain positions; these are clearly worse with the higher RT60

value used for Figure 4.7. The NS (non-smoothed) data in the figures shows how the

transitions cannot clearly be detected using the raw MSC, whereas the transitions in the

S (smoothed) are very close to the ideal. It can be seen that the transition happens at

not quite the optimal location if purely distance is used, however, in practice this is not

likely to be subjectively important as users would want the device to switch appropriately

rather than expecting millimeter precision on their location being exactly equidistant

from the devices. Again the NS curve shows that, without the predictive smoothing,

there would be many extraneous transitions that would be subjectively annoying. The

results in Table 4.3 show that the proposed technique (MSC plus predictive smoothing)

works very well compared to raw MSC results, which have an increasingly large number

of extraneous transitions and error (WNE) as the reverberation increases.

The output of the MSC for the case of the conference room for RT60 of 0.6 and 0.8
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Figure 4.8: Device transition in Conference room for Reverberation Time RT60 = 0.6s
showing ideal device transition (I), our, smoothed, solution (S), the non-smoothed case

(NS) and the relative MSC values used to derive transitions.

are shown in Figures 4.8 and 4.9 respectively. The prediction is performed with values

of α = 0.05 and β = 0.01.

We conducted a comparison between the MSC predictor employing double exponen-

tial smoothing for linear movement for RT60 of 0.8 and alternative time-series predictors,

including AR, MR, ARMA, and ARIMA. The predicted MSC output and device transi-

tions are illustrated in Figures 4.10, 4.11, 4.12, and 4.13. The outcomes of these figures

and also the consolidated data presented in Table 4.4 depict the good performance of

the MSC predictor when compared with other time-series predictors.

We also tested our work on more complex locus movement as described in Sec-

tion 4.3.1 and examples shown in Figure 4.3. The results of the extraneous transitions

for these scenarios is shown in Figure 4.14 showing that it was a more challenging prob-

lem; however, we can see that the number of extraneous transitions is considerably lower

when using the MSC with predictive smoothing (S on the graph) compared to the raw

MSC values (NS on the graph). We should note here that the same movement velocity

was used in both the linear and locus movement, simulating a constant walking pace.
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Figure 4.9: Device transition in Conference room for Reverberation Time RT60 = 0.8s
showing ideal device transition (I), our, smoothed, solution (S), the non-smoothed case

(NS) and the relative MSC values used to derive transitions.

This limitation will be considered in Chapter 5.

Our solution was also verified on a real room/talker dataset obtained from [18], [19]

where it achieved 92% accuracy in identifying the suitable device for a given talker

location when static locations were used for the testing. This massive distributed array

dataset was generated in the lab by Illinois Institute and contains two device types:

wearable arrays and tabletop arrays. There are a total 12 tabletop arrays, each with 8

microphones, and 10 talker positions. Our solution i.e. calculating MSC, between the

left and right hearing of microphone arrays, along with double exponential smoothing

is applied on this dataset. The MSC was computed for each audio signal received from

each talker across the eight microphone arrays, with each microphone participating in

the comparison. The microphone with the highest MSC value was identified as the

nearest speaker. The results concluded that our solution successfully identified the

nearest device in all cases except one i.e. 11/12 =⇒ 92% success. The single failure

was for one device due to the reason of positioning of the talker facing away from the

microphone arrays that were used to listen to the sound from the talker. One limitation
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Figure 4.10: Extraneous transitions in Smooth (S) and in No smooth (NS) case using
Autoregression (AR)
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Figure 4.11: Extraneous transitions in Smooth (S) and in No smooth (NS) case using
Moving Average (MA)

with this verification was that the real audio samples were captured at static locations,

so while the results show that the method can discriminate correctly, it does not simulate

real movement, again which will be better considered in Chapter 5.
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Figure 4.12: Extraneous transitions in Smooth (S) and in No smooth (NS) case using
Autoregressive Moving Average (ARMA)
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Figure 4.13: Extraneous transitions in Smooth (S) and in No smooth (NS) case using
Autoregressive Integrated Moving Average (ARIMA)
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Figure 4.14: Extraneous transitions in Smooth (S) and in No smooth (NS) case for
locus move

4.4 Discussion

The results show that the method proposed can work very well for detecting the ap-

propriate device to switch a session to when two smart devices are part of a pervasive

speech session. The method proposed does not use any actual location information or

calibration of the device orientation. The metrics in the evaluation used a measure of

error (the WNE Ê) that determined a transition as an error if it did not occur at the

equidistant point between the speakers, this was weighted by the “error” in the distance.

However, in practice, it is unlikely that users will be concerned about the actual switch-

ing point being at the equidistant point, an error of a few tens of centimeters or even

a meter or two may be perfectly adequate. Indeed consider a situation of an open-plan

living environment with one smart device placed in a relatively acoustically dead living

area and another placed in an acoustically live kitchen area. In this scenario, it may be

beneficial for the switching to occur closer to the kitchen area so that the time spent

using the device in the kitchen area is minimised to the user being located close to the

smart device in this area. If the switching was done purely on distance (i.e., actual

location) then the non-ideal kitchen device might be used when it would be preferable
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to use the device in the living area. The use of the MSC, as proposed in this work, con-

veniently obviates this problem as the MSC will tend to be less in acoustically live areas

and higher in acoustically dead areas, such as the living room space of the example.

The results above have only considered two devices. The work can be expanded to more

than two devices by simply comparing the smoothed MSC returned by each device. To

be precise if we have a set of D devices with the smoothed MSC of device i ∈ 1 . . . |D|

represented as ρ̂i then the selected device d̂i ∈ D is determined using

d̂i = argmax
di∈D

ρ̂i (4.8)

4.5 Conclusions

This work proposes seamless mid-call session handover between the audio devices in a

pervasive communication application using the SIP protocol and coherence based audio

signal processing for detecting the correct smart device; this addresses the research gap

and questions regarding seamless handover between devices within the same network,

known as horizontal handover, as highlighted in the Sections 1.3 and 2.8. The anal-

ysis shows that MSC, along with a smoothing predictor, can provide a very accurate

prediction of the optimum smart device for communication. The results show that a

smoothing predictor greatly reduces extraneous transitions and transitions with greater

accuracy compared to using the raw MSC values. The proposed method was verified

in various room conditions for two simulated devices and also for a number of devices

using a real room/talker dataset.

Deeper analysis, specifically the application of double exponential smoothing to a

range of scenarios, including conversations in real-life settings at different speeds within

the room, with varying signal strengths and with varying reverberation time (RT60),

revealed unsatisfactory outcomes, as depicted in Figure 4.14. As a result, further research

was conducted to explore the application of deep learning techniques to attain superior

results. The subsequent chapter explores challenges encountered in a real-world acoustics

setting, provides a comprehensive overview of the experiment methodology, and presents
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the findings derived from this research.



5
Seamless Device Handover Through Deep

Learning: a Custom Loss Function Approach

This chapter builds upon the foundational work established in the previous chapter,

which introduced the concept of seamless device handover within a pervasive speech

system to enhance the far-field communication experience. As a continuation of the

overarching objective, this chapter delves into the difficulties of achieving seamless de-

vice handover for read-world scenarios, by exploring advanced techniques and solutions.

The research extends beyond the initial lab-based proof of concept, addressing real-world

challenges and refining the methodology for practical implementation. The ultimate goal

is to transition from a foundational proof of concept to a refined, sophisticated, and ef-

fective solution capable of addressing the difficulties posed by real-world communication

scenarios. Through a combination of data-driven approaches, further existing acoustic

77
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simulations, and deep learning techniques, this chapter aims to overcome the limitations

identified in the earlier stages of the research techniques.
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5.1 Introduction

In Chapter 4, a fundamental coherence-based signal processing approach was intro-

duced, employing a MSC predictor using double exponential smoothing to identify the

suitable device for enhancing the far-field communication experience. However, when

applying that solution to real-world scenarios involving talker movements at different

speeds, various locus movements, varying signal strengths, and fluctuating reverbera-

tion time (RT60), the outcomes of the provided solution proved unsatisfactory. This

chapter explores the advanced technologies to address real-world complexities. By lever-

aging data-driven insights and incorporating deep learning methodologies, we aim to

optimise the device handover process thus setting the stage for a more sophisticated

and effective solution. The proposed solution uses suitable device prediction based on

a One-Dimensional Convolutional Neural Networks (1DCNN) using a custom loss func-

tion. Please refer to Chapter 2 for the core concepts of 1DCNN and details about its

application in various domains. Within this chapter, our exploration starts with an in-

depth analysis of the problem and emphasises the need for a custom loss function as an

error function. We compare our 1DCNN with custom loss function results with MSC

predictor solution, detailed in Chapter 4 and with the standard Mean Squared Error

(MSE) as the error function. Through these comprehensive insights, we aim not only

to address the shortcomings identified in earlier stages but also to establish a robust

foundation for the subsequent implementation and validation of our advanced device

handover methodology. This work has been submitted to the IEEE Transactions on

Consumer Electronics, 2024 [J1].

5.2 Problem Statement

In Chapter 4 we introduced the problem in a simplistic manner. Here, the problem is

strictly formalised so that it can be applied to both an ML model and used as part of

the custom loss function that will be introduced later in the chapter.

Given N smart devices D = d1 . . . dn in a room with a user at position p(t) at time
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Optimum device 
switching point

p1

d2d1

p2
X X

Figure 5.1: Diagram showing hypothetical switching error for two positions p1 and p2;
switching to d2 is perceptually much worse at p1 than p2.

t using one of the smart devices to communicate with a remote user at a corresponding

node (CN), the aim of this work is to determine an optimal di ∈ D that will provide

the highest quality communications experience. For simplicity, we assume that the user

is moving and that the devices are static at locations denoted by the device variable

di. On first inspection, this appears to be a simple classification problem. However,

this simplistic approach leads to several issues. While there may be several ways to

determine the optimum device, for the moment we will assume it is the device di that

is nearest, according to Euclidean distance, to the user’s position p(t) and denoted as

|p(t), di|2. Later we will comment on this assumption. If we now consider the selection

of the optimum device d̂i as

d̂i = arg min
di∈D

|p(t), di|2 (5.1)

the classification problem in this form thus depends upon determining the location of the

user relative to the devices to obtain |p(t), di|2. However, as noted above in Section 5.1

and in Section 2.6, location tracking in most environments where smart devices will be

used (homes, offices) is very difficult; indeed given that users tend to place devices and

move devices arbitrarily, even calibration based upon signals is very difficult. Conse-

quently, determining |p(t), di|2 is not practical and instead, we propose using features

from captured audio on each of the devices to estimate the solution to (5.1). We describe

the features we investigated for this work in Section 5.3.1.2.
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In addition to the problem of location estimation, the classification formulation in

(5.1) leads to issues when determining the error in a given position. A classical classifica-

tion problem would evaluate “wrongness” as simple counts on the number of classification

errors, but this misses some subtlety in the problem. Consider, for simplicity of descrip-

tion but without loss of generality, a two-device system D = d1, d2. Figure 5.1 shows

the user in two positions p1 and p2. Again, assuming the shortest Euclidean distance

as the decision variable for switching, it is clear that in positions p1 and p2 the speech

should, ideally, be switched to d1. Consider now if we use a binary error function, if in

either case d2 was selected we would have the same binary error value for both positions.

However, this clearly does not match the requirements of the system as we see that p2

is very close to the optimum switching point, thus an error in this case is much less

perceptually important than an error at position p1. In fact, if p2 is sufficiently close

to the switching point it will not be noticeable at all. Consequently, representing the

system as a pure classification value does not adequately represent the problem. The

next section presents our solution using an alternative representation of the error.

5.3 Proposed Method for Intelligent Device Handover

The intelligent handover of smart devices involves two key steps: firstly, the detection

of the device, and secondly, the SIP session handover to the identified device. In this

section, we elaborate on our 1DCNN technique, while deferring the discussion on session

handover to the previous Chapter 4, as there are no alterations to the session handover

process in this context. Section 5.3.1 will describe how the classification problem can be

modelled as a custom error function, that will later be used as a custom loss function in

machine learning. It then proposes the features that will be extracted for the 1DCNN

and describes the structure of this model. After introducing the concept of nearest

device detection in Section 5.3.1, detailed information regarding session handover can

be found in Section 4.2.1.
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5.3.1 Nearest device detection

A key challenge is to define a prediction function and an associated error function (later

to be used as a loss function). To solve the problem found when using a binary classifier,

as described above in Section 5.2, an alternative could be to consider it as a regression

problem that determines the minimum distance to a speaker and uses this as a basis

for switching. Now in our simple example, again in Figure 5.1, if p2 was incorrectly

switched to d2, the regression error would be much smaller than for p1. However, while

this regression problem has been widely used for systems that attempt to determine exact

position, this is not practical in most smart device environments as we and others have

found that predicting distance in arbitrary rooms with uncalibrated speaker positions

and orientations is very difficult [91]. We choose to instead consider this as a hybrid

classification/regression problem by using a normalised regression metric that is then

fed to a simple decision classifier on the output of the normalised regression model. This

hybrid solution is described as an error function that will be used as the custom loss

function within the 1DCNN.

5.3.1.1 Custom error/loss function

The custom error/loss function is based on a combination of the normalised distance

between the devices and a decision variable that indicates whether the ideal device

was used. While Chapter 2 establishes the fundamental principles of the custom loss

function, this section presents its application in the context of this research.

The computation of the custom error/loss function makes use of ground-truth vari-

ables that are known during training (and for evaluation), but are not known by the

model during the prediction (running) phase. It should be pointed out that the custom

loss function is only used during training. The proposed formulation of the custom loss

function is:

L(t) =

∣∣∣∣ |p(t), d1|2 − |p(t), d2|2
|d1, d2|2

∣∣∣∣ δ(p(t), d1, d2) (5.2)

where δ(p(t), d1, d2) is a binary decision variable which is unity if an incorrect device is
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selected and zero otherwise and |·|2 signifies the Euclidean norm. All of the variables

in (5.2) are unknown to a running system as we are assuming that the smart devices

are placed (and possibly moved) by users without any calibration. Consequently, in

the 1DCNN this loss function has to be implemented as a custom function such that

the function (and input variables) are used during training but then hidden during the

prediction (running) phase. While frameworks such as SciKit Learn [22] provide stub

functions for custom loss functions, these are for generic use, and manipulating the

system to include hidden variables requires some additional customisation.

5.3.1.2 Feature extraction

In this section, we present a method for intelligently switching between devices within a

unified audio environment, using the audio features extracted at each talker’s position

and at a time interval. The process of extracting audio features follows a similar pro-

cedure outlined in Section 4.2.2 of Chapter 4, which presents the fundamental solution

for device detection. However, notable distinctions exist; in this context, we account for

user locus movements and extract a more extensive set of features beyond just the MSC

feature. Rather than consider a continuous movement, the locus movement is broken up

into small steps. In practice, this is needed as we will be working on blocks of audio, and

also by averaging the features over these blocks, we reduce the computational complexity

of the ML as it is working at the block size rate rather than the audio sample rate.

The methodology involves the use of D smart devices, such as smart speakers

equipped with microphones, strategically placed according to user preferences within

a room or meeting area. Here, the scenario assumes an ongoing voice call, and we pre-

sume that the user’s movements are relatively gradual compared to the distances between

the smart devices. For instance, the user does not traverse the room rapidly (running)

but rather engages in expected movements during a call, such as walking. The process

for computing the audio features is outlined below. Without loss of generality, we will

consider the case where each device has a microphone array with two microphones as a

pair denoted l, r. The processing system is thus described as:
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• Capture an audio sample block, (u1,l, u1,r), (u2,l, u2,r), . . . separately from the micro-

phone pair (l, r) from each device di ∈ D at each time step

• Apply A-weighting filter A to each audio signal to emphasise the key frequency com-

ponents of speech

• Apply a Hanning window, Han, on each block of audio, using overlap-add [126] to

achieve continuity in the signal, x = Han(A(u))

• Calculate a relevant feature (below) from the audio signals xi,l, xi,r for D devices,

i ∈ D.

A number of features were considered in this work as specified below, these include

the magnitude squared coherence, signal magnitude, Mel cepstral coefficients, and Mel

magnitude spectrum. These were selected as they are commonly used, as highlighted in

Section 2.5; each of these is formally defined below:

Magnitude Squared Coherence: The computation of MSC using Welch’s cross-power

spectral density is identical to the procedure described in Section 4.2.2.1 but is repeated

here to maintain the context. MSC is computed for the two microphone signals from

device i ∈ D, denoted as xi,l(t) and xi,r(t), representing the left (l) and right (r) channels,

respectively. The MSC, indicated as ρi(t) for a block at time t, is determined using the

Fourier transform F of x, where X = F(x):

ρi(t) =

∣∣∣P̂ (Xi,l(f, t), Xi,r(f, t))
∣∣∣2

P̂ (Xi,l(f, t), Xi,l(f, t))P̂ (Xi,r(f, t), Xi,r(f, t))
(5.3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t)) is calculated across an N

block Fourier transform of Xa(f, t) from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N−1∑
f=0

|X∗
a(f, t)Xb(f, t)| (5.4)

which denotes X∗(f, t) as the complex conjugate of X(f, t).

Finally the averaged MSC, ρ̂(t) at time across B blocks of size N with sample rate,



Chapter 5. Seamless Device Handover Through Deep Learning: a Custom Loss
Function Approach 85

r is

ρ̂(t) =
1

B

k=B−1∑
k=0,τ=t+kN/r

ρk(τ) (5.5)

Signal magnitude: The absolute signal magnitude (A), Ai, of device i is calculated

from the power spectral density as:

Ai(t) =
1

N

N−1∑
f=0

|X∗(f, t)X(f, t)| (5.6)

where X∗ is the complex conjugate of X.

Mel magnitude spectrum: The Mel magnitude spectrum m(fm, t):

m(fm, t) = M(|X(f, t)|) (5.7)

is a warped magnitude spectrum of |X|, the magnitude components of the discrete

Fourier transform of x of a block at time t. Specifically, M is a filterbank that calculates

the (mostly) logarithmically spaced frequency magnitude of the signal x at frequencies

fm. Here we used the spacing suggested by Slaney [127] which with a sampling frequency

of 16 kHz gives the number of filters H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel frequency cepstral coefficients

(MFCCs) is an alternative pseudo-time domain representation of the Mel spaced mag-

nitude spectrum. This is a common representation used in speech processing and is

defined as a set of coefficients, gi(n), n = 1 . . . N − 2:

gi(n) =

√
2

N

N−2∑
k=1

log(m(k, n)) cos

(
πk(2N + 1)

2N

)
(5.8)

which represents the discrete cosine transform of the logarithmically scaled Mel magni-

tude spectrum; note n=0, the DC component, and n=N-1 are ignored as they are usually

zero magnitude components at these Mel frequencies in audio signals.

The author used Scipy [20] and Librosa [21] Python libraries to compute the audio

features described above.
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Figure 5.2: 1DCNN model

5.3.1.3 Machine learning architecture

This research proposes a 1DCNN to identify the most suitable smart device. The net-

work processes time-series audio signal data using the multivariate features that were

described in Section 5.3.1.2. The overview of our model is illustrated in Figure 5.2. In

our model, we leverage multiple 1D convolutional layers to identify local patterns and

features through the application of convolutional filters or kernels to the input data. Fur-

thermore, we incorporate the Rectified Linear Unit (ReLU) activation function to infuse

non-linear characteristics into the model. The ReLU activation function has the advan-

tage of introducing some non-linearity while maintaining a linear function for a portion

of the signal region. We performed a hyperparameter tuning process using the Random

Search library from the Keras Tuner library, to identify the number of convolutional

layers, filters and units to achieve optimal performance1. The specific hyper-parameters

that were tuned include the number of filters and the kernel size. The tuning was carried

out while using the custom loss function defined in (5.2).
1Hypertuning is a standard approach to optimising model parameters by automatically testing pa-

rameters over a reasonable range until good values are reached.
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The input to the 1DCNN layer is a time-series, z(t), where each point in time is a

vector representing the features described in Section 5.3.1.2. The input z(t) is convolved

with a kernel w(t) of size l to obtain the output C(t), which is described using:

C(t) = z(t) ∗w(t) =

l∑
k=−l

z(k) ·w(t− k) (5.9)

The weights of the kernel w(t) are initialized using He normal initialization [128]. Then,

the output of the CNN layer can be represented as:

C l
i = bli +

∑
k

Cl−1
k ∗wl

k (5.10)

where C l
i is the ith output feature at the lth layer, C l−1

k is the kth input feature at the

(l − 1)th layer, wk denotes the convolution kernel at the kth index, and bli is the bias

term for the ith output feature at the lth layer.

ReLU activation is applied on the convolution output:

ReLU(C l
i) =


C l
i if C l

i > 0

0 if C l
i <= 0

(5.11)

The output of the final dense layer is a single regression value which is then mapped

to a class through a binary decision variable, i.e.. the choice of device. The choice of the

structure was driven by the observation that smoothing a single feature (e.g. MSC) can

aid a very simple decision algorithm. Thus, similarly, the use of 1DCNN layers can be

seen to act as time-domain variant trained filters that learn to appropriately process the

input data to achieve improved classification performance. The size of the kernels is such

that a reasonable history is used to feed into the classification decision (Section 5.4.2)

for the values selected. We found, through experimentation and hypertuning, that it

was best to maintain the time-domain structure throughout the CNN structure, with

decreasing kernel size, until the end where the dense layer then reduced the dimensional

to one.
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5.3.1.4 Training environment

The training dataset comprises information such as the talker’s position from the smart

devices and the signal features, extracted from the audio outcome from each smart device

microphone array, while the talker is in motion. The model will be trained using the

talker’s position as the ground truth and target variable, with the extracted audio signal

features serving as the input features. Please refer to the Section 5.3.1.2 for further

details on feature extraction. The ground truth labels for the optimum selected device

used integers to represent the target device, in this case simply [1, 2]. To acquire these

features, the system can undergo training via two primary methods: real-world data

collection in actual rooms with people; or using room simulations. In the real-world

data collection approach, training data would be collected by deploying smart devices

in real rooms where actual people are tracked and interact with the devices. Conversely,

in the room simulation method, the training data is collected by simulating a room

layout furnished with multiple smart devices with microphone arrays, simulating various

reverberation times to emulate authentic sound environments. The talker’s movement

is simulated by positioning simulated sound sources at different locations among the

simulated devices, from which audio features are extracted. Simulated environments

offer the advantage of accumulating data that encompasses various device setups, room

configurations, and various talker locations. This research leverages a training dataset

acquired from a simulated environment, and information about our simulation setup is

available in Section 5.4.1.

5.3.2 SIP signalling for pervasive device handover

This work also considers SIP signalling and its personal mobility feature for the dynamic

session handover to the detected device. During an ongoing call, i.e. in a mid-call

scenario, if a more suitable device for handover is identified using the method outlined

in Section 5.3.1, then the session handover can be executed using the methods described

in Section 4.2.1.
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Table 5.1: Room simulation setup

Parameter Description

Room dimensions 7m X 5.5m X 2.4m
Room 1 Device1: 1.0m X 3.5m X 0.9m Device2: 5.5m X 3.5m X 0.9m
Room 2 Device1: 1.5m X 3.5m X 0.9m Device2: 6.0m X 3.5m X 0.9m
Device details 2 microphone arrays, left and right, separated by 0.1m
Source positions 200 locus movements each with 50 time steps from 0.5m to 6m
RT60 0.8s, 1.5s
Audio features All, C, C+A
Number of audio signals 50
Audio sample rate 16 kHz
Audio block size 3200 samples (0.2 s)

5.4 Results

The evaluation was designed to test the proposed method against a non-machine learning

approach and to test the proposed custom-loss function against a commonly used ML

loss function. The evaluation is performed across 20,000 different scenarios: 50 different

speech signals (taken from [17]) were applied across 200 different sets of movement loci

and two different room scenarios (Room 1 and Room 2). The speech samples and loci in

the training set were different from those used in the testing set. Room 1 was used for the

training and then testing was applied in both Room 1 and Room 2. This section describes

the simulation environment used for evaluating the proposed ML-based technique and a

comparative method that employs a basic predictor solely based on MSC, without using

calibration, as elaborated further in Chapter 4. An additional comparison is made by

using a standard mean squared error as a loss function for the ML technique. First, we

explain the room simulation environment and the 1DCNN model configuration. Then,

before presenting the main results, we show a number of graphs that illustrate the

operation of the comparative methods and our proposed 1DCNN based approach.

5.4.1 Room simulation setup

The process of room simulation follows a similar procedure as described in Chapter 4.

However, notable distinctions for room simulation include variations in device and sound

positions, the utilisation of different audio signals, and the extraction of a distinct num-
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Figure 5.3: Two examples of simulated movement: black is a linear move, green is one
of the 200 simulated random motions using smoothed Bézier curves. The dimensions of

the room are in metres and examples of device locations are shown.

ber of audio features compared to the previous chapter. The procedure is described as

below:

Two rectangular rooms, characterized as described in Table 5.1, were simulated using

the Python package Pyroomacoustics [16]. These room scenarios were designed to emu-

late a typical living space, though certain factors like varying wall absorbance, windows,

and furniture were not taken into account. As such, the experiments are conducted in an

environment characterized by a substantial reverberation time (RT60) [103], replicating

the conditions found in real-world room settings to mimic realistic sound environments.

Within this typical room configuration, we simulate two devices, denoted as Device 1

(D1) and Device 2 (D2). Each device is equipped with two omnidirectional microphones

strategically positioned at opposite ends of the room, maintaining a separation distance

of 4.5 meters between them. This setup emulates a scenario resembling an open-plan

living area, where one device resides in the living room section and the other in the

kitchen area.

The movement of the sound source, represented by the talker’s voice, within the
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Table 5.2: Hypertuned 1DCNN model

Parameter Description

1st layer filters: 120 kernel size: 45
2nd layer filters: 124 kernel size: 30
3rd layer filters: 112 kernel size: 15
dense layer 1
activation ReLU
strides 1
padding same
number of time steps 49
audio features All, C, C+A

Table 5.3: Genarated 1DCNN model with six audio features

Layer Output shape Param

1st layer (None, 49, 120) 120 * (45*6 + 1) = 32520
2nd layer (None, 49, 124) 124 * (30 * 120 + 1) = 446524
3rd layer (None, 49, 112) 112 * (15 * 124 + 1) = 208432
dense layer (None, 49, 1) (112 +1) * 1 = 113

environment is simulated through two methods, as illustrated in Figure 5.3. The first

method is a basic linear movement, where the sound source is incrementally moved

in 0.05-meter steps from one end of the room to the other. The second method is

locus movement, where the sound source follows a pseudo-random path defined by three

distinct random positions, each separated by a minimum distance, and connected using

a cubic Bezier curve. In the case of locus movement, a total of 200 loci were generated,

with each locus being sampled at 50 evenly spaced points along the curve. This simulates

the talker’s purposeful movement between two locations, covering the two devices, while

maneuvering around a third object, which could be furniture or any object in the room.

5.4.2 Configuration of hypertuned 1DCNN model

The high-level model is depicted in Figure 5.2 showing three convolutional layers that

were determined through experimentation to be the best after experimentation in com-

bination with hyperparameter tuning. The parameters determined after hypertuning are

shown in Table 5.2. The input to the first layer comprises a number of audio features

captured at 49 time steps. The number of different audio feature sets were tested in dif-
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ferent combinations including MSC (abbreviated as just C); absolute signal magnitude

(A); MSC with magnitude (C+A); and, a combination of the former with the addition

of MFCC and Mel spectral amplitude (All). In the initial convolutional layer, we em-

ploy 120 filters, each responsible for learning distinct patterns or features from the input

data, and these filters have a kernel size of 45. The configuration of subsequent layers

was as determined by the result of hypertuning. Across all layers, a stride of 1 is used,

meaning that the convolutional kernel moves one-time step at a time. Additionally, we

apply the Rectified Linear Unit (ReLU) activation function to introduce non-linearity

into the model, while ensuring also a linear portion of the transfer function. To maintain

the output dimensions the same as the input, we are using “same” padding, which pads

zeros if necessary on output from each layer. To produce a single predicted output, we

conclude the model with a dense layer consisting of one unit. This dense layer takes

inputs from the third layer in the model, computes a weighted sum of these inputs using

a single set of weights, and generates a single predicted output. The generated model

summary is depicted in Table 5.3.

5.4.3 Comparative techniques

As noted earlier we are interested to see how our approach compares against a sim-

ple MSC predictor and how the custom loss function improves the performance of the

1DCNN as described below.

5.4.3.1 Using MSC predictor

As a comparative method, we employ the MSC predictor, a solution proposed in the

previous Chapter 4, specifically a double exponential smoothing predictor based on

the MSC (Smoothed-MSC), as advocated by several other location tracking applica-

tions [129]. The primary benefit of employing this method is that it does not need any

calibration for device detection. Using this technique, the device exhibiting the higher

MSC, denoted as max(ρ̂1, ρ̂2), is identified as the optimal choice for session transfer.

The Monte-Carlo parameterization identified that values of α = 0.05 and β = 0.01 are
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Figure 5.4: Device transition for a simple locus, showing ideal device transition
(GTruth), MSC predictor solution (max(ρ̂1, ρ̂2)), the non-smoothed case (max(ρ1, ρ2))

and the relative MSC values used to derive transitions.

appropriate for the double exponential smoothing applied to the raw MSC values. The

details of the outcome of this technique is described in Section 5.4.4.

5.4.3.2 Using mean squared error as a loss function

As an additional comparison technique, we trained our 1DCNN model using a standard

mean squared error (MSE) as a loss function. The outcomes of employing this technique

clearly highlight the issue outlined in Section 5.2, emphasizing the need for a customized

loss function as detailed in Section 5.3.1.1.

5.4.4 Device prediction results

As noted earlier, we first here present some graphs showing the operation of the

Smoothed-MSC comparative method, shown in Figures 5.4, 5.5, 5.6, and the 1DCNN

approach shown in Figure 5.7. The graphs show the ground truth (GTruth) as the top,

blue, line as specified in (5.1) and the result of either the Smoothed-MSC (max(ρ̂1, ρ̂2) -

using MSC predictor) or the output of the 1DCNN (Pred.) as the second, red, line. Ad-
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Figure 5.5: Device transition for a simple locus and different RT60, showing ideal
device transition (GTruth), MSC predictor solution (max(ρ̂1, ρ̂2)), the non-smoothed

case (max(ρ1, ρ2)) and the relative MSC values used to derive transitions.
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Figure 5.6: Device transition for a complex locus, showing ideal device transition
(GTruth), MSC predictor solution (max(ρ̂1, ρ̂2)), the non-smoothed case (max(ρ1, ρ2))

and the relative MSC values used to derive transitions.
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Figure 5.7: Device transition for a complex locus, showing ideal device transition
(GTruth), proposed 1DCNN-CL (Pred.), the non-predicted case (max(ρ1, ρ2)) and

the relative MSC and A values used to predict the transitions.

ditionally, these graphs give more detail on the MSC used as a feature in the 1DCCN and

as used in the Smoothed-MSC method. The MSC value is shown as the raw value from

each device, ρ1 and ρ2 respectively, and, for the Smoothed-MSC comparative method,

Figures 5.4, 5.5, 5.6, the doubly exponentially smoothed values are also shown as ρ̂1 and

ρ̂2 respectively.

The first graph, Figure 5.4 depicts transitions based on the raw (non-smoothed)

MSC values (max(ρ1, ρ2)) and the Smoothed-MSC transitions (max(ρ̂1, ρ̂2)) when there

is a simple locus. This shows that transitions are not clearly detected using raw MSC,

whereas transitions using the Smoothed-MSC approach closely approximate the ideal

scenario. However, when this technique is applied to a different room scenario in Fig-

ure 5.5 or more complex locus in Figure 5.6 we see that the Smoothed-MSC fails to follow

the desired performance either transitioning at the wrong locus position in Figure 5.5

or with extraneous transitions in Figure 5.6.

The graph in Figure 5.7 illustrates the predicted transitions (Pred.) using the pro-

posed 1DCNN with a custom loss function applied to the complex locus, closely ap-

proximating the ideal scenario during the transition. We only show one result for the
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Table 5.4: Performance of the double exponential smoothing (S) compared with the
Non-smoothed (NS) approach with different locus types and room RT60 values showing

it can work with a simple locus (straight line) but fails with more complex loci.

Linear locus Random locus
Metric NS/S RT60-0.8 RT60-1.5 RT60-0.8 RT60-1.5

WNE NS 0.43 0.59 0.43 0.45
S 0 0.08 0.64 0.66

ET NS 20 22 23 26
S 0 0 7 9

proposed technique in this diagram to save space as it worked also perfectly in the other

cases. The graph displays raw MSC values (ρ1, ρ2) and signal magnitude A values (D1A,

D2A) captured at each locus position, which are the features employed in the 1DCNN

predictor for forecasting the transition.

Furthermore, we performed a quantitative analysis of these techniques across di-

verse locus movements, various rooms, and different audio signals. The assessment of

quantitative performance relies on two primary metrics:

number of extraneous transitions (ET): The count of extra device transitions us-

ing a prediction compared to the number of device transitions using the ideal (ground

truth) case. For example see Figure 5.6 which has seven extraneous transitions (six

before the ground truth and one failed after).

weighted normalised error (WNE): uses the loss function L(t) to compute an error

that takes into account the fact that: while an error near the ideal switching point is

benign, an error further away from this ideal switching point becomes perceptually highly

significant (see Section 5.2).

Considering extraneous transitions as a metric is crucial since users generally would

find unnecessary switches as very disruptive. Ideally, the number of extraneous transi-

tions should be zero. The objective of WNE, is to calculate an error that increases when

the selected device is substantially more distant than the ideal device and the ideal value

should be zero.

The quantitative performance results shown in Table 5.4 highlight the poor perfor-

mance of the comparative MSC predictor technique on different room conditions and on

random locus movement. However, Table 5.5 shows that using our proposed 1DCNN
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Figure 5.8: Samples from a single locus showing comparative results over a number of
positions, using our proposed 1DCNN custom loss (1DCNN-CL) and the alternatives

of either standard mean squared error as a loss function (1DCNN-MSE) or the
exponentially smoothed MSC (Smoothed-MSC).

Table 5.5: Performance of proposed 1DCNN with custom loss (1DCNN-CL) with
various features and compared against exponential smoothing (Smoothed-MSC) and a

1DCNN with a standard loss (1DCNN-MSE). Features: Absolute signal magnitude
(A), MSC (C), multiple features (All). Complex loci used for all results.

Model Features WNE ET

Smoothed-MSC C 0.86 4783
1DCNN-MSE A+C 0.22 1
1DCNN-CL All 0.087 0
1DCNN-CL C 0.05 0
1DCNN-CL A+C 0.03 0
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Figure 5.9: Samples from the results four loci (concatenated), showing comparative
results for a number of positions, using our proposed 1DCNN custom loss

(1DCNN-CL) and the alternatives of either standard mean squared error as a loss
function (1DCNN-MSE) or the exponentially smoothed MSC (Smoothed-MSC).

.

solution significantly improves upon using the smoothed MSC approach, in particular

exhibiting no extraneous transitions. Table 5.5 also explores different feature choices and

loss function by training the model with different feature combinations: solely MSC (C),

absolute signal magnitude (A), A with MSC (A+C), and all audio features described

in Section 5.3.1.2 (All). We see that the custom loss (CL) function gives considerable

improvement compared to a standard loss function such as MSE. We have chosen two

results in Figures 5.8 and 5.9 to demonstrate the effect of the custom loss function, as we

see the 1DCNN-CL more closely tracks the ground truth based upon the nearest device.

Although the 1DCNN-CL does not transition exactly at the same point as the ground

truth, as noted in Section 5.3.1, small differences are unlikely to be noticeable, however,

with the standard MSE loss function (1DCNN-MSE) the device transition is much less

accurate; indeed we see in Figures 5.8, 5.9 that one of the transitions was not detected

at all for the standard loss function (1DCNN-MSE).

To demonstrate that the trained model can work across multiple rooms, as well as
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Table 5.6: Performance of the proposed 1DCNN with custom loss (1DCNN-CL) using
A+C features and with varied room type, Room 1 (RT1) and Room 2 (RT2) with

various RT60 values.

Train RT1 Test RT2 WNE ET

0.8s 0.8s 0.033 0
0.8s 1.5s 0.039 0
1.5s 0.8s 0.044 0

loci it was not trained for, the model was trained on Room 1 and then tested on Room

2 with different device positions and RT60 times. Table 5.6 shows this comparison with

highly different room types RT indicating that the model performs well in different and

with highly reverberating rooms (RT60=1.5s).

The overall performance analysis concludes that:

• The simple MSC predictor (Smoothed-MSC) offers a straightforward solution for

detecting the appropriate smart speaker for handover, but it does not address the

complexities of real-world loci scenarios.

• Using MSE as the loss function to train the 1DCNN model for smart speaker

detection, improves the performance over the simple MSC predictor for loci of

increased complexity, but is less accurate than the proposed solution and leads to

missing/extraneous transitions

• The proposed 1DCNN-CL model, trained with both the absolute signal magni-

tude and the MSC, addresses all complex real-world loci scenarios and produces

optimal results – without including additional features such as the Mel magnitude

spectrum or MFCCs.

5.5 Practical Considerations

5.5.1 Performance

Each convolution layer has O(nkfd) [81] complexity where n is the input size, k is the

kernel size, f is the number of filters, and, d is the number of channels (number of

features). Using the hypertuned model shown in Table 5.2 we thus find that for each
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time sample the complete 1DCNN model would require of the order 0.7 M operations

for each locus point. As there are 5 locus points per second this gives the number of

operations as 3.5 M/s which is well within the capability of a small modern embedded

processor such as would be found in a smart device.

5.5.2 Discussion

Another practical issue is expanding this work to more than two devices. This is more

complex than the mechanism suggested in Section 4.4, in that chapter it is suggested that

just the relative level of the MSC is used. Here, we do not have access to straightforward

metrics within the model. Consequently, to operate with more that two devices it would

be necessary to train with three, four or more devices and have a model for each. As

the size of each model is less than one million parameters (from performance analysis

immediately above) it should not be a difficult issue to store these models. However, it

would require multiple training. In practice, it would be unusual to have more than four

devices in one room2 so that models for two, three and four devices should be sufficient.

5.6 Conclusions

This chapter presents a robust solution for seamless mid-call handovers between smart

devices within a pervasive speech system, employing deep learning techniques. The

presented solution builds upon the foundation established in the previous chapter, en-

hancing it to tackle real-world complexities; this addresses the research gap and questions

on seamless handover between the devices in the same network i.e. horizontal handover

as highlighted in Sections 1.3 and 2.8. The methodology involves the identification of

the appropriate smart device through the processing of multivariate signalling features

using 1DCNN and the utilisation of the SIP protocol for session transition. The research

addresses challenges associated with employing 1DCNN as a classifier for device predic-

tion and suggests a regression-based solution incorporating a custom loss function. The

results indicate that using 1DCNN as a regressor with a custom loss function eliminates
2An Ofcom survey found only 6% of users had 5 or more smart speakers in their whole household [130].
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unnecessary transitions and improves transition accuracy. This research also proposes a

modified SIP signalling for an uninterrupted media transition. To validate the proposed

1DCNN with a custom loss, extensive testing was conducted in a simulated environment

featuring diverse room conditions, varied talker movements, and a range of audio signals.

This demonstrated that automatic switching between smart devices is possible without

requiring exact calibration of the device locations and orientations.



6
Discussion and Conclusions

The solution presented in this thesis is, to the knowledge of the author, the first smart

device handover mechanism for pervasive speech that does not require precise device

calibration. Furthermore, it introduces novel solutions to optimise the session handover

latency for seamless media transmission at the application layer for both network and de-

vice session transitions. This represents a significant advancement, but it is evident that

further efforts would be necessary to develop a fully functional system based on the pro-

posal presented in this thesis. We consider some of these aspects here, first considering

the contributions, followed by an exploration of practical issues, future considerations,

and our final conclusions.

102
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6.1 Contributions of the Thesis

As the Internet and heterogeneous communication networks continue to advance, coupled

with the increasing popularity of various smart devices like smartphones, smart speakers,

and other communication platforms, there arises a necessity to ensure a unified speech

communication experience provided by these technologies and devices. As pointed out

in Chapter 1, Despite these evolving trends, minimal effort has been made to unify or

simplify the user experience across multiple devices and environments, leading to users

still dealing with ‘non-pervasive’ communication experience.

However, as reviewed in Chapter 2, there are promising indications within the indus-

try towards addressing this issue and moving towards providing solutions for a ‘perva-

sive’ communication experience. Companies such as Amazon and Apple have introduced

features like ‘group chat’, HomePod etc. solutions to their respective smart speaker of-

ferings. While these solutions are steps closer to achieving a ‘pervasive’ experience,

they still fall short of fulfilling the requirements of pervasive speech, particularly in sce-

narios where two-way communication is not feasible with the aforementioned industry

solutions.

In academia, the author did not come across any significant research specifically

addressing the pervasive speech experience. These observations and existing gaps in

the literature motivated the author to undertake this research and explore solutions for

seamless network and device handovers, aimed at achieving a pervasive speech experi-

ence.

Chapter 3 explores the existing gaps and offers solutions for achieving seamless ver-

tical handover, specifically focusing on ensuring a smooth transition of media in network

handover scenarios such as a user being connected to an LTE network while driving

a car and subsequently connecting to a Wi-Fi network upon entering a house, or vice

versa. Research findings outlined in Section 3.3.1 highlight the potential for latency dur-

ing network session handovers, which can lead to disruptions in media. However, this

issue can be addressed by predicting network transitions and implementing proactive
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session handovers. The proposed solution of using a supervised machine learning tech-

nique for predicting the network transitions at the application layer using SIP terminal

mobility feature, as described in Section 3.2.1 and the comparative results detailed in

Section 3.3.4 validate the effectiveness of the proposed solution in achieving seamless

vertical handover.

Chapter 4 and Chapter 5 present seamless solutions for device handover, aiming to

enhance the pervasive communication experience. These solutions cater to scenarios

where a user transitions from using a smartphone to a smart device upon entering

a house and subsequently switches between devices within the same network domain.

These device transitions primarily involve two steps: device detection, followed by session

handover to the detected device.

Regarding the seamless session handover during device transition within the same

network, this study examines two SIP session handover methods: leveraging existing

SIP features like personal mobility via sequential or parallel call forking, and utilising

personal mobility with modified SIP functionality. From the signal flow outlined in

Section A.2.1, it is evident that the first approach could lead to interruptions in media

flow, and the corresponding node (CN) would need to be aware of device transitions,

which may not be essential and overburdens the signalling flow. However, this approach

doesn’t necessitate any modifications to SIP signalling. Therefore, with this signalling

method, only managing device detection is necessary as a comprehensive solution for

device transitions. The modified SIP solution for session handover as detailed in Sec-

tion A.2.2, offers benefits such as no disruptions in media flow, and device transitions are

managed at the home gateway B2BUA without the involvement of the corresponding

node (CN). Due to these advantages, this study advocates for adopting this modified

SIP solution for session handover between the devices.

In terms of device detection, this research explores the techniques to detect the device

based on audio signal features, eliminating the need for calibration. This approach

marks a pioneering effort in leveraging audio features for this specific use case, drawing

inspiration from previous research on location-based technologies. The decision not to
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use calibration is motivated by the challenges associated with its use, as device detection

accuracy may be compromised when devices are moved or their orientation changes,

circumstances commonly encountered in indoor environments.

This thesis highlights the importance of the MSC as a prominent audio signal feature

for device detection, a notion supported by existing literature on sound source localisa-

tion techniques (Please refer to Section 2.6). A device exhibiting high MSC is a suitable

device for handover. However, it is observed that the captured MSC values are influ-

enced by room reflections, necessitating the use of time-series predictors to predict the

raw MSC readings. The comparison results provided in Section 4.3.2 emphasize the effi-

cacy of MSC prediction utilising double exponential smoothing, demonstrating superior

performance when compared to other time-series predictors like AR, MR, ARMA, and

ARIMA.

The MSC prediction using double exponential smoothing serves as a fundamental so-

lution for device detection without the use of calibration. However, the results discussed

in Section 5.4.4 show that only relying on the MSC as an isolated feature is insufficient.

Its efficacy is limited, particularly when confronted with real-world scenarios that involve

user locus movements and the influence of room reflections (RT60), which impact the raw

MSC values. To deal with this problem and cover a wider range of user locus movements

and different room conditions, adoption of advanced deep learning techniques becomes

essential as a pivotal solution. Chapter 5 details the device detection based on deep

learning techniques. The author adopted 1DCNN deep learning technique, as suggested

by the literature survey (Please refer to Section 2.6). An extensive a hyperparameter

tuning process was conducted using the custom loss function to identify the number of

convolutional layers, filters, and units to achieve optimal performance. The experiments

involved training the model using several multivariate audio signal features, including

MSC, signal magnitude (A), and MFCC values, along with a custom loss function, to

account for various user movements and utilize multiple audio signals representing dis-

tinct sound sources. In-depth analysis revealed that training the model with MSC and

signal magnitude yielded optimal outcomes. Consequently, the research concludes that
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this approach stands as a robust solution for device detection.

6.2 Further Considerations

6.2.1 Device detection

This research offers two solutions for device detection in horizontal handover. The

first solution is the MSC predictor, which employs a double exponential smoothing

technique to address basic linear user movements. The second solution is more robust,

utilising machine learning techniques, and effectively handling real-world complexities,

such as variations in rooms and reverberation characteristics. For the robust solution,

the machine learning would need to be optimised across a much wider set of examples.

For example, while the simulation approach used in this thesis shows good proof of

principle, further training in real environments would help train the system across a

wider set of conditions. This would require a method of tracking a talker while taking

part in the training sessions. Advanced techniques for user tracking using video have

been proven in other fields for machine learning purposes. For example, the use of eye-

tracking to record user interactions with Video-on-Demand (VoD) applications in order

to understand user experience [131]. Advanced video-based user tracking techniques

could be employed to provide the required ground-truth inputs from training sessions

with minimal operational effort.

Additionally, the training in this thesis was specific to the microphone placement

in the smart devices, we suspect that the system would need retraining for different

microphone placements i.e., training is likely to be required for each type of device.

In this thesis, only one talker was used in the simulations. While this is a good

scenario for domestic use cases, as often there is one dominant talker in a location, this

would be less valid in situations where there are multiple talkers in a single auditory

environment such as business meetings with maybe only one or two remote members. It

may be in such cases the switching of the talker input proposed in this thesis would be

useful to use the smart device closest to the talker, but switching the played back speech
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into the room may not benefit from switching as it would make the remote talker’s ap-

parent location in the room jump from one device to another. However this issue can

be mitigated with the use of echo cancellation on smart speakers [132]. Further work

on this user experience for different meeting types is thus required. Additionally, back-

ground noise sources (such as a television or washing machine in a domestic situation)

will impact the performance and an engineering solution would be required to track the

speech of the talker rather than the background noise. This could be achieved using

solutions such as blind-source separation [133], however, there would need to be some

expert system to decide which source is the best to track for the application.

In the early stages of exploring deep learning techniques for device detection in

handling the real-world complexities, the author initially explored Long Short-Term

Memory (LSTM) for the device prediction but initial experiments did not achieve good

results. This led to the adoption of a 1DCNN solution, which yielded promising results.

Although this was not discussed in previous chapters of the thesis, the application of

LSTM and other machine learning techniques remains a potential area for future re-

search. In particular, LSTM is a promising alternative technique and is widely used

by itself or in combination with a CNN. Although a form of LSTM has been used

(with a CNN) for sound localisation [134], it should be noted that this thesis considers

tracking a moving system where the most recent location is the most important factor;

consequently, too much dependence on long-term data could lead to erroneous results,

this may have been the reason that early experiments with LSTM, on their own, were

not promising. Potentially, a combination of both LSTM and a 1DCNN would be an

interesting study for further work.

Finally, we commented in Section 5.2 that we assumed the device nearest the user

would be the ideal device. The use of coherence in the approach is an interesting feature.

We conjecture that in a room that consists of a portion with a dead acoustic environment

(such as that set up for living space with carpets) and a portion with a live acoustic

environment (such as a kitchen with hard surfaces), it would be beneficial to switch to a

device in the dead environment earlier than that in the live environment. Thus, it might
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be that the use of a coherence-based ground truth rather than a distance-based ground

truth will result in improved perceptual performance. This would require subjective

testing which was out of the scope of work for this thesis.

6.2.2 Session handling

This research suggests modifications to SIP signalling to facilitate seamless session han-

dovers. However, it is important to note that only theoretical proposals are outlined

and practical implementation of the proposed solution has not been carried out as a

scope of this thesis. These proposals are based on the author’s experience with SIP,

gained from working in SIP call server systems at BT. To carry out the verification of

the signalling solution in lab environment, an engineering team is essential to navigate

the complexities involved and all of the required practicalities are out of the scope of a

PhD thesis such as this.

Regarding the proposed signalling solution for network handovers, as discussed in

Section 3.2, wasn’t feasible to verify in a lab environment. This is because the suggested

signalling handover, according to ML predictions, needs to occur at the network level,

making it challenging to simulate the network handover scenario in a lab environment.

However, verifying this solution could be achievable with a few weeks of effort and

support from an engineering team in an environment where network handovers can be

adjusted, such as in the BT lab environment. For these reasons, the proposed solution

was validated using real-world mobility data, as described in Section 3.2.2.1.

Regarding the solution for signalling in the case of horizontal device handover, as

elaborated in Section 4.2.1 and briefly outlined in Section 5.3.2, since the proposed

signalling changes can be carried at the home/office gateway level, practical validation

can be conducted using Asterisk, an open-source SIP call server, with several weeks of

effort from an engineering team. However, as the author currently lacks engineering

support, this practical validation is beyond the scope of this thesis and is proposed as a

future improvement.
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6.3 Conclusions

In summary, this thesis has delved into the complexities of achieving seamless handover

for pervasive speech communication, illuminating crucial elements such as device de-

tection based on audio features and the seamless execution of vertical and horizontal

session handovers using the application layer SIP protocol. Through rigorous research

and analysis, we have proposed solutions involving time-series prediction algorithms and

deep learning techniques to enhance the detection of suitable devices, thereby improving

overall performance. Additionally, our work addresses challenges related to preventing

media interruptions during SIP session handovers. Despite the encountered challenges,

the research journey has been highly rewarding, with the acquired knowledge in audio

signal processing and deep learning laying the groundwork for future explorations and

advancements in the pervasive speech system.

The culmination of this research holds significant implications for the smart speaker

market, emphasizing the need for continued investigation and innovation in the realm of

converged communications experience. Upon reflection of accomplishments and lessons

learned, it becomes apparent that raw speech signal features exhibit notable variations

due to environmental factors, particularly room effects. Consequently, this study un-

derscores the necessity of the predictors to significantly reduce extraneous transitions

that would otherwise result in a poor user experience. Three solutions are introduced: a

basic smoothing predictor (MSC predictor), prediction through One-Dimensional Con-

volutional Neural Networks (1DCNN) with standard mean squared error as the error

function, and IDCNN utilising a custom loss function as the error function. The re-

sults indicate that using 1DCNN with a custom loss function eliminates unnecessary

transitions and improves transition accuracy.

The collaborative efforts and the unwavering support from my mentor and also the

delegates from BT have been instrumental in the success of this thesis. Moving forward,

I hope that the insights gained here will inspire further inquiry and contribute to the

ongoing evolution of converged communications experience.
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Alice SIP Registration 
Server 

(abc.example.com)

REGISTER F1 

401 Unauthorized F2

REGISTER F3 

200 OK F4

Figure A.1: First time Registration

A.1 Message sequence to register and session establishment

on devices

A.1.0.1 Message sequence for new registration

F1 REGISTER Alice -> SIP Server

REGISTER sip:ss2.abc.example.com SIP/2.0

Via: SIP/2.0/TLS mobile.abc.example.com:5061;branch=z9hG4bKnashds7

Max-Forwards: 70

From: Alice <sip:alice@abc.example.com>;tag=a73kszlfl

To: Alice <sip:alice@abc.example.com>

Call-ID: 1j9FpLxk3uxtm8tn@abc.example.com

CSeq: 1 REGISTER

Contact: <sip:alice@mobile.abc.example.com>

Content-Length: 0

F2 401 Unauthorized SIP Server -> Alice

SIP/2.0 401 Unauthorized

Via: SIP/2.0/TLS mobile.abc.example.com:5061;branch=z9hG4bKnashds7;received=192.0.2.201

From: Alice <sip:alice@abc.example.com>;tag=a73kszlfl
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To: Alice <sip:alice@abc.example.com>;tag=1410948204

Call-ID: 1j9FpLxk3uxtm8tn@abc.example.com

CSeq: 1 REGISTER

WWW-Authenticate: Digest realm="atlanta.example.com", qop="auth",

nonce="ea9c8e88df84f1cec4341ae6cbe5a359",

opaque="", stale=FALSE, algorithm=MD5

Content-Length: 0

F3 REGISTER Alice -> SIP Server

REGISTER sip:ss2.abc.example.com SIP/2.0

Via: SIP/2.0/TLS mobile.abc.example.com:5061;branch=z9hG4bKnashd92

Max-Forwards: 70

From: Alice <sip:alice@abc.example.com>;tag=ja743ks76zlflH

To: Alice <sip:alice@abc.example.com>

Call-ID: 1j9FpLxk3uxtm8tn@abc.example.com

CSeq: 2 REGISTER

Contact: <sip:alice@mobile.abc.example.com>

Authorization: Digest username="alice", realm="atlanta.example.com"

nonce="ea9c8e88df84f1cec4341ae6cbe5a359", opaque="",

uri="sip:ss2.abc.example.com",

response="dfe56131d1958046689d83306477ecc"

Content-Length: 0

F4 200 OK SIP Server -> Alice

SIP/2.0 200 OK

Via: SIP/2.0/TLS mobile.abc.example.com:5061;branch=z9hG4bKnashd92;received=192.0.2.201

From: Alice <sip:alice@abc.example.com>;tag=ja743ks76zlflH

To: Alice <sip:alice@abc.example.com>;tag=37GkEhwl6

Call-ID: 1j9FpLxk3uxtm8tn@abc.example.com

CSeq: 2 REGISTER

Contact: <sip:alice@mobile.abc.example.com>;expires=3600

Content-Length: 0
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Alice SIP Server

REGISTER F1 

200 OK F2

Figure A.2: Update Registration with new contacts

A.1.0.2 Message sequence to update registration

F1 REGISTER Alice -> SIP Server

REGISTER sip:ss2.abc.example.com SIP/2.0

Via: SIP/2.0/TLS mobile.abc.example.com:5061;branch=z9hG4bKnashds7

Max-Forwards: 70

From: Alice <sip:alice@abc.example.com>;tag=a73kszlfl

To: Alice <sip:alice@abc.example.com>

Call-ID: 1j9FpLxk3uxtm8tn@abc.example.com

CSeq: 1 REGISTER

Contact: <sip:alice@speaker.abc.example.com>

Authorization: Digest username="alice", realm="atlanta.example.com",

qop="auth", nonce="1cec4341ae6cbe5a359ea9c8e88df84f", opaque="",

uri="sip:ss2.abc.example.com",

response="71ba27c64bd01de719686aa4590d5824"

Content-Length: 0

F2 200 OK SIP Server -> Alice

SIP/2.0 200 OK

Via: SIP/2.0/TLS mobile.abc.example.com:5061;branch=z9hG4bKnashds7

;received=192.0.2.201

From: Alice <sip:alice@abc.example.com>;tag=a73kszlfl

To: Alice <sip:alice@abc.example.com>;tag=34095828jh

Call-ID: 1j9FpLxk3uxtm8tn@abc.example.com

CSeq: 1 REGISTER
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Contact: <sip:alice@mobile.abc.example.com>;expires=3600

Contact: <sip:alice@speaker.abc.example.com>;expires=4294967295

Content-Length: 0

F1 REGISTER Alice -> SIP Server

REGISTER sip:ss2.abc.example.com SIP/2.0

Via: SIP/2.0/TLS mobile.abc.example.com:5061;branch=z9hG4bKnashds7

Max-Forwards: 70

From: Alice <sip:alice@abc.example.com>;tag=a73kszlfl

To: Alice <sip:alice@abc.example.com>

Call-ID: 1j9FpLxk3uxtm8tn@abc.example.com

CSeq: 1 REGISTER

Contact: <sip:alice@pc.abc.example.com>

Authorization: Digest username="alice", realm="atlanta.example.com",

qop="auth", nonce="1cec4341ae6cbe5a359ea9c8e88df84f", opaque="",

uri="sip:ss2.abc.example.com",

response="71ba27c64bd01de719686aa4590d5824"

Content-Length: 0

F2 200 OK SIP Server -> Alice

SIP/2.0 200 OK

Via: SIP/2.0/TLS mobile.abc.example.com:5061;branch=z9hG4bKnashds7

;received=192.0.2.201

From: Alice <sip:alice@abc.example.com>;tag=a73kszlfl

To: Alice <sip:alice@abc.example.com>;tag=34095828jh

Call-ID: 1j9FpLxk3uxtm8tn@abc.example.com

CSeq: 1 REGISTER

Contact: <sip:alice@mobile.abc.example.com>;expires=3600

Contact: <sip:alice@speaker.abc.example.com>;expires=4294967295

Contact: <sip:alice@pc.abc.example.com>;expires=4294967295

Content-Length: 0

A.1.0.3 Message sequence to setup session on multiple devices

1 INVITE CN -> B2BUA
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INVITE sip:alice@abc.example.com SIP/2.0

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9

Max-Forwards: 70

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:cn@mobile.xyz.example.com>

Content-Type: application/sdp

Content-Length: 151

2 100 Trying B2BUA -> CN

SIP/2.0 100 Trying

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Content-Length: 0

3a INVITE B2BUA -> Alice (M1)

INVITE sip:alice@M1.abc.example.com SIP/2.0

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9;received=192.0.2.101

Max-Forwards: 69

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:cn@mobile.xyz.example.com>

Content-Type: application/sdp

Content-Length: 151
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3b INVITE B2BUA -> Alice (S1)

INVITE sip:alice@S1.abc.example.com SIP/2.0

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9;received=192.0.2.101

Max-Forwards: 69

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:cn@mobile.xyz.example.com>

Content-Type: application/sdp

Content-Length: 151

3c INVITE B2BUA -> Alice (PC1)

INVITE sip:alice@PC1.abc.example.com SIP/2.0

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9;received=192.0.2.101

Max-Forwards: 69

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:cn@mobile.xyz.example.com>

Content-Type: application/sdp

Content-Length: 151

4a 180 Ringing Alice (M1) -> B2BUA

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

;received=192.0.2.222

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl
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To: Alice <sip:alice@abc.example.com>;tag=314159

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:alice@M1.abc.example.com>

Content-Length: 0

4b 180 Ringing Alice (S1) -> B2BUA

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

;received=192.0.2.222

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>;tag=314159

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:alice@S1.abc.example.com>

Content-Length: 0

4c 180 Ringing Alice (PC1) -> B2BUA

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

;received=192.0.2.222

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>;tag=314159

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:alice@PC1.abc.example.com>

Content-Length: 0

5 180 Ringing B2BUA -> CN

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101
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From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>;tag=314159

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:alice@M1.abc.example.com>

Content-Length: 0

6a 200 OK Alice (M1) -> B2BUA

SIP/2.0 200 OK

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1 ;received=192.0.2.222

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>;tag=314159

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:alice@M1.abc.example.com>

Content-Type: application/sdp

Content-Length: 147

6b 200 OK Alice (S1) -> B2BUA

SIP/2.0 200 OK

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1 ;received=192.0.2.222

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>;tag=314159

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:alice@S1.abc.example.com>

Content-Type: application/sdp

Content-Length: 147

6c 200 OK Alice (PC1) -> B2BUA

SIP/2.0 200 OK
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Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1 ;received=192.0.2.222

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>;tag=314159

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:alice@PC1.abc.example.com>

Content-Type: application/sdp

Content-Length: 147

7 200 OK B2BUA -> CN

SIP/2.0 200 OK

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9 ;received=192.0.2.101

From: CN <sip:cn@abc.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>;tag=314159

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 INVITE

Contact: <sip:alice@M1.abc.example.com>

Content-Type: application/sdp

Content-Length: 147

8 ACK CN -> B2BUA

ACK sip:alice@abc.example.com SIP/2.0

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9

Max-Forwards: 70

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

Contact: <sip:cn@mobile.xyz.example.com>

CSeq: 1 ACK

Content-Length: 0

9a ACK B2BUA -> Alice (M1)
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ACK ip:alice@M1.abc.example.com SIP/2.0

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9;received=192.0.2.101

Max-Forwards: 69

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 ACK

Contact: <sip:cn@mobile.xyz.example.com>

Content-Length: 0

9b ACK B2BUA -> Alice (S1)

ACK ip:alice@S1.abc.example.com SIP/2.0

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9;received=192.0.2.101

Max-Forwards: 69

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 ACK

Contact: <sip:cn@mobile.xyz.example.com>

Content-Length: 0

9c ACK B2BUA -> Alice (PC1)

ACK ip:alice@PC1.abc.example.com SIP/2.0

Via: SIP/2.0/UDP ss2.abc.example.com:5060;branch=z9hG4bK2d4790.1

Via: SIP/2.0/UDP mobile.xyz.example.com:5060;branch=z9hG4bK74bf9;received=192.0.2.101

Max-Forwards: 69

From: CN <sip:cn@xyz.example.com>;tag=9fxced76sl

To: Alice <sip:alice@abc.example.com>

Call-ID: 2xTb9vxSit55XU7p8@xyz.example.com

CSeq: 1 ACK

Contact: <sip:cn@mobile.xyz.example.com>

Content-Length: 0
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Alice - CN

Proxy 2 - B2BUA

Bob - Alice

biloxi - abc

atlanta - xyz

client - mobile

A.2 SIP signalling for pervasive device handover

A.2.1 Session handover with existing SIP

The detailed SIP message flow during device session handover is shown in Figure. A.3.

For the full registration messages, please see Appendix A.1. Please note that the figure

depict only the signalling flow, omitting the media-related message flow. In this process,

using an out-of-band mechanism, B2BUA sends a Re-Invite/REFER SIP message to

the second device for session handover. No modifications are needed in the existing SIP

stack for this purpose. However, it is worth noting that prior research has indicated that

successful session establishment or re-establishment may take at least 280 milliseconds,

resulting in a temporary interruption to the media during session handovers [23]. Also,

the corresponding node (CN) is involved in this session transition. Our research is driven

by these limitations to propose an alternative approach for session handover.

A.2.2 Session handover with modified SIP

The detailed SIP message flow during session handover with this proposed method is

shown in Figure. A.4. In this alternative approach, again, an out-of-band mechanism will

initiate B2BUA to have proactive parallel sessions on all the devices that are within the
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Learn how to edit this template

To manually create your sequence 
diagram: 
1. Add text to a shape by selecting it 

and typing.
2. Add and remove shapes on the 

canvas.
3. To format shapes as you'd like, 

click on a shape and then click 
"Shape Options"     , "Fill Color"      , 
and "Line Color"    on the properties 
bar at the top of the canvas. 

4. Hover over a shape and click on 
any red circle    to add lines.

5. Add text to a line by 
double-clicking the text or anywhere 
on the line and typing.

6. To format lines, click on a line and 
then click "Line Color"     , "Line 
Style," "Line Width," and "Line 
Options"      on the properties bar at 
the top of the canvas.

To automatically create your 
sequence diagram:
1. Click "</> Use Markup" in the UML 

Sequence shape library to the left.
2. Add your syntax.
3. Click "Build."

Tutorials
(Hold Shift + ?  or Ctrl, then click)

Watch Lucidchart basic tutorials

Watch a tutorial on how to create 
sequence diagrams automatically

Read about our automatic UML 
sequence markup

Watch a tutorial on how to make UML 
sequence diagrams

See an example
(Hold Shift + ?  or Ctrl, then click)

CN B2BUA

D1

100 TRYING 2
INVITE 3

180 RINGING 4
180 RINGING 5

D2

200 Ok 6

INVITE 1

ACK 8

200 OK 7

ACK 9

MEDIA D1

Devices with single SIP address

Switching to D2

REFER/REFER TO 10
200 OK 11

INVITE 12
INVITE 13

200 OK 14

MEDIA D2

200 OK 15

MEDIA D1

Pervasive Communication Speech System

ACK 16

NOTIFY 17

Call forking 
Sequential

BYE 20

ACK 19

200 OK 21

MEDIA D2

Figure A.3: SIP Session handover using sequential call forking, and CN is aware of
device change. Also note the short breaks in the media transmission.

pervasive application domain. To achieve this session establishment, the system employs

parallel call forking. In the case of sequential call forking, when a session is established

on one device, the B2BUA refrains from initiating any SIP messages for session estab-

lishment on other devices. However, in the context of parallel call forking, standard SIP

behavior dictates that the B2BUA cancels the Invites sent to other devices once session

on one device is established. For this paper’s requirements, which entail parallel sessions

on all devices to ensure media continuity, a modification to the B2BUA’s behavior is

necessary. Specifically, after a session is established on one device, the B2BUA should

not cancel the Invites that were sent to other devices. These behavioral adjustments
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Learn how to edit this template

To manually create your sequence 
diagram: 
1. Add text to a shape by selecting it 

and typing.
2. Add and remove shapes on the 

canvas.
3. To format shapes as you'd like, 

click on a shape and then click 
"Shape Options"     , "Fill Color"      , 
and "Line Color"    on the properties 
bar at the top of the canvas. 

4. Hover over a shape and click on 
any red circle    to add lines.

5. Add text to a line by 
double-clicking the text or anywhere 
on the line and typing.

6. To format lines, click on a line and 
then click "Line Color"     , "Line 
Style," "Line Width," and "Line 
Options"      on the properties bar at 
the top of the canvas.

To automatically create your 
sequence diagram:
1. Click "</> Use Markup" in the UML 

Sequence shape library to the left.
2. Add your syntax.
3. Click "Build."

Tutorials
(Hold Shift + ?  or Ctrl, then click)

Watch Lucidchart basic tutorials

Watch a tutorial on how to create 
sequence diagrams automatically

Read about our automatic UML 
sequence markup

Watch a tutorial on how to make UML 
sequence diagrams

See an example
(Hold Shift + ?  or Ctrl, then click)

CN B2BUA

D1

100 TRYING 2

INVITE 3a

180 RINGING 4a

180 RINGING 5

D2

200 OK 6aa

INVITE 1

ACK 8

200 OK 7

ACK 9a

MEDIA

Devices with single SIP address

Switchied to D2

Pervasive Communication Speech System

INVITE 3b

180 RINGING 4b

200 OK 6b

Change to standard SIP 
behaviour for not canceling  

Invite on D2  and forcing D2 to 
connect

ACK 9b

MEDIA D1 

MEDIA D2 

Call forking parallel

MEDIA D1

MEDIA D2

Figure A.4: SIP Session handover using modified approach, and CN is not aware of
device change. Also note the seamless media transmission during the device transition.

can be implemented using SIP header extensions or custom headers. Importantly, these

changes are limited to the handover domain, such as smart devices within a home en-

vironment; therefore, there is no need for modifications to remote SIP systems. The

health of the devices participating in the session can be monitored using standard SIP

monitoring message support such as OPTIONS.
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