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Abstract—In Miniature Wargames such as Warhammer 40k,
players control asymmetrical armies which include multiple
units of different types and strengths. These games often use
point costs to balance the armies. Each unit is assigned a
point cost, and players have a budget they can spend on units.
Calculating accurate point costs can be a tedious manual process,
with iterative playtests required. If these point costs do not
represent a units true power, the game can get unbalanced as
overpowered units can have low point costs. In our previous
paper we proposed an automated way of estimating the point
costs using a linear regression approach. We used a turn-based
asymmetrical wargame called Wizard Wars to test our methods.
Players were simulated using Monte Carlo Tree Search, using
different heuristics to represent playstyles. We presented six
variants of our method, and show that one method was able
to reduce the unbalanced nature of the game by almost half. For
this paper, we introduce a framework called Simple Testing and
Evaluation of Points (STEP), which allows for further and more
granular analysis of point cost estimating methods, by providing
a fast, simple, and configurable framework to test methods with.
Finally, we compare how our methods do in Wizard Wars against
expertly chosen point costs.

Index Terms—Wargames, Automatic Game Balancing, Game
testing

I. INTRODUCTION

In game design, the process of balancing a game can be de-
scribed as modifying the rules that govern a game (also known
as mechanics) to achieve a desired goal. Game designers see
this as an important part of game development, even if there
is no agreed upon definition of what game balancing is [1].

Additionally, this process is often long and tedious, done
through estimating the mechanical values (e.g., how much a
property is worth in Monopoly [2]) after an initial play-test,
and then tuning these values through dozens of more tests.
This manual process can lead to elements of the game being
over- or under- powered. Perhaps as a result of these prob-
lems, Artificial Intelligence has been proposed to automated
balancing, with some promising results [3]

Wargames are a game genre where players control armies
(which can be asymmetric) to act out a battle or war, usually
played on a detailed map under a set of rules to see if
their strategies influence the game’s outcome. [4]. Due to the
inherent competitive nature of these games, good balance is
considered an essential feature. There are several points of
view on ideal balance goals for these games. One common
goal is having a simple 50%-50% win-rate, where every army
would have an equal chance of winning. Another viewpoint
is intransitive superiority, a rock-paper-scissors style in which
each army counters another (while itself being countered by
a different army) [5].

A particularly popular sub-genre of wargames is that of
miniature wargames. In these games, such as Warhammer
40k, [6] armies are comprised of miniatures which represent
individual units on the battlefield such as infantry or tanks,
with the battles being skirmishes between these units. In these
games, a common way of achieving balance goals is through
the use of point costs. Wargames often operate with an element
of scarcity, with unit costs being one way to enforce this.
For example, a common army budget in the aforementioned
Warhammer 40k is one thousand points, and each unit included
in the army (and the optional equipment added to them) has
a point cost. For example adding a Space Marine ’hunter’
tank to an army will cost 100 points. This ensures that armies
fighting against each other will be of a similar strength and
also adds an element of strategy to the army creation process,
as players can optimise the point costs of their armies to create
the strongest army at the budget level.

Unit costs are considered one of the hardest parts of
balancing in wargames. As described in Tabletop Wargames:
A Designers’ and Writers’ Handbook: “There are essentially
three things to grasp about points values - (i) they don’t work,
(ii) nevertheless we have to have them and (iii) even so they
can’t really be reduced to a mathematical formula.” [7].

Some wargames, such as Song of Blade and Heroes [7] [8],
use a mathematical formula to calculate unit costs. However,
this is often impractical for wargames with more complexity,
due to their being too many mechanical values per unit to be
accurately calculated. Instead, the previously mentioned man-
ual playtests are used, however, these can cause overpowered
units to appear which dominate other units.

One approach used in contemporary automated balancing
is using an optimiser such as an Evolutionary Algorithm
to find good sets of parameters for the mechanical values,
using a fitness function based on desired balance goals [9].
One possible disadvantage with this kind of approach is that
developers may feel a loss of control, and work has been
done on creating an integrated approach of both automatic
and manual balancing [10]. Point costs do not directly modify
mechanical values, therefore it enables developers to decide
how to modify the parameters to get desired point costs.

Our motivation for this paper involve how we can both
estimate unit point costs for wargames, and the possibility
of adapting them for general use. Using point costs generally
could allow for easy patching of games after they are released
(this is especially a problem for board games). In addition, it
could be used to determine alternative rule-sets for games in
scenarios such as tournaments, where highly balanced rules or
corrections on these are often required.
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In this paper we present a foundational approach on how
artificial intelligence can be used to automatically estimate
these point costs, without any domain knowledge required.
Our approach uses linear regression in combination with linear
programming to estimate the point costs of units in a wargame
using data from played matches.

In or previous work we created a bespoke asymmetric
wargame called Wizard Wars [11], which implemented in
the Stratega framework [12]. The framework allows us to
use advanced agents to play simulated games. In our case,
MCTS-based agents were used to play Wizard Wars with
custom heuristics to represent different play-styles, in addition
to an opponent model to more accurately predict an opponent’s
move. The results of these Wizard Wars games were used by
the method’s to estimate unit costs.

Finally we created a metric to inform us of how balanced the
game is. The Balance Loss (BL). Using the methods derived
from our approach and data from the Wizard Wars simulations
we were able to estimate point costs for units which when
used, managed to reduce the Balance Loss (e.g., the imbalance
of the game) by approximately half.

In this paper we extend our previous work by introducing a
new framework called Simple Testing and Evaluation of Points
(STEP). This framework is designed to reduce games to their
most abstract elements for fast evaluation and controllable
testing. We use this framework to do a further analysis of the
methods used on Wizard Wars. We hope that this framework
will allow for more vigorous testing of point cost estimating
methods before using them on actual games. In addition to
creating this framework, we conduct two more experiments
using it, one checks how the performance of the baseline
varies based on number of games in the training data. The
other experiment shows the effect of stochastic elements on
the costs estimated by the methods.

Section II introduces the background of this work, with
regards to wargames and automated game balancing. Sec-
tion III introduces our proposed methods. Section IV describes
the Wizard Wars game and how we simulated it, while
Section V introduces the STEP framework used for further
analysis of the methods. Section VI goes into the results of
the Wizard Wars experiments, and Section VII outlines the
results of experiments using STEP. Finally, we conclude with
a summary of our findings and possibilities for future work in
Section VIII.

II. BACKGROUND

This background section will give an overview of topics
relevant to this work. First aspects of Wargames important to
our research are outlined. Secondly examples of automated
game balancing will be explored.

A. Wargames

As mentioned before, our research is focused on Minia-
ture Wargames, recognized for their aforementioned use of
miniature figures to depict individual units on the battlefield.
These units are assigned point values that ideally reflect their
effectiveness in the game. Units with greater strength wield

more influence in battles and consequently possess higher
point values. It is important to note that these point values
are determined independently of other factors. While a unit’s
effectiveness may vary depending on the battle’s circumstances
(for example, a ranged unit with low health might become
more formidable when paired with a support unit for rein-
forcement), its assigned point value remains constant.

As discussed in the Introduction, armies are allocated spe-
cific point budgets to ensure a relative balance in power be-
tween two opposing forces. Within the wargaming community,
the assembly of units that compose an army is referred to as
the “army list” [7]. If players wish to get an advantage over
their opponent they can optimise their army list to include
units more powerful then their point costs suggests.

B. Automated Game Balancing

Artificial intelligence has been applied to the problem of
balancing games in academia, this can be called automated
game balancing. Some examples of these work include:
Mahlmann et al. using Evolutionary Algorithms (EAs) to
generate balanced sets of cards in Dominion [9]. Morosan and
Poli using EA’s to balance both Mr’s Pac-Man and StarCraft,
by trying to achieve a desired win-rate while minimising
mechanical changes made [13]. Finally Silva et al. used EAs
to balance decks from Hearthstone [14]. They used similar
balance goals as Morosan and Poli, in addition they introduced
some metrics to see which cards may require modifications.

One potential problem with using Evolutionary Algorithms,
is selecting which game parameters to balance. For example,
when outlining their integrated balance framework, Beyer et al.
identified which parameters to select based on expert knowl-
edge from playing the game [10]. For Wargames, with lots of
units and asymmetry, choosing which units and parameters to
balance might be difficult, therefore an automated approach
for identifying unit point costs may be advantageous.

Tomašev et al. explored alternative rulesets in chess [15].
As part of their work, they look at how the value of each chess
piece changes based on which variant used. They do this by
creating a win predictor using the difference in units of each
player as weights. This is encouraging as it presents a way
to estimate point costs, however chess is a symmetrical game.
For wargames there is no guarantee that both players will have
the exact same unit composition therefore a different approach
will be required.

Stanescu et al. use the Lanchester Attrition Laws to predict
combat outcome in Starcraft [16]. As part of their work they
use Maximum Likelihood Estimation to estimate the strength
of each unit, which shares some similarities with unit costs.

Hind and Harvey [17] used a NEAT neural network to
calculate spawn probabilities for enemy units in Tower De-
fence games. This is an interesting approach, however these
probabilities depend on which towers the player has got on
the map, which may prove difficult for adapting to point-costs
due to the previously mentioned fact that they have to be
independent of any other factor.
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III. METHOD

Point costs can be seen as a measure of how influential
a unit is towards victory, with more influential units having
higher point costs. Assuming this relationship is linear, we
can formulate it as a linear regression problem for each army
matchup in the game a, b ∈ M as described in Equation 1:
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In this context, the weights wj
l signify the point cost

associated with unit l in army j. The inputs x denote the
count of units of each type (up to n types for Army a and
up to m types for Army b). Each battle yields a distinct data
sample labeled as i. The sets X = {X0, ..., Xn−1} and Y =
{y0, .., yn−1} serve as our inputs and outcomes, respectively,
collectively constituting our dataset D. It’s worth noting that
game outcomes can take on values of 1 (win), 0 (loss), and 0.5
(draw). Wargames are usually strictly competitive, with games
being either won, lost, or ending in a draw with no other
values possible. This leads us to use these values, however
it is important to emphasise that we are not binding to any
particular linear equation.

We can estimate a unit’s point cost as the average value
of its weights when pitted against all possible armies in M ,
denoted as EM [w]. To determine this value, we compute the
average point cost per unit across all the regressions conducted
for each matchup. It’s important to note that even though the
elements in the set Y are strictly 0, 0.5, or 1 (representing loss,
draw, or win), we opt for different forms of linear regression
rather than logistic regression. This choice is due to the logistic
regression coefficients being somewhat more challenging to
interpret, given their log-odds nature. It is arguable that logistic
regression might prove more accurate/correct for the problem
we are setting to solve, but we use linear regression because
of ease of interpretation. We will now go over the different
implementations of linear regression our method can use.

1) Least squares / bounded optimisation: Our initial ap-
proach, which we refer to as the bounded least squares
method, involves the analysis of all games played between
two armies. We optimize the weights in a straightforward
linear optimization framework, making use of the SciPy li-
brary (https://scipy.org/). In this method, the loss function
adheres to the conventional mean squared error, expressed
as mse(X,Y ) =

∑|X|
i=1(ŷi − yi)

2. The optimization process
follows the procedure outlined in Equation 2. Notably, we
impose constraints on the optimization bounds to ensure that
no unit from the first army can have a negative point cost, and
similarly, no unit in the opposing army should be assigned
a positive point cost. This constraint essentially restricts the
solution to yield exclusively positive unit costs for each army.

minimise mse(X,Y )

subject to w1 ≥ 0, w2 ≤ 0,
(2)

In Equation 2, w1 and w2 refer to the weights of the first /
second army respectively.

2) Elastic net CV: In our second approach, we tackle a
constrained linear optimization problem, this time without
imposing constraints on the weights w. Instead, we apply
penalties to discourage high L1 and L2 norms. This approach
is commonly referred to as an elastic net, and its goal is to
attain sparsity in the weight vector w while simultaneously
keeping the values of w relatively low. We determine the
optimal values for α and l1ratio in Equation 3 through a
process of cross-validation, using the implementation provided
by scikit-learn [18].

minimise 1/(2 · nsamples) ·mse(X,Y )

+α · l1ratio · ||w||1
+0.5 · α · (1− l1ratio) · ||w||22

(3)

Similar to the ”bounded least squares” method, there’s a
potential issue where some units may acquire negative weights,
denoted as w. To address this, we employ two methods: either
we artificially establish a minimum value of 0 for each w
within every army list combination (”bounded elastic net”), or
we implement this constraint after averaging the values across
all armies (”elastic net”).

3) Normal form game / linear programming: The problem,
as delineated previously, assumes that both players will essen-
tially select their army lists randomly. However, this is likely
an oversimplification. In reality, both players will make an
effort to choose an army list that maximizes their chances of
winning while causing their opponent to lose. Consequently,
the entire process of selecting army lists can be modeled as a
zero-sum, normal form, asymmetric game. In this normal form
game, every conceivable army list is considered an action or
strategy, with each army corresponding to one of the players.

The formal game is subsequently resolved using a standard
linear programming solver. For this paper we used Open-
Spiel’s [19] implementation. This results in a mixed strategy
profile for each player. Considering that not all potential
games have necessarily been played, particularly for the more
complex wargames, it becomes computationally prohibitive to
evaluate all conceivable army lists. To address this, we pruned
out any army list pairs which had not been played against.

Subsequently, we selected, from the mixed policy, all the
army lists that were not dominated, meaning they performed
as well as or better than another army list. These selected army
lists were used to generate hypothetical games based on the
army lists that players might have employed. It is important
to note that since not all possible army list combinations may
have been employed in the actual data, our approach should
be regarded as an approximation. We refer to the army lists
resulting from this process as equilibrated.

4) Final Methods: The weights w produced were then
used as the point values for the units. Six different methods
are implemented, least squares (LS), elastic net (E), and
bounded elastic net (BE) are the three basic methods. We also
used equilibrated data on these three methods to create new
methods (ELS, EE and EBE, respectively).
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IV. WIZARD WARS EXPERIMENTAL SETUP

Our first approach to testing our methods was to run them
on an actual game. In our case we created a bespoke wargame
called Wizard Wars which is implemented using the Stratega
framework. This section will go into how Wizard Wars works,
and then how experiments using it were set up.

A. Stratega

Stratega1 is a framework designed for the creation of both
turn-based and real-time strategy games. Games can be created
in the framework using the YAML format. Various elements
of strategy games are modeled, including: intricate rules,
diverse victory conditions, terrain, unit customisation, complex
actions, technology progression, and build orders [12]. It con-
tains an integrated forward model enabling advancement of the
game state by providing actions during the decision-making
process of in-games agents. This allows for the implementation
of algorithms such as Monte Carlo Tree Search and Rolling
Horizon Evolution [20].

B. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [21] is a highly selective
and efficient best-first search algorithm. It constructs an asym-
metric search tree over multiple iterations, carefully balancing
the exploration and exploitation of moves. This equilibrium is
achieved through its tree policy, such as UCB1 [22], which
weighs both the exploitation term Q(s, a) (the average of
rewards after taking action a in state s) and the exploration
term C ×

√
lnN

N(s,a) , where N(s) is the number of times state
s has been visited and N(s, a) is the number of times action
a has been applied to state s. The parameter C, known as
the exploration constant, determines the emphasis placed on
the exploration component. In the case of Wizard Wars, each
action will be an action a unit can do (such as moving, or
attacking). The state will contain the position and status of
each unit on the battlefield, and which player is next to act.

In its default configuration, the MCTS algorithm extends
the tree with a new node during each iteration. Subsequently,
it conducts a random Monte Carlo simulation until the conclu-
sion of the game or when a predetermined depth is reached.
MCTS has found applications in various domains [21] [23],
including strategy games [24], demonstrating its adaptability
in complex and dynamic environments by rapidly re-planning
and adapting to unforeseen states.

C. Wizard Wars

Wizard Wars is a simple wargame built in Stratega to test the
methods proposed. MCTS agents act as players. It is a turn-
based game with no stochasticity. Units use actions to affect
the game. All units can move and attack, some units have
additional actions. Units are allocated action points, each non-
movement action uses one point, and these points replenish at
the start of each turn.

1https://github.com/GAIGResearch/Stratega

Fig. 1. Wizard Wars being simulated in Stratega.

TABLE I
AN ENUMERATION OF THE ATTRIBUTES OF EACH ARMY’S UNITS.

Race and Attributes Unit Types
Dwarf Melee Ranged Support Elite
Health 4 1 4 10

Action Points 2 1 2 3
Movement Points 2 1 2 2
Attack Damage 3 5 2 4
Attack Range 1 4 1 1

Armour 2 0 2 4
Abilities Rf Rf

Elf Melee Ranged Support Elite
Health 4 4 3 7

Action Points 3 2 2 3
Movement Points 3 5 2 4
Attack Damage 3 3 2 6
Attack Range 2 2 2 1

Armour 1 0 0 2
Abilities AP Hl AP

Orc Melee Ranged Support Elite
Health 6 4 3 8

Action Points 2 2 2 3
Movement Points 3 2 2 3
Attack Damage 4 3 2 5
Attack Range 1 2 2 1

Armour 0 0 0 2
Abilities WC Da Cs WC

Each team has one king unit, a player loses if their king
dies. Figure 1 shows a game of Wizard Wars in play. The
game has a grid layout, with no unit stacking possible. The
move actions changes a units position on the grid. They can
travel one tile at a time non-diagonally, going a total distance
equal to their movement points, which are refreshed each turn.

To use the attack action, a unit chooses an opposing target
to hit. The damage inflicted is determined by the formula
D - A, where D is the unit’s attack damage, and A is the
targets armour. The resulting value, if positive, is deducted
from the target’s health. If the target’s health reaches < 0 it
is removed from play. There are three distinct armies in the
game: Dwarves, Elves, and Orcs. Each army has four distinct
unit type:

• Melee units: Units at the front of the battle.
• Ranged units: Units that attack from a safe distance.
• Support units: Units that support other units with abilities
• Elite units: The most powerful units in each army
Table I, shows the attributes and abilities of each army’s

units. Each army is designed to have a unique playstyle:
Dwarves prioritise defence, having slower units but more
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TABLE II
THE WEIGHTING OF EACH FACTOR PER HEURISTIC (FROM 0-1)

Factor Defensive Balanced Aggressive

Player Army Size 1 0.5 0.25
Player Army HP 1 0.5 0.25
Player King HP 1 0.5 0.25
Opponent Army Size 0.25 0.5 1
Opponent Army Health 0.25 0.5 1
Opponent Kings HP 0.25 0.5 1
Units in Range of Support 0.5 0.5 0.5
Mean Distance from Opp King 0.25 0.5 1

health and armour. Elves feature agile units designed for
maneuverability in battle. Orcs have high attack damage and
offensive abilities to attack the opponent directly. These values
were manually selected / tweaked with no formal playtesting
conducted. The abilities in the game are outlined below, most
abilities have a cooldown, which is the number of turns after
using an ability before it can be used again.

• Rf - Reinforce an allied unit increasing their armour by
2 (3 tile range) (3 turn cooldown).

• AP - Unit’s attacks ignore armour (passive ability)
• Hl - Heals an allied unit, increasing their health by 3 (3

tile range) (3 turn cooldown).
• WC - Gives the caster +1 movement and +1 damage for

2 turns (3 turn cooldown).
• DA - Reduces the attack damage and range of an enemy

unit by -1 for 2 turns. Units with no attack range are
unable to attack (2 tile range) (3 turn cooldown).

• Cs - Curses an enemy making them lose 1 health per turn
for 4 turns (3 tile range) (3 turn cooldown).

These armies make the game asymmetric, as different
armies facing each other will have unique units, unlike in chess
where both players have exactly the same units. This could
lead to diverse play styles, with no clear way of identifying
dominant strategies. This suggests suitability for our methods.

D. Heuristics

Our methods rely on data derived from Wizard Wars sim-
ulations, therefore it is important that the dataset includes
a variety of playstyles. Otherwise a single playstyle may
be overemphasised. To mitigate this, we incorporated three
heuristics to represent different playstyles. These were Agres-
sive, Balanced, and Defensive heuristics. The outcomes of
these heuristics are normalised to a range of 0 - 1, with
increasing value meaning a more favourable state for the agent.

The factors included in the heuristic evaluation were:
• The current size of the player / opponent army.
• The current HP of the player’s / opponent’s army.
• The current HP of the player / opponent’s king.
• How many allied units are covered by a support.
• The mean distance of the player’s offensive units from

the opponent’s king.
Table II shows the weightings assigned to each factor

for every heuristic. These factors are all normalized to fall
within the range of [0, 1] and are then combined linearly by

multiplying them with their respective weights to calculate the
reward assigned to the MCTS agent.

In addition to the heuristics, the MCTS agents employed
an opponent model designed to anticipate the actions of the
opposing player. This model was provided with Stratega. It
operates under the assumption that the opponent’s strategy
involves targeting the player’s unit with the lowest health.
Accordingly, the opponent’s units move towards the player’s
low-health unit and attack if within range.

E. Experimental Configuration

For each Wizard Wars experiment, two datasets were cre-
ated: One for training the methods, the other to validate
them. Every match took place on a grid of 5 x 13 squares.
There was no special terrain, and the initial positions were
reasonably randomised, with melee units place in the front
and ranged towards the rear. The kings were placed behind
each player’s army. For training, army lists were generated
randomly, bounded between 0 and 3 units per type.

For the validation run, the point costs estimated by each
methods were used to generate army lists. Each army had
a budget of 60 (due to configuration of the methods, this
budget was scaled down by a factor of 100, to 0.6), and units
point costs were rounded to 2 decimal places. Each army list
could have a maximum of 5 units per type. To generate the
list, sampling with replacement was used. Any unit with a
cost of 0 or less was considered ineffective and not included
for selection. The generator tried to use its entire budget, if
infeasible as much as possible was used instead.

Stratega’s MCTS agent was used for both players, using the
aforementioned heuristics and opponent model. A time budget
of 300ms per move was used, a rollout length of 20, and
the exploration constant set at

√
2. These values were chosen

through trial-and-error. Each turn had a limit of 10 seconds,
and a turn limit of 50, is this turn limit is reached the game
will end as a draw.

We introduced a metric to measure the balance of the
game, we termed it the ”Balance Loss” (BL). This metric is
standard deviation of win rates of each matchup. A value of 0
represents a perfectly balanced game (according to our goal),
with each army having a win-rate of 50% overall. If win-rates
deviate from 50%, this value will increase, indicating greater
imbalance in the game. While we are using a 50-50 balance
goal currently, we aim to try other targets in future work.

1) Training Run Configuration: To create the training
dataset for our methods, we generated a total of 1,200 army
list pairs (2,400 in cases of mirror matchups, like Orc vs. Orc)
, generated randomly with constraints defined previously, for
each possible battle combination (including Dwarf vs. Elf, Elf
vs. Dwarf, Orc vs. Dwarf, Dwarf vs. Orc, Orc vs. Elf, Elf
vs. Orc, Dwarf vs. Dwarf, Elf vs. Elf, Orc vs. Orc). This
process yielded a total of 14,400 army lists for each run.
For each of these list pairs, games were played involving all
possible heuristic combinations (for example, Aggressive vs.
Balanced). Consequently, this resulted in 172,800 games for
each run. Each run required approximately 24 hours of time
on a High-Performance Computer.
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2) Validation Run Configuration: In the validation run, the
total number of games played remained constant. However,
this time, the games were divided based on which method’s
point costs were utilized to generate the army list pairs. This
division resulted in 1200 games being played per matchup
(200 pairs for each combination of armies, heuristics, and
methods).

V. STEP FRAMEWORK

Testing automatic balancing solutions on games is important
to do as it provides a way to test the real world effectiveness of
methods. However, because of the complex nature of games,
testing on them can give uncertainty to the results. A good
instance of this is the stochastic nature of many games, which
can add noise to the results. Another is due to the fact that
games require players, and uncertainty can be generated from
their game play (whether agent-based or human.)

To account for this, in addition to testing our method on
a wargame, we also introduce the STEP (Simple Testing and
Evaluation of Points) framework. Our objective for STEP is
to provide a fast way to evaluate balancing solutions with
minimal uncertainty, by breaking down a game to its most
abstract elements.

The structure of STEP is similar to a Blackbox, which have
been used in many fields to model complex problems in a way
for methods to try to solve them [25]. Our framework is most
similar to stochastic Blackboxes due to the element of random
chance in many games.

This abstraction involves modelling core concepts in games
such as stochasticity, and quantifying winning (i.e., can players
draw) into easily controllable variables. Due to the influence
of wargames in our work, some concepts in STEP are named
using wargaming terminology, however, these can be used for
a variety of games. As an example, for cards games, the army
list could be turned into decks, and point costs could be the
cost to play a card (e.g. Mana in Magic The Gathering [26]).

Central to STEP are army lists. Similar to wargames, these
are a list of which units that are brought into the game. In our
case there are two army lists, one for each player. In addition
to these, a ruleset is required that contains the true strength of
each unit. In an ideal world, the point costs estimated will be
the same as these true strengths, as the point costs represent
the influence of a unit on victory, which thanks to the abstract
nature of STEP can be easily measured. It is important to note
that STEP can be used to model any game, not just Wizard
Wars.

A. Blackbox

These Blackboxes in STEP can be defined as a game with
an outcome that can be formulated as a function:

w = BB(U1, U2, S, f, d, x)

From this function the outcome of the game, w ∈ (0, 0.5, 1)
where w is 1 if player 1 won the game, 0 if player 2 won
the game, and 0.5 being a draw. The winner depends on the
input parameters described below, which model aspects talked
about in the previous paragraphs.

1) Units (U1, U2): A map containing the army lists for each
player. Each key will be the name of a unit, and each value
the number of that unit in the army list.

2) Ruleset (S): A map containing the true strengths of each
unit. Each key will be the name of a unit, and each value the
strength of the unit (as a number).

3) Outcome Function (f ): The function chosen to evaluate
which team wins the game (e.g., Linear Outcome). The value
returned by this function will be the outcome (o) of the game,
which will be positive if player 1 won, negative if player 2
won, and 0 if a draw.

4) Draw Range (d): A value d that sets the range to be
considered a draw. Having an exact draw is highly unlikely due
to the abstractions made in STEP, therefore including some
bounds for error, ensures draws can be achieved. Draws are
determined when o is between the upper (UB) and lower (LB)
bounds. These bounds are be calculated by 0±d and will then
be used to evaluate LB ≤ o ≤ UB, which if true, the game
will be a draw (w = 0.5).

5) Stochastic Strength (x): A value x used to add stochas-
ticity to the game, if desired. If x > 0 the outcome of the
game (o) will be modified by a value from -x to x, sampled
uniformly at random.

B. Outcome Functions

As mentioned previously, these Blackboxes use Outcome
Functions to determine the outcome of the game. These are
essentially mathematical functions, such as a linear combi-
nation, which compare the strength of each player’s army to
artificially determine which player wins.

As an example, if we were to use the linear outcome
function, the strengths of the armies would be computed by
summing up each units strength with how many are in the
army list, to then observing which one has a higher value.

To enumerate this example, imagine a ruleset S in which
the red player has units Red 1 and Red 2 with strengths 2
and 3 respectively. The blue player has only unit Blue 1 with
a strength of 5 . In an example match, the red player has
two Red 1 units and one Red 2 unit, while the blue player
has three Blue 1 units. These units would be multiplied by
their strengths in the ruleset to find the army strengths for
each player. In this case the strength of the red (rs) and blue
(bs) players will be rs = (2 ∗ 2) + (1 ∗ 3) = 7 and s =
(3 ∗ 5) = 15. These values would then be normalised, so that:

rs =
rs

(rs+ bs)
, bs =

bs

(rs+ bs)
Finally the outcome of the

linear function can be calculated by taking player 2’s army
strength away from player 1’s army strength. In the case of
this example o = rs− bs = −0.36, so player 2 won.

C. Winner Calculation

Once the outcome function has returned a value the winner
of the game can be calculated. The stochasticity value will be
applied if it greater then 0. By default it has a value of 0.1,
which means o can be modified at most by ±0.1.

Now the draw range is used to check if there is a draw.
By default it is 0.05 so in our example even if o is modified
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by 0.1 by the stochasticity value, it will still not be within
the draw range of 0± 0.05. Therefore since this is a negative
value the Blackbox will return a value of 0 as player 2 won.

D. Testing Methods

To test methods games can be played using the Blackbox.
In order to generate army lists for these games generators are
provided. These create army lists using approaches such as
sampling with replacement (used with a point cost budget).

Once these generators have been chosen a specified number
of games will be played for each matchup. Once these games
have been concluded, various statistics will be saved, for
example: the army list pair per game, the winner per game,
win rates, and Balance Loss.

E. STEP Experimental Setup

As mentioned in the framework section, we are using the
Blackboxes in the STEP framework to further analyse the
methods proposed in a more controllable setting then wizard
wars. Our first experiment was to see the consistency of
the proposed methods, and how many games are required to
estimate sufficient point costs. This was possible due to the
fast computation time of a Blackbox run in the framework, and
the fact that the ground truth is known (the true unit strengths).

1) Variance Experiment: This experiment varied the num-
ber of games played per run. The initial number of games
was 100, this increased by 1000 until reaching 10100 games
per run. 20 runs were done per number of games to measure
variance in results. The purpose was to see how increasing
the number of games played effects results, and to see if the
results vary on a per-run basis. The Blackbox used the default
stochastic strength of 0.1 and draw range of 0.05.

A simple rule set of 2 teams with 4 units each was used,
this rule set was designed to be deliberately unbalanced. The
previously mentioned linear outcome function was used. And
similarly to Wizard Wars, a random unit generator with a lower
bound of 1, and an upper bound of 3 was used to generate
teams for the training set. A generator utilising sampling with
replacement was used to generate teams for the validation set.

Compared to Wizard Wars the lower bound was changed
from 0 to 1, this was due to testing showing better results
with this configuration in the Blackbox. In addition a budget
of 100 was used. It is important to note that due to way the
methods work, this budget is divided by a factor of 100, so it
is the same scale as the points estimated by linear regression.
Unit point costs were not rounded for the STEP experiments.
(Unit costs were rounded in Wizard Wars for neat presentation
in Table III and Table VI.)

2) Stochastic Experiment: As mentioned before, the Black-
box has a ”Stochastic Strength” option. Increasing this value
will escalate the effect of random chance on the game. This
experiment was used to see how stochasticty may effect the
performance of the methods. For this experiment the stochastic
strength was increased from 0 to 10, with an increment of 0.5.
5 runs were performed per level of stochastic strength. There
were 1000 games per run. The rest of the configuration was
the same as the variance experiment.

TABLE III
THE POINT COSTS OF EACH UNIT FOR THE THREE ARMIES AS ESTIMATED
BY THE SIX LINEAR REGRESSION METHODS (EQUIL. = EQUILIBRATED).

Race / Method Unit Types
Dwarf Melee Ranged Support Elite
Least Squares (LS) 7 12 5 13
Elastic-Net (E) 6 12 4 13
Bounded Elastic-Net (BE) 6 12 4 13
Equil. Least Squares (ELS) 2 7 3 10
Equil. Elastic-Net (EE) 2 5 3 7
Equil. Bounded Elastic-Net (EBE) 2 5 3 7
Elf Melee Ranged Support Elite
Least Squares (LS) 10 10 6 17
Elastic-Net (E) 10 9 6 17
Bounded Elastic-Net (BE) 10 9 6 17
Equil. Least Squares (ELS) 5 4 4 11
Equil. Elastic-Net (EE) 5 4 3 9
Equil. Bounded Elastic-Net (EBE) 5 4 3 9
Orc Melee Ranged Support Elite
Least Squares (LS) 10 12 6 16
Elastic-Net (E) 9 12 6 16
Bounded Elastic-Net (BE) 9 12 6 16
Equil. Least Squares (ELS) 4 6 6 11
Equil. Elastic-Net (EE) 3 5 4 9
Equil. Bounded Elastic-Net (EBE) 3 5 4 9

VI. WIZARD WARS RESULTS

A. Estimated Point Costs

Table III displays the point costs estimated by each method,
revealing some patterns. The point costs make intuitive sense.
Elite units have the highest costs, and are the most powerful.
The melee and ranged units follow the elites, with the stronger
unit differing between armies. Support units have the lowest
estimated costs, this could suggest that their in-game abilities
are not as important as the raw stats of other units.

Three clusters of estimated point costs emerge. The non-
equilibrated methods have estimated similar values. This could
be because of the large amount of training data negating the
different approaches used. Additionally it could be an upper
bound for more complex methods to supersede.

The elastic-net method pairs estimated the same point costs.
This suggests that none of the units had an estimation less than
zero, meaning all units were found to be somewhat useful. The
equilibrated least-squares and elastic-net methods estimated
different costs, possibly because of the equilibration process.

For the Dwarven army there is only a 1 point difference
between its elite and ranged unit. The other armies have a
larger difference between elite / non-elite units. This could
imply that the Dwarven elite unit is less powerful then the
others. Looking at the unit attributes we can see it has an
attack damage of 4, which is less then the other elites and the
Dwarven ranged unit. This could mean that attack damage
is an important attribute. Additionally, excluding ELS, the
Dwarves have lower point costs compared to the other armies
for every unit except the ranged. This may suggest that per unit
they are less powerful compared to other armies. The Elves
and Orcs have quite similar estimated costs, differing at most
by a few points. We can infer this to mean that the methods
perceive them as close in power.
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TABLE IV
THE FIRST ARMY’S WIN-RATE AND STANDARD ERROR FOR EACH METHOD

AND THE BALANCE LOSS (BL).
E VS D - ELF VS DWARF E VS O - ELF VS ORC O VS D - ORC VS ELF

Method EvD EvO OvD BL

Uncosted 53% (0.003) 39% (0.003) 59% (0.003) 9.03
LS 46% (0.006) 35% (0.006) 54% (0.006) 10.13
E 44% (0.006) 34% (0.006) 52% (0.006) 10.58
BE 43% (0.006) 35% (0.006) 52% (0.006) 10.18
ELS 48% (0.006) 48% (0.006) 43% (0.005) 4.86
EE 40% (0.005) 42% (0.006) 41% (0.005) 9.65
EBE 40% (0.005) 41% (0.006) 42% (0.005) 9.84

TABLE V
THE WIN-RATE’S AND STANDARD ERROR VS. THE SAME FACTION

Method DvD EvE OvO

Uncosted 61% (0.002) 56% (0.003) 55% (0.003)
LS 62% (0.006) 60% (0.006) 54% (0.007)
E 62% (0.005) 61% (0.006) 54% (0.007)
BE 63% (0.005) 62% (0.006) 54% (0.007)
ELS 58% (0.005) 60% (0.006) 58% (0.006)
EE 55% (0.006) 57% (0.006) 57% (0.005)
EBE 54% (0.006) 59% (0.006) 57% (0.005)

B. Win-Rates

Table IV highlights that the balance loss of the uncosted
simulations (i.e., training run) stands at 9.03, serving as a
baseline for result comparison. This is a relatively low balance
loss, which suggests the game is reasonably balanced.

Equilibrated Least Squares manages to achieve a more
balanced game than the baseline. It reduces the balance loss
by almost half, to 4.86. The Elf vs. Dwarf and Elf vs. Orc
matchups are close to the goal win-rate of 50%, the Orc vs
Dwarf is less balanced at 43%, yet it is still an improvement
compared to the baseline matchup.

The non-equilibrated methods come close to the baseline
without surpassing it. In these methods the Elves underperform
compared to the other armies. These methods estimated similar
points for the Elves and Orcs, implying that they overestimated
the strength of the Elven units. This is further supported by
them losing the Elf vs Dwarf matchup, one in which they pre-
viously performed well. However, the Orc vs. Dwarf matchup
is more balanced compared to the baseline, suggesting the
estimated points for these armies are more accurate.

The Equilibrated Elastic-Net pair get a slightly better bal-
ance loss compared to the basic methods, but still higher
than the baseline. For these methods the Dwarves now win
both matchups they previously lost. This suggests that they
underestimated the point costs of Dwarven units. The Elf vs
Orc matchup is slightly better but still not at the goal of 50%.

Additionally, we also ran mirror matches against the same
army (with varying choices of units). Table V outlines these
win-rates. In every case, Player 1 outperformed Player 2,
indicating a probable first-turn bias in the game. None of the
methods managed to mitigate this advantage. Implying that
point-costs are not suitable to fix this, and that modifications
to the game rules may be needed.

TABLE VI
THE ESTIMATED POINT COSTS FOR THE BIASED EXPERIMENTS.

Race / Method Unit Types
Dwarf Melee Ranged Support Elite
Least Squares (LS) 22 9 4 11
Elastic-Net (E) 21 8 3 10
Bounded Elastic-Net (BE) 21 8 3 10
Equil. Least Squares (ELS) 18 8 5 8
Equil. Elastic-Net (EE) 15 6 4 7
Equil. Bounded Elastic-Net (EBE) 15 6 4 7
Elf Melee Ranged Support Elite
Least Squares (LS) 10 4 5 16
Elastic-Net (E) 9 4 5 15
Bounded Elastic-Net (BE) 9 4 5 15
Equil. Least Squares (ELS) 6 3 4 8
Equil. Elastic-Net (EE) 5 3 3 8
Equil. Bounded Elastic-Net (EBE) 5 3 3 8
Orc Melee Ranged Support Elite
Least Squares (LS) 8 11 6 14
Elastic-Net (E) 8 10 5 14
Bounded Elastic-Net (BE) 8 10 5 14
Equil. Least Squares (ELS) 6 8 3 9
Equil. Elastic-Net (EE) 4 6 2 7
Equil. Bounded Elastic-Net (EBE) 4 6 2 7

TABLE VII
THE WIN-RATES AND STANDARD ERRORS FOR THE BIASED EXPERIMENTS.

Method EvD EvO OvD BL

Uncosted 22% (0.008) 34% (0.008) 28% (0.008) 24.55
LS 21% (0.016) 34% (0.019) 30% (0.02) 24.51
E 18% (0.016) 30% (0.019) 24% (0.018) 28.92
BE 19% (0.017) 32% (0.02) 23% (0.018) 28.42
ELS 26% (0.018) 43% (0.02) 32% (0.02) 19.74
EE 21% (0.018) 33% (0.018) 31% (0.02) 24.28
EBE 22% (0.018) 35% (0.018) 32% (0.02) 23.17

C. Biased Units Experiment

We also ran an experiment to test if our methods can
detect unbalanced units, where the Dwarven Melee unit was
made overpowered, and the Elven Ranged unit was made
underpowered. In this experiment we exclusively used the
Balanced Heuristic, and 600 training and 100 validation army
list pairs per matchup, resulting in 7200 pairs per run.

Table VI displays the estimated point costs per method.
The Dwarven Melee unit has a much higher cost then before,
even surpassing the Elite units. This suggests that the method’s
identified it as being the most powerful unit in the game. The
Elven Ranged unit also has a lower point costs, being similar
to the support units. However, it is objectively less powerful
then them (while still being playable), suggesting a floor to
how low point costs will be estimated with these methods.

Table VII shows the win-rates with these unbalanced units.
Again, ELS is the most effective, reducing the balance loss to
19.74, and improving the balance of each matchup. The game
is still unbalanced however, suggesting that while intentionally
unbalanced units can be identified, changes to the rules of the
game are required to properly balance them.
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TABLE VIII
THE POINT COSTS CHOSEN BY EACH EXPERT.

Race / Expert Unit Types
Dwarf Melee Ranged Support Elite
Expert 1 6 10 8 14
Expert 2 3 10 5 15
Expert 3 6 6 6 14
Elf Melee Ranged Support Elite
Expert 1 10 8 8 15
Expert 2 7 4 8 12
Expert 3 6 10 8 14
Orc Melee Ranged Support Elite
Expert 1 10 8 4 14
Expert 2 5 5 5 10
Expert 3 10 8 8 12

TABLE IX
THE FIRST ARMY’S WIN-RATE AND STANDARD ERROR FOR EACH

EXPERT’S COSTS, AND THE BALANCE LOSS (BL).

Method EvD EvO OvD BL

Uncosted 53% (0.003) 39% (0.003) 59% (0.003) 9.03
Expert 1 48.08% (0.002) 27.19% (0.003) 62.17% (0.003) 16.40
Expert 2 54.13% (0.002) 30.09% (0.003) 64% (0.002) 15.62
Expert 3 43.25% (0.003) 36.38% (0.003) 50.16% (0.003) 9.61

D. Comparison with Game Designer Point Costs

One motivation of our work was to see it applied into the
game design process. To this end it is important to see how
our methods would compare to human balancing. We asked
three experts (self-identified as being amateur or professional
game-designers), to come up with point costs for Wizard Wars.

They were given a document detailing how the game works,
each unit in the game, and how the maps have been setup for
our experiments. They were then asked to choose a point value
for each unit. Table VIII shows us the point costs chosen by
each expert. It is interesting to see that for most units there is
a variation in the costs chosen.

Games were then played with army lists generated from
these point costs. In total 100,000 games were with each set of
expertly chosen point costs, divided equally between matchup
and heuristic. Table IX displays the win-rates achieved with
each set of point costs. We can see none of the experts
managed to beat the baseline (getting a lower balance loss
than the uncosted run), and 2 experts got a higher balance
loss then any of our methods.

VII. STEP EXPERIMENTAL RESULTS

A. Variance Experiment

Figure 2 shows us the results of this experiment. The first
graph shows the performance of each method as more games
are played. We can see that the uncosted games have a balance
loss of around 30, showing us this game is unbalanced.

The non-equilibrated methods quickly manage to reduce the
balance loss to the single digits, with the results plateauing by
2100 games. In addition we can also see how the Mean Square
Error (MSE) of the estimated point costs change. This repre-
sents how close the estimated costs are to the true strengths

Fig. 2. Graph’s showing the change of Balance Loss and Point Costs MSE
over number of games played. The hue represents the 95% confidence interval.

Fig. 3. Graph’s showing the change of Balance Loss and Point Costs MSE
over the level of stochasticity. The hue represents the 95% confidence interval.

of each unit. It is noted here that these values are normalised
before comparison to ensure correct scaling. For the non-
equilibrated methods the error decreases as the number of
games played increases. This suggests that the points estimated
are close to the true strengths, which makes sense considering
the low balance loss. Conversely, the equilibrated methods do
not perform well in this scenario, with the balance loss actually
increasing as the number of games played increases.

This is surprising, as for Wizard Wars the equilibrated least
squares method performs better than all other methods. We
outline two possible reasons for this. Firstly, looking at the
win-rates themselves, in the uncosted games blue is heavily
favoured. However, the equilibrated methods flip this, making
red win almost all of the time. So perhaps the equilibrated
methods have over corrected the point costs and given red
the advantage instead. Secondly, the equilibration process was
created to account for the fact that there may be lots of
nonsensical unit compositions. It may be possible that due to
the simplicity of the linear outcome function these interactions
may not be modelled, damaging the equilibration process.

B. Stochastic Experiment

We can see the outcomes of the experiment from Figure
3. The first graph shows the change of balance loss with
stochasticity. As to be expected the balance loss quickly
decreases for all methods with increasing stochasticity, this
makes sense as the game essentially becomes random chance.
The second plot supports this conclusion, as the MSE increases
with stochasticity, likely due to the fact that there is too much
noise to allow learning sensible point costs.

VIII. CONCLUSION

It is our understanding that before our research, there was
no automated method for estimating unit costs in intricate
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wargames. We introduce a game-agnostic algorithm designed
to automatically calculate unit costs using only data derived
from game results. We have tested the methods both using a
framework and an actual game. The non equilibrated methods
performed well in both sets of experiments. In the STEP
framework they achieved a low balance loss, and got point
costs close to the ground truth. In Wizard Wars they did not
manage to improve on the baseline but came close to it, and
the costs themselves made intuitive sense.

The equilibrated methods are more inconclusive. In Wizard
Wars, Equilibrated Least Squares achieved the lowest balance
loss, reducing it by almost half compared to not using costs. In
addition it successfully identified the unbalanced unit in the
biased units experiment. However, in the STEP frameworks
they did not fare well. We outlined that they may perform
better in complex environments.

We have identified two pathways to enhance our approach
for estimating unit point costs. For our current methods,
we assume a linear relationship between win-rate and units,
however, exploring the impact of nonlinear regression—such
as non-linear least squares or other approaches like genetic
programming could be insightful. This could be tested by
making a non-linear outcome function in the STEP frame-
work. Secondly, we could expand the scope of the game
data we model. Currently, the algorithm exclusively estimates
independent unit costs. However, as previously mentioned,
numerous factors influence a unit’s effectiveness in battle.
Exploring how incorporating these factors (e.g., recognizing
that a support unit works well when paired with a powerful
unit) may contribute to estimating more accurate point costs.

Another aspect of improvement is the generation of army
lists. Both methods used in this paper were essentially random.
It may be worth creating intelligent army list generators which
can identify and exploit under costed units, to further test
our algorithms. Finally, another interesting idea is the altering
the balancing objective. In this study, we aimed to balance
for a 50% win-rate for each army. However, it would be
worth exploring an intransitive superiority approach, where the
strategic selection of an army based on various game factors
becomes crucial for achieving victory.

We have identified potential applications for this algorithm
in the future. One avenue is incorporating complex terrain
into Wizard Wars as it would add another layer of complexity
which could affect a units performance. Another is adapting
our methods for use in other game genres. While Wizard
Wars is a wargame, assessing the algorithm’s performance
in different game types, such as Trading Card Games, could
be valuable. Additionally, the estimated points generated by
our algorithm can serve as a surrogate for a unit’s power
level. Consequently, it may be feasible to employ it as a
diagnostic tool to identify unbalanced units, and then feed this
information to an automatic game balancing algorithm, like N-
Tuple Bandit Evolutionary Algorithm [27], to allow balancing
with no human input.
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