
Chaos, Solitons and Fractals 188 (2024) 115554 

A
0

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Network inference using mutual information rate, statistical tests and
amplitude-phase modulated surrogate data
Hüseyin Yıldırım ∗, Chris G. Antonopoulos
School of Mathematics, Statistics and Actuarial Science, University of Essex, Wivenhoe Park, UK

A R T I C L E I N F O

Dataset link: APMSD method (Original data)

Keywords:
Network inference
Mutual information rate
Statistical hypothesis tests
Amplitude-phase modulated surrogate data
Complex networks
Deterministic
Stochastic and heterogeneous dynamics

A B S T R A C T

In this paper, we propose a new method to infer connectivity in networks using the mutual information rate
(MIR), statistical tests and amplitude-phase modulated surrogate data (APMSD). The method is addressing the
case where one wants to infer the structure of the network when the equations of motion and the coupling
adjacency matrix are known, that is the reverse-engineering problem. It is based on the computation of MIR
and statistical, hypothesis tests to infer network connectivity, introducing a new method to generate surrogate
data, called the APMSD method, that removes correlation and phase synchronisation in the recorded signals,
by randomising their amplitudes and instantaneous phases. The proposed method compares MIR of pairs of
signals from the network with the MIR values of pairs of APMSD generated from the signals. We discuss the
mathematical aspects of the APMSD method and present numerical results for networks of coupled maps,
Gaussian-distributed correlated data, coupled continuous deterministic systems, coupled stochastic Kuramoto
systems and for dynamics on heterogeneous networks. We show that in all cases, the method can find at least
one pair of percentages of randomisation in amplitudes and instantaneous phases that leads to perfect recovery
of the initial network that was used to generate the data. The importance of our method stems from the analytic
signal concept, introduced by Gabor in 1946 and Hilbert transform as it provides us with a quantification of
the contribution of amplitude (linear or nonlinear) correlation and phase synchronisation in the connectivity
among nodes in a network. Our method shows great potential in recovering the network structure in coupled
deterministic and stochastic systems and in heterogeneous networks with weighted connectivity.
1. Introduction

Complex network theory mainly focuses on the study of relation-
ships among units in a system, which can be revealed by studying
their temporal evolution. These systems often exhibit highly diverse
dynamical behaviours, such as sensitivity to initial conditions and
chaotic behaviour [1]. In a network of interconnected units, nodes
represent the units of the system, and links the interactions among
them. With the increase in computing power, the last few decades have
witnessed the rise of complex network science, aimed at modelling
natural phenomena [2].

Network inference has been extensively studied in various fields [2,
3] including, ecology [4], biology [5,6], finance [6,7], neuroscience [8,
9], social sciences [10], etc., using correlation methods [11],
information-theoretical approaches [7,12–14], phase measures [9],
regression-based methods [4], probabilistic methods [8] and dynam-
ical models [6] to name a few. The authors in [4] explored trophic
and non-trophic relations among species and investigated their im-
pact on population size. Gene regulatory network inference is crucial

∗ Corresponding author.
E-mail address: huseyinyildirim1001@gmail.com (H. Yıldırım).

for comprehending human biology and holds potential for enhanc-
ing personalised treatment [15]. Examining the interaction between
a country’s currency and the stock market, the authors in [7] pre-
sented valuable insights for portfolio management. Studying the brain’s
functional network through intracranial EEG data, the work in [9] con-
tributed with new insights on the interaction between the dorsal and
ventral visual streams, strongly linked to human cognition. Introducing
a unified Bayesian Inference framework, the work in [10] proposed a
method to investigate animal social networks from observational data.
Comparing Dynamics Bayesian Network, Lasso Regression, and Pearson
Correlation coefficient methods on species’ presence–absence data, the
authors in [4] concluded that this type of data may not always pro-
vide sufficient information to reveal interactions. Consequently, they
emphasised the need for cautious interpretation of inferred networks.

The exploration of interactions between system units across disci-
plines often involves the use of networks, a well-studied domain em-
ploying various mathematical approaches [16]. The authors in [11] in-
troduced an approach that combines correlation with prior knowledge
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to select an appropriate cutoff in network inference, demonstrating
its implementation on untargeted metabolomics and transcriptomics
data. Studies in [12,13,17] delved into the properties of mutual in-
formation rate (MIR), emphasising its efficacy in capturing nonlinear
relations in time-series data compared to Pearson correlation. Despite
a slightly higher computational cost, information-theoretical meth-
ods, as discussed in [15], outperform Pearson correlation in capturing
also nonlinear inter-dependencies. In brain network analysis, the work
in [9] utilises the Phase Locking Values as a symmetric measure to
construct undirected networks and the directed transfer function to
investigate causal interactions between brain regions from intracra-
nial EEG data. While Bayesian network analysis focuses on directed
acyclic graphs, overlooking self-loop relations, it remains crucial in
some research areas [15]. To address this limitation, the Dynamic
Bayesian Network approach considers the probability distribution of
data. In [6], the authors enhanced the DYNOTEARS algorithm using
Dynamic Bayesian networks on time-series data, demonstrating its
application on both synthetic and real data from finance and molecular
biology. Despite significant progress in the field of network inference,
there are still many open questions [18].

One of the notable advancements in the field of network inference
is MIR, which quantifies the information flow per unit of time among
different nodes in a network [12,13]. As it was shown, MIR can success-
fully infer the structure in various types of networks and dynamics [13]
and real data sets [7]. However, a major challenge in using MIR is
the definition of an appropriate threshold for successful connectivity
inference. The authors in [19], implemented mutual information-based
tools to investigate differences in brain connectivity of post-stroke
patients with different levels of depression. They considered that 10%–
30% of pairs having maximum mutual information (MI) are connected,
leading to various network topologies. A way to address the problem
of defining a proper threshold (thresholding problem) was introduced
by the authors in [7], where they proposed the use of an additional
directed link to help infer the inter-dependencies among stock indices
and financial markets of countries worldwide. However, this involves
the use of additional data from chaotic logistic maps to compare with
the recorded data, which brings about the problem of choosing an
appropriate system or why choosing a system and not using the data
set itself to define a threshold. In light of this, the author in [14]
proposed another approach to tackle the thresholding problem: the use
of statistical, hypothesis tests based on surrogate data. This approach
considers the source of connectivity as a linear or phase relation among
pairs of nodes by comparing the MIR values of the original data with
the MIR values of random- or twin-surrogate data, which remove all
linear or phase relations in the signals. However, this is not taking
into account the different contributions of amplitude correlation and
phase synchronisation in the signals, to infer network structure. Also,
it does not provide insights into which surrogate method to use, namely
one that reshuffles only amplitudes, or one that reshuffles phases or a
combination of both?

To address this problem, we introduce here a new method to gen-
erate surrogate data, called the Amplitude-Phase Modulated Surrogate
Data (APMSD) method, that removes correlation and phase synchro-
nisation by randomising amplitudes and instantaneous phases in each
recorded signal. Our method addresses the case where one wants to
infer the structure of the network when the equations of motion and the
coupling adjacency matrix are known, that is the reverse-engineering
problem. It is based on the computation of MIR and statistical hypothe-
sis tests to infer network connectivity [14] using APMSD. The proposed
method compares the MIR values of pairs of signals from the network
with the MIR values of pairs of APMSD generated from the signals. In
particular, the APMSD method is based on [20,21] that provide detailed
insights into extracting phase measures from signals and on [2,22]
which are discussing how to use the Gabor transform to convert signals
into their analytic signals using the Hilbert transform. This enables

one to compute the instantaneous amplitudes and phases of a signal.

2 
Past studies revealed that signal dependencies are influenced by the
relations between amplitudes and phases [2,14]. Building upon this,
our method randomises both the amplitudes and phases using two
percentages, denoted by 𝑝𝑐1 and 𝑝𝑐2 in the paper, respectively. We
show that for all systems and networks studied, the method was able
to find at least one pair of percentages of randomisation in amplitudes
and instantaneous phases that leads to perfectly recovering the initial
network that was used to generate the dynamics. The novelty of our
method is that it can quantify the contribution of amplitude correlation
and phase synchronisation for successful network inference, revealing
the possibility of more than one pairs of percentages being able to infer
successfully the structure of the network. Finally, our results show that
our method can recover the network structure in coupled deterministic
and stochastic systems, Gaussian-distributed correlated data and in
heterogeneous networks with weighted connectivity.

The paper is organised as follows: Section 2 discusses the theoretical
background and introduces the APMSD method for the generation of
surrogate data. In Section 3, we present numerical results for networks
of coupled maps, Gaussian-distributed correlated data, coupled contin-
uous deterministic systems, coupled stochastic Kuramoto systems and
for dynamics on heterogeneous networks. Finally, in Section 4, we
discuss our findings and highlight the importance of our method in
relation to other approaches.

2. Theoretical background

We start by discussing the theoretical background of our approach,
which is based on the work in [7,13,14]. In particular, we start by dis-
cussing Shannon’s pioneering work on information [23] and Shannon
entropy. We then move on to discussing MI and MIR, which are based
on Shannon entropy and provide an algorithmic way to estimate them
from data following ideas in [7,12–14]. Next, we discuss hypothesis
testing using surrogate data following [14]. Finally, we introduce the
APMSD method, which is based on the analytic signal, introduced by
Gabor in 1946 [24], and Hilbert transform, and show how to construct
the parameter space of randomisation percentages in instantaneous
amplitudes and phases of surrogate data. This is important as the
parameter space can be used to identify pairs of percentages that lead
to recovering the original network.

2.1. Shannon entropy and mutual information

According to Shannon’s pioneering work in information theory [23],
Shannon entropy, 𝐻𝑋 , of a (discrete) random variable 𝑋, is a measure
of the uncertainty in 𝑋 and is given by

𝐻𝑋 = −
∑

𝑥∈
𝑝(𝑥) log 𝑝(𝑥), (1)

where 𝑥 is an event that belongs to the set of all possible events,
denoted by  and 𝑝(𝑥) is the probability of 𝑥 to occur. Unless otherwise
stated, all random variables will be discrete and hence we will drop the
use of the term ‘‘discrete’’.

Based on Shannon entropy (1), the mutual information 𝐼 between
random variables 𝑋 and 𝑌 , can be defined by

𝐼𝑋𝑌 = 𝐻𝑋 +𝐻𝑌 −𝐻𝑋𝑌 , (2)

where 𝐻𝑋𝑌 is the joint entropy of 𝑋 and 𝑌 . The MI quantifies the
amount of information exchanged between 𝑋 and 𝑌 and is a symmetric
quantity as 𝐼𝑋𝑌 = 𝐼𝑌 𝑋 . This means MI in Eq. (2) cannot be used to infer
causal effects. Using Eqs. (1) and (2), one can show that

𝐼𝑋𝑌 =
∑

𝑥∈

∑

𝑦∈
𝑝(𝑥, 𝑦) log

𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

, (3)

where  and  are the sets of all possible events in 𝑋 and 𝑌 , respec-
tively, 𝑝(𝑥, 𝑦) is the joint probability of events 𝑥 and 𝑦 occurring at the
same time in  and  and 𝑝(𝑥), 𝑝(𝑦) are the marginal probabilities of
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Fig. 1. Plot of the time series 𝑋 and 𝑌 in the plane [0, 1] × [0, 1] and a partition
of 𝑁 × 𝑁 = 5 × 5 = 25 cells of equal size 𝜖 = 1

𝑁
. The notations 𝐿𝑋 (4), 𝐿𝑌 (5) and

𝐿𝑋𝑌 (1, 2) denote the number of points in the purple column, red row and green cell,
respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

events 𝑥 and 𝑦 occurring in  ,  , respectively. We will use Eq. (3) in
the numerical calculations in the paper.

There are three methods to compute the probabilities in Eq. (3),
namely (a) the bin or histogram method [25], (b) the kernel density
method [26,27] and (c) the method of estimating probabilities from the
distances between closest neighbours [28]. Here, we will use the bin
method to calculate the probabilities in (3), using equal-size cells in a
partition of the probabilistic space 𝛺 formed by 𝑋 and 𝑌 , following [7,
13,14].

To compute the probabilities in (3), we start by assuming that we
have access to the time series of the random variables 𝑋 and 𝑌 . The
probabilistic space 𝛺 can then be partitioned in 𝑁 × 𝑁 cells of size
𝜖 = 1∕𝑁 . A 5 × 5 partition of equally-sized cells of two random
variables, 𝑋 and 𝑌 drawn from the uniform distribution, is shown in
Fig. 1, where 𝑋 and 𝑌 are both translated to the interval [0, 1], to avoid
numerical round-off errors in the computation of the probabilities. For
this reason, in the following, we will be translating all time-series in
this intervals and calculate the marginal and joint probabilities based
on the following definitions

𝑃𝑋𝑌 (𝑖, 𝑗) =
𝐿𝑋𝑌 (𝑖, 𝑗)

𝐿
, 𝑃𝑌 (𝑖) =

𝐿𝑌 (𝑖)
𝐿

, 𝑃𝑋 (𝑗) =
𝐿𝑋 (𝑗)
𝐿

. (4)

Here, 𝐿 is the length of the time series, 𝐿𝑋𝑌 (𝑖, 𝑗) is the number of points
in cell (𝑖, 𝑗), 𝐿𝑌 (𝑖) is the number of points in the 𝑖th row and 𝐿𝑋 (𝑗) the
number of points in the 𝑗th column, where 𝑖, 𝑗 = 1, 2,… , 𝑁 .

In this framework, 𝐼𝑋𝑌 depends on the number of bins, 𝑁 , that
partition 𝛺 into 𝑁2 equally-sized cells. Hence different partition sizes
result in different probability values, thus the probabilities in Eq. (4)
depend on 𝑁 . Consequently, 𝐼𝑋𝑌 depends on 𝑁 , which we denote
by 𝐼𝑋𝑌 (𝑁). We follow [7,13,14], to calculate the average 𝐼𝑋𝑌 across
partitions for increasing 𝑁 , by considering all 𝑁 values that satisfy

⟨𝑁𝑜(𝑁)⟩ ≥ 𝑁𝑜𝑐 , (5)

where ⟨𝑁𝑜(𝑁)⟩ is the mean number of points in all occupied cells
and 𝑁𝑜𝑐 the total number of occupied cells. Hence Eq. (5) gives the
maximum partition size, 𝑁𝑚𝑎𝑥, that guarantees the computations of the
probabilities in Eq. (4) are not affected by a large number of poorly
occupied or empty cells. By poorly occupied cells, we mean cells with
less than 𝑁 data points.
𝑜𝑐

3 
2.2. Mutual information rate

Based on Eq. (3), we can define MIR as a function of 𝑁 , MIR𝑋𝑌 (𝑁),
as the amount of information transferred between pairs of variables, 𝑋,
𝑌 , in partition 𝑁 , per unit of time and can express it by

MIR𝑋𝑌 (𝑁) = lim
𝐿→∞

𝐼𝑋𝑌 (𝑁)
𝐿

, (6)

where 𝐿 is the length of the time series, assuming both 𝑋 and 𝑌 have
the same length [7,13,14].

In memoryless systems, such as in chaotic systems, pairs of variables
lose their correlation after a correlation decay time, 𝑇 , meaning they
become unpredictable after this time. The authors in [12] have shown
that, in the case of finite length, 𝐿, and partition size, 𝑁 , MIR can be
approximated by

MIR𝑋𝑌 (𝑁) ≈
𝐼𝑋𝑌 (𝑁)
𝑇 (𝑁)

, (7)

where 𝑇 (𝑁) is the correlation decay time of pair 𝑋, 𝑌 in 𝛺, partitioned
in an 𝑁 × 𝑁 grid. Following [7,13,14], we compute 𝐼𝑋𝑌 (𝑁), 𝑇 (𝑁)
for all 𝑁 that satisfy Eq. (5). This gives the range of 𝑁 values, �̃� =
(𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥), where 𝐼𝑋𝑌 (𝑁), 𝑇 (𝑁) are computed. In our work, we
consider 𝑁𝑚𝑖𝑛 = 0.1𝑁𝑚𝑎𝑥 to guarantee 𝑁𝑚𝑖𝑛 is small enough compared
to 𝑁𝑚𝑎𝑥. In particular, we compute 𝐼𝑋𝑌 (𝑁) using Eq. (3) and 𝑇 (𝑁)
using the itinerary network approach in [13] to estimate the correlation
decay time for 𝑁 in �̃� . In an 𝑁 × 𝑁 partition of 𝛺, each cell is
regarded as a node in an itinerary network, 𝑁 , given by the 𝑁2 ×𝑁2

adjacency matrix 𝐺(𝑁) = {𝐺𝑖𝑗 (𝑁)} = {0, 1}, where 𝑖, 𝑗 = 1,… , 𝑁2.
Thus, an entry of 1 in 𝐺(𝑁) corresponds to the case where at least one
point in cell 𝑖 moves to cell 𝑗, and 0 otherwise. Consequently, 𝑇 (𝑁)
can be defined as the diameter of 𝑁 as 𝑇 (𝑁) is the minimum time it
takes for points in any cell of a partition in 𝛺 to spread to the whole
extent of 𝛺. By definition, the diameter of a network is the maximum
length of all shortest-paths, i.e., the minimum distance required to
cross the entire network. This approach transforms the calculation of
𝑇 (𝑁) into the calculation of the diameter of 𝑁 . In particular, we use
the built-in Matlab function ‘‘distances’’ to compute all shortest-path
lengths between pairs in 𝑁 and from those, the diameter of 𝑁 as the
maximum of all shortest-path lengths.

For a pair 𝑋, 𝑌 , we compute MIR𝑋𝑌 (𝑁) using Eq. (7) for all 𝑁 in
�̃� , and from that, MIR𝑋𝑌 as the average of MIR𝑋𝑌 (𝑁) over 𝑁 in �̃� . In
a network of 𝑁 nodes, there are 𝑁(𝑁−1)

2 unique pairs 𝑋, 𝑌 , excluding
self-connections and connections 𝑌 , 𝑋 as MIR𝑋𝑌 = MIR𝑌 𝑋 , i.e., the
MIR matrix is symmetric. This results in saving computational time as
one has to compute 𝑁(𝑁−1)

2 of 𝑋, 𝑌 pairs instead of 𝑁2 pairs.
The MIR matrix can be used to infer the structure of a network

when one has access to recorded data coming from the dynamics
on a network. In [29], the authors used thresholds to infer network
structure based on artificial data sets from toy dynamical systems by
considering an abrupt change in the ordered set of cross-correlation or
MI values, even in the presence of observational noise, non-identical
units, and coupling heterogeneity. The authors in [13] introduced
the double normalised MIR as a information-theoretical approach to
infer network structure in complex networks by using thresholds to
discriminate between connected and unconnected nodes, comparing
inferred networks with the original one. Building on [13], the work
in [7] uses a threshold to infer the structure of a network using artificial
and financial market data sets by sorting all normalised MIR values
in ascending order, and by identifying the first 𝑋, 𝑌 pair for which
the normalised MIR increases more than 0.1. All these works use a
thresholding approach. In this paper, we use the idea in [14] and
replace thresholds with a statistical approach that we discuss in the next
section, because in many cases there is no abrupt change or there are
more than one abrupt changes in the ordered MIR values as a function
of the 𝑋, 𝑌 pairs [14].
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2.3. Hypothesis testing using surrogate data

In statistics, hypothesis tests are routinely used to decide whether
data sufficiently support a particular hypothesis. This commonly in-
volves the calculation of a test statistic and a decision can be made
by evaluating a 𝑝-value computed from it. More generally, hypothesis
testing can be used in the analysis of dynamical systems to ascertain
nonlinear properties, such as for example phase synchronisation [30].
The use of surrogate data and hypothesis tests to identify connectivity
in complex networks is an approach proposed recently in [14]. In
that study, the author used random surrogate data (where amplitude
correlation and phase synchronisation are removed) and twin-surrogate
data [31] (where instantaneous phases are randomised in time), to infer
network connectivity by comparing MIR values of surrogate with MIR
values of original data.

Following [14], to infer the structure of a network from data using
hypothesis tests and surrogate data, one selects a significance level, 𝛼
and defines the null hypothesis, 𝐻0, and alternative hypothesis, 𝐻1 by

0 ∶ There is no connection between nodes 𝑋 and 𝑌 ,
𝐻1 ∶ There is a connection between nodes 𝑋 and 𝑌 .

In this context, the total number of surrogate data, ℵ𝑆𝐷, for hypothesis
testing should be ℵ𝑆𝐷 ≥

[

1
𝛼

]

, where [⋅] denotes the integer part of a

number. In this work, we decided to go with ℵ𝑆𝐷 =
[

1
𝛼

]

to reduce
computational costs.

The 𝑝-value associated with the null hypothesis, 𝐻0, is given by

𝑝𝑋𝑌 =
ℵ̃𝑆𝐷
ℵ𝑆𝐷

,

here ℵ̃𝑆𝐷 is the number of surrogate data whose MIR𝑋𝑌 is higher than
IR𝑋𝑌 of the original data set. Following [14], 𝑝𝑋𝑌 is the probability

f obtaining a test statistic that is as or more extreme than the observed
ne, assuming the null hypothesis is true. For example, if 𝑝𝑋𝑌 = 0.04,

it would mean that if the null hypothesis is true, there would be a
4% chance of obtaining the observed test statistic or a more extreme
one. If this is smaller than a predefined significance level, 𝛼, then we

ould reject the null hypothesis and would say that nodes 𝑋 and 𝑌
re connected. Generalising this concept, if 𝑝𝑋𝑌 < 𝛼, we can reject 𝐻0
nd accept 𝐻1, which means nodes 𝑋 and 𝑌 are connected. Next, we

repeat the above process for all 𝑁(𝑁−1)
2 uniquely defined pairs of nodes

𝑋 and 𝑌 , resulting in 𝑁(𝑁−1)
2 independent hypothesis tests. When 𝑘

ypotheses are tested simultaneously with the same significance level
, the probability of occurrence of false positives (i.e., rejecting the null
ypothesis when in fact it is true) is equal to 1 − (1 − 𝛼)𝑘, which can

lead to a high error rate [32]. This would lead to accepting many false
positive connections. Therefore, we use the False Discovery Rate (FDR)
method discussed in [33–35] to control for multiple-testing errors.
This will result in an 𝑁 × 𝑁 inferred adjacency matrix, �̃�, for all 𝑋
and 𝑌 pairs with 0s and 1s (binary matrix), where 0 (1) means no
onnection (connection) between 𝑋 and 𝑌 . As MIR𝑋𝑌 = MIR𝑌 𝑋 , �̃� is
symmetric matrix with 0s on the diagonal, since we do not consider

elf connections.
Based on the approach so far, for a given set of surrogate data sets,

ne can compute an inferred adjacency matrix, �̃�. Since in this work,
we know the original adjacency matrix, 𝐴, we used to generate the data
sets for network inference, we can compare 𝐴 with �̃� for different types
of surrogate data sets. This is because in a recorded data set, connectiv-
ity can be due to amplitude correlation and/or phase synchronisation
and different types of surrogate data sets might be more applicable than
others in inferring correctly 𝐴. The key idea in the proposed method,
discussed in the next section, is to generate appropriate surrogate data
sets that lack the cause, or the combination of causes, for connectivity
in the original data set. By combination of causes we mean connectivity
due to amplitude correlations and/or phase synchronisation. In the
next section, we will present a new approach that will help quantify
the contribution of amplitude correlation and phase synchronisation to

‘‘connectivity’’ in network dynamics, namely the APMSD method. f

4 
2.4. Amplitude-phase modulated surrogate data

Here, we introduce a new approach to generate surrogate data
sets for network inference, that we call Amplitude-Phase Modulated
Surrogate Data method. Since connectivity can be due to the contribu-
tion of amplitude correlation and/or phase synchronisation, which is
a priori unknown, our method transforms a signal 𝑥(𝑡) into its analytic
ignal, 𝑧(𝑡), an idea introduced by Gabor [24] in 1946, with the help
f the Hilbert transform. This allows us to compute the instantaneous
mplitude, 𝐴(𝑡), and instantaneous phase, 𝜃(𝑡), of the real signal, 𝑥(𝑡).
y introducing a percentage of randomisation 𝑝𝑐1 of the instantaneous
mplitude, 𝐴(𝑡), and 𝑝𝑐2 of the instantaneous phases, 𝜃(𝑡), we can
enerate a surrogate data set for 𝑥(𝑡) by computing the real part of
′(𝑡), where 𝑧′(𝑡) is the analytic signal of the randomised instantaneous
mplitude, 𝐴′(𝑡) and the instantaneous phases, 𝜃′(𝑡).

In particular, if 𝑥(𝑡) is the real signal of time recordings of a variable
, one can compute its analytic signal, 𝑧(𝑡) [24], by using the Hilbert

ransform as follows

(𝑡) = 𝑥(𝑡) + 𝑖𝐻[𝑥(𝑡)]

= 𝐴(𝑡)𝑒𝑖𝜃(𝑡) = 𝐴(𝑡)𝑐𝑜𝑠(𝜃(𝑡))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑅𝑒(𝑧(𝑡))

+𝑖 𝐴(𝑡)𝑠𝑖𝑛(𝜃(𝑡))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐼𝑚(𝑧(𝑡))

, (8)

here 𝐻 is the Hilbert transform of 𝑥(𝑡),

[𝑥(𝑡)] = 𝑝.𝑣.∫

∞

−∞

𝑥(𝑡 − 𝜏)
𝜋𝜏

𝑑𝜏. (9)

Here, 𝑝.𝑣. stands for the Cauchy principle value of the integral in Eq. (9)
and 𝐴(𝑡), 𝜃(𝑡) are the instantaneous amplitudes and phases of the real
ignal, 𝑥(𝑡), where 𝑖 is the imaginary unit in the complex plane. Next, we
ompute the randomised instantaneous amplitudes and phases, 𝐴′

𝑝𝑐1
(𝑡)

and 𝜃′𝑝𝑐2 (𝑡), respectively, by using a percentage, 𝑝𝑐1, of randomisation
f instantaneous amplitudes and 𝑝𝑐2 of randomisation of instantaneous
hases. We do that by randomly choosing 𝑝𝑐1 percent of 𝐴(𝑡) and 𝑝𝑐2

percent of 𝜃(𝑡), and replacing them with the same number of uniformly
andom numbers in the intervals 𝑥𝐴𝑟 , and 𝑥𝜃𝑟 , respectively, resulting in
𝐴′
𝑝𝑐1

(𝑡) and 𝜃′𝑝𝑐2 (𝑡). In this context, 𝑥𝐴𝑟 and 𝑥𝜃𝑟 are the intervals of real
umbers between the minimum and maximum values in 𝐴(𝑡) and 𝜃(𝑡)
f all 𝑁 recordings 𝑥(𝑡), respectively. Finally, we compute a surrogate
ata set, 𝑥′(𝑡), of 𝑥(𝑡) by computing
′(𝑡) = 𝐴′

𝑝𝑐1
(𝑡) cos(𝜃′𝑝𝑐2 (𝑡)),

hich is the real part of the randomised analytic signal 𝑧′(𝑡) (see
q. (8)). The output of these computations for any pair of percentages
f randomisation, 𝑝𝑐1 and 𝑝𝑐2, is an inferred adjacency matrix, �̃�. By
arying 𝑝𝑐1 and 𝑝𝑐2 in [0, 100]% and comparing the resulting �̃� with
he original adjacency matrix, 𝐴, one can identify the best choices of
airs that result in successful network inference, that is in �̃� = 𝐴. In
his work, we compare �̃� with 𝐴 by computing the True Positive Rate
TPR) and False Positive Rate (FPR)

PR = TP
TP + FN , FPR = FP

FP + TN ,

where TP are the true positive, FN the false negative, FP the false
positive and TN the true negative connections in the inferred adjacency
matrix, �̃� when compared with the original adjacency matrix 𝐴. Both
TPR and FPR take values in [0, 1] and we compute them for pairs of
percentages, (𝑝𝑐1, 𝑝𝑐2) in [0, 100]% × [0, 100]%. To keep computational
costs reasonable, we partition this space into an 11 × 11 grid, which
results in 121 pairs of (𝑝𝑐1, 𝑝𝑐2) on the nodes of this grid. When we
onsider the full data set, we plot the TPR values using the colour map
een, for example in panel (c) in Fig. 9, where TPR = 1 corresponds
o yellow. Furthermore, we plot FPR by red circles whose radii are
roportional to the FPR values, as long as these values are greater than
ero. If TPR = 1 and FPR = 0, then FPR is denoted by a green circle,
nd if TPR < 1 and FPR = 0, no circle is plotted. In this work, we opted
or an 11 × 11 grid to keep computational costs reasonable.
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Finally, for any length of the data set, we compute the correspond-
ing 11 × 11 parameter space, (𝑝𝑐1, 𝑝𝑐2), and based on that, we choose
the pair, 𝑝𝑐 = (𝑝𝑐1, 𝑝𝑐2), that gives us the smallest possible Euclidean
distance, 𝑑, between the pair of (TPR, FPR) that corresponds to 𝑝𝑐 and
to the point of perfect inference, (TPR, FPR) = (1, 0). In general, 𝑑 ranges
in [0,

√

2] as both TPR and FPR range in [0, 1]. In this context, perfect
inference corresponds to 𝑑 = 0, which means that 𝑝𝑐 generates an
nferred adjacency matrix that is equal to the original adjacency matrix,
.e., �̃� = 𝐴. Next, we plot TPR and FPR that corresponds to 𝑑, as a
unction of the time-length of the data set (see for example panel (d)
n Fig. 9). These plots are useful as they can help deduce the minimum
ime length it takes for the method to compute an inferred adjacency
atrix, �̃� that is the closest to 𝐴 on the 11 × 11 parameter space. This

lso includes the case where �̃� = 𝐴, that is the case of perfect inference.

. Results

Our method is addressing the case where one wants to infer the
onnectivity network when the equations of motion and the coupling
djacency matrix are known, but only used to generate the data sets
or network inference. We see this as a reverse-engineering problem
nd start our analysis by studying the case of a small-size network
f 4 nodes using the dynamics of coupled logistic maps. Following
his, we present the results of our analysis for bigger-size networks
n the case of discrete dynamics (coupled logistic and circle maps),
aussian-distributed (stochastic) data, continuous dynamics (coupled
orenz and Hindmarsh–Rose systems), coupled stochastic Kuramoto
scillators and heterogeneous dynamics and networks. In all cases, the
oupling adjacency matrices are binary, except the last one where it
s weighted. In terms of network types, we have used two networks
f 4 and 16 nodes and Erdős–Rényi random, Watts–Strogatz small-
orld and Barabási–Albert scale-free networks with number of nodes,
, varying between 4 and 30, following [14]. Our results show that our

pproach can correctly infer the structure of the connectivity matrices
n all cases studied.

.1. Quantification of amplitude correlation and phase synchronisation

In this work, we need to quantify the amplitude correlation and
hase synchronisation among nodes in a network. To do so, we use
hree measures, namely Pearson correlation (PC), Kuramoto phase
rder [36], and pairwise phase order or pairwise phase synchronisa-
ion [37]. We use the average PC over pairs of nodes as a measure of
mplitude correlation and the Kuramoto phase order, 𝜌, as a measure
f phase order in the system, which we report in Table 1.

We define PC between two time-series 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝐿} and
= {𝑦1, 𝑦2,… , 𝑦𝐿} of equal length 𝐿 by

R𝑋𝑌 =
∑𝐿

𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
√

∑𝐿
𝑖=1(𝑥𝑖 − 𝑥)2

∑𝐿
𝑖=1(𝑦𝑖 − 𝑦)2

, (10)

where 𝑥 and 𝑦 are the means of 𝑋 and 𝑌 , respectively.
Furthermore, we use the Kuramoto phase order [36], 𝜌 to quantify

the phase synchronisation in a system. The Kuramoto model [36] plays
a significant role in advancing our understanding on phase synchroni-
sation phenomena at large [38,39] and models the interactions of 𝑁
phase oscillators. It is given by

�̇�𝑖 = 𝜔𝑖 +
𝐾
𝑁

𝑁
∑

𝑗=1
𝑠𝑖𝑛(𝜃𝑗 − 𝜃𝑖), (11)

where 𝐾 is the coupling strength, 𝜃𝑖 are the phases and 𝜔𝑖 the limit
cycle frequencies of the oscillators. Consequently, the Kuramoto phase
order, 𝜌 is defined by [36]

𝜌(𝑡)𝑒𝑖𝛹 (𝑡) = 1
𝑁

𝑁
∑

𝑒𝑖𝜃𝑗 (𝑡), (12)

𝑗=1

5 
able 1
verage 𝑅, Stdev 𝑅, 𝜌 and MLE of the systems considered in this study. Note that all
values with 𝑝-values less than 0.05 are considered statistically significant and were

sed in the computation of average and standard deviation of 𝑅. See discussion in the
ext about 𝜌 and MLE.

Average 𝑅 Stdev 𝑅 𝜌 MLE

3.2.1 Introductory example
of logistic map

0.05 0.04 0.93 0.43

3.2.2 Logistic map 0.03 0.03 0.85 0.51
3.2.4 Circle map 0.01 0.004 0.83 1.33
3.3 Gaussian-distributed
data

0.61 0.20 0.30 –

3.4.1 The Lorenz system 0.02 0.02 0.24 0.99
3.4.2 The Hindmarsh-Rose
system

0.26 0.18 0.68 0.41

3.4.3 The Stochastic
Kuramoto oscillators

0.11 0.12 0.22 –

where 𝛹 is the mean of the phases, 𝜃𝑗 over all oscillators, 𝑁 is the
umber of oscillators and 𝜃𝑗 (𝑡) is the phase of the 𝑗th oscillator at time
. In the case of the coupled stochastic Kuramoto systems, 𝜃𝑗s are the
olutions to the systems, whereas in all other cases of the systems, 𝜃𝑗s
re computed through the Hilbert transform of the solutions to the
ystems.

We summarise the results of the computations of 𝑅 (10) (to quantify
mplitude correlation) and 𝜌 (12) (to quantify phase synchronisation)
n Table 1. In particular, we present in the second column the mean
C over the pairs of nodes whose 𝑝-values are less than 0.05 (sta-
istically significant correlation) and their standard deviation in the
hird column, showing that the Gaussian-distributed data (studied in
ub Section 3.3) are highly amplitude-correlated, in contrast to all
ther systems (rows in the table). In the case of discrete systems,
hase synchronisation is higher (the first three rows in the table) than
hase synchronisation of continuous and stochastic systems, Gaussian-
istributed data (last 4 rows in the table). The maximum Lyapunov
xponents (MLEs) of all discrete and continuous systems (last column
n the table) where computed as discussed in Sub Section 3.2 and show
hat all deterministic systems are chaotic. We have not calculated the
LEs of the systems in rows 4 and 7 as they are stochastic and denoted

hem by dashes in the table.

.2. Discrete systems

Next, we present the results of our analysis in the case of discrete
ime systems. We begin by iterating the data from the coupled logistic
nd circle maps, given,

𝑖
𝑛+1 = 𝑓 (𝑥𝑖𝑛, 𝑟)(1 − 𝛼) + 𝛼

𝑘𝑖

𝑁
∑

𝑗=1
𝐴𝑖𝑗𝑓 (𝑥𝑗𝑛, 𝑟), (13)

where 𝑥𝑖𝑛 is the 𝑛th iteration of the 𝑖th node, 𝛼 the coupling strength,
𝐴 the adjacency matrix of a given network, and 𝑘𝑖 the total degree of
the 𝑖th node. 𝑓 (𝑥𝑖𝑛, 𝑟) is the map defining the dynamics of the 𝑖th node
for the logistic map,

𝑓 (𝑥, 𝑟) = 𝑟𝑥(1 − 𝑥), (14)

and for the circle map,

𝑓 (𝑥, 𝑟) = 𝑥 + 𝑟 − 𝐾
2𝜋

sin(2𝜋𝑥) (mod 1). (15)

3.2.1. The case of a network of 4 nodes
We present the results of our method implemented on the coupled

logistic maps using Eqs. (13), (14) with 𝛼 = 0.1, 𝑟 = 4, and the adjacency
matrix, 𝐴, of the network in Fig. 2(a). As the main assumption in the
presented theory of MIR is that the 𝑋, 𝑌 variables are random, we need
to ensure the deterministic dynamics is chaotic as at the time it takes
for the correlation of states to become zero, the deterministic system
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Fig. 2. Results for the system of coupled logistic maps and small-size network discussed in Section 3.2.1. (a) Plot of the small-size network of 4 nodes. (b) Plot of the ordered 𝑅
values, where blue columns are for the unconnected nodes and purple ones for the connected ones, (c) Plot of the ordered MIR values, where the grey stripe is a set of thresholds
that results in successful network inference. The orange points are the MIR values of 10 surrogate data for each pair of nodes (column in the bar plot). Here we have used the
pair of percentages, (𝑝𝑐1 , 𝑝𝑐2) = (0, 60)%. (d) Plot of the parameter space of 𝑝𝑐1 and 𝑝𝑐2, where the colour map illustrates TPR and red circles, FPR (size proportional), and green
circles highlight pairs of parameters leading to correct network inference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
behaves as if it is stochastic. By this we mean that it takes some time
for the dynamics of a chaotic system to lose correlation with its past
(correlation decay time), after which, it becomes unpredictable as its
MLE is positive. The correlation decay time is of the order of magnitude
of the Lyapunov time, 1

MLE . Hence, after one Lyapunov time, one
cannot predict the future states of the system and the dynamics on
the 𝑋𝑌 plane will look as if they come from stochastic processes.
We compute the maximum Lyapunov exponents (MLE) [40,41] as a
function of time and compute the standard deviation of a sliding time
window of 500 MLEs. When the standard deviation of the 500 MLEs
in a window is smaller than a predefined threshold, 10−3, we consider
that the MLE converged to a value. If this value is positive, it is an
indication the dynamics is chaotic and we start recording the time
series for network inference after the last of these 500 time points.
Following this approach, in the case of the network of 4 nodes in panel
(a) in Fig. 2 and coupled logistic maps using Eqs. (13), (14), we have
found out that the MLE converges to about 0.51, which is an indication
of chaotic dynamics. This amounts to ignoring the first 1293 iterations
as transients, after which we start recording the data set for network
inference.

We plot the 𝑅 values of all pairs of nodes in the network in panel
(b) in Fig. 2 and all MIR values of all pairs of nodes in panel (c), as bar
plots. We have chosen this example as it is easy to see in panel (b) that
PC cannot infer the structure of the network correctly as one cannot
find a stripe for successful network inference. The reason is that the 𝑅
values of the indirectly connected pairs, 1–3 and 2–4, are higher than
those of the directly connected ones, 1–2, 2–3 and 3–4. In contrast, MIR
can infer correctly the structure of the network as the MIR values of
the connected nodes are higher than those of the indirectly connected
nodes, as can be appreciated in panel (c). Furthermore, in panel (d),
we plot the corresponding 11 × 11 parameter space from the APMSD
method from which we can deduce that there is a multitude of green
points that correspond to successful network inference (TPR = 1 and
FPR= 0). We plot 10 orange points in each column in panel (c) that
correspond to the MIR values of 10 surrogate data sets for uniquely
defined pairs of nodes and for the pair of percentages (𝑝𝑐1, 𝑝𝑐2) =
(0, 60), leading to perfect inference. We also present in Table 2 the 𝑅
values, MIR values and pairwise phase synchronisation values, 𝐶𝑖𝑗 , for
all pairs of nodes of the original data set and the surrogate data set.
6 
Following [37], we define pairwise phase synchronisation by

𝐶𝑘𝑙 = lim
𝐿→∞

|

|

|

|

|

|

1
𝐿

𝐿
∑

𝑛=1
𝑒𝑖[𝜃

𝑘
𝑛−𝜃

𝑙
𝑛]
|

|

|

|

|

|

, (16)

where 𝐿 is the length of the time series, 𝜃𝑘 the phase of the 𝑘th node
and 𝑖 is the imaginary unit in the complex plane.

For the pair of (𝑝𝑐1, 𝑝𝑐2) = (0, 60), randomisation of the instanta-
neous phases causes reduction in the phase synchronisation for all pairs
and increase in the 𝑅 values because the correlation is quite low in the
original data as can be seen in the second column in Table 2. However,
the MIR values of the connected pairs (1–2, 2–3, 3–4) of the surrogate
data are smaller than those of the original data set and the MIR values
of the unconnected pairs (1–3, 1–4, 2–4) of the surrogate data set are
larger than those of the original data set, leading to perfect inference
using our method. Finally, our analysis shows that this is actually the
case for all green points in the parameter space seen in panel (d) in
Fig. 2, demonstrating that the APMSD method can deal with different
phase and amplitude effects as these points correspond to different pairs
of percentages that lead to successful network inference.

Next, we discuss down-sampling effects on the performance of the
APMSD method (see Fig. 3) using the same dynamics and networks of
105 recordings as in Fig. 2. Furthermore, if we assume these recording
were taken in the time interval [0, 10] sec. for simplicity, then the
sampling rate is 104 Hz, meaning that 104 data points were recorded in
a second. To demonstrate the effectiveness of our APMSD method for
down-sampled datasets, we reduced the number of data points at the
same time interval to obtain 4 time-series with sampling rates 5 KHz
(panel (a)), 100 Hz (panel (b)), 20 Hz (panel (c)), 10 Hz (panel (d)).
Our results show that the APMSD method is successful for sampling
rates down to about 10 Hz which corresponds to the data set of only
100 data points. We see that the method is still successful for a data
set as small as 200 data points, that corresponds to a sampling rate of
20 Hz. We conclude that the method is effective down to very small
data sets, for example, for data sets of as many as 200 data points.

3.2.2. The case of coupled logistic maps
We present the results of our method on the coupled logistic maps

using Eqs. (13), (14) with 𝛼 = 0.06, 𝑟 = 4, and the adjacency matrix, 𝐴,
of the network in Fig. 4(a). We made sure the dynamics of the system is
chaotic by computing the MLE [40,41] and the standard deviation of a
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Table 2
𝑅, MIR, 𝐶𝑖𝑗 values for pairs of nodes from the original data set and average 𝑅, average MIR, average 𝐶𝑖𝑗 over 10 surrogate data sets for each
pair of nodes of the network in panel (a) in Fig. 2. Note that the numbers in the surrogate data section have been computed for the pair of
percentages, (𝑝𝑐1 , 𝑝𝑐2) = (0, 60)% and that standard deviation values, denoted bold in round brackets, in the table are multiplied by 10−3.
Pairs Original data Surrogate data

𝑅𝑖𝑗 MIR𝑖𝑗 𝐶𝑖𝑗 𝑅𝑖𝑗 (Stdev ×10−3) MIR𝑖𝑗 (Stdev ×10−3) 𝐶𝑖𝑗

1–2 0.056 0.031 0.8328 0.12 (1.9) 0.012 (0.41) 0.74
1–3 0.09 0.004 0.8201 0.15 (3.4) 0.0061 (0.30) 0.74
1–4 −0.009 0.0007 0.7963 0.10 (2.0) 0.0027 (0.22) 0.73
2–3 0.06 0.016 0.8335 0.13 (3.5) 0.008 (0.40) 0.74
2–4 0.09 0.038 0.82 0.15 (2.4) 0.0064 (0.38) 0.74
3–4 0.06 0.032 0.83 0.12 (2.6) 0.0118 (0.80) 0.74
Fig. 3. Down-sampling effects on the APMSD method. Panel (a) shows the plot of the parameter space, (𝑝𝑐1, 𝑝𝑐2), for a down sampled data set of 5 kHz sampling rate. Panel
(b) is similar to panel (a), for a down sampled data set of 100 Hz sampling rate. Panel (c) for 20 Hz. Panel (d) for a down sampled data set of 10 Hz. Note that the colour
map illustrates TPR and red circles, FPR (size proportional), and green circles highlight pairs of parameters that lead to successful network inference. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
sliding time window of 500 MLEs, as a function of time. We considered
the MLE converged to a positive value, about 0.51, when the standard
deviation of the 500 MLEs in a time window is smaller than 10−3, as
also discussed in Section 3.2.1. This amounts to removing the first 1293
iterations as transients, after which we start recording the data set for
network inference.

Moreover, we plot in Fig. 4(b) the ordered MIR values of the 435
uniquely defined pairs of nodes in the network shown in panel (a),
from the lowest to the highest. The grey stripe shows the gap between
connected (indicated by purple bars) and unconnected (indicated by
blue bars) pairs, and is classifying them into connected and uncon-
nected ones. Fig. 4(c) shows the results of the application of the APMSD
method in the parameter space with randomisation parameters of
amplitudes and phases, 𝑝𝑐1 and 𝑝𝑐2. In particular, TPR is represented by
a colour and FPR by a circle, if FPR > 0. Specifically, yellow shows pairs
of parameters with TPR = 1, while FPR is represented by red circles
proportional to their size, if FPR > 0. If FPR = 0, then, no red circle is
plotted. The pairs of percentages resulting in perfect inference, 𝐴 = �̃�,
are indicated by green circles. The set of surrogate data randomising the
amplitudes and phases at the pairs of percentages indicated by green
circles, results in perfect inference. As we can see in panel (c), perfect
inference corresponds to pairs of percentages that point to the case
where connectivity is due to the combination of amplitude correlation
and phase synchronisation. Finally, we plot in Fig. 4(d) the evolution
7 
of TPR and FPR as a function of time-series length in [500, 105]. To
compute this plot for each time length considered, we generated the
corresponding parameter space of percentages and selected the pairs of
percentages (TPR, FPR) that result to the minimum Euclidean distance
on the ROC plot, 𝑑, from the point (TPR, FPR) = (1, 0). As we can
see, the method requires at least 3 × 104 data points to achieve perfect
network inference. We note that we do not plot FPR = 0 as the vertical
axis in panel (d) is in logarithmic scale.

3.2.3. The case of mixed-type dynamics
In Fig. 5, we present an example of weakly coupled dynamics

following [13], where the authors show MIR can infer successfully
the structure of the network, whereas MI cannot, as there are two
distinctly different time scales in the system. In particular, we consider
the same network of 6 nodes as in [13], shown also in panel (a)
herein, where the dynamics of nodes 1, 2, 3 (denoted by orange) is
given by coupled logistic maps and the dynamics of nodes 4, 5, 6
(denoted by turquoise) by the 3rd-order composition of the logistic
map, i.e., 𝑓 (3)(𝑥, 𝑟) = 𝑓◦𝑓◦𝑓 (𝑥, 𝑟), where 𝑓 is the logistic map in
Eq. (14). Here, we have considered the case 𝑟 = 3.9 for all nodes in
the network and the coupling strength, 𝛼 = 0.01 that corresponds to
a case where the two sub-networks are weakly connected, exhibiting
dynamics with different time scales. We have chosen this case as it
is very close to the case of two disconnected networks with different
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Fig. 4. Results for the system of coupled logistic maps and network discussed in Section 3.2.2. (a) Plot of the small-world network with 30 nodes. (b) Plot of the ordered MIR
values, where the grey stripe classifies the pairs of nodes into connected (indicated by purple bars) and unconnected (indicated by blue bars). (c) Plot of the parameter space of
𝑝𝑐1 and 𝑝𝑐2, where the colour map illustrates TPR and red circles, FPR (size proportional), and green circles indicate pairs of parameters leading to perfect network inference. (d)
The evolution of TPR and FPR over time-series length is shown. The method requires more than 3 × 104 data points to find at least one pair of randomisation parameters, 𝑝𝑐1, 𝑝𝑐2
that results in perfect inference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
dynamics. The reason that MI fails in this case (see panel (c) in Fig. 5)
is that there are two different time scales in the system, and that the two
disconnected subsystems have distinctly different positive maximum
Lyapunov exponents, meaning that the two subsystems have different
correlation decay times. This is also backed by the findings in Fig. 6,
where we show that the MLEs of the two disconnected subsystems (sub-
system 1: nodes 1, 2, 3 and subsystem 2: nodes 4, 5, 6) converge to two
distinctly different positive values, about 0.48 and 1.52, respectively.
Since MIR is defined as the MI over the correlation decay time, which
is affected by the two different time scales, allows to infer correctly the
structure of the network (see panel (d) in Fig. 5). Importantly, we also
showed in panel (e) that the APMSD method can also infer correctly the
structure of the network, as there is one green point, with coordinates
(𝑝𝑐1, 𝑝𝑐2) = (0, 100) %, that corresponds to perfect inference, meaning
that TPR = 1 and FPR = 0. We have made sure that for stronger
coupling strengths such as 𝛼 = 0.05, 0.1, both MI and MIR can infer
successfully the structure of the network. Moreover, we have computed
the absolute value of the Pearson correlation for all pairs of nodes in
the network and have seen that it fails to infer correctly its structure
(see panel (b) in Fig. 5). The failure of Pearson correlation and MI to
infer successfully the structure of the network is manifested in panels
(b) and (c) by the lack of grey stripes, in contrast to the grey stripe that
can be seen in panel (d) for MIR. Concluding, we present an example
where Pearson correlation and MI fail, whereas MIR and the APMSD
method are successful.

3.2.4. The case of coupled circle maps
Next, we present the results of the proposed method on the system

of coupled circle maps, given by Eqs. (13), (15), where 𝛼 = 0.03,
𝑟 = 0.35, 𝐾 = 6.91. We used the adjacency matrix 𝐴 of the network
in Fig. 7(a) and, following the data generation process in Section 3.2.2
to ensure the dynamics is chaotic, the first 2060 iterations were con-
sidered transients for the predefined threshold 10−3 and were hence
discarded. Next, we started recording 105 data points after the first
2060 iterations, and computed the MLE, which converges to 1.33,
providing evidence the dynamics is chaotic.

Fig. 7(b) shows the ordered MIR values and the grey stripe classifies
them into connected and unconnected pairs of nodes. Similarly, the
set of surrogate data in panel (c) that randomise the amplitudes and
8 
phases of the original data at the levels indicated by green circles, result
in perfect inference. Here, using the APMSD method and randomising
only the amplitudes (on the upper-left corner) and some combinations
of amplitude and phase randomisation (other cells indicated by green
circles), leads to perfect network inference, implying that 𝐴 = �̃�. Lastly,
we plot TPR and FPR as a function of the time-series length in Fig. 7(d),
which shows the method requires at least 104 data points to achieve
perfect inference.

3.3. The case of Gaussian-distributed data

Here, we consider data generated by a multivariate Gaussian distri-
bution with given mean vector, 𝜇, and covariance matrix, 𝛴, following
the 𝑑-dimensional probability density function,

𝑓 (𝑥, 𝜇, 𝛴) = 1
√

|𝛴|(2𝜋)𝑑
𝑒−

1
2 (𝑥−𝜇)𝛴

−1(𝑥−𝜇)𝑇 , (17)

where 𝑑 is the number of variables, 𝜇 the mean vector of variables, 𝑇
the transpose of a vector and |𝛴|, the determinant of 𝛴 shown below.
We considered 𝜇 = 0, 𝑑 = 𝑁 = 9 and the covariance matrix

𝛴 =

⎛
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,

which results to the connectivity in Fig. 9(a).
Using 𝛴, we can generate a data set, 𝐷 = (𝑥1, 𝑥2,… , 𝑥9), by choosing

random numbers from the probability density function (17) for each
random variable 𝑥𝑖, 𝑖 = 1,… , 9 and use 𝐷 as the data set for network
inference.

As 𝐷 is generated by the multivariate Gaussian probability density
function (17), we can use the entries of 𝛴 to compute the linear
correlation, 𝑅𝑖𝑗 , among pairs of variables, 𝑥𝑖 and 𝑥𝑗 , by

𝑅𝑖𝑗 =
𝛴𝑖𝑗

√
, (18)
𝛴𝑖𝛴𝑗
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Fig. 5. Results for the system of mixed dynamics and network discussed in Section 3.2.3. (a) Plot of the network of 6 nodes arranged in two subsystems of 3 nodes each. (b) Plot
of the ordered 𝑅 values (c) Plot of the ordered MI values (d) Plot of the ordered MIR values, where the narrow grey stripe classifies the pairs of nodes into connected (indicated
by purple bars) and unconnected (indicated by blue bars) pairs (e) Plot of the parameter space of 𝑝𝑐1 and 𝑝𝑐2, where the colour map illustrates TPR and red circles, FPR (size
proportional), and green circles indicate pairs of parameters leading to perfect network inference. Note that the absence of stripes in panels (b) and (c) indicates PC and MI cannot
infer successfully the structure of the network in panel (a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 6. Plot of the MLEs of the two disconnected subsystems discussed in Section 3.2.3, as a function of time-series length. Here, the orange curve is the evolution of the MLE
of subsystem 1 of nodes 1, 2, 3 (see panel (a) in Fig. 5) and the turquoise curve the evolution of MLE of subsystem 2 of nodes 4, 5, 6 (see panel (a) in Fig. 5). Note that the
time-series length is also the number of iterations of the system.
where 𝛴𝑖𝑗 is the entry (𝑖, 𝑗) of 𝛴, and 𝛴𝑖, 𝛴𝑗 are the 𝑖th and 𝑗th elements
on the diagonal of 𝛴. This results to the correlation matrix

𝑅 =

⎛
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⎠

(19)

based on 𝛴 (see Eqs. (17), (18)). The values of 𝑅 range in [−1, 1] and
the closer the correlation value is to −1 or 1, the stronger the linear
anti-correlation or correlation between variables 𝑥 and 𝑥 is. If instead
𝑖 𝑗

9 
𝑅𝑖𝑗 is close to zero, then 𝑥𝑖 and 𝑥𝑗 are not linearly anti-correlated or
correlated.

Fig. 8 shows the plots of 𝑥𝑖 versus 𝑥𝑗 for all 𝑖, 𝑗 = 1,… , 9, which
corroborate the results of the correlation matrix, 𝑅 in Eq. (19). For
example, Fig. 8 shows that pair 𝑥1, 𝑥3 is highly anti-correlated as the
points form a cigar-shaped cloud, falling very close to a line with
a negative slope. This is backed by 𝑅13 = −0.97 in Eq. (19), that
indicates the pair 𝑥1, 𝑥3 is strongly anti-correlated. An intermediate case
of correlation can be seen, for example, in the case of pair 𝑥2, 𝑥3, for
which its plot in Fig. 8 looks like a wide cloud of points compared
to the plot of pair 𝑥1, 𝑥3 in the same figure. This is a case of weaker
positive correlation and it is further corroborated by its corresponding
𝑅 value in Eq. (19), which is 0.57. Finally, an interesting case arises for
the pair 𝑥8, 𝑥9, as its plot in Fig. 8 shows an expanded cloud of points,
indicating very weak correlation, as also backed by the corresponding
𝑅 value which is given by 𝑅89 = −0.24 in Eq. (19). For this reason,
we consider there is no connection between 𝑥 , 𝑥 , as also shown in
8 9
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Fig. 7. Results of the system coupled circle map discussed in Section 3.2.4. (a) Network topology with 16 nodes and panels (b) - (d) present similar plots as in Fig. 4.
Fig. 8. Plot of points of pairs 𝑥𝑖 , 𝑥𝑗 where 𝑖, 𝑗 = 1,… , 9, where highly correlated
pairs are represented by cigar-shaped clouds of points, weakly correlated pairs by
wider, cigar-shaped clouds of points and non-correlated ones by circular-like scattered
points. The plots of nodes with themselves (along the diagonal of the figure) show the
distribution of points of nodes 𝑥𝑖. Note that highly anti-correlated pairs are represented
by cigar-shaped clouds of points with negative slope and that highly correlated pairs
by cigar-shaped clouds of points with positive slope.

panel (a) in Fig. 9. In particular, this panel shows the network of all
connections, 𝐴, that results from 𝑅 and Fig. 8, and will be compared
with the inferred adjacency matrices, �̃�, that will be computed by the
proposed method.

Furthermore, in Fig. 9(b), we plot the ordered MIR values, from the
lowest to the highest, of the 36 uniquely defined pairs of nodes in the
network in panel (a). We can see that there is a noticeable gap between
connected (purple bars on the right) and unconnected (blue bars on the
left), depicted by the horizontal grey stripe, with its width denoting the
height of the gap. This stripe is actually classifying the pairs of nodes
into connected and unconnected ones. Panel (c) shows the results of
the proposed method for percentages 𝑝𝑐1 and 𝑝𝑐2 ranging in [0, 100]%.
Particularly, it shows TPR and FPR as functions of 𝑝𝑐1 and 𝑝𝑐2, where
TPR is represented by the colours in the colour map and FPR by the
red and green circles as discussed in Section 2.4. From this parameter
10 
space, we can deduce that there is at least one pair of percentages that
corresponds to perfect inference (TPR = 1 and FPR = 0), meaning that
�̃� = 𝐴, depicted by yellow (TPR = 1) and a green circle (FPR = 0). It
is worth it to note that all pairs of percentages with (a) yellow (TPR
= 1) and red circle (FPR > 0) or with (b) TPR < 1, depicted by non-
yellow colours, correspond to imperfect network inference, meaning in
these cases, �̃� ≠ 𝐴. The surrogate data, lacking amplitude correlation
and phase synchronisation as indicated by the green circles in the
parameter space, lead to successful network inference, whereas those
that destroy them, do not (e.g., the upper-right region of the parameter
space corresponds to (𝑝𝑐1, 𝑝𝑐2) = (100, 100)%, and the bottom-right to
(𝑝𝑐1, 𝑝𝑐2) = (0, 100)%). To deduce the minimum time length required
for the method to infer the network, we compute the parameter space
considering time lengths in the range [500, 105]. For every cell, we
compute the Euclidean distance of the point (TPR, FPR) to the point
(1, 0) of perfect inference, denoted by 𝑑. Fig. 9(d) shows the pair of TPR
and FPR values that result in the minimum 𝑑, for each time length.
If there is at least one pair of randomisation parameters that leads
to perfect inference, the figure shows that (TPR, FPR) = (1, 0) for the
considered time length. It is worth noting that FPR is not shown if
it is equal to zero due to the logarithmic scale of the vertical axis.
The method requires at least 500 data points to successfully infer the
network structure.

3.4. Continuous systems

Here, we move on to the results of the APMSD method imple-
mented on continuous-time systems, including the coupled Lorenz sys-
tem, Hindmarsh–Rose system and Kuramoto phase oscillators with
stochasticity.

3.4.1. The case of coupled Lorenz system
The Lorenz system,

�̇�𝑖 = 𝜎(𝑦𝑖 − 𝑥𝑖)

�̇�𝑖 = 𝑥𝑖(𝜌 − 𝑧𝑖) − 𝑦𝑖
�̇�𝑖 = 𝑥𝑖𝑦𝑖 − 𝛽𝑧𝑖,

is a three-dimensional system of ordinary differential equations mod-
elling air convection between two plates parallel to the ground: one
plate cooling uniformly from above, and the other heating uniformly
from below [42]. In this context, 𝜎, 𝑟 and 𝛽 are positive constants and
are proportional to the Prandtl number, Rayleigh number, and certain
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Fig. 9. Results of Gaussian-distributed data. (a) Network topology is depicted, assuming pairs are connected if the absolute value of the Pearson correlation between them is higher
than 0.5. (b) Plot of the ordered MIR values, where purple bars represent the connected and blue bars the unconnected ones. The grey stripe classifies the pairs into connected
and unconnected ones. (c) Plot of parameter space of 𝑝𝑐1 and 𝑝𝑐2, where the colour map illustrates TPR, with red circles indicating FPR (size proportional), green circles highlight
pairs of parameters that lead to perfect network inference. (d) The evolution of TPR and FPR over time length is also presented. The method requires at least 500 data points
to find at least one pair of randomisation parameters, 𝑝𝑐1, 𝑝𝑐2 that result to perfect inference. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
𝑛

physical dimensions of the air-layer itself, respectively [43]. Here, we
consider the interaction among 𝑁 coupled Lorenz systems,

�̇�𝑖 = 𝜎(𝑦𝑖 − 𝑥𝑖) +𝐾
𝑁
∑

𝑗=1
𝐴𝑖𝑗 (𝑥𝑗 − 𝑥𝑖),

�̇�𝑖 = 𝑥𝑖(𝑟 − 𝑧𝑖) − 𝑦𝑖 (20)
�̇�𝑖 = 𝑥𝑖𝑦𝑖 − 𝛽𝑧𝑖,

where the 𝑥 variable is proportional to the speed of circulatory con-
vection, 𝑦 to the horizontal heat variation and 𝑧 to the vertical heat
variation. The model parameters obtain the values: 𝜎 = 10, 𝑟 = 28, 𝛽 =
8
3 , and the coupling strength 𝐾 = 0.2. The initial states for the 𝑖th node
are 𝑥𝑖0 = 0.1+0.5𝜉, 𝑦𝑖0 = −0.19+0.5𝜉 and 𝑧𝑖0 = −0.27+0.5𝜉, for uniformly
random numbers 𝜉 in [0, 1]. 𝐴 is the adjacency matrix of the network of
12 nodes shown in Fig. 10(a). The system is numerically solved using
the 4th–5th order Runge–Kutta method in [44], by adapting the built-in
Matlab function ode45 to output at multiples of the step size ℎ = 0.1.
In our simulations, we used the final integration time 𝑡𝑓 = 2 × 104.
Following again the data generation process discussed in Section 3.2.2,
we discarded the initial 2094 time points as they are transients, using
the predefined threshold 10−2. In this framework, the MLE of the
system converges to 0.99, indicating the dynamics is chaotic. We used
the 𝑥 variable as a probe for network inference as it is involved in the
coupling function in Eq. (20).

Fig. 10(b) shows the ordered MIR values of the pairs where the
grey stripe classifies the connected (indicated by purple bars) and
unconnected (indicated by blue bars) pairs of nodes. In a similar way,
the set of surrogate data that randomise the amplitudes and phases of
the original data at different levels, indicated by green circles, result in
perfect inference. Here, using the APMSD method by randomising all
amplitudes and almost all phases, leads to perfect inference, implying
that 𝐴 = �̃�. This means that the nodes are connected due to the
combination of high levels of amplitude correlation and phase synchro-
nisation. Panel (d) shows the evolution of TPR and FPR as a function of
time length in a logarithmic scale. The method requires at least 1.5×105
data points to infer the network structure successfully for at least one
pair of randomisation parameters, 𝑝𝑐 and 𝑝𝑐 .
1 2

11 
3.4.2. The case of coupled Hindmarsh–Rose system
The Hindmarsh–Rose (HR) system replicates the activity of a single

neuron, taking into account the disparity in electric potential between
its interior and exterior. Here, we consider interactions among HR
neurons by adding a coupling term for electrical connections among
𝑁 neurons and obtain the coupled HR system,

�̇�𝑖 = 𝑞𝑖 − 𝑎𝑝3𝑖 + 𝑏𝑝2𝑖 − 𝑛𝑖 + 𝐼𝑒𝑥𝑡 − 𝑔𝑙
𝑁
∑

𝑗=1
𝐶𝑖𝑗𝐻(𝑝𝑗 )

�̇�𝑖 = 𝑐 − 𝑑𝑝2𝑖 − 𝑞𝑖 (21)
̇𝑖 = ℎ[𝑠(𝑝𝑖 − 𝑝0) − 𝑛𝑖],

where 𝑝 represents the membrane potential, 𝑞 is related to the fast
current (𝑁𝑎+ or 𝐾+), and 𝑛 is associated with the slow current (𝐶𝑎+2)
of the neuron. The remaining of the parameters in the model are set
as follows: 𝑎 = 1, 𝑏 = 3, 𝑐 = 1, 𝑑 = 5, ℎ = 0.05, 𝑠 = 4, 𝑝0 = −1.6, and
𝐼𝑒𝑥𝑡 = 3.25. These parameters are chosen to induce chaotic behaviour
characterised by spike bursting activity. Here we have used 𝐻(𝑝𝑗 ) = 𝑝𝑗
following [13]. The Laplacian matrix 𝐶 is derived from the equation
𝐶 = 𝐴−𝐷, where 𝐴 is the adjacency matrix of the network with 𝑁 = 12
nodes, shown in Fig. 11(a), and 𝐷 is the corresponding node-degree,
diagonal, matrix. The coupling strength of the system, 𝑔𝑙, is set to 0.1
and the initial conditions for 𝑖 = 1,… , 𝑁 , are

𝑝𝑖0 = −1.30784489 + 0.5𝜉𝑖,

𝑞𝑖0 = −7.3218132 + 0.5𝜉𝑖,

𝑛𝑖0 = 3.35299859 + 0.5𝜉𝑖,

where 𝜉𝑖 is a uniformly random number in [0, 1]. The system is solved
numerically using the 4th-5th order Runge–Kutta method [44], by
adapting the built-in Matlab function ode45 to output at multiples of
the constant time step ℎ = 0.1. The final integration time is set to 𝑡𝑓 =
2×104. Based on the data generation process described in Section 3.2.2
for the predefined threshold 10−3, the MLE of the system was found
to converge to 0.41, which is evidence of chaotic behaviour. In this
case we discarded the first 6641 data points as they are transients and
started recording 2 × 105 data points after the transient period. Finally,
we used the 𝑝 variable as a probe for network inference as it is involved
in the coupling function in Eq. (21).
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Fig. 10. Results of the coupled Lorenz system (20). (a) Network topology with 16 nodes is presented. Panels (b)–(d) depict similar plots as in Fig. 4. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Results for the coupled Hindmarsh–Rose system (21). (a) The network topology used with 12 nodes. Panels (b)–(d) show similar plots as in Fig. 4.
Fig. 11(b) shows the ordered MIR values of the pairs of nodes,
where the grey stripe shows the jump in MIR values between connected
and unconnected pairs of nodes, indicated by purple and blue bars,
respectively. Looking at panel (c), there are pairs of randomisation
parameters, 𝑝𝑐1, 𝑝𝑐2, indicated by green circles in the parameter space,
that lead to perfect inference. This is evidence connectivity in the
system is due to a combination of amplitude correlation and phase syn-
chronisation, since the surrogate data lacking them at different levels
result in successful network inference. Panel (d) shows the evolution
of TPR and FPR as a function of time length in logarithmic scale. To
infer network correctly, meaning that TPR = 1 and FPR = 0, the method
requires at least 2 × 105 data points. This means there are no pairs of
percentages, indicated by green circles in the parameter space, if the
whole data set is not considered.

3.4.3. The case of coupled stochastic Kuramoto system
The Kuramoto model plays a significant role in advancing our

understanding on phase synchronisation phenomena at large [38,39].
Here, we will start by considering the deterministic system of 𝑁
12 
coupled Kuramoto oscillators [45] given by

�̇�𝑖 = 𝜔𝑖 +
𝐾
𝑁

𝑁
∑

𝑗=1
𝐴𝑖𝑗𝑠𝑖𝑛(𝜃𝑗 − 𝜃𝑖), (22)

where 𝐾 is the coupling strength, 𝜃𝑖 are the phases and 𝜔𝑖 the limit
cycle frequencies of the oscillators.

Next, we will introduce a stochastic term to system (22) defined
by a Wiener process, following [14], to assess the performance of the
APMSD method in the coupled stochastic system

𝑑𝜃𝑖 = 𝜔𝑖𝑑𝑡 +
𝐾
𝑁

𝑁
∑

𝑗=1
𝐴𝑖𝑗𝑠𝑖𝑛(𝜃𝑗 − 𝜃𝑖)𝑑𝑡 +𝐷𝑑𝑊 𝑖

𝑡 , (23)

where 𝐴 is the adjacency matrix of the network with 𝑁 = 16 nodes,
shown in Fig. 12(a), 𝑤𝑖 the internal frequency of node 𝑖, for 𝑖 = 1,… , 𝑁 ,
randomly chosen 𝜔𝑖 in [−2𝜋, 2𝜋], leading to non-identical oscillators.
The stochastic strength is set to 𝐷 = 0.05, the coupling strength to
𝐾 = 4 and 𝑊 𝑖

𝑡 is the Wiener process for the 𝑖th node at time 𝑡,
where 𝑊 𝑖

𝑡+1 −𝑊 𝑖
𝑡 ∼  (0, 1) and 𝑊𝑡 are independent of previous steps.

We solved numerically the stochastic system (23) using the Euler–
Maruyama method by implementing the built-in Matlab function sde,
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Fig. 12. Results of the system of coupled stochastic Kuramoto system (23). (a) The network of 16 nodes. Panels (b)–(d) show similar plots as in Fig. 4. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
with step size, ℎ = 0.05, and final integration time 𝑡𝑓 = 25,000. The
initial conditions for 𝜃𝑖s are uniformly randomly chosen in [0, 2𝜋]. The
first half of the data were considered as transient, therefore, the last
250,000 data points were used in network inference. Due to the linear
trend of the phases over time, they are highly correlated, rendering
them unsuitable for use as a probe for network inference. Thus, we
used the instantaneous frequencies as a probe computed by [20]

𝑓𝑖 =
1
2𝜋

�̇�𝑖. (24)

Fig. 12(b) shows the ordered MIR values for connected and uncon-
nected nodes, denoted by purple and blue bars, respectively. Notably,
there is no grey stripe distinguishing connected pairs of nodes from
unconnected ones, rendering it a challenging case. However, as demon-
strated in Fig. 12(c), the APMSD method can successfully infer the
network structure, i.e., for pairs of percentages (𝑝𝑐1, 𝑝𝑐2) = (90, 100).
Panel (d) shows the evolution of TPR and FPR over time. From this, we
can conclude the proposed method can infer successfully the network
structure for at least one pair of percentages, 𝑝𝑐1 and 𝑝𝑐2, as long as
there are at least 2.5 × 104 data points available.

Next, we implemented the APMSD method on the instantaneous
frequencies of the coupled stochastic Kuramoto oscillators for 𝐷 in
[0, 0.2]. We considered different network types, including a network
of 16 nodes with 26 links, Watts–Strogatz small-world, Erdös–Rényi
random, and Barabási–Albert scale-free networks with 30 nodes and
comparable numbers of links: 60, 55, and 57, respectively. The reason
for choosing networks of the same size with comparable numbers of
links is to keep the network density similar. This helps mitigate the
influence of factors other than network types on network inference. Our
approach allows us to focus specifically on the effect of randomness and
different network structures.

Similarly, we numerically solved Eqs. (23) for 𝐷 in [0, 0.2] and for
the adjacency matrices, 𝐴, of the network of 16 nodes with 26 links,
Watts–Strogatz small-world, Erdös–Rényi random, and Barabási–Albert
scale-free networks with 30 nodes and comparable numbers of links:
60, 55, and 57, respectively. We used a step size of ℎ = 0.05 and
final integration time, 𝑡𝑓 = 2.5 × 105. We considered time lengths in
[500, 105], focusing on the last 105 data points for network inference by
computing their instantaneous frequencies using Eq. (24). For each of
these networks, 𝐷 and time-series length, the APMSD method resulted
in 121 pairs of (TPR, FPR). From these pairs, we computed their Eu-
clidean distance to the point (TPR, FPR) = (1, 0) of perfect inference. The
minimum of these 121 Euclidean distances, 𝑑, is depicted by a colour
in each cell in Fig. 12.
13 
In particular, panel (a) shows the results of the APMSD method for
the network of 16 nodes. Here, the dark blue region corresponds to zero
Euclidean distance, that is to perfect network inference. As 𝐷 increases,
the method requires more data points to infer the network structure
successfully. Similarly, panels (b) - (d) present the results of the APMSD
method across time length and 𝐷 with their network topologies shown
to the right of each case in Fig. 13. All panels show similar patterns,
showing that the APMSD method can achieve perfect network inference
(or close to perfect inference), for stochastic strengths 𝐷 up to 0.1
and time lengths up to 105. However, for higher 𝐷 values, our method
struggles to infer network within the considered range of time lengths.
Hence, we can infer that the network size plays a crucial role, as
supported by comparing the results in panel (a) with those in the
subsequent panels. Despite variations in network types, the APMSD
method exhibits similar performance for all networks considered. This
suggests that network size, rather than network types, significantly
influences the performance of the method.

3.5. Heterogeneous dynamics and networks

In this section, we present the results of the application of the
APMSD method to coupled circle maps, using Eqs. (13) and (15),
where we have used weighted adjacency matrices of Watts–Strogatz
small world and Erdös–Rényi random networks of 16 nodes. First, we
generated the adjacency matrices of the networks and, following [29],
we computed their weighted adjacency matrices by

𝑊𝑖𝑗 = 𝐴𝑖𝑗 (1 + 𝑔𝜉𝑖𝑗 ),

where 𝐴 is the binary adjacency matrix of the network considered,
with 0s and 1s as entries, 𝑔 is the parameter that defines the stochas-
tic strength and 𝜉 an 𝑁 × 𝑁 symmetric matrix, whose entries are
randomly chosen in [−1, 1], for 𝑖, 𝑗 = 1,… , 𝑁 , where 𝑁 = 16. We
generated weighted adjacency matrices for Watts–Strogatz small-world
and Erdös–Rényi random networks, each comprising 16 nodes and 32
links.

We have generated data for network inference using Eqs. (13) and
(15) and adapted them using the weighted adjacency matrix 𝑊𝑖𝑗 instead
of the binary adjacency matrix, 𝐴𝑖𝑗 , as follows

𝑥𝑖𝑛+1 = (1 − 𝛼)𝑓 (𝑟𝑖, 𝑥𝑖𝑛) +
𝛼
𝑘𝑖

𝑁
∑

𝑗=1
𝑊𝑖𝑗𝑓 (𝑟𝑗 , 𝑥𝑗𝑛),

where 𝑘𝑖 is the degree of node 𝑖, 𝛼 = 0.1 the coupling strength, 𝑓 (𝑟, 𝑥)
the equation of the circle map in Eq. (15) for 𝐾 = 6.91 and 𝑟 randomly
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Fig. 13. Results for the system of coupled stochastic Kuramoto oscillators over 𝐷 and time length, as discussed in Section 3.4.3. For each 𝐷 and time length, the APMSD method
produces 121 pairs of TPR, FPR in an 11 × 11 parameter space. The colours indicate the minimum Euclidean distance of these pairs to (TPR, FPR) = (1, 0) of perfect network
inference. The results for different network topologies are presented in panel (a) for 16 nodes with 26 links, in panel (b) for a Watts–Strogatz small-world network of 30 nodes
and 60 links, in panel (c) for an Erdös–Renyi random network with 30 nodes and 55 links, and in panel (d) for a Barabási–Albert, scale-free network with 30 nodes and 57 links.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Results for the heterogeneous dynamics discussed in Section 3.5. The plots show the minimum Euclidean distance of the pair of (TPR, FPR) from (1, 0) of perfect inference,
𝑑, for (a) a Watts–Strogatz small world network with 16 nodes and 32 links and (b), for an Erdös–Rényi random network with 16 nodes and 32 nodes. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
chosen in [0.01, 0.35] for each node. This results in nonidentical nodal
dynamics. This way, we aim to study the performance of the APMSD
method on the data generated using the weighted adjacency matrix,
𝑊 , consisting of a stochastic part. Additionally, the nodal dynamics
differ due to the randomly chosen parameter, 𝑟. For each value of 𝑔
and length of the data set, the APMSD method produced 121 pairs of
(TPR, FPR) in an 11 × 11 parameter space. Subsequently, we computed
the Euclidean distance of each pair to the point (TPR, FPR) = (1, 0) of
perfect inference. The minimum Euclidean distance among 121 values,
𝑑, is shown by a colour in each cell in Fig. 14. Dark blue regions denote
a zero or near-zero 𝑑 value, suggesting perfect (or nearly perfect)
network inference. Panels (a) and (b) depict this analysis for two
network types, namely for a Watts–Strogatz small world and an Erdös–
Rényi random network, respectively. In both cases, the APMSD method
14 
correctly inferred the network structure for time lengths exceeding
3 × 104. By comparing the results for the two network types, we can
conclude that they do not play any role in network inference when
using the APMSD method. This assertion is further corroborated by the
findings in Fig. 13.

3.6. Computational aspects

Here, we discuss the computational aspects of the proposed method
considering the effect of network size, number of pairs of nodes and
time-series length on wall time. By wall time we mean the actual time
it takes from the start of a computer program to run until the end of
the run. We approached this by constructing for each network size 𝑁 , a
network by linking randomly pairs of nodes until the network density is
about 0.3. This guarantees all generated networks have similar density
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Fig. 15. Wall time as a function of (a) number of nodes, (b) number of pairs, (c) and time length.
p
h
c
a
c

m
d
O
s
s
t
n
o
d
i

e
a
t
w
t
d
p
d
i
t
d
s
e
o

d
s
s
s
u
l
c
w
i
L
s
a
s
l
c
s
f
R
t

around 0.3. We used these networks to couple 𝑁 logistic maps, given
by Eqs. (13), (14), where 𝑟 = 4 and 𝛼 = 0.1 and checked that the
corresponding systems are chaotic for all 𝑁 considered. The highlight
of this section is the derivation of formula (25) for the wall time as a
function of the number of nodes and time-series length.

In particular, panel (a) in Fig. 15 shows the wall time, 𝑇𝑊 𝑇 (in
minutes denoted by min), vs. number of nodes, 𝑁 , panel (b) the wall
time (min) vs. number of pairs, 𝑁(𝑁−1)

2 , and panel (c) the wall time
(min) vs. time-series length, 𝐿. We constructed the random networks as
follows: For a given number of nodes, 𝑁 , the maximum number of links
is 𝑛𝑚𝑎𝑥 = 𝑁(𝑁−1)

2 . We keep the density of all networks at 0.3 and define
the number of links, 𝑛𝑙𝑖𝑛𝑘, to be the immediate next integer of 0.3×𝑛𝑚𝑎𝑥
or each 𝑁 . This will result to networks of about the same density of
inks, i.e. about 0.3. Next, we choose random pairs of nodes and if they
re not already connected and are non self-connections, we link them.
e do this for all 𝑛𝑙𝑖𝑛𝑘 links for each 𝑁 in the horizontal axis in panel

a). The horizontal axis in panel (b) shows the number of pairs, 𝑛𝑚𝑎𝑥.
n panels (a) and (b), we considered time-series of 3 × 104 data points.
anel (c) shows the plot of the wall time vs. the time-series length from
×103 to 3×104 data points. Looking at panels (b) and (c), we observe

hat the wall time is a linear function of 𝑛𝑚𝑎𝑥 (panel (b)) and the time-
eries length, 𝐿 (panel (c)). Looking at these panels, we observe that
he wall time, 𝑇𝑊 𝑇 depends on 𝑁 and 𝐿 and is approximated by

𝑇𝑊 𝑇 = 𝑎𝑛𝑚𝑎𝑥 + 𝑏 (panel (b)),
𝑇𝑊 𝑇 = 𝑐𝐿 + 𝑑 (panel (c)),

where 𝑎 ≈ 0.654, 𝑏 ≈ 1.645, 𝑐 ≈ 0.0007, 𝑑 ≈ −3.244. Next, we performed
a multiple linear regression with independent variables 𝑛𝑚𝑎𝑥, 𝐿 and
ependent variable 𝑇𝑊 𝑇 and obtained 𝑇𝑊 𝑇 as a function of 𝑛𝑚𝑎𝑥 and
, given by

𝑊 𝑇 = 𝑒𝑛𝑚𝑎𝑥 + 𝑓𝐿 + 𝑔,

here 𝑒 ≈ 0.658, 𝑓 ≈ 0.789 and 𝑔 ≈ −22.502. By substituting 𝑛𝑚𝑎𝑥 with
𝑁(𝑁−1)

2 , we obtain

𝑊 𝑇 = −22.5 + 0.66 ×
𝑁(𝑁 − 1)

2
+ 0.79𝐿

= −22.5 + 0.33𝑁2 − 0.33𝑁 + 0.79𝐿 (min), (25)

here 𝑁 is the number of nodes and 𝐿 the time-series length. Note that
he wall time was measured by running simulations in parallel using 20
orkers in Matlab on a 10-core Apple M2 Pro CPU with 16 GB of RAM.

. Conclusions & discussion

To address the problem of finding an appropriate threshold for
etwork inference, the author in [14] proposed a method based on
IR and statistical tests that compares the MIR values of the original

ata with those of random or twin surrogate data, selected based on
he source of connectivity. Random surrogate data remove both linear
nd nonlinear correlations, whereas twin surrogate data remove only
 s

15 
hase synchronisation while preserving linear correlation. This method
as two drawbacks: (a) it is not always evident what is the cause of
onnectivity in the data, as it often constitutes a mixture of correlation
nd phase synchronisation and (b) unconnected nodes may still exhibit
orrelation due to indirect connectivity.

Here, we introduce the amplitude-phase modulated surrogate data
ethod which is based on the analytic signal of a recorded signal,
erived by applying the Hilbert transform to the recorded data set.
ur approach removes the amplitude and phase relations in the data

ets incrementally by randomising the amplitudes and phases in the
ignal at different levels, denoted by 𝑝𝑐1 and 𝑝𝑐2. Combining statistical
ests with amplitude-phase modulated data sets, we showed that the
ew method can infer successfully the structure of different types
f networks and dynamics, including deterministic, continuous and
iscrete systems, and stochastic systems. We also showed that the newly
ntroduced method provides insights into the sources of connectivity.

Although our approach provides a new perspective in network infer-
nce that allows us to consider the effect of both amplitude correlation
nd phase synchronisation in connectivity, there are two drawbacks
hat is worth discussing:(1) The proposed method applies to the cases
here data sets can be generated by solving systems of coupled de-

erministic ordinary differential equations, coupled stochastic ordinary
ifferential equations, coupled maps or more generally by stochastic
rocesses such as the one in the case of Gaussian-distributed correlated
ata. Hence, our method cannot be used as such in the case where the
nitial connectivity is unknown. (2) There is an additional computa-
ional cost that comes with the amplitude-phase modulated surrogate
ata method as one has to compute network inference on the parameter
pace of percentages, which implies inferring the network structure for
ach pair of percentages. For instance, if the parameter space is 11 × 11,
ne has to run 121 hypothesis tests to find the best inferred network.

We assessed the performance of the proposed method for different
ynamics and network topologies and presented the corresponding re-
ults. For Gaussian-distributed linearly correlated data, the new method
uccessfully excludes the pair of nodes whose Pearson correlation is
maller than those in connected pairs but still significant compared to
nconnected pairs. For discrete systems, the data used come from the
ogistic and circle maps and different types of networks. The method
an successfully infer the network structure for relatively large net-
orks of 30 nodes. Continuous systems pose greater challenges when

t comes to network inference. To address this, we employed coupled
orenz systems, coupled Hindmarsh–Rose neuron models, and coupled
tochastic Kuramoto phase oscillators on different types of networks. In
ll cases studied, the method was successful in inferring the network
tructure as there is at least one pair of randomisation percentages that
ead to an inferred network that is the same with the network used to
ouple the dynamical systems. To assess the network types and effect of
tochasticity strength, we implemented the method on data generated
rom coupled stochastic Kuramoto oscillators on small-world, Erdös–
ényi and scale-free networks. We found that for smaller-size networks,

he method successfully infers the structure of the network, even for

trong noise. However, it becomes more challenging for the method
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to infer successfully the structure of the network as the stochastic
strength increases in larger-size networks. In heterogeneous dynamics
and networks, the method can again successfully infer the structure of
networks, despite of different dynamical units and weighted adjacency
matrices.

The importance of our method stems from the analytic-signal con-
cept, introduced by Gabor in 1946 and Hilbert transform as it provides
us with a quantification of the contribution of amplitude (linear or non-
linear) correlation and phase synchronisation in network connectivity.
Our method shows great potential in recovering the network struc-
ture in coupled deterministic (discrete and continuous) and stochastic
systems and in heterogeneous networks and dynamics with weighted
connectivity.
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