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Abstract—Finite blocklength information theory plays
a pivotal role in the design and analysis of short-
packet communications systems, especially for applica-
tions requiring ultra reliability and low latency. Recently,
leveraging reconfigurable intelligent surfaces (RISs) for
such type of communications has proven to be very
promising. However, investigating the channel hardening
in such systems remains an open issue. In this context,
this paper examines the channel hardening in RIS-
assisted communication with finite blocklength. After
investigating the properties of the achievable rate term,
the paper analyzes the scaling law of the signal-to-noise
power ratio with respect to the RIS size, and introduces
a metric for quantifying the channel hardening. Results
demonstrate the presence of hardening, and illustrate the
effects of the main system parameters on the hardening
property.

I. INTRODUCTION

The advent of beyond 5G systems has led the way
for seamless and reliable data transmission, surpassing
the capabilities of previous-generation technologies.
These systems aim to support cutting-edge applica-
tions, including applications that demand ultra-reliable
low-latency communications (URLLC), where latency
should be reduced to an unprecedented 1ms while
simultaneously providing reliability in the 99.9% range
[1]. This stringent requirement, which is crucial in
mission-critical applications, e.g., industrial automa-
tion and autonomous vehicles [2], necessitates the use
of short-packet communication (SPC) [3]. In SPC, the
data packets are finite, in contrast to the long block-
length in traditional communication systems. However,
relying solely on conventional technologies, such as
multiple-input multiple-output (MIMO), may not ad-
equately meet the stringent quality-of-service (QoS)
of SPC applications, especially when the line(s) of
sight between the transmitter(s) and receiver(s) are
obstructed.
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To meet the QoS demands, recent research efforts
explored the use of reconfigurable intelligent surfaces
(RISs) [4], [5]. While the integration of RISs in
SPC has promising advantages from a performance
viewpoint, the overhead in estimating and acquiring
channel state information (CSI) is a major issue.
To alleviate the instantaneous CSI requirements, the
potential hardening of the channels, i.e., deterministic
behavior, can be leveraged. In fact, the hardening al-
lows the use of statistical CSI, which reduces overhead
and allows an efficient management of the resources
in RIS-aided SPC systems [6].

By harnessing a multitude of passive reflectors con-
trolled by integrated circuits, RISs can intelligently
manipulate their incident waves, which can help in
transforming the propagation environment from highly
probabilistic to partially deterministic [7]. In the state
of the art, recent studies underscored the potential of
RISs in realizing channel hardening [8]. Investigations
demonstrated the presence of channel hardening in
diverse scenarios, ranging from single-input single-
output (SISO) configurations to environments with
multiple RISs and Rician fading channels. In particu-
lar, the work in [9] and [10] explored the impact of the
RIS size and the fading severity on channel hardening,
and the findings in [10] revealed that the channels of a
MIMO communication system aided with passive RIS
tend to harden, with the degree of hardening influenced
by the physical dimension of the RIS.

In the realm of SPC, significant efforts were directed
toward evaluating the reliability performance, in terms
of block error rate (BLER), while fewer studies delved
into analyzing the achievable rate due to the inherent
complexity. For instance, [11] presented asymptotic
and approximate expressions for the average BLER in
MIMO SPC systems employing non-orthogonal mul-
tiple access. In [12], the authors derived approximate
expressions for the BLER in relay-aided MIMO SPC
systems, considering various transmit/receive diversity
techniques. The performance of MIMO SPC over
Rayleigh fading channels was also investigated in [13],
where a tight lower bound on the average achievable
rate was derived. The work in [14], on the other hand,
explored the trade-off between the transmission rate,



Fig. 1: The RIS-aided SPC model.

the decoding error probability, and the transmission
latency in finite blocklength regime. In [15], the error
probability and throughput of a point-to-point MIMO
communication system with isotropically distributed
codewords was evaluated, assuming no CSI at the
transmitter. Therein, the authors considered a simpli-
fied version of the SPC rate dispersion term.

Despite the extensive research in the areas of RIS-
assisted communications and SPC, there remains a
gap in the literature regarding the analysis of the
achievable rates and channel hardening properties in
RIS-assisted systems employing short packets. While
[8] investigated the channel hardening in SISO RIS-
aided communication with infinite blocklength, no
prior work has tackled RIS-assisted communications
with finite blocklength from the viewpoint of channel
hardening. This paper fills this gap by investigating the
channel hardening property of RIS-aided SPC and the
conditions under which the hardening holds. Assuming
a SISO antenna model in this communication system,
the paper proves that the channel hardens for a given
error probability, packet blocklength, and channel dis-
persion, and analyzes the impact of the main system
parameters on the hardening property.

The following content of the paper is organized as
follows. First, section II describes the SPC model, and
formulates the problem under consideration. In section
III, we investigate the channel hardening properties
of the communication system. Numerical results and
discussions are provided in section IV, followed by
concluding remarks in section V.

II. SYSTEM AND CHANNEL MODELS

The RIS-aided SPC system under study is illus-
trated in Fig. 1. The system is assumed to operate
in an isotropic scattering environment, where the di-
rect path between the transmitter and the receiver

is blocked and, hence, the information transfer takes
place through the RIS. The latter is a uniform planar
array consisting of N elements aligned in the yz-plane,
with element spacing dy and dz along the y and z axes,
respectively.

Accordingly, the received signal at the end-user
receiver can be expressed as

y =
√

Pt

N∑
i=1

hi exp {ȷϕi}gix+ w , (1)

where hi = αhi
exp {−ȷθhi

} denotes the channel
coefficient between the transmitter and RIS element
i, the parameter gi = αgi exp {−ȷθgi} is the channel
coefficient between the i-th RIS element and the
receiver, ϕi represents the phase shift introduced for
the reflection from the i-th element of the metasurface,
x denotes the transmitted signal, and w represents the
additive white Gaussian noise (AWGN) encountered
by the system, which follows a complex Gaussian
distribution with zero mean and variance σ2, i.e.,
w ∼ CN (0, σ2). The envelope or magnitude of the
channel coefficients, αhi

and αgi , are assumed to
be independent but not identically distributed (i.n.i.d.)
according to a Nakagami model with the same shape
parameter m and different spread parameters, namely,
Ωhi

and Ωgi , respectively. The phases θhi
and θgi are

uniformly distributed.
Considering the availability of real-time CSI at the

RIS [9], the phase delay of the i-th RIS element can
be altered at any given point of time according to ϕi =
θhi

+ θgi . Thus, the received signal will be

y =
√
Pt

N∑
i=1

αhiαgix+ w. (2)

Therefore, the end-to-end signal-to-noise power ra-
tio (SNR) can be expressed as

γ = ρ

(
N∑
i=1

αhi
αgi

)2

, (3)

where ρ = Pt

σ2 is the transmit SNR.
To infer the statistical properties of the end-

to-end SNR shown in (3), we follow two
identities, namely, E[αhi

αgi ] = E[αhi
]E[αgi ] and

Var[αhi
αgi ] = Var[αhi

]Var[αgi ]+Var[αhi
]E2[αgi ]+

E2[αhi ]Var[αgi ], which are based on the statistical
independence of the random variables αhi and αgi ,
with E[·] representing the expectation operator and
Var[·] indicating the variance operator.

Now, assuming large RIS size, i.e., N ≫ 1, and
utilizing the central limit theorem (CLT),

√
γ can be



modeled as a Gaussian with mean and variance given
by [16]

µ√
γ = N

√
Ωhi

Ωgi

m

Γ2(m+ 1
2 )

Γ2(m)

√
ρ, (4)

σ2√
γ = ρNΩhi

Ωgi

[
1−

(
Γ2(m+ 1

2 )

mΓ2(m)

)2
]
, (5)

where Γ(·) is the Gamma function. Therefore, the end-
to-end SNR, i.e., γ, follows a non-central chi-squared
distribution.

III. CHANNEL HARDENING

A. Achievable Rate Analysis

For a finite blocklength communication between
a single-antenna transmitter and a single-antenna re-
ceiver, the achievable rate can be expressed as

R(n, ϵ) ≃ C(γ)−
√

V (γ)

n
Q−1(ϵ), (6)

where n is the blocklength, ϵ denotes the BLER, C(·)
is the capacity term, V (·) represents the dispersion
term, and Q−1(·) denotes the inverse Q-function [3].1

The terms C(γ) and V (γ) are given by

C(γ) = log (1 + γ) , (7)

V (γ) = 1− 1

(1 + γ)
2 . (8)

To investigate the presence of channel hardening in
the RIS-aided SPC under study, one can rely on the
analysis of the probability density function (PDF) of
the achievable rate defined in (6). However, due to
the complicated nature of the random variable R(n, ϵ),
deriving an exact expression for this PDF is highly
intractable. As an alternative, we use approximations
to obtain a closed-form representation of the said
PDF. Specifically, we approximate the dispersion term
V (γ) as unity for cases with high values of γ, which
can result from operations with large sizes of the
metasurface and/or high transmit SNRs. Accordingly,
by utilizing the simplified form of the dispersion V (γ),
we can statistically characterize the achievable rate as

E[R] = E[C]− β, Var[R] = Var[C], (9)

where β is a constant given by Q−1(ϵ)√
n

.
Based on the above, we observe a change in the

mean of the random variable R with respect to the

1The blocklength n is measured in channel use, the achievable
rate R and the capacity C are measured in bits per channel use.

random variable C. Thus, the rate R can be well–
approximated as a Gaussian distribution in terms of
C,2 with mean and variance given by

E[R] = log (1 + ρν)− β, (10a)

√
Var[R] =

ρ log2 e

1 + ρν

√
ϱ(ϖ + 1), (10b)

in which ν = 1
1+ζA

2
N

(
ζN2 +

∑N
i=1 α

2
gi

)
,

ϱ = 1
1+ζA

2
N

∑N
i=1 α

2
gi , ϖ =

1
1+ζA

2
N

(
2κrN

2 +
∑N

i=1 α
2
gi

)
, and ζ =

√
m−1√

m−
√
m−1

,
with AN = dydz representing the area of a RIS
element.

B. Hardening Metric

Inspired by the definition of channel hardening in
a RIS-aided SISO communication with infinite block-
length [9], we introduce a metric for the rate hardening
in RIS-assisted SPC subjected to Nakagami fading,
namely,

ι =
E[R]

Var[R]
, (11)

where E[R] represents the mean and Var[R] is the vari-
ance of the achievable rate. The rate of change/growth
of this metric with various system parameters can pro-
vide conclusive evidence of the hardening, which can
be further quantified. Given the analytical intractability
of the rate term, Monte-Carlo simulations will be
employed in section IV to investigate the impact of
the finite blocklength on the hardening property of the
system under study.

Recalling the expressions in (10a) in (10b), we
observe that the mean scales as O(logN) while the
variance scales as O(N−1).3 Consequently, the ratio
of E[R]/Var[R] tends to a large number as N → ∞
with diminished growth rate, providing preliminary
evidence of channel hardening and proving the useful-
ness of the metric proposed metric shown in 11. Here,
it must be emphasized that these results are attributed
to the high values of γ, which may not hold true for all
cases. Next, we revert to the use of the scaling theory
of RIS to assess the trend and draw insights for general
cases.

2This implies that the term R−E(R)
Var(R)

converges to a Gaussian
distribution with zero mean and unit variance asymptotically, i.e.,
N (0, 1) , [10].

3The proof is a straightforward substitution of parameter values
in terms of N in (10a) and (10b) to obtain the scaling factors with
respect to the RIS size.



C. SNR Scaling with the RIS Size

In the RIS-assisted communication system employ-
ing short packets for the delivery of information in an
isotropic scattering environment with i.n.i.d. Nakagami
fading channels, when N → ∞ the end-to-end SNR
γ will scale with the square of the number of RIS
elements, i.e., N2. Thus, the dispersion term being
a function of the random variable γ, it will also be
affected as does the achievable rate R. As such, the
formulae (7) and (8) can be re-written as

C(γ) = log(1 +N2k), (12)

V (γ) = 1− 1

(1 +N2k)2
, (13)

where k is a constant given by k =
ρANΩhi

Ωgi
Γ2(m+1/2)

mΓ2(m) .
The above proposition will be verified using Monte-

Carlo simulations, as detailed in section IV.

IV. VALIDATION AND DISCUSSION

In this section, we validate the channel hardening
property using Monte-Carlo simulations with the en-
semble average technique over 107 channel realiza-
tions, and analyze the effects of the transmit power,
the RIS size, the Nakagami shape parameter, and the
blocklength.

A. Effects of the Transmit Power
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Fig. 2: Variance of the rate vs. the number of RIS
elements, in logarithmic scale.

In Fig. 2, the variance of the achievable rate of
the RIS-aided SPC system is depicted to examine
the deterministic nature of the channel. For a fixed

level of transmit power, we observe that with an
increase in the number of RIS elements that assist in
the information transfer, the channel becomes more
and more deterministic, which is established by the
fact that the achievable rate obtained by the system
shows negligible variation with an increase in the
RIS size. Here, it is important to highlight that while
perturbations are noticeable at low values of Pt and
N , they diminish as N increases.
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Fig. 3: Variance of the rate vs. the number of RIS
elements.

Figure 3 shows the variance of the achievable rate of
the SPC system in linear scale. As observed, the slope
of the variance of the achievable rate decreases with
an increase in the number of RIS elements N . In other
words, in a SPC system with a small RIS size and low
transmit power, the channel becomes less deterministic
and rather more probabilistic. Conversely, for larger
vales of N , the channel becomes more deterministic
regardless of the transmit power, thus corroborating
the proposition stated in section III-C with regard to
the SNR scaling with the RIS size.

B. Effects of the Blocklength

The impact of the blocklength is depicted in Fig. 4,
where minimal to no effect is observed on the variance
of the achievable rate. In the figure, ‘cu’ means channel
use. Consequently, it can be inferred that the influence
of the blocklength in the SPC system under study is
constrained, as the achieved rate hardens analogous to
the hardening behavior of the channel observed in [4]
for MIMO systems.

Figure 5 shows the changes in the variance of
the achievable rate R as the transmit power Pt, or,
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Fig. 4: Variance of the rate vs. the number of RIS
elements for different values of the blocklength n.
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Fig. 5: Variation of the rate as a function of the
transmit power. Here, σ2 = 1.

equivalently, the transmit SNR ρ (given that the noise
variance σ2 = 1), is varied, while maintaining other
system parameters, such as N , fixed. From the figure,
noticeable fluctuations in the variance are observed at
low SNR levels, predominantly for smaller values of
N , which tend to stabilize at high SNRs. Notably,
within the typical range of SNR values, a determin-
istic behavior of the rate term is observed, which is
characterized by a low variance.
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Fig. 6: Hardening metric vs. the number of RIS
elements for n = 100.

C. Metric Evaluation

Figure 6 illustrates the hardening metric ι, cf. Eq.
(11), versus the RIS size. Here, the effect of the
Nakagami shape parameter m on the channel hard-
ening process is depicted. As observed, the channel
becomes more deterministic with an increase in the
shape parameter, which can be attributed to the fact
that the randomness of the channel is correlated with
the severity of the fading.
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Fig. 7: Hardening metric vs. the transmit power for
different RIS sizes.

Figures 7 and 8 illustrate the hardening metric ver-
sus the transmit power and the RIS size, respectively.
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Fig. 8: Hardening metric vs. the RIS size for different
transmit powers.

In this experiment, the blocklength n is set to 100. As
observed, the metric is more stable at high values of N ,
and the effect of the transmit power Pt is only limited
to lower values of N . Conversely, it can be inferred
that ι is more suitable for observing the rate hardening
with respect to N compared to Pt, though the effect of
the variation in Pt can be observed. Furthermore, the
channel becomes more deterministic with an increase
in N compared to an increase in Pt in the RIS-aided
SPC system.

V. CONCLUSION

In this paper, we investigated the channel hardening
in RIS-assisted SPC systems. The results showed that
as the number of RIS elements increases, the channel
becomes more deterministic and the variance of the
achievable rate decreases. The analysis also showed
that the Nakagami fading parameter plays a significant
role in the hardening process, with higher values
leading to a more deterministic channel. The effects
of the transmit power and the RIS size show the
dominance of the latter, highlighting the importance
of the transmit power for SPC systems employing
smaller RISs. These findings highlight the potential
of RIS-assisted systems in achieving high reliability
and low latency by operating close to the Shannon rate

with SPC. Particularly, the channel hardening property
confirmed in this study can be exploited to simplify
the design of RIS-assisted SPC systems and improve
the resource allocation mechanisms for achieving the
stringent requirements of URLLC applications. Ongo-
ing work includes the extension of the study to MIMO
configurations.
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