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5G NR Codes and Modulation Deep-RL
Optimization for uRLLC in Vehicular OCC

Amirul Islam, Nikolaos Thomos, and Leila Musavian

Abstract—In dynamic and time-varying vehicular networks,
existing vehicular communication systems cannot guarantee
ultra-reliable and low latency communication (uRLLC). To
address this, we propose a novel deep reinforcement learning-
based vehicular optical camera communication (OCC) system
with an aim to maximize the throughput and ensure uRLLC.
To achieve this, our scheme chooses the optimal code rate,
modulation scheme and speed of vehicles for multiple vehicular
links. We use OCC, which offers interference-free communica-
tion as an alternative to radio frequency systems. Moreover, we
employ 5G New Radio low-density parity-check codes and an
adaptive modulation scheme to support variable rates and ultra-
reliability. The proposed large-scale and continuous problem is
solved through an actor-critic algorithm based on Wolpertinger
architecture. We extendedly evaluate the system performance
and compare it with several other schemes from the literature as
well as with variants of our scheme. We observe from the results
that the proposed method achieves higher average throughput
and lower latency than all the other schemes under comparison.
Further, the proposed scheme can meet the uRLLC constraints,
whereas other schemes under comparison fail to respect these
constraints most of the time.

Index Terms—Deep reinforcement learning, vehicular OCC,
uRLLC, LDPC codes, multi-agent system.

I. INTRODUCTION

Inter-vehicular communication has been attracting the in-
terest of academia and industry, where autonomous vehicles
(AVs) communication will play an essential role for intelli-
gent transportation systems (ITSs) [1]. AV communications
are time-varying and highly dynamic, where data must be
delivered reliably within stringent time constraints to ensure
safety. This makes it challenging to respect ultra-reliable and
low-latency communication (uRLLC) in vehicular networks.
Various candidate solutions exist, such as radio frequency (RF)
technology, e.g., cellular, Wi-Fi, and sensor networks [2], [3].
However, the lack of effective and well-established technolo-
gies to meet uRLLC and mitigate interference necessitates
the development of a new alternative solution in wireless
communication. Optical camera communication (OCC) has
emerged as a potential technology for ITS [4], [5] and as an
alternative to RF due to the fact it offers license-free unlimited
spectrum, lower power consumption, lower implementation
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cost, longer lifespans, and enhanced security [4]. OCC uses
light-emitting diodes (LEDs) as the transmitter and cameras
as the receiver [4].

Although OCC offers several advantages, it cannot match
the reliability requirements of uRLLC, which is why channel
codes should be utilized in OCC systems. Convolutional,
Turbo, low-density parity-check (LDPC), and Polar codes are
commonly used channel coding schemes [6]. Polar codes are
optimal, but this comes at the cost of high complexity. This
prohibits their application in real-time systems, while their
complexity renders them inappropriate for practical systems.
In this work, we use LDPC codes, which are part of fifth
generation (5G) new radio (NR) services and can achieve
high transmission rates, low latency, and reliability as has
been shown in optical communications [7]. LDPC codes are
capacity-achieving and are simpler to implement in practical
systems compared to other channel coding. Further, they can
support a wide range of block lengths and various code rates
[8].

Another problem that arises in vehicular networks is the
complexity of the underlying optimization problems that need
to be solved to optimize the communications settings, such
as code rate and modulation. Because of their complexity,
these problems cannot be solved using conventional methods
such as dynamic programming and exhaustive search. For such
problems, greedy techniques result in sub-optimal solutions
[9]. These algorithms cannot find the optimal solution in time-
variant and dynamic contexts. To overcome these issues, deep
reinforcement learning (DRL) has been used successfully in
autonomous vehicular networks [10]. DRL employs deep Q-
Network (DQN), a combination of Q-learning and deep neural
networks, to approximate the state-action Q-value function by
adjusting the weights of a neural network.

Several recent studies suggest the use of reinforcement
learning (RL) in hybrid RF and Photodiode (PD)-based optical
networks [11], [12]. In [11], the authors used RL for network
selection, taking into account the traffic type and the possi-
bility of having learning records to improve the Q-learning
algorithm. The authors of [12] proposed an RL-based energy-
efficient resource management scheme to improve energy
efficiency. The systems described above employ traditional Q-
learning, which is unsuitable for high-dimensional problems
due to their slow convergence. Furthermore, they investigate
a PD-based receiver, which encounters interference issues
when dealing with multiple vehicles. OCC overcomes inter-
ference issues because it can spatially separate and process
different transmitter sources independently on its image plane
[4], allowing it to handle multiple users. More importantly,
previous methods did not consider reliability and latency
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constraints concurrently, making it impossible to guarantee
that information is received reliably in the shortest amount of
time.

In practice, vehicular network problems involve continuous
variables, e.g., speed and distance, which we consider in
this paper. To solve the continuous problem, most DRL
algorithms discretize the action and state space, resulting in
sub-optimal solutions that are far from the true solution [10],
[13]. Discretization can affect the quality of the solution. If
the discretization is too coarse, it may result in an inefficient
sub-optimal solution; if it is too fine, it will take an enormous
amount of time to find a solution with no guarantee of optimal-
ity. The above limitations can be addressed using actor-critic-
based DRL frameworks [14]. To accelerate convergence, the
Wolpertinger architecture [13] is used, in which the actions
of the nearest neighbour are considered rather than exploring
over a large actions space chosen by the actor network.

In our previous study [15], we investigated a Lagrange
relaxation-based multi-agent deep RL vehicular OCC system,
This multi-agent system leverages vehicles acting as au-
tonomous agents to share information and make decentralized
decisions based on local and received information from other
vehicles, treating other vehicles as part of the environment.
Although, the scheme in [15], improved spectral efficiency
and decreased experience latency, it could not guarantee ultra-
reliable services since it did not employ a channel coding
scheme. Additionally, the discretization approach used in
[15] is suboptimal, as we discussed earlier. To address these
limitations, we proposed a single-link system in [16] using 5G
NR LDPC codes and an actor-critic-based DRL framework to
achieve uRLLC while maximizing throughput. However, this
system does not consider information from other vehicular
links. To address these limitations, in this paper, we present
a throughput maximization scheme for multi-link vehicular
OCC systems that optimizes the parameters (speed, code
rate, and modulation scheme) of all available links to sat-
isfy uRLLC requirements. We extend the work presented
in [16] by expanding the problem definition and Markov
decision process (MDP) formulation for multiple vehicular
links. We employ an actor-critic-based DRL framework with
the Wolpertinger architecture to deal with continuous and
large state-action spaces. While actor-critic-based DRL has
been used in various applications, the use of OCC for V2V
communication in ITSs is a new and emerging area of
research.

In summary, the contributions of this paper are highlighted
as:

• We formulate a novel DRL-based throughput maximiza-
tion scheme that optimizes LDPC code rates, modulation
and adjusts vehicles’ speeds while guaranteeing bit error
rate (BER) and latency requirements, where we consider
multiple links simultaneously.

• We use actor-critic-based Wolpertinger framework to ad-
dress the problem of the continuous state-action problem
and to avoid exploring large action spaces across all
decision intervals.

• We thoroughly examine our algorithms’ system perfor-
mance, BER, and latency and compare them with other

schemes under consideration. We also look at the conver-
gence performance. The results show that the proposed
method outperforms its counterpart schemes significantly.
The results highlight the advantages of jointly optimizing
the code rate, modulation and vehicles’ speed and the
consideration of the states from multiple vehicles to
achieve uRLLC in the vehicular OCC system.

II. RELATED WORKS

Simultaneously achieving ultra-reliability and low latency
in a dynamic environment, such as a vehicular network
with significantly time-varying channels due to mobility and
environmental factors, is a challenging task. Previous attempts
to support uRLLC in cellular networks include a Markov
chain-based link adaptation method proposed in [2], which
maximizes link throughput while providing strict latency and
block error rate requirements, and a network slicing solution
for throughput maximization proposed in [3] for autonomous
vehicular networks. However, the approaches proposed in [2]
and [3] rely on RF technology, and hence these schemes
suffer from interference. Moreover, these frameworks require
centralized communication. Specifically, they require data to
pass through a server for processing before being forwarded
to the end users. This entails high latency and higher failure
rates, potentially leading to loss of topological information of
the traffic network due to delayed updates. In contrast, our
DRL-based approach is decentralized, allowing each vehicle
to make real-time decisions based on direct communication
between vehicles without needing server-based processing.
This helps maintaining up-to-date topological information, im-
proving the communication rates and decreasing the perceived
latency.

Various strategies, e.g., machine learning-based approaches
[17] and frequency planning methods [18], are introduced
to mitigate the interference in RF systems. These methods
have high computational complexity and do not consider
uRLLC requirements while they focus only on dealing with
interference. Different from RF-based methods, OCC systems
can easily deal with interference and other light sources,
e.g., street lights or Sun, etc., while focusing on the specific
pixels where the LEDs strike [4], [19]. Existing works using
OCC mainly target to increase the data rate and ignore the
uRLLC aspects that we study here. Specifically, in [4], the
authors achieved 10 Megabits per second (Mbps) data rate by
varying LEDs intensity while generating flag images from the
communication image pixels in which the high-intensity light
sources appear. In [19], the authors achieved a data rate of 20
Mbps per pixel without detection of LEDs and a data rate of
15 Mbps per pixel with real-time detection of LEDs in OCC
systems. In [20], the achievable transmission rate was further
improved to 54 Mbps for BER < 10−5 at a 50 m distance.

Vehicular networks are dynamic and time-varying, often
involving a large number of vehicles and variables that
increase the complexity of the problem. This prohibits the
use of stochastic optimization methods in an online manner.
The complexity of the problems faced in vehicular networks
can make it difficult to solve them fast, which can lead to
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TABLE I
COMPARISON OF EXISTING STUDIES AND OURS

Ref Communication Tech-
nology

Optimization Ultra
Reliable

Low Latency Require-
ments

Centralized/
Distributed

Machine learning
enabled or traditional

Single Link/
Multiple Links

[2] RF Centralized Traditional optimization Single Link No Yes
[3] RF Centralized Traditional optimization Single Link No Yes
[4] Vehicular OCC Decentralized No Optimization Single Link No No

[19] Vehicular OCC Decentralized No Optimization Single Link No No
[20] Vehicular OCC Decentralized No Optimization Single Link No No
[10] RF Centralized Machine learning enabled Multiple Links No No
[21] RF Decentralized but using

edge server for process-
ing

Machine learning enabled Multiple Links No Yes

[22] RF Decentralized but with
Roadside unit

Machine learning enabled Multiple Links No No

[23] RF Centralized Machine learning enabled Multiple Links Reliable Yes
[15] Vehicular OCC Decentralized Machine learning enabled Multiple Links Reliable Yes
[16] Vehicular OCC Decentralized Machine learning enabled Single Link Yes Yes
Our Vehicular OCC Decentralized Machine learning enabled Multiple Links Yes Yes

Note: low latency: < 10 ms, reliable: > 10−5, ulltra-reliable: < 10−7

violations of the low latency constraint. As a result, it is
challenging to meet the requirements of uRLLC in vehicular
networks. DRL has emerged as an optimization framework to
deal with the time-varying nature and the complexity of the
optimization problems in vehicular networks [10]. However,
decision-making parameters, e.g., speed, and distance, are
continuous and therefore, general DQN cannot be trivially
applied without discretization of the action-state spaces, which
leads to performance degradation [14]. Several recent studies
in RF systems exist, but they do not simultaneously consider
both decentralized approaches and uRLLC. For instance, the
work in [21] proposes a decentralized resource allocation
scheme for vehicle-to-infrastructure communication that mini-
mizes interference but relies on an edge server for information
processing and decision-making. Similarly, in [22], the au-
thors utilize a multi-agent DQN architecture for decentralized
communication to improve resource utilization and latency
compared to a centralized approach, but it fails to meet uRLLC
requirements. The authors in [23] present a centralized RF-
based power allocation method using a cooperative DRL
scheme to achieve uRLLC. Motivated by these limitations
mentioned throughout this section, in this paper, we propose
a DRL-based scheme for multiple vehicular links in order to
cope with the diverse nature of the vehicular OCC systems,
while we follow an actor-critic-based DRL framework with
Wolpertinger policy architecture. Table I provides a summary
comparing existing related studies with our work in terms
of communication technologies, optimization schemes, and
uRLLC satisfaction.

III. SYSTEM MODEL

A. System Overview

Our proposed solution considers the vehicular OCC setting
shown in Fig. 1, where each vehicle has a transmitting unit
in the back with LED backlights and a vision camera set,
as well as a receiving unit in the front with a high-speed
camera (1000 frames per second (fps)). The front camera
serves two purposes. It can measure the distance between

Fig. 1. Proposed multi-agent vehicular OCC system model.

the agent vehicle and the vehicle in front, and it is also
the receiver that decodes data transmitted from the front
vehicle’s LED transmitters. The back camera uses a stereo-
vision camera, similar to the one described in the study
[24], to measure the distance behind the vehicle. As shown
in Fig. 1, each vehicle receives information from the front
vehicle and transmits information to the backward vehicles.
The information includes the vehicle’s moving intentions (for
example, braking, accelerating, changing lanes), emergency
information, and so on. We denote the number of vehicle-
to-vehicle (V2V) links at the back of each vehicle as B
and B = {1, 2, · · ·B} represents the set of V2V links. The
distance with the backward vehicles is expressed as db, where
b ∈ B, and b represents the index of the backward V2V link.

In our system, we employ an adaptive M-ary quadrature
amplitude modulation (M-QAM) scheme as it offers low BER
and improved spectral efficiency [5]. Other modulation tech-
niques can also be used. Additionally, we utilize time division
multiple access (TDMA) to transmit at various modulation
orders for different vehicles behind each vehicle. In TDMA,
each V2V link transmits at a specific time instant only. This
is done by assigning specific time slots for each link during
transmission or reception, thus the spectral efficiency is com-
puted by dividing it by the number of users (vehicles), B, that
are located behind the vehicle. To improve the transmission
rate and ensure uRLLC, we employ 5G NR LDPC codes in
our system. The overall system block diagram is illustrated in
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Fig. 2. Block diagram of LDPC coding with M-QAM for vehicular OCC
system.

Fig. 2, which includes a transmitter, a channel and a receiver.
At the transmitter, the data bits are encoded using LDPC
codes and then are mapped into M-QAM symbols by adaptive
modulation. Following that, the coded data is transmitted via
LEDs over the OCC channel. The receiver uses the camera to
capture the modulated light intensity and then uses them to
recover the originally transmitted data using the M-QAM [25].
Finally, an LDPC decoder decodes the demodulated codeword
(or message). More information on the M-QAM encoding and
decoding process can be found in [15]. The acronyms used in
this study are summarized in Table II.

B. Channel Modelling

We consider uninterrupted line-of-sight (LoS) communica-
tion links between the transmitter and receiver vehicles to
support continuous communication. In our proposed OCC
system, we adopt the channel model from [15].

As stated in [15], the achievable transmission rate of the
OCC system for the link b using the M-QAM modulation
scheme and 5G NR LDPC codes with code rate, κ, is given
by:

Cb(κ) =
Wfps

3
· κ NLEDswϱ

2 tan
(
θl
2

)
· db
· log2(M b), (1)

where Wfps stands for the camera’s sampling rate, NLEDs
denotes the number of LEDs in each row of the transmitter, w
represents the image width, ϱ is the size of LED lights in cm2,
and M b is the available constellation points for each V2V link
b, e.g., M = 4, 8, 16, · · · . Please note that, the distance db in
(1) is affected by the relative speed of the vehicle v, which
affects the vehicle’s position on the road. The inter-vehicular
distance at current time t is adjusted by dt = dt−1 + vt ·∆t,
where dt−1 is the distance of the previous time instance and
∆t is the time elapsed between time instant t and t− 1.

The transmission latency dominates the end-to-end latency
because we process a small amount of data, i.e., the decision
information from transmitter to receiver. The transmission
latency for packet size, L, is therefore stated as τ b(κ) =
L/Cb(κ), in accordance with [15].

IV. PROBLEM FORMULATION AND PROPOSED SOLUTION

A. Constrained Problem Formulation

Here, we formulate an optimization framework to maximize
the communication rate of the proposed vehicular environ-
ment while meeting uRLLC requirements. Specifically, we
formulate an optimization problem that maximizes the sum
throughput of the vehicular OCC system by selecting the

TABLE II
LIST OF ACRONYMS

Acronym Description
5G Fifth Generation
AV Autonomous Vehicle
BER Bit Error Rate
DDPG Deep Deterministic Policy Gradient
DQN Deep Q-Network
DRL Deep Reinforcement Learning
fps frame per second
ITS Intelligent Transportation System
KNN K-Nearest Neighbour
LDPC Low-Density Parity-Check
LED Light-Emitting Diode
LoS Line-of-Sight
Mbps Megabits Per Second
MDP Markov Decision Process
MIP Mixed-Integer Programming
mph miles per hour
M-QAM M-ary Quadrature Amplitude Modulation
NN Neural Network
NR New Radio
OCC Optical Camera Communication
PD Photodiode
ReLU Rectified Linear Unit
RF Radio Frequency
RL Reinforcement Learning
RMSPro Root Mean Square Propagation
SLO Single Link Optimization
SNR Signal-to-Noise Ratio
SUMO Simulation of Urban Mobility
TDMA Time Division Multiple Access
TraCI Traffic Control Interface
uRLLC Ultra-Reliable and Low-Latency Communication
V2V Vehicle-to-Vehicle

optimal values for the modulation order, the code rate and the
relative speed of the vehicle. We set the BER and latency to
a predefined value to respect the uRLLC conditions imposed
by the system. Finally, we define the constrained problem as:

max
M,X ,v

1

B

B∑
b=1

Cb(κ), (2)

s.t. BERb(κ) ≤ BERtgt, ∀b; (3)

τ b(κ) ≤ τmax, ∀b; (4)

M b ∈M, ∀b; (5)

κb ∈ X . ∀b; (6)

whereM is the set of QAM modulation orders, X represents
the LDPC codes set, BERtgt denotes the maximum target
BER, and the maximum allowable latency is defined by τmax.
To guarantee reliability the target BER must be satisfied as
shown in (3) and the low latency condition should be met by
maintaining τmax as in (4). We choose the modulation scheme
from M, which is given in (5). The code rates are adapted
from the available 5G NR LDPC codes [8], which is defined
in the IEEE standard and is shown in (6).

To meet the requirements of uRLLC in our vehicular OCC
system, we set threshold values for delay and reliability based
on the requirements of the specific use case. The specific
requirements for uRLLC can vary based on the application,
but for vehicular communication, a packet error rate of 10−5

[26] and a latency of 3 to 10 ms for a packet of 300 bytes
is typically considered sufficient [27]. For larger packet sizes,
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such as 5 kbits in our case, a maximum latency of 10 ms would
meet the requirements for vehicular communication [27]. In
terms of reliability, we have set the maximum BER at 10−7,
which is measured by communicating a 5 kbits packet.

The studied problem in (2) is mixed-integer programming
(MIP) with nonlinear constraints for BER in (3) and de-
lay in (4). As a result, our problem is non-deterministic
polynomial-time-hard [28]. MIP problems are known to have
high computational complexity [29]. The problem studied in
this paper cannot be solved using traditional methods such
as dynamic programming and exhaustive search because they
are computationally complex and slow to convergence. The
decision space for our problem is large due to the many
possible values for our control variables (speed, code rate, and
modulation). To address these challenges, we have chosen to
use deep RL which allows us to solve the problem with less
computational and time complexities.

B. Modelling of MDP

The proposed multi-agent maximization problem in (2) - (6)
is formulated as an MDP, which is outlined as a tuple (S,A, p,
r, ζ) [30], where S is the set of all possible states; A denotes
the set of all possible actions; p(st+1, rt|st, at) denotes the
transition probability which describes the probability that an
agent selects an action at ∈ A and transits to a new state
st+1 ∈ S from the current state st ∈ S; while r represents
the reward. The discount factor is represented by the parameter
ζ ∈ [0, 1], which gradually discounts the effect of actions on
future rewards. We outline the state space S, the action space
A, and reward r of the considered RL framework as follows:

1) State space: At time t, each agent interacts with
the environment and observes the state, st. The state in
our system has three parts: the backward distance vector,
db
t = (d1t , · · · , dBt ), the transmitted modulation scheme,

Mb
t = (M1

t , · · · ,MB
t ), from the set M = {4, 8, 16, 32, 64},

and the code rate vector, κκκb
t = (κ1

t , · · · ,κB
t ), from the set

X . In summary, the state is outlined as st =
{

db
t ,Mb

t ,κκκb
t

}
2) Action space: From the state st, the agent takes an

action at from the set A, consisting of adjusting the relative
speed, vt, selecting modulation scheme Mb

t ∈ M, and code
rate κκκb

t ∈ X . We summarize the action space as at ={
vt,Mb

t ,κκκb
t

}
.

3) Reward function: The agent receives a reward based on
the action, at, taken from the state, st. The reward function in
our framework is a weighted sum of rewards corresponding to
inter-vehicular distance, BER constraint (3), latency constraint
(4), and throughput (2). We first model the reward for the
distance changes, rd

t , as follows:

rd,i
t =

{
−1× (dstop − dbt), dbt < dstop ,

1
db
t−dstop

, dbt > dstop ,
(7)

where i is the index of the agent. Please recall that, dbt is the
backward distance of the vehicle, but in designing our reward,
we only consider the distance with the vehicle behind residing
in the same lane on the road as the primary goal is to avoid
collision with the vehicle in the same lane. This is the decisive
vehicle as it has the potential to approach the agent vehicle

in the next time step or near future. dstop denotes the stopping
distance, which is equal to the sum of distance travelled by the
vehicle after the brakes are applied and the distance travelled
due to the driver’s reaction time after observing a situation
[31]. From hereon, we drop i for notational simplicity. To
satisfy the BER and latency requirements, we model the
reward for BER, rrt , and latency, rτt , as:

rrt (κ) = 1r(BERb
t(κ) ≤ BERmax), (8)

rτt (κ) = 1τ (τ
b
t (κ) ≤ τmax), (9)

where 1r and 1τ stand for the indicator functions of the BER
and latency, respectively.

Considering the above definition, we can express the overall
weighted sum of the rewards, rt, as

rt = ωd rd
t + ωrr

r
t (κ) + ωτr

τ
t (κ) +

ωc

B

B∑
b=1

Cb(κ), (10)

where, ωd, ωr, ωτ , and ωc are positive weights that are used
to balance the distance, BER, latency, and sum throughput
rewards. The reward (10) is designed such that the violation
of reliability and delay constraints (Equations (8) and (9),
respectively) result in zero reward. This design guides the
learning process towards solutions that consistently meet the
uRLLC requirements.

After each interaction with the environment in time slot, t,
the agent receives a reward rt. The goal of RL is to maximize
the total future discounted reward: Gt =

∑∞
j=0 ζ

jrt+j+1.

C. Proposed Solution

Q-learning is a well-known approach for solving MDP
problems [30]. However, the size of the state-action set affects
how quickly Q-learning converges. The algorithm converges
fast for small state-action spaces since the agent can quickly
explore the state-action pairs and determine the optimal policy.
On the contrary, as the Q-table grows bigger for large state-
action spaces, the convergence rate slows down. Additionally,
the complexity of computation grows linearly with the size of
the state-action set for multi-agent systems. Hence, for large
state spaces, the problem becomes intractable, necessitating a
longer time to converge and a large amount of memory to store
the Q-table. Moreover, there is no guarantee that the derived
solution will be optimal. This happens as a large number of
state-action pairs may not be visited at all.

Since the vehicular environment is dynamic and time-
variant, we have continuous space because of the nature of
our variables, e.g., speed and distance. The discretization of
the state-action space is a popular method for dealing with
the continuous problem. However, there is a trade-off between
performance and state-action space size. During discretization,
the state-action space parameters are generalized by sacrificing
the performance. Furthermore, Q-learning cannot directly be
applied to continuous problems as it does not employ an
approximation function (neural network) and the only approx-
imation comes by quantizing the state-action space. When we
have a large problem, the optimization becomes practically
too slow. To overcome the issues raised above, we propose
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an actor-critic framework based on the deep deterministic
policy gradient (DDPG) algorithm [32]. To stabilize the
training process, we utilize a new policy architecture called
Wolpertinger architecture [13]. This architecture avoids the
extensive computational cost of evaluating the Q-function on
every action taken and instead, it evaluates the actions of
the nearest neighbour. We have used the Actor-Critic based
DRL approach for our sequential decision problem, where
the actions of one vehicle affect the actions in the next time
slots. This approach has been shown to be effective in solving
sequential decision problems as it learns to make decisions
by maximizing a reward function, which can lead to better
long-term performance compared to traditional optimization
methods [32].

D. Wolpertinger Architecture

The proposed multi-agent DRL algorithm is based on an
actor-critic framework that follows the Wolpertinger architec-
ture [13]. The Wolpertinger framework is particularly attrac-
tive due to its ability to handle large action spaces efficiently
through a combination of a K-nearest neighbours (KNN)
algorithm and actor-critic framework. This method ensures
reduced computational complexity and enhanced long-term
outcomes by optimizing rewards, even in high-dimensional en-
vironments, where traditional frameworks often struggle with
increased computational complexity and slower convergence
times.

This policy architecture has three major elements: actor
network, KNN, and critic network, which work in three stages.
Firstly, the actor takes states as the input and constructs a
proto-actor, â, as output. Secondly, the proto-actor is fed as the
input to the KNN, which computes the L2 distance between
the proto-actor and each valid action and keeps a list of the K
actions that result in the smallest L2 distance. In this way, the
proto-actor is expanded over the action space, AK , where K is
the number of elements and every element is an action a ∈ A.
Finally, the critic network takes AK as input while refining
the actions of the actor network based on the maximum Q
value. In order to update the actor and critic networks, we
train the policy using the DDPG algorithm [14]. We outline the
fundamental components of the actor-critic policy architecture
below.

1) The actor network: The actor network maps the state
s ∈ S to the corresponding action space and chooses a
proto-actor â ∈ A from the valid actions. The network
is characterized as θµ. Thus, the proto-actor is defined as:
µ(s | θµ) : S → A and µ(s | θµ) = â.

2) K-nearest neighbours (KNN): For a large action space,
the generation of proto-actors reduces computational complex-
ity. However, using a single actor to represent the entire action
space can lead to suboptimal decisions. To address this issue,
KNN mapping, gK , is used by expanding the actor’s choice of
action to valid action subsets from A. We express the returned
action set, AK , from gK as AK = gK(ât), with

gK = arg
K
min
a∈A
| a− â |2, (11)

where | a − â |2 denotes the features distance between the
proto-actor â and the selected action a. After selecting the
proto-actor by the actor network, the agent determines the
KNN feature distances by exploring the action space and
accordingly, the action set can be formed. We can find the
K nearest neighbours using (11).

3) The critic network: To avoid selecting actions with low
Q-values that lead to poor decisions, the critic network is
introduced, which refines the actions chosen by the actor. The
deterministic policy in the critic network is characterized as:

Q
(
st, at | θQ

)
= E

[
r(st, at) + ζQ

(
st+1, at+1 | θQ

)]
,
(12)

where θQ is the parameter of the critic network. The critic
calculates the Q value while considering the current state,
st, and the next state, st+1, as the input. The critic network
evaluates all actions in AK and chooses the action which gives
the maximum Q-value, as follows:

at = arg max
at∈AK

Q(st, at | θQ). (13)

Update: At each timestep, a minibatch is sampled uniformly
from the replay memory to update the actor and critic net-
works. Since DDPG is an off-policy algorithm, it allows the
algorithm to benefit from learning across a set of uncorrelated
transitions. Hence, we update the actor policy using DDPG
with a minibatch size NB, which is expressed as

∇θµJ ≈ 1

NB

∑
t

∇aQ
(
s, a | µQ

)
|s=st,a=µ(st)

∇θµµ (s | θµ) | st, (14)

and the critic is updated by minimizing the loss:

L =
1

NB

∑
t

(
yt −Q

(
st, at | θQ

))2
, (15)

where the target network is derived as

yt = rt + ζQ′
(
st+1, µ

′(st+1 | θµ
′
) | θQ

′
)
. (16)

However, evaluating the loss in (15) using deep neural
networks is difficult. This is due to the fact that the target
value of (16) is determined using the updated Q(s, a | θµ)
value, which suffers from divergence issue when attempting
to find the optimal solution. To solve the above problem, we
employ a target network similar to [33]. This is done using
“soft” target updates for actor-critic networks. In this way,
we calculate the target values by copying the actor and critic
networks, µ′(s | θµ′

) and Q′(s, a | θµ′
), respectively. We then

update the target network’s weights by slowly tracking the
networks using

θQ
′
← βθQ + (1− β)θQ

′
, (17)

θµ
′
← βθµ + (1− β)θµ

′
, (18)

where β ≪ 1 denotes the soft target update rate. This helps to
improve the learning performance while changing the target
values slowly. DDPG help us decoupling the exploration
problem from the learning algorithm. Hence, we define the
exploration policy µ′ by sampling the noise, nt, from the noise
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Fig. 3. Architecture of Actor-critic based DRL scheme for Vehicular uRLLC.

process and adding it to the actor policy µ′(st) = µ(st |
θµt ) + nt, where nt is selected to fit the environment. We
assume temporally correlated noise to explore the environment
satisfactorily using a similar process to that presented in
[34]. While there is no general theoretical guarantee that the
optimal action is among the nearest neighbours of a proto-
actor, several studies have shown the effectiveness of the KNN
algorithm in similar problems [35], [36]. The effectiveness of
our approach is demonstrated through experiments conducted
in the performance evaluation section.

The policy architecture for attaining uRLLC by combining
the actor network, KNN, and the critic network—is illustrated
in the state diagram in Fig. 3. The policy architecture is ini-
tialized in the Start stage. After that, the system transitions to
the Actor Network stage, which is responsible for generating
potential actions (speed, modulation schemes, and code rate)
based on the current state of the environment. Then, these
actions are passed to the KNN state, where KNN mapping is
utilized. This involves expanding the actor’s choice of actions
to valid action subsets and determining the KNN feature
distances. By exploring the action space, KNN selects the
most prevalent actions that meet the uRLLC conditions. These
actions are then evaluated in the Critic Network stage, which
decides the maximum Q-value for each action, guiding the
optimal action selection. The selected action is then evaluated
in the Decision stage, where it is executed. The procedure
concludes in the End stage, completing the decision cycle.
Each agent determines the derived policies independently.

E. Complexity Analysis

The Wolpertinger algorithm’s training process has a time
complexity dependent on the amount of training data and

duration, but we focus on the running process. The run-
ning time complexity is characterised by the neural network
structure and the state-action space dimension. Unlike tra-
ditional stochastic non-convex methods, the computational
time is linked to the critic network’s convergence rate, which
impacts the overall performance. Slow critic convergence
bottlenecks actor-critic methods, while fast convergence shifts
the challenge to policy gradient updates. Experimental results
show that faster critic convergence leads to quicker actor-
critic convergence, though often reaching suboptimal station-
ary points, highlighting the interplay between optimization,
generalization, and function parameterization in RL.

The Wolpertinger architecture’s time complexity can be
outlined as follows:

• Actor Network: The time complexity of the actor net-
work, which involves processing the input state and gen-
erating an action, is derived and expressed as O(∥A∥),
where ∥A∥ represents the number of actions considered.

• K-Nearest Neighbors (KNN): For the KNN component,
the time complexity is O(N logN) for sorting the states
and O(K) for the nearest neighbour search, where N
is the number of observations and K is the number of
nearest neighbours.

• Critic Network: The critic network evaluates the chosen
actions, and its time complexity is derived as O(∁), where
∁ represents the number of evaluations performed.

Considering the interactions between these components, the
overall time complexity of the framework can be approxi-
mated as O(A+N logN +K + ∁).

In practice, however, increasing the K value above a
certain point does not result in improved performance. The
authors of [13] show that increasing the value of K leads
to a significant improvement in performance, even though it
may render other areas of performance, for example, higher
convergence rate and computational time. When only 5% or
10% of the maximum number of actions are used, the method
performs similarly to when the entire action set is used. Using
the remaining actions would result in relatively minor per-
formance gains while significantly increasing computational
time. Therefore, in our case, we use 7% of the available action
set for the KNN algorithm.

We would like to note that while actor-critic DRL methods
have shown significant empirical success, they lack strong
theoretical guarantees of global optimality. Actor-critic al-
gorithms typically converge to local optima under certain
conditions, such as when using neural network function ap-
proximation [37]. However, due to their gradient-based nature,
global optimality is not assured [30]. Although theoretical
bounds exist for frameworks like Multi-armed Bandits, cannot
be used with our problem due to the dimensionality of the
studied problem. Our proposed scheme is generic, without
assumptions limiting its applicability to special scenarios.
Unlike supervised and semi-supervised methods, our approach
can be applied both offline when there is available data to
train the DQN model and online to update the DRL model.
Our DRL model can run only online, i.e., without pretraining,
but with the tradeoff of slower convergence.
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V. EVALUATION

A. Simulation Settings

1) SUMO Framework: We implement our proposed vehic-
ular environment in Simulation of Urban Mobility (SUMO)
framework [38]. SUMO is a multi-model traffic and ex-
tendable, open-source, microscopic, and widely used sim-
ulator. It offers a wide range of monitored quantities for
various traffic simulation scenarios, including vehicle routing,
traffic light control, and multi-modal transport simulations.
Its compatibility with other tools and frameworks ensures
seamless integration into our research workflow, enhancing the
robustness and functionality of our simulations. Additionally,
it enables users to build specific traffic scenarios on given road
maps, ensuring scalability and adaptability. It also supports
traffic control interface (TraCI), a Python-based application
programming interface to adapt the simulation online. In
SUMO, various sets of driver models already exist, and it
is relatively simple to add more models. We adjusted the
SUMO environment according to the requirements of our
proposed multi-agent vehicular system by changing some
settings. For example, the simulation window size is 180m and
the maximum number of vehicles per timestep on the window
is 20. We introduce diversity in our system by including a few
aggressively moving vehicles to the SUMO environment. The
simulation parameters for the SUMO framework are listed in
Table III.

After the training is initiated, the vehicles are loaded in the
SUMO following the specified settings in Table III. The inter-
action between the SUMO framework and the DRL agent is
controlled by the TraCI interface. Using TraCI, the DRL agent
receives different information about the vehicular network,
including distance, speed, position of the vehicle, and applies
the action on the environment following the policy found by
the DRL agent which applies our framework presented in
Section IV. The decision is fed back to the SUMO again.
Thus, the agent updates its state following taking the action
while moving to the next state in the SUMO environment.
Then, the reward is computed as in (10) and communicated to
the agent at every simulation run. This process continues until
the maximum number of iterations is reached or a convergence
threshold is achieved. We note that, in our simulation, we
consider timestep as the decision interval.

To generate our dataset we used SUMO. Specifically, we
collected various measurements, including inter-vehicular dis-
tance, relative speed of the vehicles, and their positions within
the simulated environment, from the SUMO environment
through the TraCI interface. The TraCI interface acted as the
communication bridge between SUMO and the DRL agent,
feeding this essential data to the agent which is used to
understand traffic dynamics and make informed decisions.

2) Training Parameters: For OCC system design, we con-
sider the communication of 1011 bits and a packet size of 5
kbits, where we train the model with the transmission of zero
codewords, i.e., all the bits of the codeword are zero, which
are sufficient for the training as the channel is symmetric [39].
We use the code rates of the 5G NR LDPC codes as defined
in the IEEE standard [40]. In the simulation, an actor-critic-

TABLE III
SUMO MODELLING PARAMETERS

Parameter Value
Initial velocity of vehicle 5 mph
Window size of the simulation 180 m
Maximum number of vehicle per window 20
Number of lane 3
Step length 1 m
Lateral movement of vehicle 0.64 m per timestep

Algorithm 1 Actor-Critic Algorithm

1: Initialize the actor µ(s | θµ) and critic Q
(
s, a | θQ

)
networks randomly with weights θµ and θQ.

2: Initialize the target networks µ′ and Q′, while also updat-
ing the weights by θµ

′ ← θµ, θQ
′ ← θQ

3: Initialize SUMO environment parameters and replay
memory according to system requirements.

4: for each episode do
5: Observe the initial state st
6: for each timestep t do
7: Observe current state st
8: Actor: Receive proto-action from actor network ât =

µ(st | θµ).
9: KNN: Locate the approximated k nearest actions

AK = gK(ât)
10: Critic: Choose action at = argmaxat∈AK

Q(st, at |
θQ) in accordance with the current policy

11: Apply action at to the environment; and observe
reward rt and new state st+1

12: Store transition (st, at, rt, st+1) in replay memory.
13: Randomly sample a mini-batch of NB transitions

from the replay memory
14: Set target yt = rt+ ζQ′

(
st+1, µ

′(st+1 | θµ
′
) | θQ′

)
15: Update critic by reducing loss with (15)
16: Use the sampled policy gradient to update the actor

policy with (14)
17: Update target networks with (17) and (18) having

β ≪ 1.
18: end for
19: end for

based DRL framework is employed with the following training
parameters and settings. The actor and critic networks have
four fully connected layers: an input layer, two hidden layers
with 500 and 250 neurons, and an output layer. The state
space incorporates the distance, modulation scheme, and code
rate, and hence, the input layer has (Nd + |M|+ |X |) nodes,
where Nd = 150; |M| = 5; and |X | = 20; with Nd being the
number of neural nodes for distance. We consider a distance
of up to 150 meters, which is sufficient for maintaining good
communication quality and avoiding collisions, and |M| = 5
as only 5 modulation schemes are used. While the output
layer, as in our proposed system, has (△M+△κ+△v) nodes,
the action involves changes in modulation scheme, code rate,
and velocity where △M = 5, △κ = 20, and △v = 60. We
utilize rectified linear unit (ReLU) activation function [41] for
all the layers. We use TensorFlow in our evaluations to im-
plement deep reinforcement learning algorithms. To minimize
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the loss function and update DQN network parameters, we
employ root mean square propagation (RMSProp) optimizer
as the training algorithm. To make sure that the critic network
learns more quickly than the actor network, we set the learning
rate of the actor network to 0.0001 and the learning rate
of the critic network to 0.001. The soft target value is set
at β = 0.001, which is sufficient to balance between the
optimality and computational cost.

We train the actor critic based DRL scheme for a total
of 10000 timesteps, which is sufficient for convergence. To
effectively explore the environments, we use temporally cor-
related noise in the exploration noise process. Specifically, we
use the Ornstein-Uhlenbeck process models [34] with a mean
value of 0.15 and a variance of 0.2, resulting in temporally
correlated values centred around 0. We train the network with
mini-batches of 64 samples and a replay buffer size of 1011 to
save the transitions in memory. We set the discount factor ζ to
0.98. We also normalize different sub-rewards corresponding
to distance, BER, latency, and transmission rate in (10) so that
they are on a similar scale. Specifically, this normalization
is done by scaling the reward function for distance (7) and
rate of (2) to keep the scale of (10) between 0 and 1. This
improves the neural network (NN) model’s convergence speed
and training stability. Table IV lists the simulation parameters.

We would like to point out that in our simulation, the
vehicle’s speed changes by intervals of 0.5 miles per hour
(mph) which was selected for illustration purposes. In our
framework, each vehicle changes its speed independently
based on the forecast reward (which depends on the distance,
and the conditions for reliable communication). Our reward
formulation includes distance to maintain a safe distance
between the vehicles as shown in (7), which penalizes the
agent vehicle if the safety distance is violated. Hence, the
agent is discouraged to keep the distance too small.

3) Training Algorithm: Algorithm 1 outlines the training
procedure of the actor-critic based DRL algorithm we propose,
which is executed on all vehicles within the simulation envi-
ronment. An agent observes the state st (distance, modulation
scheme, and code rate) on line 5 in each training step. The
actor network then identifies a proto-actor, ât, following the
policy on line 8, which is then expanded into an action set
AK using KNN mapping on line 9. The action set (change in
modulation, coding rate, and velocity) is evaluated by the critic
network to identify the action set that can deliver the highest
state value on line 10. On line 11, these actions are then
applied to the environment. After each timestep, the resultant
reward and the following state are recorded in the replay buffer
along with the performed action, which is (st, at, rt, st+1) as
shown on line 12. On line 13, a random transition is sampled
from the replay buffer, and on line 14, the target Q value is
updated using the target network’s weights by applying the
(16) function. The actor is then trained on line 16 by using
(14) based on the policy gradient after the critic parameter has
been adjusted on line 15 by minimising the loss using (15).
The target network is then modified by gradually changing the
weights of (17) and (18) on line 17. This enables the learning
process the opportunity to use previously ignored information
about which action was actually performed to train the critic

TABLE IV
SIMULATION PARAMETERS

Parameter, Notation Value
Camera-frame rate, Wfps 1000 fps
Number of LEDs at each row, NLEDs 30
Packet size, L 5 kbits
Size of the LED, ϱ 15.5 × 5.5 cm2

Resolution of image, w 512 × 512 pixels
Mini-batch size, NB 64
Replay memory size 1011

Number of hidden layer (Neurons) 2(500, 250)
Discount factor, ζ 0.98
Exploration rate, ϵ 0.05
Learning rate (Actor network) 0.0001
Learning rate (Critic network) 0.001
Soft target updates rate, β 0.001
Gradient momentum (used by RMSProp) 0.95

while taking the policy gradient at the actual output.
While the training process can lead the model to achieve

good performance eventually, it is important to acknowledge
that reliable performance may not always be guaranteed
before convergence. To address this practical challenge, we
implemented a two-phase training approach. In the first phase,
the model undergoes pre-training offline using historical data.
This allows the model to establish a foundational understand-
ing. Subsequently, the model is deployed online where it
updates the policies using real-time data based on encountered
situations. This approach ensures the model leverages both
pre-existing knowledge and adapts to real-world conditions,
avoiding the need to start training entirely from scratch during
deployment.

B. Comparison Schemes

We evaluate the performance of the proposed actor-critic-
based DRL scheme against different variants of the proposed
scheme. Before presenting simulation results, we first provide
an overview of the various schemes under comparison as:

1) Proposed scheme: We call our actor-critic vehicular
OCC system as the proposed scheme. In our scheme, we
use the configurations as we mentioned in Section V-A2. We
set the discount factor to 0.98. This scheme is optimized by
employing the code rate optimization and controlling speed
and modulation described in Section V-A2, in which we
observe all of the links behind the agent vehicle and optimize
the policy based on these observations. Different modulation
schemes and code rates are chosen for each vehicular link.

2) No Coding [15]: In this scheme, we consider a multi-
link system similar to our proposed scheme presented in
[15] that does not use channel coding. Hence, this scheme
is referred to as the “No Coding” scheme. The purpose of
comparing this scheme with others is to understand the impact
of channel coding on system performance. In the No Coding
scheme, we maximize the sum spectral efficiency without
performing the code rate optimization while adopting the
algorithm shown in Section V-A2. This scheme only considers
the latency constraint, as the reliability constraints of uRLLC
cannot be met without channel coding.

3) Single Link Optimization [16]: In this scheme, we only
observe the state of the link with the vehicle behind in the
same lane that we presented in [16]. The optimized code
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Fig. 4. Convergence of loss function for different weight settings of sub-
reward function.

rate and modulation order are then applied to all other links
(vehicles behind). In this scheme, the states of other links are
assumed to be unknown to the agent since only the observed
single link (vehicle in the same lane) is tracked. As a result,
we named it the single link optimization (SLO) scheme.

4) Greedy: This method is a variant of our scheme, where
we set the discount factor to ζ = 0 in (15), while keeping all
other parameters of the systems as reported in Table IV. In
this scenario, the agent selects an action that maximizes only
the immediate reward.

5) Farsighted: This method is another variant of our
scheme in which we assume the discount factor to be ζ = 1
in (15). In this scheme, we maintain all other parameters
of the systems to be the same as reported in Table IV.
This scheme emphasizes future rewards while disregarding
immediate rewards.

6) Fixed Modulation (4-QAM): This is a variant of our
proposed scheme. In this scheme, instead of an adaptive
modulation scheme, we consider a fixed modulation, namely
4-QAM. We keep other optimization parameters the same with
the proposed scheme. Here, we optimize the code rates and
vehicle’s speed while keeping the modulation scheme fixed.

7) Fixed Modulation (64-QAM): This is another variant
of the fixed modulation scheme in which we use 64-QAM as
modulation. The only difference with 4-QAM is the modula-
tion order we use.

C. Performance Evaluation

We first perform an ablation study of different weight values
of reward function (10) to select the setting that leads to faster
convergence of the loss function. In particular, we present
five different settings weight values of distance, ωd; BER,
ωr; latency, ωτ and rate, ωc; for visualization simplicity in
Fig. 4 though more settings could be illustrated. From the
figure, we see that the setting ωd = 0.1, ωr = 0.1, ωτ = 0.1,
ωc = 0.7 provides faster convergence and leads to lower loss
values. Therefore, we employ this setting for the rest of our
evaluation.

In the following analysis, we investigate how the proposed
algorithm impacts various performance parameters, such as
throughput, latency, and reliability for the schemes under
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Fig. 5. Comparison of average throughput versus number of vehicles for
different approaches under consideration.

comparison. To begin with, we evaluate the effect of the
density of vehicles on the average throughput and average
latency for the schemes under comparison by varying the
number of vehicles between 6 to 16 per 180 meters (m).
Fig. 5 shows the average throughput results for the different
schemes, and it is evident that the proposed scheme out-
performs the other schemes across all ranges of vehicles,
showcasing significantly higher average throughput. From the
figure, it is evident that No Coding scheme offers the second-
best performance, which shows the advantage of employing
the 5G-NR codes and optimizing their code rate. Whereas the
performance gap between the proposed scheme and the SLO
scheme is larger than that with the No Coding scheme. This is
because, in the SLO scheme, the state of one link is observed
while optimizing the parameters of other links based on the
policy of the observed link, which can lead to constraints not
being satisfied, resulting in a larger performance gap from
the proposed scheme. For farsighted and greedy schemes, the
gap grows further because of considering only future rewards
and immediate rewards, respectively. Additionally, it can be
seen from the figure that fixed modulation schemes achieve a
relatively fixed throughput, and are not able to take advantage
of increased vehicle density because there is no change in
the modulation scheme. Among these, 4-QAM has the lowest
average throughput. These results demonstrate the advantages
of using adaptive modulation.

We present the average latency for the different schemes
compared at varying numbers of vehicles in Fig. 6. From the
figure, we observe that the proposed scheme outperforms all
other schemes, but the 64-QAM with which has comparable
performance. Similar to the average throughput in Fig. 5, the
4-QAM and 64-QAM offer almost fixed average latency at
all the range of vehicles. It is also apparent from the figure
that the 64-QAM has lower average latency than the proposed
scheme until the number of vehicles is 12. This is because,
at fixed modulation, we can achieve lower latency at the cost
of violating other constraints, which we will discuss in the
next paragraph. Moreover, the No Coding scheme shows the
lowest latency gap and hence, we can see the effect of code
rate optimization in our proposed scheme. Similarly, the SLO
scheme has a larger average latency gap with the proposed
scheme than the No Coding scheme, and it even has higher
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Fig. 6. Comparison of average latency versus number of vehicles with
different considered schemes.

latency when the number of vehicles exceeds 14 per 180m.
Therefore, we can conclude that we can achieve a higher rate
and lower latency by using code rate optimization and multi-
link policy maximization like in the proposed scheme.

We, then, visualize how the proposed scheme satisfies the
uRLLC requirements while maximizing the throughput by
analyzing the BER and latency performance. In this paper,
we set the requirements for ultra-reliability to meet the BER
of 10−7 and low latency to satisfy 10 ms latency. We begin
by showing the boxplot for the BER performance in Fig. 7 to
evaluate whether the reliability requirement is met by all the
schemes. From the evaluation, we can observe that most BER
values are clustered near the maximum and are considerably
distant from the minimum for all schemes. This is because
our proposed scheme consistently maintains safe distances
between vehicles to avoid collisions and prevent them from
coming too close. Moreover, in this analysis, we only examine
the maximum observed BER of all available links at each time
slot for each scheme. We have also plotted a reference line
for the BER constraint of 10−7 (dashed black line). From the
figure, it can be observed that the proposed algorithm always
satisfies the reliability requirement, while the other schemes
fail to meet the constraint most of the time. In particular,
the No Coding scheme cannot satisfy the BER requirement.
Therefore, it is evident that channel coding is necessary to
achieve the reliability requirements. The SLO scheme can
respect the BER for more than half of the time because
we optimize the performance of multiple links based on the
observation of single link parameters. In this scenario, there
is the possibility of bad policies for other vehicles, which was
considered good for the observed link. For fixed modulations,
4-QAM can meet the BER constraint less than half of the
time, whereas 64-QAM can never satisfy them. In particular,
64-QAM has the lowest BER performance of any of the
comparison schemes. This occurs because we need to transmit
data at a higher rate all the time, which makes it difficult
to guarantee reliability over a longer distance. Conversely, 4-
QAM can transmit and receive data reliably most of the time.

Finally, Fig. 8 illustrates the boxplots of the observed
latency to examine whether the low latency requirement (10
ms) is met by the different comparison schemes. We train
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Fig. 7. Box plot showing the maximum and minimum BER offered for all
the schemes under comparison.

the models for 10000 timesteps. Similarly to Fig. 7 where
we explored BER performance, we have also computed the
maximum observed latency of all available links at the current
time slot. We have also drawn a reference line for the latency
constraint (dashed black line) in Fig. 8. From the figure, it
can be seen that the proposed and fixed modulation schemes
consistently meet the low latency requirements of 10 ms, while
the other schemes fail to meet this constraint most of the time.
Specifically, for the greedy, farsighted, SLO, and No Coding
schemes, the maximum observed latency is 15.5 ms, 13.8 ms,
11.5 ms, and 11 ms, respectively. The 4-QAM and 64-QAM
achieve lower latency since we use fixed modulation while
sacrificing the throughput and BER.

The above performance comparisons demonstrate that our
proposed vehicular OCC system can maximize throughput
while ensuring uRLLC, while the other schemes, we compare
with, cannot meet both the reliability and delay requirements
or none. Although fixed modulation schemes, 4-QAM and
64-QAM can satisfy the latency requirements at the expense
of lower average throughput, they violate reliability require-
ments. It is evident from the preceding that we achieve
better performance in the multi-agent vehicular OCC system
by performing code rate optimization and utilizing adaptive
modulation schemes.

VI. CONCLUSION

In this paper, we investigate a multi-link DRL-based
throughput maximization scheme to ensure uRLLC in vehic-
ular OCC system. To accomplish this, we choose the optimal
code rate, modulation scheme and speed of vehicles for multi-
ple vehicular links. To meet ultra-reliability requirements, 5G
NR LDPC codes and an adaptive modulation scheme are used.
We then solve the continuous optimization problem using an
actor-critic algorithm through the Wolpertinger policy for mul-
tiple links. We compare the proposed scheme’s performance to
that of various variants of our scheme. According to the results
of the evaluation, the proposed method achieves significantly
higher average throughput and lower latency than all of the
schemes under consideration. The results also show that our
scheme always meets uRLLC requirements, whereas other
schemes fail to meet the majority of the time. This happens
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Fig. 8. Box plot showing the maximum and minimum latency offered for
different schemes under comparison.

because we optimize the parameters (finding the best code
rate, modulation, and vehicle distance) for multiple vehicular
links at the same time. While schemes that do not use channel
codes and use fixed modulation cannot guarantee reliability.
The reliability and low latency requirements cannot be met for
single link optimization because the agent optimizes policies
for other links without considering their observed states,
resulting in a sub-optimal solution most of the time.
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