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Abstract 

A Brain-computer interface (BCI) system establishes a novel communication channel 

between the human brain and a computer. Most event related potential-based BCI 

applications make use of decoding models, which requires training. This training process 

is often time-consuming and inconvenient for new users. In recent years, deep learning 

models, especially participant-independent models, have garnered significant attention in 

the domain of ERP classification. However, individual differences in EEG signals hamper 

model generalization, as the ERP component and other aspects of the EEG signal vary 

across participants, even when they are exposed to the same stimuli. This paper proposes 

a novel One-source domain transfer learning method based Attention Domain Adversarial 

Neural Network (OADANN) to mitigate data distribution discrepancies for cross-

participant classification tasks. We train and validate our proposed model on both a 

publicly available OpenBMI dataset and a Self-collected dataset, employing a leave one 

participant out cross validation scheme. Experimental results demonstrate that the 

proposed OADANN method achieves the highest and most robust classification 

performance and exhibits significant improvements when compared to baseline methods 

(CNN, EEGNet, ShallowNet, DeepCovNet) and domain generalization methods (ERM, 

Mixup, and Groupdro). These findings underscore the efficacy of our proposed method. 

 

Keywords: Brain-computer interface, P300 detection, cross participant task, domain 

generalization 



1. Introduction 

Brain-computer interface (BCI) systems establish a direct interactive pathway 

between the human brain and external devices through decoding users’ neural activity into 

control commands [1]. BCI systems have been suggested to have considerable potential 

to improve aspects of the quality of life for people with conditions such as amyotrophic 

lateral sclerosis (ALS). As a non-invasive and safe modality, electroencephalography 

(EEG) has been widely used to monitor brain activity within BCI systems [2]. Moreover, 

it provides an excellent temporal resolution of less than a millisecond. 

Event-related potentials (ERPs) are time-locked components of the EEG [3] that 

represent neural responses to specific stimuli or events. The low signal-to-noise ratio of 

the ERP means they are typically collected over multiple repetitions of stimulus 

presentation. Examples of ERPs that are widely used in BCI systems include the N200, 

P300, and N400 potentials [4]. Of these ERPs, the P300 is the most widely used in BCI 

systems. This P300 ERP is a positive deflection in the amplitude of the EEG over the 

parietal and occipital regions of the cortex that occurs approximately 300 milliseconds 

after the onset of an uncommon stimulus [5, 6]. The P300 ERP is most commonly elicited 

by the use of the oddball experimental paradigm, in which users are asked to focus on an 

infrequent stimulus and ignore other common stimuli presented in a sequence. The well-

known P300 speller is based on this paradigm and was designed by Farewell and Donchin 

in 1988 [7]. In this speller paradigm, the BCI user is presented with a selection of options 

arranged on-screen within a 6×6 matrix containing 36 characters. Each row and column 

of this matrix is sequentially highlighted in a pseudo-randomised order for a given number 

of times. Due to inevitable external noise, the collected ERPs have a low signal-to-noise 

ratio. Consequently, it is crucial to design an effective algorithm to recognize these ERP 

signal components. In the aspect of feature extraction, structure constrained semi-

nonnegative matrix factorization (semi-NMF) was used to extract the key patterns of EEG 

data in time domain. It has been reported that a human behavior data representation 

method based on structure constraint and semi-NMF achieved excellent sequential 

segmentation [8]. 

In recent years, deep learning methods have shown promising results and are able to 

automatically extract complex features from raw data, learning hierarchical 

representations of the input at different levels [9]. In the field of intelligent medical care, 

an automatic fetal ultrasound standard plane recognition model based on deep learning 

was extended to the Industrial Internet of Things platform to achieve efficient data analysis 

[10]. Convolutional neural networks (CNN) have also been utilized in other fields such as 

computer vision and speech recognition in recent years [11, 12]. To mine features from 

multiple spatiotemporal frequencies, a multiscale feature fusion octave convolution neural 

network was proposed for EEG classification [13]. To date, most studies have explored 

simple model architectures based on CNN and recurrent neural networks (RNN) [14]. For 



example, Cecotti et al. [15] developed a 4-layer CNN for use in BCI to decode P300 ERPs 

for the first time. Liu et al. [16] combined the idea of a one-dimensional convolution with 

the traditional Caps Net model to construct a 1D-CapsNet model, which achieved superior 

detection performances compared to traditional machine learning. Borra et al. [17] 

investigated a Bayesian-optimized interpretable CNN to analyze P300 spectral and spatial 

features, which demonstrates that a CNN can be designed to be both accurate and 

interpretable for P300 decoding. Tortora et al. [18] trained a Long-Short Term Memory 

(LSTM) deep neural network to deal with time-dependent information within brain signals 

during locomotion.  

Despite much research and impressive progress, there still remain some major 

challenges for BCI systems. For instance, different participants have different neural 

responses to the same stimulus, and even for the same participant, the distribution of data 

varies over time resulting in differences in ERPs over sessions and days [19]. In a word, 

EEG signals have been discovered to display large inter-individual variation. Thus, most 

P300 BCI system requires a long time of training and offline calibration data, which is 

time-consuming and inconvenient in real applications. To address the above problem, 

current work develops cross-participant transfer learning method to detect P300 signals 

without any training data from the target subject to diminish the influence of participant 

variability on decoding performance [20]. In a classic study, EEGNet was constructed by 

using Depthwise and Separable Convolutions, which could produce interpretable features 

and achieve better decoding performances than other CNN models when applied to cross-

participant classification [21]. Subsequently, Inception modules were efficiently 

integrated into an EEG-Inception method to facilitate the extraction of feature maps at 

different temporal scales, which reduced the amount of calibration data needed to obtain 

a good decoding accuracy with new participants [22]. Bhatt et al. created a graph-based 

dual-attention convolutional recurrent model to enhance the detection of ERP signal, 

particularly for visual object recognition in cross-participant classification task [23]. To 

improve BCI performance by using the uncertainty information, a Bayesian convolutional 

neural network (BCNN) can efficiently estimate prediction uncertainty, which provides 

more reliable classification results [24]. Under uncertain conditions, the situational 

assessment scheme based on uncertainty risk awareness proposed by Gao et al. has 

improved the cognitive ability of intelligent vehicles in the environment [25]. Interacting 

multiple models for short-term and long-term trajectory prediction was developed to 

achieve high effectiveness [26]. 

Domain adaptation (DA) and domain generalization (DG) are two popular branches 

of transfer learning. Among the DA approaches, adversarial learning-based methods, such 

as Generative Adversarial Networks (GAN), and Adversarial Discriminative Domain 

Adapation (ADDA) have shown great potential and achieved significant improvements in 

EEG decoding performance. For example, Panwar et al. [27] investigated a conditioned 

Wasserstein GAN with gradient penalty to generate EEG data in a rapid serial visual 



presentation (RSVP) task and achieved improved intra-participant cross-session 

performances over EEGNet. Li et al. [28] proposed a bi-hemisphere domain adversarial 

neural network (BiDANN) model in which domain discriminators work adversarially with 

a classifier to learn discriminative emotional features and alleviate the domain differences 

between source and target domains. Considering adversarial security, alignment based 

adversarial training integrated data alignment and adversarial training, which can 

simultaneously reduce their distribution discrepancies and robustifies the classification 

boundary [29, 30]. However, DA methods require collecting EEG data relating to tasks 

from new participants in advance and retraining the model. These are time-consuming and 

resource-intensive processes. In contrast, DG methods aim at robust performances when 

dealing with unknown domains without the need for extra information [31], which can 

address the above problems presented by DA methods and is preferable for practical 

applications. Since DG methods conduct vigilance estimation over multiple new 

participants with only well-trained models, it is critical to enhance the generalization 

ability of the DG models. There are several approaches available to improve model 

generalization, such as data augmentation, adversarial training, and meta-training. 

However, less attention has been paid to the use of DG for cross-participant EEG based 

ERP detection. 

In this paper, we propose a domain adversarial neural network designed to address 

the domain generalization problem. The entire pretraining process is conceptualized as a 

binary classification task, where all data from source participants is amalgamated and 

treated as a unified source domain for training classifier. Specifically, we leverage a deep 

neural network to generate effective and non-handcrafted deep representations, employing 

adversarial learning to achieve cross-participant P300 classification. The main 

contributions of this paper include: 

 Development of a one-source domain transfer learning method, termed one-source 

domain adversarial neural networks (ODANN), which utilizes domain adversarial 

neural networks to assimilate common features from source domains, enhancing the 

separability between target and non-target data. 

 Introduction of an attention mechanism with a convolutional neural network (CNN) 

to recalibrate the weights of different channels based on the deep convolution 

structure in the feature extractor, effectively addressing channel interactions. 

 Validation of the effectiveness of our proposed model through comparative 

experiments conducted on both a publically available OpenBMI dataset and a Self-

collected dataset. The results confirm that our proposed methodology exhibits 

superior recognition accuracy. 

The remainder of this work is arranged as follows. Section 2 details related method 

and proposed framework. Section 3 introduces the datasets, experimental setting, and 

baseline methods we use to compare with our method. Section 4 presents the experimental 

results and visualization. Section 5 includes a detailed discussion and Section 6 concludes 



our work. 

2. Materials and Methods 

2.1 Domain Adversarial Neural Network 

The DANN model is the first work to attempt to match the data distribution using an 
adversarial training strategy [32] and was proposed to deal with the domain adaptation 
problem. The DANN model consists of three components, a feature extractor ��, a label 
classifier �� , and a domain discriminator ��  [33]. Both classifiers share the feature 
extractor that extracts domain-invariant feature representations from the source domain 
and target domain. The label classifier is used for classifying the source domain, and the 
domain classifier distinguishes whether the signal belongs to the source domain or the 
target domain. This approach introduces a gradient reversal layer (GRL) [34] between the 
domain classifier and the feature extractor. The loss function is divided into two parts, 
label prediction loss, and domain prediction loss. Therefore, the DANN model attempts 
to minimize label prediction loss and maximize the domain prediction loss. The definition 

of each loss is as follows. Given the source domain data �� = 	
� �, 
� �����
��  and the target 

domain data �� = 	
�� , 
������
��  , ��  and ��  are the number of samples in the labeled 

source domain and the unlabeled target domain, respectively. The label loss operation �� 
can be defined by: 

����� , ��� =  1
��

� ������ , ���
��

���
	1� 

where �� and �� represent the parameters of the feature extractor and label classifier. 
The negative log-probability of the correct label can be used to represent the loss: 

������ , ��� = log 1
��	��	
� ��, 
� �� 	2� 

The domain discriminator loss operation �� is 

�� = 1
��

� ������ , ���
��

���
+ 1

��
� �� "��� , ���
��

"��
	3� 

where �� denotes the parameters of the domain discriminator. According to Ganin et.al. 
[32], the loss of the domain discriminator can be defined as: 

������ , ��� = $�log 1
��	��	
��� + 	1 − $��log 1

1 − ��	��	
��� 	4� 

where $� is a binary domain label for sample 
�. The domain label can be defined as 0 if 

� belongs to source domain, and the domain label can be defined as 1 if 
� belongs to 
target domain. The overall objective function is: 

���� , ��, ��� = �� − '�� 	5� 

The hyper-parameter ' is used to balance the trade-off of these two terms. Moreover,  



the optimization for all parameters can be organized as follows: 

�)� , �)� = *+,min01,02
���� , ��, �)�� 	6� 

�)� = *+,max06
 ���)� , �)�, ��� 	7� 

After optimization, the feature extractor should find a mapping to the feature space 
where task-related information is retained and most of the domain-variant features are 
excluded. 

2.2 Source Domain Transfer Based on ADANN Method 

 Due to large inter-participant variability, it is challengable to enhance the 

classification performance of participant-independent model. To address the above 

problem, we focus on domain generalization and put forward a novel adversarial structure, 

attention based DANN method (ADANN), to improve the generalization ability of the 

model. We design two different strategies for dealing with inter-participant variability. 

With this, the final model can help to extract domain-invariant class features for EEG 

classification tasks. The architecture of our ADANN model is illustrated in Figure 1. The 

overall framework can be divided into four branches: data preprocessing, feature 

extraction, label classification, and domain discrimination.  

 

Figure 1. The overall structure of the proposed ADANN method based on two strategies 

 

Given that this work transfers knowledge from the source domain, raw EEG data 

from multiple participants is first preprocessed and concatenated as the input data in the 

first step. Data preprocessing part includes data segmentation, filtering and downsampling. 

Then, the input data is fed into a feature extractor to obtain the domain-invariant feature 

space. To be specific, we introduce an attention mechanism based deep convolution 



structure as a feature extractor ��	��� due to its powerful learning capability. A shallow 

yet efficient classifier ��	���  is used for EEG classification. However, the training 

process can easily cause overfitting to the source distribution. In this domain 

generalization strategy, we generalize the domain discriminator ��	���  as different 

source domain classifiers reduce the domain shift. At last, two kinds of losses, label 

classifier loss and domain discriminator loss are exerted during the training process. As 

shown in Eq.(3), the loss of the domain discriminator in the domain adaptation problem 

is related to the source and target data. In order to transfer it into a domain generalization 

problem we have generalized and re-designed the domain discriminator as follows: 

�8� = 1
9 � �8�

���� , �8��
:

���
	8� 

�8�
���� , �8�� = log 1

��	��	
����<
	9� 

where $� ∈ ℝ@ , A  is the number of source domains and 9  is the sample of labeled 

source domains. Accordingly, the overall loss function of the ADANN method can be 

represented as: 

 

���� , ��, �8�� = 1
9 � �′�

���� , ���
:

���
− ' 1

9 � �′�
���� , �8��

:

���
	10� 

where �′�  is the cross entropy function, which is adopted to minimize the difference 
between the predicted label and the corresponding ground truth label. 

 
Figure 2. The learning process of our ADANN method.  

Depending on the use of the domain discriminator ��, two strategies can be used to 

apply our proposed method. Specifically, we can either apply our method using a one-



source domain transfer learning based ADNN method (OADANN) or using a multiple 

source domain transfer learning based ADNN method (MADANN). These two 

approaches are shown in Figure 1. In the OADANN method, data from all the source 

participants is regarded as belonging to one source domain, thus the source domain labels 

can be considered as the same one. Alternatively, in the MADANN method, data from all 

the source participants may be classified into multiple domains, with the total number of 

domains determined by the total number of participants. Therefore, the source domain 

labels can be considered multi-class labels. The detailed configuration of each block is 

presented in Figure 2.   

In our work, we employ an efficient channel attention (ECA) [35] based deep 

convolutional neural network as a feature extractor. The deep convolutional neural 

network we use in this work has five blocks. The first two of these blocks executes a 

temporal convolution and a spatial convolution, the following performs standard 

convolutional-max-pooling. During feature extraction, the ECA block is followed by 

temporal convolution, which can avoid dimensionality reduction and capture cross-

channel interactionss [35]. Figure 2 also illustrates the overview of the ECA block. First, 

global average pooling (GAP) is applied without dimensionality reduction [36]. Then we 

determine that the kernel size is 3 and perform 1D convolution followed by a Sigmoid 

function to learn channel attention. Furthermore, a simple label classifier with one fully 

connected layer is applied to perform ERP classification. A domain discriminator with 

three fully connected layers is then employed to distinguish the domain. Note that A is 

set to 1 in the OADANN method while A is set to the number of participants of source 

domain in the MADANN method. In order to make the proposed algorithm clear, we 

describe the pseudo-code of the OADANN method in Algorithm 1. 

Algorithm 1 The OADANN method 

Input: Training process: The source domain data �� = 	
� �, 
� �� , and the 

corresponding domain label 
8
�

�; // Test process: The target participant data 
�� 

Output: The corresponding predicted label 
D�
�. 

1: Initilize the parameters �� , ��, �� . 

2: Preprocessing raw data and obtain processed data 
8�
�. 

2: for EFGHℎ in range (J*
EFGHℎ) do 

3:    foreach minibatch do  

4:    Train the attention based domain adversarial neural network � = {�� , ��, ��} 

by processed source domain data �� = {�
8�
�, 
���, … , �
8:

�, 
: �� , �� =
{�
8�

�, 
8
�

��, … , �
8:
�, 
8

:
�� where 
8:

� , 
: �  and 
8
:

� are the data, class 

label and domain label of J -th participant, respectively; �  is the model 

trained on all the source domain data. N� = ���
8�
��; 
� = ��	N�, 
� ��; $� =

���N�, 
8
�

�� 



5:    maximize the loss function �′� of the domain discriminator. 

6:    minimize the loss function �� of the feature classifier. 

7:    end 

8: end 

9: Predict the label 
D�
�  of processed target participant data 
8�

� , where  
D�
� =

������
8�
��, 
� �� 

3. Experiments 

3.1 Datasets 

We compare our proposed method to other state of the art methods on two ERP 

datasets: 1) a public OpenBMI dataset; 2) a Self-collected dataset.  

OpenBMI dataset containing EEG and EMG data was collected via an ERP-BCI 

paradigm from 54 healthy participants (S01-S54). The dataset contains EEG signals 

recorded via 62 channels (the hollow circles and Cz in Figure 4) and the reference and 

ground electrodes are positioned on the nasion (Nz) and at position AFz. There are two 

sessions recorded on different days, and each session contains both offline and online 

phases. In this study, we only use one offline ERP phase for further analysis. Before the 

ERP experiment began, participants were instructed to sit comfortably in a chair with 

armrests positioned at a distance of approximately 60 (±5) cm in front of a 21-inch LCD 

monitor. The approximate horizontal and vertical visual angles are 37.7 and 28.1 degrees 

respectively. During the process of the experiment, participants were instructed to relax 

and minimize their eye and muscle movements.  

The interface layout of the paradigm is shown in Figure 3. A grid of letters and 

numbers containing 6 rows and 6 columns and including 36 symbols (A-Z, 1-9, and the 

underscore character ‘_’) was displayed on the screen. To evoke stronger ERP responses, 

random-set presentation and face stimuli are used in this paradigm. The stimulus-time 

interval is set to 80ms, and the inter-stimulus interval (ISI) to 135ms. A single iteration of 

stimulus presentation in all rows and columns is considered a sequence. Therefore, one 

sequence consists of 12 stimulus flashes. In the offline phase of our experiment, each 

target character is presented over five rounds, that is, there are 60 flashes in total (12 

stimulus flashes by 5 repetitions (‘rounds’) per stimulus). In addition, a given sentence 

composed of 33 characters, “NEURAL\_NETWORKS\_AND\_DEEP\_LEARNING” is 

spelled by the participants by fixing on the target character on the screen. More details 

about the dataset can be found on the following website: http://deepbci.korea.ac.kr/wp-

content/uploads/2020/11/Big-Data-of-ERP-Speller.pdf. 



 
Figure 3. The flow chart of the ERP paradigm used in the OpenBMI dataset. 

In our Self-collected dataset, EEG signals were collected from 15 participants (P01-

P15) using 59 electrodes (all orange circles in Figure 4). For each participant, the 

experiment only includes a single offline block, which includes 36 targets (A-Z, 1-9, and 

the underscore character ‘_’). The graphical interface used in the paradigm is the same as 

shown in Figure 3. Each target is arranged to be presented over 5 repetitions (rounds) and 

each round consists of a sequence of 12 stimuli flashes. The stimulus presentation pattern 

is based on binomial coefficients [2]. The stimulus onset asynchrony (SOA) was set to 

150 ms, and the stimulus interval was set to 75 ms throughout all stages of the experiment.  

3.2 Data Preprocessing 

In the preprocessing stage, the selected EEG signals are first band-pass filtered from 

0.5Hz to 40Hz via a fourth-order Butterworth filter. Then, the temporal features from -

200ms to 800ms from the stimulus presentation onset time from each channel are 

extracted. We down-sampled the EEG signals to 100 Hz and then baseline-corrected the 

signals by subtracting the mean amplitudes from the -200 ms to 0 ms pre-stimulus interval.  

 
Figure 4. The channel configuration of the International 10-20 system for EEG electrode 

placement. 

In our Self-collected dataset, a band pass filter is applied to filter the EEG between 

0.5 and 35 Hz to reduce high frequency noise. The filtering algorithm we applied is a 

third-order Butterworth filter. In order to decrease the dimensionality of the data and 

complexity of the classification model, the sampling rate is downsampled to 250 Hz. For 

both datasets, EEG data from each trial is extracted using the same time window [0, 800ms] 



after stimulus presentation.  

3.3 Experimental Evaluation 

 
Figure 5. Illustration for a LOPO-CV scheme for training the classification models 

To demonstrate the validity and generalizability of our proposed method in a P300 

classification model, we execute our experiment in a participant-independent manner. 

Figure 5 presents an example of how we selected the training samples and testing samples 

for each of our two datasets. For the OpenBMI dataset, the offline data recorded in session 

1 (orange box) is used in this study. Leave one participant out cross validation (LOPO-

CV) scheme adopted in this study is one of cross-participant transfer learning tasks. For 

instance, suppose that S1 is the test participant, the offline data of the remaining 

participants should be used to train the classifier. Note that S52 includes error labels, 

which has no corresponding character during the experiment. Therefore, we only retain 

53 participants as test participants. In accordance with widely used standardized metrics 

for assessing BCI performances, the character recognition accuracy and information 

transfer rate (ITR) are evaluated in a public dataset [37]. Character recognition accuracy 

can be computed as follows: 

OHH = 9P
9QRQST

	11� 

where 9P denotes the number of correctly predicted characters and 9QRQST is the total 

number of characters. ITR is defined as: 

       UVW = 	XG,Y9 + OHHXG,YOHH + 	1 − OHH�XG,Y
1 − OHH
9 − 1 � 60

V           	12� 

where 9 represents the total number of classes, OHH denotes the classification accuracy, 
and V represents the time taken by the participant to perform each trial. 

3.4 Experimental Setting 

 There are two transfer evaluation methods in our experiment. One participant is 
selected as the target and the rest as source domain in both methods, that is LOPO-CV 
scheme. Source data may either be regarded as one domain (S→O, OADANN) or source 
data may be divided into multiple domains according to the number of participants (S→M, 



MADANN): 
(1) (S→O): S→O is developed to evaluate the performance of the proposed OADANN 
method. In this regard, each participant is taken as the target participant, and the rest of 
the participants are taken as the source participants (one domain). If [  represents the 
number of participants in the dataset than there are data from t − 1 participants in one 
source domain.  
(2) (S→M): S→M is designed to evaluate the efficacy of our proposed OADANN method 
in the case of multiple domains. We select one participant as the target and the rest as 
source participants (multiple domains). Let J represent the number of participants in the 
dataset, there are data from [ − 1 participants in [ − 1 source domains. In contrast, our 
proposed OADANN method analyzes the relationship between one source domain and 
the target domain, which is simplified as a binary classification problem for domain 
discriminator. 

The differences between methods are that the source participants is regarded as one 
domain in the domain discriminator of OADANN and as multiple domains in the domain 
discriminator of MADANN, therefore there are different classification problems in two 
strategies. 

3.5 Baseline Methods 

 In order to demonstrate the effectiveness of our proposed method, four traditional 

deep learning models are adopted as baseline methods to classify the P300 signal: CNN, 

EEGNet, ShallowNet, and DeepConvNet. CNN has been employed in computer vision 

and speech recognition and achieved great performance in many situations. Inspired by 

this, CNN has been adopted for use in the detection of P300 waves in the time domain. 

Subsequently, EEGNet was introduced for within and cross-participant classification tasks. 

EEGNet has been demonstrated to be robust enough to learn interpretable features over 

various BCI tasks. ShallowNet and Deep ConvNet have also been proposed to recognize 

imagined or executed tasks from raw EEG signals. Each of these methods are described 

below. 

1) CNN (BASIC-CNN)  This is the first model based on a convolutional neural network 

that has been deployed to detect P300 ERPs. This network consists of five layers, and each 

layer is composed of one or more maps. The first hidden layer is a channel combination 

layer, while the second hidden layer down-samples and transforms the signal in the time 

domain, the third hidden layer contains one map of 100 neurons, which is fully connected 

to the second layer. Finally, the output layer has only one map of 2 neurons denoting two 

classes (target and non-target), which is fully connected to the third layer. A detailed 

description of this CNN is provided by Cecotti and Graser [15]. 

2) EEGNet  This is a compact CNN for classification and interpretation of EEG within 

BCI systems. There are three main blocks in this network. First, a temporal convolution 

is used to capture frequency information within the EEG. Second, a depthwise 

convolution is adopted to learn frequency-specific spatial filters. Then separable 



convolution is carried out to learn temporal information for each feature map individually, 

followed by pointwise convolution. In the classification stage of the model the feature is 

flattened and sent into a fully connected layer with a softmax function for classification. 

This method has been evaluated across different BCI paradigms and the results 

demonstrate the effectiveness and generalizability of this model. More details about 

EEGNet are reported by Lawhern et al. [21]. 

3) ShallowNet  It is inspired by the Filter Bank Common Spatial Patterns (FBCSP) 

pipeline, which is designed to decode band power features from the EEG. Specifically, 

the first two layers of this model consist of temporal and spatial convolution layers 

followed by a mean pooling layer. Since there are several pooling regions in one trial, 

shallow ConvNet can capture the temporal information of band power changes in one trial, 

which is helpful for classification. Detailed descriptions are reported by Schirrmeister et 

al. [38]. 

4) DeepConvNet  It is inspired by the successful architecture DeepConvNet, first applied 

in the fielf of computer vision. It is implemented by four convolution-max-pooling blocks, 

which include a specific first block to address the input feature, followed by three standard 

convolution-max-pooling blocks and a dense softmax classification layer. The first 

convolution block is composed of two layers. The first layer performs a temporal 

convolution, while the second layer performs a spatial convolution. There is no activation 

function in the first block and we use exponential linear units (ELUs) as activation 

functions in the rest of the blocks. More details about Deep ConvNet are reported by 

Schirrmeister et al. [38]. 

3.6 Model Training 

The whole workflow is implemented in the Pytorch 1.9.0 library and the whole 

experiment is run on an Intel(R) Xeon(R) platform with NVIDIA GeForce RTX 2080Ti 

GPU. In the training process, the loss function was optimized via an adaptive moment 

estimation (ADAM) optimizer. The learning rate of ] was set to 0.0005, the weighted 

decay was set to 0.001, and a 25% dropout rate was used in the training process [39]. We 

set a batch size of 64 samples for participant-independent classification. Finally, the 

number of training iterations was set to 100. 

4. Results 

 Our proposed method is a competitive model for effective feature extraction with an 

attention module. In this section, we compare the ERP identification performances 

achieved by our proposed model and four deep learning methods. We also construct the 

domain adversarial neural network framework. We then carry out comparison experiments 

with several DG algorithms. Moreover, we also perform an ablation study to compare the 



classification performance among different methods under the same experimental settings 

to highlight the contributions of each block of our proposed method on P300 classification 

performance. Finally, we visualize the feature distributions associated with two sample 

participants using the t-SNE embedding method.  

4.1 Deep Learning Methods 

Tables I and II present the average classification performances in the LOPO-CV 

scheme applied to the two datasets. The experiments illustrate that our proposed 

OADANN method obtains the highest classification accuracy across the five rounds of 

stimuli flashes within our experiments. In addition, as the number of rounds of stimuli 

flashes increases, the classification performances also increases. In this regard, our 

proposed OADANN method outperforms BASIC-CNN, EEGNet, ShallowNet, 

DeepCovNet, and MADANN methods by an average of 5.72%, 3.6%, 4.63%, 0.97%, and 

1.14% after five rounds of stimuli flashes in the OpenBMI dataset. We also compare the 

ITR achieved by our OADANN method with the other methods. This reveals an 

improvement of up to 2.66 bits/min for BASIC-CNN, 1.39 bits/min for EEGNet, 2.72 

bits/min for ShallowCovNet, and 0.37 bits/min for DeepCovNet after two rounds, 

respectively. For Table II it may be seen that the accuracy of our method is 2.78% and 

3.15% higher than that of EEGNet and DeepCovNet after 5 rounds of stimuli flashes.  

Table I Average classification performances (accuracy±standard deviation (%) and ITR±standard 

deviation (bits/min)) in the LOPO-CV scheme with OpenBMI dataset. 
Methods 

Rounds  BASIC-CNN EEGNet ShallowNet DeepCovNet MADANN OADANN 

1 
ACC 56.43±20.17*** 61.41±21.14*** 58.83±22.13*** 65.41±19.57 61.29±20.58 65.64±18.25 

ITR 17.57±8.86*** 20.10±9.77** 18.94±10.10*** 21.94±9.74 19.95±9.73 21.91±9.01 

2 
ACC 80.33±21.47*** 83.08±20.96* 79.93±22.51*** 85.88±17.04 84.39±18.07 86.62±16.58 

ITR 22.66±8.42*** 23.93±8.33* 22.60±8.87*** 24.95±7.28 24.33±7.79 25.32±7.29 

3 
ACC 88.56±19.13** 90.91±18.86* 87.82±19.48*** 93.42±11.84 91.54±13.21 94.05±10.17 

ITR 20.90±6.06*** 21.76±5.85* 20.70±6.36*** 22.54±4.29 21.82±4.85 22.71±3.79 

4 
ACC 90.74±18.18** 92.51±17.69* 91.37±17.86** 95.48±10.27 94.74±9.98 96.17±8.24 

ITR 18.02±4.94*** 18.63±4.55* 18.25±4.86** 19.33±3.08 19.05±3.18 19.51±2.64 

5 
ACC 91.82±18.05** 93.94±16.50* 92.91±16.11** 96.57±8.41** 96.40±8.00** 97.54±6.80 

ITR 15.69±4.17** 16.26±3.72* 15.92±3.79** 16.77±2.26** 16.69±2.19** 17.04±1.88 

ACC defines classification accuracy, ITR defines information transfer rate. The outcomes of the significance tests are 
reported in terms of F values between each of the methods and OADANN: * indicates 	F < 0.05�, ** indicates 	F <
0.01�, *** indicates 	F < 0.001�. Bold highlighting denotes the best numerical values. 

Table II Average classification performances (accuracy±standard deviation) (%) and 

ITR±standard deviation (bits/min)) in the LOPO-CV scheme with Self-collected dataset. 
Methods 

Rounds  BASIC-CNN EEGNet ShallowNet DeepCovNet MADANN OADANN 

1 
ACC 47.04±9.12 49.44±12.43 49.63±15.03 49.07±13.06 50.18±11.48 48.89±10.17 

ITR 92.62±26.36 104.31±27.84 97.77±30.31 94.46±33.49 98.47±29.35 97.39±34.21 

2 
ACC 64.81±11.49 69.81±11.15 66.85±13.13 65.19±14.81 67.22±12.52 66.48±14.03 

ITR 63.06±17.95 71.02±18.96 66.57±20.64 64.32±22.80 67.05±19.98 66.31±23.29 

3 
ACC 72.59±11.73 77.59±10.20 76.67±10.22 77.04±12.87 75.74±11.18 77.04±11.03 

ITR 57.39±14.85 63.82±14.03 62.56±14.01 63.62±17.28 61.51±15.39 63.26±15.52 

4 ACC 78.70±9.19* 83.33±8.33 83.70±8.65 81.30±11.13 81.67±8.96* 84.26±9.37 



ITR 52.43±9.91* 57.66±9.65 58.19±10.34 55.68±12.53 55.80±10.35* 58.99±11.42 

5 
ACC 84.26±9.19* 86.48±7.99* 86.67±7.29 86.11±10.39 86.85±9.71* 89.26±7.78 

ITR 49.28±8.97* 51.42±8.08* 51.64±7.91 51.37±10.19 52.11±10.01 54.37±8.08 

ACC denotes classification accuracy, and ITR denotes information transfer rate. The  F  value indicates the 
corresponding results between our proposed method and OADANN: * indicating 	F < 0.05�. Bold denotes the best 
numerical values. 

We observe that the MADANN method achieves higher accuracies and ITRs than 

the BASIC-CNN, EEGNet, and ShallowConvNet methods in both datasets, while 

achieving slightly lower accuracies and ITRs than the DeepCovNet method when applied 

to the OpenBMI dataset. The MADANN method generalizes the domain discriminator as 

an [ -1 class domain classifier, resulting in poor generalization. The better recognition 

performance of the OADANN method is likely due to the fact that the participant 

discriminator within the OADANN method can effectively reduce the participants’ 

identity information and address the participant-independent P300 recognition problem. 

To further describe the the error results of each participant in detail, we also present the 

character classification accuracies achieved by the six algorithms across participants in 

the OpenBMI dataset, when participants are ordered based on the results achieved via the 

BASIC-CNN method from smallest to largest. From Figure 6, we can easily find that most 

participants can obtain zero error when using the OADANN method on the OpenBMI 

dataset. In essence, the variability among participants (inter-participant variability) can be 

expressed as differences in the amplitude and latency of ERP signal. Therefore, a high 

level of inter-participant variability can lead to differences in classification performances 

and data distribution, which brings great challenges in cross-participants classification 

tasks. We can take the OpenBMI dataset as an example. As shown in Figure 6, 

classification performances vary between participants when using the same classification 

model. However, the proposed method shows stable classification performances 

compared with baseline methods, that is, higher average classification accuracy and fewer 

outliers are presented in the OADANN method. It should be noted that the standard 

deviations of the accuracies and ITRs are high for all models due to the high levels of 

inter-participant variability. Nevertheless, our proposed method achieves the lowest 

standard deviation of the methods, demonstrating its’ greater robustness to individual 

differences.  

 
Figure 6. The character classification error rates obtained when combining ERPs from five 



rounds of repeated stimuli flashes across 53 participants (left); The box plots of character 

classification accuracies for the six methods and blue colored plus signs denote outliers (right). 

To evaluate the statistical significance of the performance differences between 

methods we perform a paired t-test (significant level of 0.05) with Bonferroni correction 

for multiple comparisons applied to avoid type I errors. The results in Table I indicate that 

our proposed OADANN method obtains statistically significant improvements when 

compared with the other deep learning algorithms in terms of both classification accuracy 

(F < 0.05 ) and ITR (F < 0.05 ) after five rounds of stimuli flashes. Concretely, our 

OADANN method has significantly higher performances than BASIC-CNN, EEGNet, 

and ShallowNet across all the rounds of stimuli flashes, which demonstrates the 

effectiveness of our proposed method. When considering our Self-collected dataset, 

significant performance differences (F < 0.05) are seen between both our method and 

BASIC-CNN and EEGNet after 5 rounds of stimuli flashes. Noted that the term ‘inter-

participant’ refers to interactions, relationships occurring between participants within the 

experiment, typically used with ‘variability’, ‘correlation’, and ‘transfer learning’, such as 

inter-participant variability. The term ‘participant-independent’ typically refers to 

elements of the experiment that are unaffected by the individual characteristics, actions, 

or behaviors of the participants involved, typically used with ‘model’,‘task’ and ‘strategy’, 

such as participant-independent model, participant-independent strategy. Both terms are 

used in the cross-participant transfer learning task, that is, the training and test data come 

from different participants.  

4.2 Domain Generalization Algorithms 

To evaluate the effectiveness of our OADANN method, we first introduce some data 

manipulation approaches. All methods are then evaluated via the same training strategy. 

Data generation based DG methods have been widely utilized to boost the generalization 

ability of models by generating supplementary data. In this regard, inter-domain Mixup 

(Mixup) [40] is included for comparison, which can augment the dataset by generating 

virtual feature-target vectors from real feature-target vectors. Specifically, it performs 

linear interpolations between any two samples and their labels with a weight sampled from 

a Beta distribution. In addition, a general learning strategy, referred to as group 

distributionally robust optimization (Groupdro) [41], aims to optimize feature extraction 

to be robust by minimizing the worst-case loss over the groups in the training data and 

then generalizing to the target domain. In addition to those methods, attention based 

DeepCovNet is also used as a baseline algorithm, referred to as empirical risk 

minimization (ERM).  

Table III summarizes the results of these DG approaches when used in our LOPO-



CV scheme. It can be seen that the classification performance of our OADANN method 

still outperforms other DG methods, and when ERM, Groupdro, and Mixup are used, the 

average accuracy after five rounds dropped by 0.68%, 0.80%, and 1.6% on the OpenBMI 

dataset, respectively. At the same time, our proposed method achieves the highest 

accuracy with a difference of up to 12.12% compared to the ERM model in terms of 

classification accuracy for all participants. Statistically speaking, our OADANN method 

obtains significant improvements (F < 0.05 ) in classification accuracy and ITR when 

including data from all five rounds of repeated stimuli flashes. When considering our self-

collected dataset, a significant difference (F < 0.001) can be seen between our proposed 

method and the DG methods in terms of ITR. On the whole, our OADANN method 

obtains higher performances than the ERM, Mixup, and Groupdro methods in terms of 

ACC and ITR with a low standard deviation of results over participants for both of the 

datasets, which indicates that our proposed DG models are more stable than the other 

models we compare them to. 

 

Table III Average classification performances (accuracy±standard deviation (%) and 

ITR±standard deviation (bits/min)) obtained by the DG algorithms as well as our proposed 

algorithm in the LOPO-CV scheme after 5 rounds of repeated stimuli flashes. 

Methods 
OpenBMI Self-collected 

ACC ITR ACC ITR 

ERM 96.86±7.95* 16.85±2.16* 85.92±8.94** 51.02±9.09*** 

Groupdro 96.74±8.55* 16.83±2.28* 87.04±8.64 52.15±8.98*** 

Mixup 95.94±8.73* 16.57±2.41* 85.56±9.97 50.85±10.34*** 

OADANN 97.54±6.80 17.04±1.88 89.26±7.78 54.37±8.08 

ACC denotes classification accuracy, ITR denotes information transfer rate. The F value indicates the corresponding 

result between each of the methods and our OADANN method: * indicating 	F < 0.05�, ** indicating 	F < 0.01�, 

*** indicating 	F < 0.001�. Bold denotes the best numerical values. 

4.3 Ablation Study 

 We conduct ablation experiments to evaluate the effectiveness of our proposed model. 
We iteratively remove the domain adversarial attention modules from our OADANN 
method, and then apply the remaining modules to attempt to detect the ERP. Our proposed 
method, aggregating the attention mechanism, DeepCovNet, and DANN strategy, 
contributes to the best performances with an average accuracy of 97.54% and an average 
ITR of 25.32 bits/min after 2 rounds on the OpenBMI dataset. The three models we used 
for comparison in the ablation study are as follows: 
 w/o ADANN: DeepCovnet used for the feature extraction block and the classification 

block. 
 w/o DANN: Attention based DeepCovnet is used as the feature extraction block and 

the classification block. 
 w/o ECA: DeepCovnet is fused into a DANN strategy. 



 
Table IV indicates that our OADANN model is superior to the three kinds of ablation 

study. When one of the modules is ablated, the classification performance decreases 
slightly. Concretely, the introduction of domain adversarial mechanisms makes it possible 
for our OADANN model to capture more information, which demonstrates the 
effectiveness of our proposed model. According to our experimental results, the DANN 
mechanism can significantly enhance the performance of our model. Moreover, the 
performance of our model increases with the help of the attention module, which proves 
the feasibility of using our OADANN method for extracting participant-invariant P300 
features. Considering that ECA module can capture cross-channel interaction without 
dimensionality reduction, it is observed from Table IV that OADANN method achieves 
higher performances in terms of character recognition accuracy and ITR compared with 
w/o ECA in both datasets. Besides, OADANN method can obtain statistically significant 
improvements when compared with w/o ADANN. It can be easily concluded that domain 
adverisal learning framework with attention mechanism can bring great classification 
performances.  

 

Table IV Classification performances (accuracy±standard deviation (%) and ITR±standard deviation 

(bits/min)) in the LOPO-CV scheme after 5 rounds of repeated stimuli flashes. 

Methods 
OpenBMI Self-collected 

ACC ITR ACC ITR 

w/o ADANN 96.57±8.41** 16.77±2.26** 86.85±10.42 52.08±10.07*** 

w/o DANN 96.86±7.95* 16.85±2.16* 85.92±8.94** 51.02±9.09*** 

w/o ECA 97.31±7.39 16.98±1.99 85.56±9.97* 50.79±10.16*** 

OADANN 97.54±6.80 17.04±1.88 89.26±7.78 54.37±8.08 
ACC denotes classification accuracy, ITR denotes information transfer rate. The result of significance testing is reported 
in terms of F values between each of the methods and our OADANN method: * indicating 	F < 0.05�, ** indicating 
	F < 0.01�, *** indicating 	F < 0.001�. Bold highlighting denotes the best numerical values. 

4.4 Visualization 

In order to compare the capability of each of the methods to extract highly 
discriminative features from EEG signals, the t-distributed stochastic neighbor embedding 
(t-SNE) method [42] is adopted to project high-dimension data into a two-dimensional 
scatter plot. The corresponding evaluation criterion is that the more separable the classes, 
the better the related features perform. We visualize the feature embeddings for both our 
proposed method and the other deep learning methods in Figures 7 and 8. The red color 
denotes the target samples and the blue color denotes the nontarget samples, the 
visualization of feature distributions for example participants S45 and S54 are shown in 
Figures 7 and 8 respectively. These two participants were picked due to the interesting 
performance differences across the different methods. It can be seen that, compared with 
other deep learning methods, the separability between P300 and non-P300 samples 
becomes much easier when using our proposed OADANN method. In addition, compared 
with the MADANN method, the OADANN method obtains better separability in most 
cases. The better separability of the OADANN method compared to the MADANN 



method can be mainly attributed to the discriminator used in the OADANN method, which 
can reduce the influences of inter-participant variability and hence improve the 
discriminative ability of the features. 

 

Figure 7. The t-SNE visualization of feature distributions between the target (red) and 
non-target samples (blue) for participant S45. 

 

Figure 8. The t-SNE visualization of feature distributions between the target (red) and 
non-target samples (blue) for participant S54. 

5. Discussion 

5.1 Effect of the Number of Training Participants 

The Self-collected dataset only includes 15 participants, this results in a lower 



performances than when compared with the OpenBMI dataset. Therefore, we investigate 

the influences of training data on the performance of the OADANN method with the 

OpenBMI dataset. Three training cases have been analyzed with different numbers of 

participants in the training set ranging from 20 participants’ training data, 30 participants’ 

training data, and 40 participants’ training data, respectively. Figure 9 shows the 

classification recognition accuracy and ITR obtained by our OADANN method with these 

different number of participants included in the training set. More specifically, Table V 

shows the average classification performances with different numbers of participants in 

the training set. We can see that the performance of our OADANN method declines 

slightly as the size of the training set declines. The average classification accuracy is 95.21% 

when using 40 participants in the training set, which increases by 2.23% when using 53 

participants in the training set. Meanwhile, when increasing the number of rounds of 

stimuli flashes used in the training set, classification performance among the four cases 

increases accordingly. 

 
Figure 9. The classification performances obtained by our proposed algorithm with 

different numbers of participants in the training set as the number of rounds of repeated 

stimuli flashes is increased from 1 (E1) to 5 (E5). 

 

Table V. Average classification performances (accuracy±standard deviation (%) and ITR±standard 

deviation (bits/min)) obtained by our proposed algorithm with different numbers of participants 

in the LOPO-CV scheme with increasing training set and numbers of rounds of repeated stimuli 

flashes (from 1 round to all 5 rounds). 

Number of 

participants 

 Rounds 

 1 2 3 4 5 

20 participants 
ACC 58.72±22.64 80.90±21.83 89.82±16.12 92.40±15.04 94.28±14.23 

ITR 18.93±10.19 23.00±8.86 21.30±5.67 18.44±4.30 16.25±3.37 

30 participants 
ACC 57.18±22.71 81.07±20.47 90.94±15.71 92.45±14.82 94.45±11.99 

ITR 18.19±10.04 22.96±8.57 21.50±5.58 18.44±4.25 16.21±3.06 

40 participants 
ACC 62.09±21.83 83.99±18.04 91.60±14.15 94.28±11.56 95.31±10.66 

ITR 20.49±10.22 24.11±7.69 21.88±4.92 18.95±3.51 16.44±2.76 

53 participants 
ACC 65.64±18.25 86.62±16.58 94.05±10.17 96.17±8.24 97.54±6.80 

ITR 21.91±9.01 25.32±7.29 22.71±3.79 19.51±2.64 17.04±1.88 



 

5.2 Analysis of the Comparison Results 

Basic-CNN provides a new way of analyzing brain activities due to the receptive 
field of the CNN models. It can be seen that CNN obtains the worst classification 
performances among baseline methods. EEGNet with a compact structure required fewer 
training weights/parameters. To be concrete, the parameter size of DeepCovNet is two 
orders of magnitude larger than EEGNet, which has been demonstrated in our previous 
work. ShallowNet architecture was designed specifically for oscillatory signal 
classification (by extracting features related to log band-power). In addition, ShallowNet 
and DeepCovNet were proposed by Schirrmeister et al. in the same work. When using 
ShallowNet, only 6 of 53 participants and 4 of 15 participants presented higher 
performances compared with DeepCovNet in two datasets.  

We first apply the attention based DeepCovNet mechanism as a feature extractor to 
learn common features from the source domains via a domain adversarial strategy. and 
put forward an attention mechanism based deep adversarial neural network framework in 
which all source participants are regarded as one domain, referred to as OADANN. In 
addition to this, we use two loss functions to improve the separability between target and 
nontarget data and decrease the separability of the domains. In our framework, the feature 
extractor can collectively leverage both the spatial and temporal information from the 
EEG. To implement a generalized evaluation of our proposed method, a leave one 
participant out cross validation training strategy is applied to two datasets. From our 
results we can see that our OADANN method achieves the best classification performance, 
with an average accuracy of 97.54% on the OpenBMI dataset, and 89.26% on our Self-
collected dataset after five rounds of repeated stimuli flashes. It is worth noting that a 
classification accuracy of 100% is obtained by 71.69% (38 out of 53) participants on the 
OpenBMI dataset, which is higher than obtained by traditional deep learning models with 
cross-participant classification tasks. In addition, significant improvements have been 
gained when compared with BASIC-CNN, EEGNet, ShallowNet, and DeepCovNet 
models after using data from five rounds of repeated stimuli flashes. It is crucial to point 
out that one reason for the higher ITR obtained with our Self-collected dataset is due to 
the shorter duration between targets in our experiment design. More specifically, 4.5 s 
were given to the user for identifying, locating, and gazing at the next target character 
when collecting the OpenBMI dataset, while we set this duration to 0.85s in our Self-
collected dataset. Baseline methods used in the current work are all based on CNN 
architecture, which only includes a feature extractor and label classifier and does not 
consider the domain distribution shift problem. OADANN method incorporated with 
domain discriminator can learn the domain invariant features through mitigating the 
feature discriminative ability. Therefore, our proposed method outperforms the other 
models without the need for any calibration data from target/test participants. 

Our experiments on transfer learning between participants from the perspective of 
DG tasks allow us to make some observations. First, we find that a deep convolutional 
neural network obtains the best generalization performance of all deep learning models, 
so we choose it as the backbone of our proposed method. Second, when comparing three 



DG algorithms, ERM outperforms GroupDRO and Mixup, and our proposed method 
achieves superior detection performances compared to the other three DG algorithms. We 
only test the performance of our OADANN method to detect ERPs elicited by the 
traditional P300 speller paradigm, whose main components are P300 and N400 potentials. 
Future work will focus on other stimulation paradigms to evaluate the performance of our 
proposed method when applied to different cognitive events.  

6. Conclusion 

Most BCI studies focus on intra-participant classification tasks to learn participant-
specific features to reach robust performances [43]. However, this process can be time-
consuming and inconvenient. Moreover, non-stationarity of EEG data over days and 
weeks can reduce the generalizability of models trained in this way. As a consequence, 
researchers have developed transfer learning methods to address the inter-participant 
variability problem in order to improve the BCI system’s reliability. In our experiments, 
model training is carried out in a participant-independent scheme. We aim to construct a 
participant-independent model for online spelling for new users. The proposed model will 
be trained in advance and then utilized directly in the online system. Therefore, the 
training process will not affect the practical use. In the practical life, OADANN model as 
a generic model can directly be used to execute online speller tasks without the need for 
any calibration data from target/test participants. To reduce the inter-participant variability, 
we have introduced the concept of domain generalization, where models can be trained 
without any information from target participants. During the training process, the existing 
data from other participants is considered to be the source domain, and the new user is 
designated as the target participant. We proposed the use of attention-based deep 
adversarial training DG models and also applied some conventional DG methods for 
comparison. Table I shows that the classification results achieved with our baseline deep 
learning methods are relatively poor due to the effect of individual differences on model 
training. Hence, we consider the use of an adversarial mechanism to improve model 
generalization. Furthermore, two kinds of methods are compared: i) deep learning 
methods; ii) domain generalization methods. Finally, we performed an ablation study to 
explore the contribution of each module. 

In summary, we propose a one-source domain transfer based attention domain 
adversarial neural network (OADANN) to analyze the EEG signals for participant-
independent ERP classification. OADANN cascades the deep convolutional module, 
attention module, and domain adversarial module to simultaneously learn the spatial and 
temporal representations of EEG signals. We have compared a series of existing state-of-
the-art methods and domain generalization methods on two datasets. The comparison 
results demonstrated that our OADANN method can extract the underlying invariant 
features of EEG signals for cross-participant transfer learning tasks so that the new 
participants can use ERP based BCI systems directly without the need for calibration data. 
In the future, we will focus on developing a more effective model on a variety of ERP 
paradigms to enhance the generalization of BCI systems. 
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