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Abstract—Real-time semantic segmentation (SS) is a major
task for various vision-based applications such as self-driving.
Due to the limited computing resources and stringent perfor-
mance requirements, streaming videos from camera-embedded
mobile devices to edge servers for SS is a promising ap-
proach. While there are increasing efforts on task-oriented
video compression, most SS-applicable algorithms apply more
uniform compression, as the sensitive regions are less obvious
and concentrated. Such processing results in low compression
performance and significantly limits the capacity of edge servers
supporting real-time SS. In this paper, we propose STAC, a
novel task-oriented DNN-driven video compressive streaming
algorithm tailed for SS, to strike accuracy-bitrate balance and
adapt to time-varying bandwidth. It exploits DNN’s gradients as
sensitivity metrics for fine-grained spatial adaptive compression
and includes a temporal adaptive scheme that integrates spatial
adaptation with predictive coding. Furthermore, we design a
new bandwidth-aware neural network, serving as a compatible
configuration tuner to fit time-varying bandwidth and content.
STAC is evaluated in a system with a commodity mobile device
and an edge server with real-world network traces. Experiments
show that STAC can save up to 63.7-75.2% of bandwidth
or improve accuracy by 3.1-9.5% compared to state-of-the-art
algorithms, while capable of adapting to time-varying bandwidth.

Index Terms—DNN-driven compression, adaptive streaming,
semantic segmentation, edge computing.

I. INTRODUCTION

With the proliferation of artificial intelligence and large-
scale camera deployments, vision-based applications have
become ubiquitous in modern society. These applications in-
clude object detection (OD) for public safety surveillance [2],
semantic segmentation (SS) for self-driving cars/drones [3],
[4], AR/VR devices [5], as well as virtual try-on/make-up
apps [6], [7]. For example, SS provides pixel-level semantic
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(Simplified) STAC

Boundary-guided

Fig. 1: A preliminary comparison of boundary-guided com-
pression, JPEG and STAC. To ensure fairness, JPEG,
boundary-guided compression, and the simplified STAC pro-
cess consecutive frames as individual images, with the latter
two algorithms employing the same two levels of compression
ratios: the lower ratio is assigned to the red regions in
the images, while the higher ratio is applied to the rest.
Additionally, the performance of the full-version STAC is also
showcased, where STAC compresses consecutive frames using
our proposed spatio-temporal algorithm.

classification for images/videos, enabling self-driving cars to
separate pedestrians, vehicles, and traffic signs for improved
safety and efficiency. However, such applications typically
demand significant resources that surpass the capabilities of a
large portion of camera-embedded mobile devices, particularly
in meeting latency and accuracy requirements. This drives
camera videos to be streamed over wireless networks to
resource-rich edge/cloud servers for real-time processing [8].
However, with the fast-increasing number of vision-based
applications and devices, limited and time-varying network
bandwidth becomes the most pressing challenge.

To address this challenge, task-oriented video compression
techniques [9]–[19] have undergone rapid evolution in recent
years, aiming at minimizing bandwidth consumption. Instead
of catering to human perception, these techniques prioritize the
accuracy and real-time performance of video analytics tasks
as their new targets. Despite their potential, these techniques
however present significant development imbalance across OD
tasks [9]–[11] and SS tasks [12]–[19], both of which are
building blocks of modern vision-based applications. The in-
herent reason is that SS tasks typically require classifying each
pixel across the entire image/frame plane, including semantic
boundary delimitation. Therefore, the sensitive regions for
SS tasks, which contribute more to the final accuracy, are
generally scattered and ambiguous, compared to OD tasks
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where the regions of interest (RoIs) are clear and concentrated.
Many SS-applicable researches [12]–[16] thus apply uniform
spatial compression strategies to the whole image/frame plane
(such as GRACE [12] and auto-encoder methods [14]–[16]) or
simply discriminate compression ratios according to human vi-
sual quality (such as H.26x [20]). In this case, the compression
ratio of the whole image/frame is sacrificed to ensure accuracy,
which leads to severe bandwidth wastage and significantly
limits the capacity of edge servers supporting real-time SS.
As such, a compressive streaming algorithm dedicated to SS
is urgently needed to minimize bandwidth consumption while
not sacrificing accuracy.

One may hypothesize whether the sensitive regions of SS
align with segment boundaries, following human perception.
We therefore conduct a preliminary experiment by assigning
a lower compression ratio to regions around boundaries and a
higher compression ratio to others on individual images. The
results in Fig. 1 show that the point representing boundary-
guided compression falls entirely below the curve correspond-
ing to JPEG. It indicates that the heuristic boundary-guided
compression performs even worse than the uniform compres-
sion in the accuracy-size trade-off. Specifically, it leads to
larger sizes for the same accuracy and lower accuracy for the
same sizes.

To accurately detect the sensitive regions, we present STAC,
a new video compressive streaming algorithm tailored for
semantic segmentation, achieving the best accuracy-bitrate
balance and adapting to time-varying available network band-
width. The core idea behind is to use the target deep neural
network (DNN)’s gradients to as spatial sensitivity metrics
(i.e., the importance degree), so as to customize a non-uniform
compression strategy for the content. Specifically, the gradient
quantifies the DNN loss increment during lossy compres-
sion process, allowing for non-uniform compression based
on the maximum compression ratio that each pixel can with-
stand. Furthermore, a bandwidth-aware configuration adaptive
scheme is proposed, compatible with this compression, to
maximize accuracy under time-varying available bandwidth.
The system architecture is demonstrated in Fig. 2.

The design of STAC involves three technical challenges.
(i) How to minimize the bandwidth wastage brought by real-

time synchronization of compression strategy? It is noteworthy
that this DNN-driven compression strategy is generated online
at servers, requiring continuous feedback and transmission
between transceivers to support (de)compression. However, a
pixel-level compression strategy consumes huge bandwidth.
To tackle this problem, we propose a spatial adaptive scheme,
which no longer targets the pixel-based compression strategy,
but uses regions of frames as the basic unit. Additionally,
STAC brings part of the online strategy generation pro-
cess offline by designing multi-level block-based compression
strategies based on average gradients. In this regard, only the
levels of compression strategies selected by each region need
to be fed back and transmitted.

(ii) How to adapt the compression strategy to changing
video content? As the spatial sensitivity continuously changes
with video content, the content-customized strategy can neither
be applied to already-transmitted frames (based on which the
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Fig. 2: System architecture of STAC.

strategy is derived at servers), nor the subsequent frames. To
address this issue, we propose a temporal adaptive scheme
that first extracts the dense optical flow to propagate both
compression strategy and SS results across frames; and then
integrates the spatial adaptive compression strategy with inter-
/intra-frame predictive coding. In this respect, the bandwidth
can be saved from all three dimensions, including spatial adap-
tive compression, inter-/intra-frame compression and frame
rate reduction.

(iii) How to adapt the spatio-temporal adaptive compression
strategy to time-varying available bandwidth? No existing
configuration/bitrate adaptive works [21]–[24] can directly fit
STAC, as quantization steps of all regions and frame rates
need to be dynamically adjusted according to content and
bandwidth, covering a huge action space. To cope with this
problem, we propose a novel bandwidth-aware configuration
adaptive scheme compatible with STAC, which converges the
large-dimensional action space to a two-dimensional vector
including the upperbound B of the DNN loss function and
the frame rate fps. This scheme builds on a supervised-
trained NN-based B/fps-tuner, which uses offline generated
B/fps scaling labels and takes as input bandwidth, historical
B/fps, and historical content-related metrics such as frame
complexity and variance.

We implement STAC on a portable and small form factor
Intel NUC Kit NUC7i5DNHE and run DNN inference on
an edge server equipped with an Nvidia Tesla T4 GPU. We
compare STAC with state-of-the-art compressive streaming
algorithms including GRACE [12], CASVA [21] and AccM-
PEG [18]. The experiments cover 3 target DNN models, 3
semantic segmentation datasets and various types of networks
including LTE/4G [25], FCC [26] and WiFi. Evaluation results
show that STAC is able to achieve superior accuracy-bitrate
balance by saving up to 63.7-75.2% of bandwidth or improving
3.1-9.5% of accuracy, compared to state-of-the-art algorithms.
Meanwhile, STAC can also fit time-varying available band-
width while ensuring real-time semantic segmentation.

The main contributions are summarized as follows.

• To our knowledge, STAC is the first fine-grained multi-
level non-uniform compressive streaming algorithm tai-
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lored for SS. Customized on DNN’s spatial sensitivity
metrics and video content, task-oriented STAC strikes the
best accuracy-bitrate balance.

• We propose a temporal adaptive scheme that propagates
spatial adaptive compression strategies across frames, and
integrates such spatial adaptation with inter-/intra-frame
predictive coding.

• We create a new bandwidth-aware configuration adaptive
scheme compatible with our compression algorithm to
guarantee ultra-low delay and high accuracy under dy-
namic bandwidth.

• Benchmark tests on 3 target DNNs, 3 SS datasets, and
various types of networks demonstrate the superiority of
STAC compared to state-of-the-art algorithms.

The rest of this paper is organized as follows. §II introduces
the background knowledge of SS and video codecs. §III
overviews the system design of STAC. §IV and §V elaborate
on the spatial adaptive compression strategy and temporal
adaptive scheme. §VI presents the compatible bandwidth-
aware configuration adaptive algorithm. Implementation and
evaluation are detailed in §VII and §VIII, respectively. §IX
gives a literature review, followed by some discussions in §X
and the conclusion in §XI.

II. PRIMERS ON SEMANTIC SEGMENTATION AND VIDEO
CODECS

In this section, we give a brief introduction to semantic
segmentation and the typical video codec framework, which
lays the foundation for a better understanding of STAC.

A. Semantic Segmentation

Semantic segmentation refers to the vision task of assigning
specific class labels to each pixel in an image/frame, thereby
dividing it into meaningful segments. The most notable char-
acteristic is providing pixel-level semantic understanding, in-
cluding precise boundary delineation, which distinguishes it
from bounding box-based tasks like OD. This distinction also
makes it more challenging to generate SS-oriented compres-
sion algorithms. Unlike OD tasks where RoIs are clear and
concentrated, SS tasks often involve scattered and ambiguous
sensitive regions, as they generally require understanding each
pixel across the entire plane. This motivates the proposal of
STAC, a compressive streaming algorithm tailored for SS.

Semantic segmentation has been widely applied in various
fields such as automatic driving [3], [4], AR/VR devices [5],
virtual try-on/make-up apps [6], [7], etc. For self-driving cars,
SS plays a crucial role in segmenting pedestrians, vehicles
and traffic signs to enhance navigation safety and efficiency.
Currently, two types of approaches are commonly used in
semantic video segmentation. One is to input consecutive
frames into DNNs [27], [28], and the other is to perform
DNN-based semantic image segmentation on each frame [12]
or keyframes [29], [30]. The DNNs taking consecutive frames
as input [27], [28] generally own massive parameters and
are computationally intensive. Worse still, the transmission
of consecutive frames incurs severe bandwidth consumption.
We hence adopt the second approach that only keyframes are
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Fig. 3: Typical video codec framework.

transmitted for DNN inference. To further obtain continuous
SS for videos, we extract the dense optical flow to propagate
both compression strategies and SS results across frames based
on temporal consistency, detailed in §V.

B. Typical Video Codec Framework

Numerous compression algorithms [9]–[11], [13], [17]–[19]
are developed based on classical video codecs, and STAC
is no exception. The common steps of well-known video
codecs (e.g., H.26x [31], VPx [32]) are shown in Fig. 3,
including the inter-/intra-frame predictive coding and basic
image coding (Similar to JPEG [33]). For a single image, the
encoder converts the RGB to YUV format, and utilizes block-
wise (e.g. 8×4, 4×4, etc.) discrete cosine transform (DCT) to
obtain frequency-based DCT coefficients. These coefficients
are then quantized and compressed by entropy coding, such as
variable length coding and Huffman coding, to create the final
bitstream. Based on the basic image coding, the video codecs
further incorporate inter-/intra-frame predictive coding to min-
imize redundancy. To reduce inter-frame redundancy, motion-
compensated prediction is performed via motion vectors to
predict blocks in current frames from reference frames. To
reduce intra-frame redundancy, the pixels located to the left or
above are adopted as predictions for the current block. Finally,
the residual frame calculated by subtracting the prediction
from the original frame replaces the original frame for basic
image coding. Since this subsection discusses spatial adaptive
compression, all the designs are based on basic image coding.
How to integrate them with predictive coding will be explained
in §V.

III. SYSTEM OVERVIEW

Fig. 2 illustrates the system architecture of STAC, where a
camera-embedded end device compresses video frames, trans-
mits them to a server, and obtains corresponding SS results and
compression strategy feedback in real time. The end device
then applies the compression strategy to subsequent frames
via inter-frame propagation. Specifically, STAC consists of
four key modules, which together generate spatio-temporal
adaptive compression and transmission strategies. Three of
them, including the offline compression strategy generation
(§IV-A), online spatial adaptive selection (§IV-B) and online
bandwidth-aware configuration adaptation (§VI), run on the
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server, while only the online temporal adaption (§V) runs on
the end device.
(i) Offline compression strategy generation: This module is

executed offline on the server prior to the online running
stage. Specifically, it takes input images/frames collected
offline to construct multi-level frequency-sensitive quan-
tization tables for the subsequent online spatial adaptive
selection. These tables are generated based on average
DNN’s gradients w.r.t. frequency bins of DCT coeffi-
cients [12], since STAC optimizes quantization in the
frequency domain.

(ii) Online spatial adaptive selection: This module also runs
on the server, but takes the role of generating spatial
adaptive compression strategies for the transmitted frames
during the online stage. Specifically, based on DNN’s
gradients w.r.t. pixel plane, different quantization tables
are assigned to different regions of the video frame, e.g.,
low compression-ratio quantization tables are used for
high-sensitive regions. The levels of quantization tables
are then fed back to the end device, which eases the
transmission burden brought by compression strategy
synchronization.

(iii) Online temporal adaptation: This module is implemented
online on the end device, and is proposed to adapt
the above spatial adaptive compression strategy to the
changing video content. This is achieved through the
propagation of both compression strategies and SS results
across frames using dense optical flows. Additionally,
the compression strategy is further integrated with inter-
/intra-frame predictive coding techniques through com-
patibility modification.

(iv) Online bandwidth-aware configuration adaptation: This
module runs online on the server and is designed to adapt
the above spatio-temporal adaptive compression to time-
varying bandwidth, aiming at maximizing SS accuracy
while maintaining real-time performance. Specifically,
an NN-based configuration adaptive scheme is utilized
to map the estimated bandwidth and video content to
compression configuration adjustment.

A list of key notations and abbreviations is presented in
Table I.

IV. LEVERAGING NON-UNIFORM SPATIAL SENSITIVITY

In this section, we propose a spatial adaptive compression
strategy, which consists of offline and online stages.

A. Offline Compression Strategy Generation

We first elaborate on the offline compression strategy gen-
eration from the perspective of the following two questions.

1) Why we should generate compression strategy offline:
Consider a DNN with loss function Q and an M -pixel input
image represented as x = {x1, x2, ..., xM}. We follow the
approach in GRACE [12] to obtain the DNN’s gradient gxi

w.r.t. each pixel xi by calculating the partial derivative of Q
with respect to xi, i.e., gxi

= δQ
δxi

through back-propagation
from results. Fig. 4 displays the heatmap of gxi on a random
raw image, which confirms the non-uniform spatial sensitivity.

TABLE I: KEY NOTATIONS AND ABBREVIATIONS

Notation Description

Q, B Loss function, upperbound of the allowed loss increment

M , N Number of pixels/DCT coefficients in a frame or a block

xi, si ith pixel, ith DCT coefficient, i ∈ {1, 2, ...,M}
gxi , gsi DNN’s gradient w.r.t. ith pixel or ith DCT coefficient

si → n Frequency n that si corresponds to, n ∈ {1, 2, ..., N}
gn, n Average gradient w.r.t. DCT Coef. of nth frequency

L, rmax Number of quantization tables or regions in a frame

Rr rth region in a frame, r ∈ {1, 2, ..., rmax}
qsi Quantization step used to si

Tl lth-level quantization table, l ∈ {1, 2, ..., L}
qln quantization step of nth frequency in Tl

lr Level of quantization table used in rth region

QF , QT True or fake loss function

gF , gT True or fake gradient calculated by QF or QT

j Segment j decomposed by a larger compression ratio

V , Vr Estimated size of a frame or the rth region

Vs, Vu Estimated frame size w/ or w/o two relaxations, Vs = V

fps, t Offloading frame rate, video segment index

c, d Single frame complexity, inter-frame difference

Acc, Bit Average inference accuracy and video size per second

αt, βt Scaling factors of B or fps over last segment t− 1

(′), (′′) Labeling of original compression strategy for the indi-
vidual image or new strategy for the residual frame

P Number of operations per pixel during encoding

Abbreviation Description

SS, OD Semantic segmentation, object detection

DNN, RL Deep neural network, reinforcement learning

(i)DCT (Inverse) discrete cosine transform

mIoU, PA Mean intersection over union, pixel accuracy

QP, QoE Quantization parameter, quality of experience

RoI, PID Region of interest, proportional integral derivative

For more clarity, we quantize the gradient and observe that the
sensitive regions don’t align with the boundaries. Depending
on these spatial sensitive metrics, the next step is to convert
them into spatial adaptive compression strategies. According to
the total differential equation, when all ∆xi are very small dur-
ing compression, the loss change ∆Q of DNN can be modeled
as ∆Q =

∑M
i=1 gxi

∆xi. As quantization is one of the major
lossy compression techniques, we convert DNN’s gradients
w.r.t. pixels gx to DNN’s gradients w.r.t. DCT coefficients gs
for quantization optimization1. Therein, s is a vector of DCT
coefficients {s1, s2, ..., sM} and the corresponding gradient is
gsi . ∆Q can also be expressed as [12]

∆Q =

M∑
i=1

gxi
∆xi =

M∑
i=1

gsi∆si, (1)

where ∆si = si−⌊ si
qsi
⌉qsi denotes the quantization error and

|∆si| ≤
qsi
2 . Therefore, ∆Qmax =

∑M
i=1 |gsi |

qsi
2 represents

1This conversion is detailed in GRACE [12], which includes: (1) gx is
calculated through back-propagation after x is fed to the DNN. (2) One more
step of back-propagation against the inverse DCT (IDCT) (from x back to s)
is performed to obtain gs, where IDCT is one step of decoding.
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the worst-case loss increment caused by quantization steps of
the whole image {qs1 , qs2 , ..., qsM }.

The end goal of STAC is to guarantee the DNN inference
accuracy while minimizing bandwidth consumption. To guar-
antee the accuracy, an upperbound B of the allowed loss incre-
ment is configured through the constraint:

∑M
i=1 |gsi |

qsi
2 ≤ B.

Then, the goal evolves to find optimal {qs1 , qs2 , ..., qsM } to
achieve minimum image size under this constraint, denoted as
argmin

q
V =

∑M
i=1 log2

∣∣∣ si
qsi

∣∣∣2. By configuring dsi = |gsi |
qsi
2 ,

this problem is further simplified to [12]

argmin
q

M∑
i=1

log2

∣∣∣∣ siqsi
∣∣∣∣ = argmax

q

M∏
i=1

dsi s.t.

M∑
i=1

dsi ≤ B,

(2)

The optimal solution is when all {dsi}Mi=1 are equal and
dsi = B

M . In other words, the ideal quantization steps
{qs1 , qs2 , ..., qsM } for all DCT coefficients in an image are
qsi = 2B

M|gsi |
, which minimize the image size while not

exceeding B to guarantee the inference accuracy [12]. It
is noteworthy that the deviation and solution hinge on two
upperbound relaxations, i.e., ∆si ≤

qsi
2 and gsi < |gsi |.

The key benefit is to render the computational overhead of
finding the optimal solution negligible. Without these relax-
ations, STAC would have to traverse all quantization steps
or quantization tables over all pixels or blocks, with the
complexity reaching O(LM ). Wherein, L is the number of
quantization steps or quantization tables. Furthermore, through
a combined theoretical and experimental analysis in §IV-B,
it is confirmed that STAC under these relaxations can still
present a superiority in accuracy-size trade-off.

However, this pixel-level compression strategy is generated
online on the resource-rich server/receiver based on the re-
ceived frame, requiring continuous feedback and transmission
to support (de)compression process of subsequent frames.
The heavy transmission load makes this compression strategy
impractical. For example, supposing a frame has M = 2048×
1024 pixels, the total number of DCT coefficients reaches
3 × 2048 × 1024. Therefore, up to 6M quantization steps
need to be transmitted, which is as large as the raw frame. In
addition, the higher the frame rate, the heavier the transmission
load of compression strategy synchronization. To ease this
load, the most effective approach is to generate a portion of
the compression strategy offline, thus minimizing the size of
the online compression strategy needed for characterizing the
time-varying spatial sensitivity.

2) What this offline compression strategy is: When using
offline-generated compression strategies to replace a portion of
pixel-level online-generated strategies, performance compro-
mise is inevitable. The problem hence evolves to how to design
offline compression strategies that can inherit sensitive features
of DNNs in both spatial and frequency domains, approaching
pixel-level strategies as closely as possible. The core idea is
to generate multi-level block-wise quantization tables offline
based on DNN’s average gradients w.r.t. spatio-frequency bins

2This equation actually represents the intermediate image size without
subsequent entropy coding, but proportional to the final size.

Raw Image
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Heatmap of Quantized Gradient

Fig. 4: The heatmaps of DNN’s gradients.

of DCT coefficients, which can be collected and computed
offline. STAC then converts the online generation of pixel-level
quantization steps to quantization table selection on the basis
of region. In this way, STAC no longer transmits the pixel-level
compression strategy, but simply the levels of quantization
tables selected online for different regions.

The detailed steps for generating multi-level quantization
tables offline are as follows: (i) First, we calculate DNN’s av-
erage gradients {gn}Nn=1 w.r.t. different spatio-frequency bins
{n}Nn=1 of DCT coefficients, following GRACE [12]. Therein,
N is the number of pixels/DCT coefficients in a block and each
DCT coefficient corresponds to nth frequency. Therefore, gn
is the average value of gradients w.r.t. DCT coefficients of
nth frequency across all blocks. (ii) Then, we configure L
levels of upperbounds {Bl}Ll=1 to generate quantization tables
{Tl}Ll=1, covering a wide range of fine-grained compression
ratios and accuracy levels. Therein, {Tl}Ll=1 are calculated
by {Tl}Ll=1 = {ql1, ql2, ..., qlN}Ll=1, q

l
n = 2Bl

M |gn| , with each
qn representing the quantization step on DCT coefficients of
nth frequency. Notably, these offline quantization tables are
customized to the target DNN but can be fully computed
from the captured video frames before formal deployment.
Moreover, when the semantic segmentation tasks are the same,
these quantization tables further exhibit generalizability across
DNNs and datasets, as confirmed in §VIII-D.

B. Online Spatial Adaptive Selection

Based on the offline-generated quantization tables, STAC
can select proper Tl for different regions of the received
frames on the server/receiver. For a region with low sensitivity
(i.e., low gradient), Tl with a high compression ratio is given
priority. Conversely, for a region with high sensitivity, Tl

with a low compression ratio is preferred. For simplicity of
experiments, we divide the frame into rmax regions, each
of which contains the same number of blocks except the
borders. We use the region as the basic unit for Tl selection,
which further reduces the transmission load of compression
strategies.

As shown in Fig. 5 and Alg. 1, the steps of online quantiza-
tion table selections for regions {Rr}rmax

r=1 are as follows: (i)
First, STAC measures DNN’s gradients {gsi}Mi=1 w.r.t. all DCT
coefficients {si}Mi=1 of the real-time received frame. (ii) Then,
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STAC calculates the worst-case loss increment for each region
Rr under each level of quantization table Tl = {ql1, ql2, ..., qlN},
which is denoted as ∆Ql

max,r =
∑

si∈Rr
|gsi | ×

qlsi→n

2 .
Therein, si → n denotes DCT coefficient si corresponds to
nth frequency. (iii) Next, for each region Rr, STAC selects the
quantization table Tlr that has the worst-case loss increment
∆Ql

max,r closest to the upperbound Br assigned to this region.
Therein, Br ≈ B

rmax
is decided by the number of pixels

that each region contains, based on the uniform allocation
principle. Moreover, B is adjusted online according to the real-
time available bandwidth and video content (detailed in §VI).
(iv) Finally, only the levels {lr}rmax

r=1 of quantization tables
selected for each region are fed back and transmitted online,
which significantly reduces bandwidth consumption.

Although appearing promising, it remains uncertain whether
this region-based design and the adopted relaxations3 can
still allow STAC to achieve a good performance gain over
traditional uniform compression strategy. In the following, we
investigate this issue using a combined approach of theoretical
derivation and experimental testing, so as to preliminarily
verify the feasibility and effectiveness of the proposed com-
pression strategy generation method. Specifically, we suppose
that the size and accuracy under the uniform compression
strategy without any relaxation are Vu and ∆Qu, while the
size and accuracy under STAC are Vs and ∆Qs. If we can
prove |∆Qs| < |∆Qu| when Vs = Vu, STAC is confirmed
to present better accuracy-size performance than the uniform
compression strategy. Therein, Vu and Vs can be calculated
by

Vu = log2

∣∣∣∣∣
∏M

i=1 si

(
∏N

n=1 q
l
n)

M
N

∣∣∣∣∣, qln ∈ Tl, (3)

Vs = log2

∣∣∣∣∣
∏M

i=1 si∏rmax

r=1 (
∏N

n=1 q
lr
n )

M
N×rmax

∣∣∣∣∣, qlrn ∈ Tlr . (4)

When supposing Vu = Vs, we can obtain the following

3The relaxations include ∆si ≤
qsi
2

and gsi < |gsi |, which enable STAC
to generate spatial adaptive compression strategy with minimum complexity,
as detailed in §IV-A.

Algorithm 1 Online Spatial adaptive compression strategy.

Input: {ql1, ql2, ..., qlN}Ll=1 – L quantization table levels
B – Upperbound of the allowed DNN loss increment
Q – DNN loss function
{si}Mi=1 – DCT coefficients of the received frame
{Rr}rmax

r=1 – Regions of the received frame
Output: {lr}rmax

r=1 – Levels of quantization tables selected by
regions

1: for i← 1 to M do
2: gsi =

δQ
δsi

3: end for
4: for r ← 1 to rmax do
5: min = +∞
6: Br ≈ B

rmax

7: for l← 1 to L do
8: ∆Ql

max,r ←
∑

si∈Rr
|gsi | ×

qlsi→n

2

9: if
∣∣Ql

max,r −Br

∣∣ < min then
10: lr = l
11: min =

∣∣Ql
max,r −Br

∣∣
12: end if
13: end for
14: end for

relationship

N∏
n=1

qln =

rmax∏
r=1

(
N∏

n=1

qlrn

) M
N×rmax


N
M

. (5)

From this equation, we can employ the {Tlr}
rmax
r=1 generated by

STAC to determine the appropriate Tl for uniform compression
to ensure the same size. After obtaining both {Tlr}

rmax
r=1 and

Tl, |∆Qu| − |∆Qs| can be calculated by

|∆Qu| − |∆Qs| =

∣∣∣∣∣
M∑
i=1

gsi

(
si − ⌊

si
qlsi→n

⌉qlsi→n

)∣∣∣∣∣
−

∣∣∣∣∣
rmax∑
r=1

∑
si∈Rr

gsi

(
si − ⌊

si

qlrsi→n

⌉qlrsi→n

)∣∣∣∣∣ .
(6)

Based on Eq. (3)-(6), we test |∆Qu| − |∆Qs| with respect to
Vu(Vs) in the cityscapes dataset [34] by continuously adjusting
the upperbound B that determines {Tlr}

rmax
r=1 in STAC. The

results are shown in Fig. 6. We can notice that the value of
|∆Qu| − |∆Qs| remains 100% greater than 0 regardless of
Vu(Vs) and keeps growing as the Vu(Vs) decreases. This indi-
cates that STAC outperforms the uniform compression strategy
all the time, and the performance improvement becomes more
pronounced when the size is relatively small. The experiment
preliminarily validates the effectiveness of the region-based
design and relaxations employed to generate the compression
strategy, before formal experiments in §VIII.

However, there still remain several concerns regarding the
compression strategy, including (i) whether it is necessary to
transmit raw frames for calculation of DNN’s gradients, as the
loss function Q requires ground truth; (ii) whether the premise
that supports the validity of the equation ∆Q =

∑M
i=1 gsi∆si,
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Fig. 6: |∆Qu|>|∆Qs| holds 100% regardless of Vu(Vs).

i.e., all ∆si are very small, can be extended to a larger
compression range; (iii) whether the transmitted frame that
is non-uniformly compressed by STAC will make the spatial
sensitivity metrics less objective and affect the subsequent new
non-uniform compression strategies.

For the first concern, we argue that the fake gradient com-
puted by the compressed frame is even more appropriate than
the true gradient computed by the raw frame. The fake gradient
is computed as follows: (i) We treat the DNN inference result
of the compressed frame as the fake ground truth/label. (ii)
We calculate the fake loss function QF between the probability
vector of DNN output and the fake label. (iii) The fake gradient
is calculated. We have tested both true QT and fake QF . The
results are shown in Fig. 7, with x-axis ∥∆s∥ representing the
total quantization errors as compression ratio increases, i.e.,
∥∆s∥ = |∆s1|+...+|∆sM |. Both true and fake Q are concave,
but fake QF increases slowly. The reason is that the fake label
is closer to the DNN output vector than the true label. For
example, assuming that DNN output is (0.6, 0.4, 0) and the
true label is (0, 1, 0), the fake label however can be computed
as (1, 0, 0), which results in a lower loss value. g1T and g2T in
Fig. 7 respectively denote the true gradients of the raw frame
(nearly) and the compressed frame. g′T represents the true
speed of loss increment under compression. Both g1T and g1T
are very different from g3T , while fake g2F that is computed by
fake QF and compressed frames is more similar to g′T , which
is more appropriate to calculate the quantization strategy. This
phenomenon exists when ∥∆s∥ represents blocks, regions or
frames, but with different concave shapes.

For the second concern, we argue that the premise can
be extended to larger compression ranges. As described, the
fake g2F of the same compressed frame is exactly more in
line with the true speed g′T of loss increment. When we
decompose the total loss increment ∆QT under a larger
compression ratio to the sum of losses in small segments j, i.e.,
∆QT =

∑
j ∆Qj

T =
∑

j

∑M
i=1 g

j
T,si

∆sji , it can be converted
to ∆QT =

∑M
i=1

∑
j g

j
T,si

∆sji =
∑M

i=1 g
′
T,si

∑
j ∆sji ≈∑M

i=1 gF,si∆si, which exhibits the same format as the original
equation. Therein, each ∆sji denotes a small fraction of pixel
error along quantization, and the total quantization error/range
∆si =

∑
j ∆sji is much larger than the small ∆sji . The si can

also be used as the block or region.
For the third concern, we claim that the transmitted frames

that are non-uniformly compressed based on STAC will not
affect the subsequent new non-uniform compression strategies.
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Fig. 7: Fake QF vs. true QT when compression ratio increases.

The reason is that the loss increment upperbound is uniformly
assigned. When assuming B

rmax
≈ ∆QT,max,r and ∆si ≈

qsi
2 , the following mappings hold and keep repeating, i.e.,

{qsi}|r → {si −
qsi
2 }|r → {g

qsi
2

F,si
}|r

Br−→ {qsi}|r → {qsi}|r′
(next frame). That is to say, the regions mapped between the
front and back frames generate the same quantization strategy.
Furthermore, as the first frame is uniformly compressed and
transmitted (as described in §V-B), the compression strategy
will gradually converge to the non-uniform format.

V. LEVERAGING TEMPORAL CONSISTENCY

The compression strategy above is customized for individual
frames/images, yet videos transmitted in a frame-independent
mode introduce huge redundancy. Moreover, the generation via
back-propagation from results makes the compression strategy
useless for both already-transmitted and subsequent frames
whose spatial sensitivity changes with video content. We
hence propose a temporal adaptive scheme, which propagates
both SS results and compression strategies across frames,
and integrates the spatial adaptation with inter-/intra-frame
predictive coding in H.26x through compatibility modification.

The framework of the entire temporal adaptive scheme is
depicted in Fig. 8. Specifically, both the compression strategy
and SS results for the new frame are not directly obtained
from server-side feedback but via local in-device inter-frame
propagation from previously cached contents. This compres-
sion strategy, oriented to the individual frame (§IV-B), is then
converted into a new one compatible with the inter-/intra-
frame residual to minimize redundancy. After compression and
encoding, this residual is offloaded to the server, decoded, and
fed into the DNN to generate new SS results and compression
strategies. These are then fed back and cached on the end
device for future propagation. The full cycle repeats contin-
uously, ensuring efficient compression and timely updates of
semantic segmentation results.

A. A Primer on Dense Optical Flow

We first briefly introduce the dense optical flow for propaga-
tion. Optical flow is defined as the motions of pixels between
adjacent frames. Unlike the sparse optical flow that only fo-
cuses on interesting features, dense optical flows provide flow
vectors of the entire frame, up to one flow vector per pixel.
Recent works [29], [30] have extracted dense optical flows [35]
to propagate SS results across frames. Similarly, STAC adopts



8

Time

… …

…

…

{𝒍′𝒓}𝐫=𝟏
𝒓𝒎𝒂𝒙

Guide 𝑬𝒒. (𝟖)

Integration of Spatial Adaptation 

with Predictive Coding (§V-C)

Residual

Online Temporal Adaptive Scheme (§V)
𝐵, 𝑓𝑝𝑠

{𝒍′𝒓}𝐫=𝟏
𝒓𝒎𝒂𝒙

{𝒍′′𝒓}𝐫=𝟏
𝒓𝒎𝒂𝒙

Compression/

coding

Quantization

Other 

parameters

Online Spatial Adaptive 

Selection (§IV-B)

Online Bandwidth-Aware 

Configuration Adaptation (§ⅤI)

In-device workflow

Offloading/Feedback

Fig. 8: The framework of online temporal adaptive scheme.

DIS [35], which is state-of-the-art in terms of computational
efficiency on CPU to propagate both compression strategy
and SS results. Compared to deep optical flow methods, DIS
achieves competitive accuracy and higher frame rates of 10-
600 Hz on 1024×436 images on a single CPU core. This
makes it fully compatible with mobile vision systems such
as mid-end smartphones, tablets, AR headsets, etc. Besides,
DIS operates in a coarse-to-fine fashion, giving STAC more
flexibility to adjust computational costs according to available
runtime resources of mobile vision systems.

In addition to the above dense optical flow extraction
method, H.26x [31] itself also estimates motion vectors to
generate inter-frame residuals. However, it is noteworthy that
these motion vectors extracted in H.26x cannot be used in
STAC for propagation, as they are highly misleading, more
inaccurate and don’t represent “true motion vectors”. The fun-
damental reason lies in the different purposes. The calculation
of motion vectors in H.26x doesn’t target the best motion
estimation, but rather finds the best-matching block with
minimal color difference to achieve the highest compression
ratios. Hence, the method employed is coarse-grained and
has low complexity. For each block, H.26x simply searches
a limited area in the reference frame (typically centered at
the current block’s position) to locate the best match, which
may not align with the actual motion vector but has little
impact. In contrast, the computation of dense optical flows
in STAC aims to achieve as accurate motion estimation as
possible, incorporating techniques such as iterative estimation,
forward-backward consistency, etc. Since STAC requires ac-
curate tracking and propagation of semantic information, it is
necessary to estimate the motions of pixels as accurately as
possible.

B. Inter-Frame Propagation

The specific inter-frame propagation workflow is depicted in
Fig. 8. In our system, both SS results and spatial compression
strategies are generated on the resource-rich server/receiver
based on received frames (called keyframes) and fed back to
the end device/sender. STAC then continuously caches and
updates the latest SS results and spatial compression strategies
fed back from the server on the end device for future separate
propagation as needed.

We first introduce the workflow of propagating spatial
compression strategies. Specifically, the cached compression
strategy on the end device is only propagated to frames de-
cided as new keyframes for transmission, where the keyframe
decision depends on the fps adjustment in §VI. Through dense
optical flows, this propagation is performed on the basis of the
region R, with regions not covered by optical flows directly
applying the nearest quantization table on the frame plane.
Additionally, the first frame without a corresponding spatial
adaptive compression strategy is uniformly compressed using a
middle-level quantization table. It is noteworthy that the dense
optical flow is computed only between adjacent raw frames to
ensure accuracy, based on which the compression strategies
are propagated continuously across adjacent frames.

After detailing the propagation of compression strategies,
we further evaluate how much deviation it might introduce
into the compression strategy, which potentially affects per-
formance. To this end, we conduct experiments by comparing
the compression strategy obtained after propagating a certain
distance with the newly generated one. Fig. 9 demonstrates
the experimental results in CDF format. We can observe that
the compression strategy deviation increases with the propa-
gation distance, quantified by the difference in the selected
quantization table level for each pixel block. It is noteworthy
that even when the propagation distance reaches 8 frames (that
corresponds to a keyframe transmission rate of 2 fps), there
are still approximately 90% of the pixel blocks that have no
compression strategy deviation. Most of the deviations are
even no more than 3 levels. The inherent reason is that the
fine-grained pixel-level dense optical flows [29] are sufficient
to support coarse-grained region-level compression strategy
propagation. Furthermore, the minimal impact of inter-frame
propagation on the compression strategy deviation is further
confirmed by the great performance of STAC in §VIII.

We next introduce the workflow of propagating SS results.
This workflow is similar to propagating compression strate-
gies, with only minor differences. First, the cached SS results
are propagated to each frame at the pixel level to ensure
real-time performance, avoiding the need to wait for server-
side feedback. Additionally, depending on different types of
applications, the workflows of propagating SS results vary ac-
cordingly: (i) The first type refers to applications where video
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receivers are consumers, such as real-time surveillance/drone
video analytic [2], [4] and semantic communication [16], etc.
In this case, the segmentation results obtained through inter-
frame propagation will be further transmitted from the video
sender to the receiver, replacing the original frames. This
design exhibits effectiveness in the accuracy-bitrate trade-off,
as the size of semantic segmentation frames is typically only
1-2% of the original frame size due to the sparse content
features, when both are losslessly compressed. (ii) Conversely,
for applications where the video sender itself requires seg-
mentation results, such as try-on/make-up applications on
cell phones [6], [7], there is no need to transmit propagated
segmentation results to reduce the bandwidth consumption. To
validate this design, the experimental scenarios in §VIII are
set to the first type that encounters more bandwidth pressure.

C. Integration of Spatial Adaptation with Predictive Coding

Building upon the spatial adaptive compression strategy
for individual images/frames, STAC further integrates it with
inter-/intra-frame predictive coding to mitigate huge inter-
/intra-frame redundancy. As detailed in §II-B, the residual
frame and motion vector replace the original frame to be
quantized and transmitted. Therein, only a small number of
bits are required to signal motion vectors due to the effective
motion vector prediction. The residual frame, however, con-
tains a significant amount of energy in frame areas with high
detail [31]. Yet, how to perform spatial adaptive compression
for residual frames like §IV poses a new challenge.

Two heuristic approaches may be considered: (i) directly
applying the original compression strategy to the residual
frame, or (ii) recomputing DNN’s gradients w.r.t. the residual
frame and thus generating new compression strategy. However,
the problem with the first approach is that the residual frame
captures more inter-/intra-frame difference, while the original
compression strategy is subject to the single-frame content.
The spatial sensitivity (i.e., gradients) of these two may be
quite different. As for the second approach, the residual-
customized compression strategy makes no sense. It can nei-
ther be applied to the already-transmitted residual frame due to
the back-propagation of results, nor propagated to subsequent
residual frames due to lack of theoretical proof of temporal
consistency between residual frames.

We then turn to an indirect approach that utilizes the original
compression strategy as a reference to guide the quantization

of residual frames. For distinguishing purposes, we use the
notation (′) to mark parameters related to the original com-
pression strategy and (′′) to the new one for the residual
frame. Recall that for any keyframe to be transmitted, we first
obtain the spatial adaptive compression strategy {l′r}

rmax
r=1 for

the original frame through propagation. Then, the keyframe is
compressed and reconstructed individually based on the basic
image codec, which is not transmitted but provides size and
accuracy constraints to generate {l′′r }

rmax
r=1 for the inter-/intra

frame residuals. The principle of generating spatial adaptive
compression strategy {l′′r }

rmax
r=1 is summarized as follows

min
l′′r

V ′′
r =

∑
s′′i ∈Rr

log2

∣∣∣∣∣∣ s′′i

q
l′′r
s′′i →n

∣∣∣∣∣∣ , (7)

s.t.
∑

x′′
i ∈Rr

∆x′′
i ≤

∑
x′∈Rr

∆x′
i, (7a)

V ′′
r ≤ V ′

r . (7b)

Note that the generation of {l′′r }
rmax
r=1 is still on a per-region

basis. We take region Rr, r ∈ {1, 2, ..., rmax} as an example.
The constraint Eq. (7a) guarantees its accuracy by requiring
the compression level l′′r applied to the residual frame to cause
less pixel error than the compression level l′r applied to the
original frame. Besides, the Eq. (7b) constrains its size by
requiring the size of resulting residual frame V ′′

r to be smaller
than the size of the original frame region V ′

r
4, where the

size of motion vectors is negligible. If both constraints are
satisfied, the compression level l′′r that achieves the minimum
size is selected for the Rr of the residual frame, otherwise,
it falls back to the original frame with only l′r-level basic
image coding. In general, {l′r}

rmax
r=1 is directly calculated by

DNN’s gradients w.r.t. original frame plane, while {l′′r }
rmax
r=1 is

generated by using {l′r}
rmax
r=1 as a reference, which strategically

integrates spatial sensitive features with predictive coding.
During the {l′′r }

rmax
r=1 generation process, there are two

additional issues that deserve attention: (i) The first is to
guarantee the generation of {l′r}

rmax
r=1 . Since the residual frame

is transmitted after inter-frame compression, the DNN on
the server/receiver cannot obtain gradients g′s′ w.r.t. DCT
coefficients s′ as before. To tackle this problem, we make the
decoded full frames undergo DCT and IDCT once more on the
server/receiver. As such, the subsequent NN inference can still
utilize back-propagation to obtain an approximate value of g′s′ .
(ii) The second is to minimize the computational complexity.
As Eq. (7a) constrains the pixel error, each block requires con-
tinuous repetition of (de)quantization-IDCT process to traverse
and select appropriate compression levels l′′r . To reduce the
complexity, we convert this constraint to the frequency domain
for IDCT avoidance. Therein, the threshold for frequency-
domain error cannot be directly calculated by

∑
s′∈Rr

∆s′i
during l′r-level basic image coding on the original frame.
Instead, the threshold for the residual frame is necessary for
alignment. Hence, we use the reconstructed frame (inverse to

4Similar to V ′′
Rr

, V ′
Rr

=
∑

s′i∈Rr
log2

∣∣∣∣∣∣ s′i

q
l′r
s′
i
→n

∣∣∣∣∣∣, representing the size of

region Rr after applying l′r to the original frame.
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Fig. 10: The training and architecture of bandwidth-aware configuration adaptive neural network.

l′r-level basic image coding) to regenerate the residual, perform
DCT, and compute the coefficient error as the frequency-
domain threshold. Furthermore, we take the compression level
l′′r of each region Rr in the last keyframe as the starting point
for up/down traversal to reduce the traversal range.

VI. BANDWIDTH-AWARE CONFIGURATION ADAPTATION

The aim of this section is to make our proposed compression
strategy automatically adapt to varying bandwidth and video
content. Given that our compression strategy is tailored for
SS, the conventional human-oriented configuration adaptive
scheme [20] in H.26x for frames and blocks is no longer
suitable. Existing task-oriented configuration adaptive schemes
are either tailored for OD tasks [9]–[11], unable to adapt
to varying video complexity [18], [19], or lack fine-grained
block-wise allocation [13], [21]–[24]. Nevertheless, adjusting
video configurations is essential to align the resulting video
bitrates with the available bandwidth, ensuring real-time per-
formance while enhancing SS accuracy.

To address this problem, we propose an NN-based
bandwidth-aware configuration adaptive scheme that is com-
patible with our compression strategy. It maps the real-time
bandwidth and video content to appropriate video config-
urations. For the first time, multi-level block-wise config-
uration adaptive streaming is achieved for semantic seg-
mentation, which not only minimizes redundancy but also
matches the bandwidth. Specifically, STAC converges the
large-dimensional quantization table selections for all pixel
blocks (i.e., {l′′r }

rmax
r=1 ) across the entire frame plane to the

one-dimensional upperbound B of DNN loss increments.
This minimizes the action space of the NN for configuration
adaptation, ensuring convergence without affecting block-wise
quantization table selections.

During the offline stage, a supervised training set is first
produced by compressing videos under different configurations
(B and fps). Therein, fps is the frequency of keyframes to be
transmitted. We run SS models on these videos to record the
accuracy Acc and video size Bit per second. As the relation-
ship between accuracy/size and compression configurations
varies with video content [9], [21], we additionally record
two content-related metrics: the single-frame complexity c and
inter-frame difference d. Therein, c is represented by the sum
of un-quantized coefficients

∑M
i=1 log2 |s′i| without increasing

much overhead, and d is computed by the sum of absolute
pixel differences between adjacent frames like [36]. Both c
and d are averaged per second. With these two metrics, STAC
can easily detect whether the current video has drastic or stable

inter-frame changes, and whether the scenes are complex or
simple. These metrics play a crucial role in determining the
appropriate configurations to minimize redundancy, such as
whether to filter fewer or more frames, i.e., adjusting fps.
Then, after traversing the training data set, we construct
a multi-dimensional lookup table ⟨B, fps,Acc,Bit, c, d⟩ in
terms of video segments per second.

To resolve conflicts in the table brought by different DNNs,
scenarios, etc., we use it to train an NN f as shown in Fig. 10,
which extracts relatively unified relationships among elements
to enhance generalization and save memory resources. Many
studies [9], [37] prefer NNs like f : ⟨B, fps, c, d⟩ →
⟨Acc,Bit⟩. However, such networks make it necessary to tra-
verse different configurations for finding the best at the online
stage. Therefore, we turn to construct an NN that has opposite
mappings, f : ⟨Bitt−1, B̂itt, Bt−1, fpst−1, ct−1, dt−1⟩ →
⟨αt, βt⟩, which takes as input:
(i) the video bitrate Bitt−1 of last video segment t− 1, and

the estimated available bandwidth B̂itt for next video
segment t.

(ii) the last upperbound Bt−1 of DNN loss increment and the
last fpst−1 as the reference for next adjustment.

(iii) the two content-related metrics ct−1, dt−1 averaged over
frames in the last video segment, used as a prediction of
ct, dt based on temporal correlation.

This neural network f outputs the scaling factors αt =
Bt

Bt−1
and βt = fpst

fpst−1
instead of Bt and fpst for the

next video segment t to further improve generalization. The
training is executed with any combination of ⟨..., ct−1, dt−1⟩
and ⟨..., ct, dt⟩ in training set. Moreover, we filter out each
⟨B′, fps′, Acc′, Bit′, c′, d′⟩ in the training set, as long as there
exists ⟨..., c′, d′⟩ with larger accuracy and smaller size. The
experiments in §VIII-D show that f generalizes quite well
across DNNs and scenarios. Of course, if one pursues to
perfectly handle the domain shift between training and testing,
continuous customization of f can be performed through
transfer learning, lifelong learning, etc.

VII. IMPLEMENTATION

We prototype STAC on H.264 codec and modify only the
quantization module, following the quantization table/level of
each block selected by STAC. Specifically, we mimic the
open source codes for H.264 (implemented in C++ [38]), but
use Python and call C++ libraries through interfaces to re-
implement the main H.264 architecture. The root cause is that
STAC requires the back-propagation from DNN inference to
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Fig. 11: Evaluation of overall accuracy-bitrate performance across different DNN models and datasets.

the DCT coefficient to calculate gradients. Therefore, when us-
ing Pytorch for DNN inference, the H.264 modules involved in
back-propagation are aligned via Python, giving convenience
to experiments. Regarding H.264 architecture, we faithfully
implement most modules including predictive coding, DCT,
quantization and entropy coding, while simplifying partial
functions without interfering with the evaluation of STAC.
Therein, the block size is fixed to 4 × 4 pixels without
multiple choices. All baseline algorithms built on H.264 are
also implemented by our H.264 architecture for experimental
consistency.

We implement STAC on a portable and small form factor
Intel NUC Kit NUC7i5DNHE, which includes an Intel Core
i5-7300U CPU (with 2 cores, 3 MB cache, 2.6 GHz). The
specification of this hardware is comparable to what is avail-
able in today’s mid-end smartphones such as OnePlus 9 and
Samsung Galaxy A52 5G. We deploy an edge server equipped
with an Intel Core i7-5820K CPU and an Nvidia Tesla T4
GPU. It is noteworthy that most STAC modules run on the
resource-rich server, while only the inter-frame propagation
and integration with predictive coding are additional overhead
on the end device. Among them, the dominant real-time
pressure arises from computing the dense optical flow for
the propagation of SS results. Fortunately, DIS operates in
a coarse-to-fine fashion to enable the propagation to reach
17 fps (i.e., the frame rate of Cityscapes dataset [34]). The
computational overhead of each module is further detailed in
Table II in §VIII-F.

We adopt a data-driven methodology that uses real-world
network bandwidth to simulate a real-time video transmission
system. Specifically, after each keyframe is encoded, the delay
time for the keyframe to reach the server/receiver is simulated
as the queuing time plus the transmission time, which is
computed via dividing the compressed frame size by the
instantaneous network bandwidth. Following §VI, the video
compression configuration is dynamically adjusted per second
depending on the real-time bandwidth and video content.
In addition, once a new video compression configuration is
decided and executed, previous frames that did not complete
transmission are discarded to avoid delay accumulation.

VIII. EVALUATION

A. Experimental Setup

Datasets, DNN models, and Metrics. We evaluate STAC
on SS tasks using three different datasets, including well-
known Cityscapes dataset [34] with 2048 × 1040 resolution,
YouTube videos [39], [40] with 2048 × 1040 resolution and
CamVid dataset [41] with 720×960 resolution. Among them,
YouTube videos [39], [40] are captured by drives in Las Vegas
and Seoul, and then downsampled to 2048×1040 resolution as
a complement for the Cityscapes dataset, where the lengths of
continuous videos are too short. Since the continuous videos in
the Cityscapes dataset and YouTube videos are not artificially
annotated, we regard the DNN outputs of raw videos as
ground truth, following practices in previous studies [17], [21].
While introducing some bias in the accuracy assessment, it
helps mitigate influences caused by the target DNN itself and
focuses more on the impacts of compression strategies.

We employ three DNN models including DRN-D-22 [42],
DRN-D-38 [43] and BiSeNet [44] for semantic segmentation
to evaluate whether STAC can adapt to different DNNs.
Besides, we test STAC on three different network datasets
including LTE/4G [25], FCC [26], and WiFi to evaluate its
adaptability to varying bandwidth. Each of them exhibits
differentiated bandwidth fluctuation characteristics with mean
and standard deviation of {2.14 ± 1.02, 0.73 ± 0.71, 0.51 ±
0.27}×104 (Kbps), respectively. Moreover, we evaluate three
key metrics, including the video transmission bitrate (Kbps)
(i.e., bandwidth consumption), SS accuracy (%) and delay
(s). The SS accuracy is tested by the pixel accuracy (i.e.,
PA =

∑k
i=0 pii∑k

i=0

∑k
j=0 pij

) and the mean intersection over union

(i.e., mIoU = 1
k+1

∑k
i=0

pii∑k
j=0 pij+

∑k
j=0 pji−pii

). Therein,
k+1 is the number of semantic classes including a class for do-
not-care regions, pij denotes the number of pixels that predict
the true class i to class j. More specifically, IoU represents
the ratio of the intersection and union of the predicted and true
classes of pixels. mIoU is the average IoU value of all classes.
Thus, mIoU or PA = 100% indicates that the semantic
predictions of all pixels exactly match the true labels, while
mIoU or PA = 0% indicates that the semantic predictions of
all pixels are wrong.
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Fig. 12: Evaluation of STAC’s adaptability to varying bandwidth under different network types.
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Fig. 13: A showcase of video configuration/bitrate adaptation.

Baseline. The baseline compressive streaming algorithms
are summarized as follows.

• AccMPEG [18] is a state-of-the-art non-uniform com-
pression algorithm applicable to SS. It also leverages
DNN’s gradients w.r.t. pixels to guide compression, but is
coarse-grained and limited to two-level compression that
assigns high/low quality based on a pre-defined gradient
threshold. Furthermore, the high/low-quality assignments
are real-time inferred by a separate DNN on the end
device, which can only be executed once every 10 frames
due to the computational burden.

• CASVA [21] is a compressive streaming algorithm built
on top of the H.264 codec [31]. It is not innovative in
compression strategy by applying a uniform quantiza-
tion parameter (QP) to the whole frame plane. Yet, it
uses reinforcement learning (RL) to automatically adjust
configurations including the resolution, fps and uniform
QP to maximize DNN inference accuracy under dynamic
bandwidth. Overall, a comparison with CASVA equates
to a comparison with an H.264 encoder enhanced by an
RL-based configuration adaptive algorithm.

• GRACE [12] is a uniform compression algorithm oriented
to SS. Prototyped on the JPEG codec, GRACE replaces
the quantization tables with self-generated ones based on
the frequency sensitivity of DNNs, and uniformly applies
them to the frame plane. As GRACE transmits each frame
as individual images, which introduces excessive redun-
dancy, we enhance it to GRACE+ by incorporating inter-

frame propagation of SS like STAC and transmitting only
keyframes. Overall, a comparison with GRACE+ equates
to a comparison with a JPEG encoder enhanced by inter-
frame propagation and frequency-sensitive quantization
tables.

B. Better Accuracy-Bitrate Balance

We first test the accuracy-bitrate balance by adjusting related
compression configurations (B and fps in STAC). Three DNN
models, two SS datasets, and two accuracy metrics are used
to mitigate experimental randomness.

STAC vs. AccMPEG. We implement AccMPEG by apply-
ing non-uniform compression with two-level QPs as described
in §VIII-A. To test its accuracy-bitrate balance, we systemati-
cally adjust frame rates and centers of QPs. Fig. 11 shows the
overall performance boost by STAC across various models and
datasets: (i) STAC achieves an average improvement of 0.2-
2.7%, and in some cases up to 0.7-6.2%, in accuracy metrics
of mIoU or PA when the bandwidth consumption is equal. (ii)
When the accuracy is consistent, the bandwidth consumption is
significantly reduced by up to 10.1-63.7%, with an average of
4.1-32.8%. In other words, STAC enables a real-time SS capa-
bility for up to 2.7× number of devices, without any upgrades
to communication infrastructures. These improvements over
AccMPEG are attributed to STAC’s more fine-grained spatial
adaptive compression and inter-frame propagation mechanism,
which reduce bandwidth reliance in both temporal and spatial
domains.

STAC vs. CASVA. According to CASVA, we comprehen-
sively adjust the QP, resolution, and frame rate based on the
H.264 codec, and test its optimal accuracy-bitrate balance
curve. Shown in Fig. 11, (i) STAC can reduce bandwidth con-
sumption by up to 8.7-69.6%, with an average of 5.3-34.2%,
or boost accuracy (mIoU or PA) by up to 0.7-9.5%, with
an average of 0.2-3.7%. These performance improvements
still come from the spatial adaptive compression and inter-
frame propagation mechanism. (ii) Additionally, AccMPEG
also exhibits performance gains over CASVA, with an average
bandwidth reduction of 1.2-1.4% or accuracy improvement
of 0.03-1.0%. These results illustrate that even low-frequency
and coarse-grained non-uniform compression can significantly
eliminate redundancy in videos, further highlighting the crux
of spatial adaptive compression strategies.

STAC vs. GRACE+. Following GRACE [12], we adjust
the upperbound B to generate multi-level quantization tables
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Fig. 14: Evaluation of STAC’s generalizability across different video datasets and DNNs.

on the JPEG codec. On this basis, the inter-frame propagation
of SS is further combined for GRACE+ to comprehensively
adjust fps and B. The experimental results, depicted in
Fig. 11, reveal that (i) STAC can substantially reduce band-
width consumption by up to 17.1-75.2%, with an average of
10.1-21.6%, or increase the accuracy by up to 1.0-3.1%, with
an average of 0.5-2.5%. These gains arise entirely from spatial
adaptive compression and its integration with inter/intra-frame
predictive coding, since the generation principle of frequency-
sensitive quantization tables and the inter-frame propagation
are consistent. (ii) The strength of GRACE+ at low bitrates
and weakness at high bitrates, compared to AccMPEG and
CASVA, are consistent with the feature that inter-frame pre-
dictive coding contributes less at low bitrates/fps and more at
high bitrates/fps. These results provide further evidence for
the necessity and effectiveness of integrating spatial adaptive
compression with predictive coding in STAC.

C. Adaptability to Varying Bandwidth

After verifying the superiority in accuracy-bitrate balance,
we further evaluate whether these offline improvements can
be converted to online gains under varying bandwidth. To this
end, we test the adaptability of STAC to different networks
including LTE/4G, FCC, and WiFi, with differentiated band-
width fluctuation characteristics detailed in §VIII-A.

Experimental setup. Since STAC does not predict band-
width, but instead proposes a bandwidth-aware configuration
adaptive scheme, we directly feed the current real bandwidth
into different algorithms for fixed-point testing. STAC can also
be seamlessly integrated with bandwidth prediction schemes
in the real world with unknown bandwidth variation. Besides,
due to the lack of dedicated configuration adaptive schemes
for AccMPEG and GRACE+, we follow the common practice
of constructing offline accurate-bitrate profiles as in §VIII-B.
Based on these profiles, AccMPEG and GRACE+ can map
real-time bandwidth to configurations that maximize average
DNN accuracy. As for CASVA, RL is exploited to train an NN,
which takes as input content-related metrics and a bandwidth
sequence including the current time. Notably, as the Cityscapes
dataset has limited continuous video samples, this experiment
is conducted based on the YouTube dataset for training and
testing, targeting the DRN-D-22 model.

Results. Fig. 12 exhibits the SS accuracy and the delay of
obtaining SS results per frame. The accuracy is evaluated by
the PA metric, instead of the mIoU metric, as it is too unstable

on a per-frame basis. Notably, compared to AccMPEG and
CASVA whose delays gradually increase as the bandwidth
decreases, STAC can always ensure real-time performance,
i.e., keeping frame delay at the level of frame capturing
interval ( 1

17fps ≈ 0.06 s). This is because the local inter-
frame propagation of SS results completely determines the
delay, without waiting for the server-side feedback. Therein,
the dominant component is dense optical flow extraction [35],
operating in a coarse-to-fine manner to ensure completion as
required, regardless of bandwidth, target DNNs and datasets.
For AccMPEG and CASVA, the SS results are actually ob-
tained via another pipeline of server-side feedback, including
transmission, DNN inference, etc. Among them, we plot only
the transmission delay of these algorithms to better compare
the adaptability to dynamic bandwidth.

Besides, STAC can also improve accuracy, achieving a
0.9-4.0% gain on different network datasets. This gain is
derived partly from its inherently superior compression strat-
egy, and partly from the content-related metrics for reliable
bitrate/accuracy estimation. Although the accuracy of STAC
is under the influence of DNN inference time on the server,
which affects the delay of server-side feedback, and in turn
affects the local propagation distances, STAC still achieves
better accuracy than other algorithms. As the time for running
three different DNN models on the server in our experiment
varies from 7 to 40 ms (detailed in §VIII-F), it results in extra
propagation distances of only 0.17-0.68 frames on average,
which has a limited impact on the accuracy.

A microscopic showcase. Fig. 13 showcases a 100-second
video configuration/bitrate adaptive trajectory. By incorporat-
ing content-related metrics, STAC and CASVA effectively sta-
bilize the video bitrate to stay close to the available bandwidth
without exceeding it. In contrast, AccMPEG, which doesn’t
take video contents into account, often encounters bandwidth
overshoot or wastage (see the red area in Fig. 13), resulting in
reduced accuracy. The negative impact of bandwidth wastage
on accuracy is evident, while the overshoot impairs accuracy
due to the increased delay, as we discard frames that did not
complete transmission before the new configuration adjust-
ment to prevent delay accumulation. In comparison, STAC
not only improves accuracy through a superior compression
strategy, but also makes full use of bandwidth while avoiding
accuracy degradation caused by overshoot and long inter-frame
propagation. Fig. 13 further depicts the detailed configuration
adjustment by STAC under varying bandwidths. Typically, a
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Fig. 15: The impact of different parameters in STAC.

decrease in bandwidth corresponds to a reduction in fps or
an increase in B.

D. Generalizability across Datasets and DNNs

We further evaluate the generalizability across different
datasets, different target DNN models, and both cases.

Experimental setup. We employ the configuration adaptive
NN trained in §VIII-C to test its generalizability under various
settings of (i) different dataset: Cityscapes and DRN-D-22; (ii)
different model: YouTube and DRN-D-38; and (iii) different
model and dataset: Cityscapes and DRN-D-38. Regarding
AccMPEG and GRACE+, we still follow the common practice
of constructing offline accuracy-bitrate profiles for different
settings. As for CASVA, limited by insufficient training sam-
ples in the Cityscapes dataset, the RL model trained in §VIII-C
is directly used under settings of (i) and (iii), only retrained
under (ii) setting. Furthermore, this experiment only adopts
LTE/4G network dataset. Other setups remain consistent with
§VIII-C.

Results. Fig. 14 shows that STAC can still achieve accuracy
gains compared to other algorithms. Specifically, the accuracy
gain of STAC, compared to AccMPEG and GRACE+, is
greater across DNN, slightly weaker across datasets, and
weakest in the experiment involving different datasets and
DNN. Besides, STAC is comparable to CASVA in accuracy
across different DNN (when CASVA is retrained), but shows
noticeable improvements under the other two settings. These
quantitative results provide a generalization assessment of
the configuration adaptive scheme in STAC, which performs
more robustly than that in CASVA. Essentially, several factors
contribute to these results. First, the configuration adaptive
scheme outputs scaling factors rather than configurations di-
rectly, which enhances generalizability. Second, it must be ac-
knowledged that the YouTube and Cityscapes datasets share a
high degree of similarity including the scenes, tasks, etc. Once
these elements differ significantly such as CamVid dataset,
transfer learning is always inevitable. Of course, there is no
generalization issue when modifying STAC with JPEG/H.26x
quantization tables and offline accuracy-bitrate profiles, which
is a common practice in the field.

In addition to the accuracy improvement, STAC can also
maintain real-time performance, keeping the delay at the level

of frame capturing interval (i.e., 1
17 fps ≈ 60 ms of our

datasets) regardless of the experimental setups. This reliability
stems from the timely acquisition of SS results for each
frame through inter-frame propagation of previously cached
SS results, eliminating the need to wait for server-side feed-
back. Consequently, only the time spent on local inter-frame
propagation impacts the delay, which has little to do with
setups like videos, networks and DNNs. In contrast, CASVA
and AccMPEG lack this inter-frame propagation, necessitating
full pipeline completion involving offloading, DNN inference,
and feedback. Their performance is directly affected by videos,
DNNs, networks and bitrate-bandwidth mismatches, leading
to variability across different setups. Furthermore, GRACE+
integrates inter-frame propagation like STAC, aligning its
delay closely with STAC.

After validating the superiority over GRACE+ and CASVA
in the above, there is no necessity for further comparisons
with JPEG and H.264, as GRACE+ evolves from JPEG
and CASVA is a configuration adaptive algorithm based on
H.264. For example, without inter-frame propagation, JPEG
will render a much larger delay than GRACE+, and even much
larger than CASVA and AccMPEG, as JPEG needs to offload
consecutive frames in the form of individual images. Without
customized quantization tables, the accuracy of JPEG has been
confirmed to be much lower than GRACE [12]. Therefore, it is
logical to infer that JPEG and H.264, which are theoretically
inferior to GRACE+ and CASVA, would demonstrate worse
performance, let alone compared to STAC.

E. STAC Deep Dive

There are several parameters in STAC that may affect
its performance. In this subsection, we conduct a series of
experiments to test their impacts and find the optimal settings.

Adjusting the number of quantization table levels. In
theory, increasing the number of quantization tables can ex-
pand the accuracy limits, but introduces more transmission
load required for compression strategy synchronization and the
computational cost of selecting quantization tables. Fig. 15a
indicates that the overall performance improves significantly
as the number of quantization tables increases from 2 to
32. Whereas, when the number further increases to 64, the
performance plateaus and even shows a trend of inferiority
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in the low bandwidth consumption regime. The fundamental
reason is that beyond a certain point, the benefits of increasing
coverage and granularity resulting from additional quantization
tables become negligible, yet the transmission load arising
from compression strategy synchronization continues to rise.
As a result, we set the number of quantization tables to
32, which conserves computational resources while ensuring
optimal accuracy-bitrate balance.

Adjusting the size of regions. The impact of region size is
intricate, with smaller regions enabling finer granularity and
higher accuracy limits, but also incurring frequent quantization
jitters in frame planes that diminish compression efficiency.
Moreover, smaller regions increase transmission loads of
compression strategy synchronization and raise computational
costs of quantization table selection. To provide further in-
sights into this impact, we conduct a series of experiments on
region sizes ranging from 2×2 to 8×8 blocks, with a fixed
block size of 4×4 pixels to reduce experimental redundancy.
As shown in Fig. 15b, the overall performance improves when
the size increases from 2×2 to 6×6, but begins to decline
as it reaches 8×8 blocks. We analyze that the size of 6×6
blocks is the most appropriate, as it doesn’t exhibit as obvious
sensitivity variation as 8×8 blocks that affect accuracy, nor
does it diminish compression efficiency, increase the burden
of compression strategy synchronization, or raise computation
costs as much as sizes of 2×2 and 4×4 blocks.

Adjusting the transmission frame rates. While §VIII-B
has investigated the accuracy-bitrate balance, this overall curve
cannot intuitively characterize the impact of fps and B.
It remains ambiguous as to when it is most beneficial to
increase fps or B, and whether adjusting one alone can yield
comparable performance. Therefore, we present in Fig. 15c the
accuracy-bitrate curves achieved by adjusting B under various
fps. Notably, the accuracy-bitrate curves corresponding to
different fps collectively constitute the optimal performance.
In low bandwidth regimes, decreasing fps yields greater
accuracy gains than blindly increasing B, as the accuracy
loss caused by quantization exceeds that caused by inter-frame
propagation of SS. As the bandwidth gradually increases, the
effects of fps and quantization become increasingly inter-
twined. Appropriately increasing fps in combination with B
reductions helps maintain accuracy at a good level. Ultimately,
when the bandwidth is sufficient, 17 fps is the best choice to
avoid any interference caused by inter-frame propagation.

Benefits of configuration adaptive module. To quantify
this module’s benefits, we further conduct an ablation exper-
iment by solely altering the configuration adaptive scheme.
Baseline algorithms include STAC with the offline accurate-
bitrate profile (denoted as STAC-offline), STAC excluding spa-
tial complexity c (denoted as STAC-w/o-c), STAC excluding
temporal complexity d (denoted as STAC-w/o-d), and STAC
utilizing complexity metrics in CASVA (denoted as STAC-
CASVA). The experiment involves two DNNs (DRN-D-22,
DRN-D-38), two video datasets (Cityscapes, YouTube videos),
and three network datasets (LTE/4G, FCC, and WiFi).

Fig. 16 shows that STAC achieves superior overall perfor-
mance. It enhances average accuracy by 10.3%, 5.9%, and
4.3% compared to STAC-offline, STAC-w/o-c, and STAC-w/o-
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Fig. 16: Benefits of the configuration adaptive module in
STAC.

d, while remaining at the same level as STAC-CASVA. This
improvement stems from STAC’s precise alignment of video
bitrates with bandwidth, enabled by effective video complexity
extraction that accurately captures dynamic video content. Ad-
ditionally, regarding the computational overhead, STAC-offline
adjusts video configurations based on an offline accurate-
bitrate profile with near-zero computational complexity. For
other algorithms, the primary computational overheads of their
configuration adaptive modules come from the extraction of
content-related metrics, while the overheads of the NNs for
configuration adjustments are minimal. Therein, STAC, STAC-
w/o-d and STAC-w/o-d extract content-related metrics with the
low computational complexity of O(M × fps), contrasting
to STAC-CASVA’s resource-intensive extraction through pre-
encoding future frames [21]. Due to the real-time requirement,
the number of future frames to be pre-encoded is limited
to one in our experiment. The computational complexity is
O(M×P ), where P denotes the operations per pixel, typically
ranging from 100-500 FLOPs. Furthermore, all algorithms
achieve similar delays due to the same inter-frame propagation
of SS results regardless of configuration adaptive modules.

F. Computational Overhead

Table II lists the computational overhead and time consumed
for different modules in STAC. The spatial adaptive selection
module (§IV-B) costs about 6-36 ms on the server, with the
major computational overhead coming from gradient calcula-
tions. In the NN-based configuration adaptive module (§VI),
the main component, i.e., NN inference for configuration
adjustments, runs on the server with a low computational
overhead of 20 KFLOPs, while the content-related metrics
for input are extracted on the end device with a computa-
tional complexity of O(M × fps), taking less than < 5 ms.
Regarding the temporal adaptive module (§V) on the end
device, the computation is dominated by the dense optical
flow extraction and integration with predictive coding. The
former takes about 55-60 ms, while the latter takes about
20 ms. Other computational overheads and delays, such as
target DNN inference, transmission, and encoding/decoding,
are all inherent in compressive streaming systems/algorithms
for vision tasks and are not introduced by STAC.

It is noteworthy that only the dense optical flow extraction
and pixel-level mapping affect the delay in obtaining real-
time SS results in STAC. The pixel-level mapping incurs a
negligible time cost, while the dense optical flow extraction
operates in a coarse-to-fine manner for real-time assurance,
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TABLE II: THE ONLINE COMPUTATIONAL OVERHEAD AND DELAY ANALYSIS.

Components Computational complexity Cost time Delay for SS Devices

DNN inference 298-1790 GFLOPs 7-40 ms / Server

Transmission (+feedback) / 0-330 ms / /

Encoding / 10-50 ms / End device

Decoding / < 3 ms / Server

Added
by

STAC

Spatial adaptive
selection (§IV-B)

Gradient calculation 274-1643 GFLOPs 6-36 ms /
Server

Compression strategy generation O(M), 3-20 MFLOPs ≪ 1 ms /

Temporal
adaptation (§V)

Optical flow extraction / 55-60 ms 55-60 ms
End devicePixel-level mapping O(M), 3-20 MFLOPs < 3 ms < 3 ms

Integration with predictive coding O(M) ≈ 20 ms /

NN-based configura-
tion adaptation (§VI)

Extraction of content-related metircs O(M × fps) < 5 ms / End device
NN inference 20 KFLOPs < 1 ms / Server

maintaining the delay at the level of frame capturing interval
(i.e., 1

17fps ≈ 60 ms in our datasets).

IX. RELATED WORK

Task-oriented compression algorithm. Existing com-
pression algorithms [9]–[11] for OD tasks generally start
by locally identifying regions with target objects, and then
offload them with high quality. To name a few, Liu et al. [10]
exploit a dynamic RoI encoding technique to compress and
offload regions with potential targets. EdgeDuet [11] further
prioritizes the offloading of tiles that contain more objects
than others. However, these algorithms are a poor fit for SS
tasks, where sensitive regions are not obvious and concentrated
like OD tasks. Many SS-applicable algorithms exploit uniform
spatial compression strategies [12]–[16] or simply discriminate
compression ratios according to human visual quality [20].
To name a few, GRACE [12] exploits DNN’s gradients (i.e.,
sensitivity) w.r.t. different frequency and color components to
optimize the quantization tables. However, the same quanti-
zation table is applied uniformly to all blocks without spatial
adaptation. Runespoor [13] utilizes super resolution technique
to selectively compensate for frames with low semantic seg-
mentation accuracy, which we can combine in future works.
Several studies [14]–[16] build autoencoders for OD or SS
tasks. To be specific, Nakanoya et al. [14] learn task-relevant
representations of sensory data for robotic tasks. Starfish [15]
constructs a loss-resilient DNN-based image compressor that
is optimized for task objectives. Qin et al. [16] further describe
task-oriented autoencoders as a key technology for semantic
communication. However, these encoders are still equivalent
to using fixed compression strategies without adaptation in
spatial and temporal domains.

Furthermore, a handful of SS-oriented non-uniform com-
pression algorithms [17]–[19] have also been proposed re-
cently. The most relevant is AccMPEG [18], which also uses
DNN’s gradients as spatial sensitivity metrics, but is limited to
two-level compression that switches between high/low quality
based on a gradient threshold. Moreover, AccMPEG relies on
a separate DNN to predict spatial sensitivity online on the
end device, imposing considerable computational overhead.
DDS [17] is also limited to two-level compression strategies,
and necessitates secondary offloading based on confidence
feedback to enhance critical video content, which is not

applicable to real-time systems. Orchestra [19] requires a
prerequisite that spatial sensitivity remains stable over time
and is inherent to the position on the frame plane, which is
limited to instance segmentation and static cameras.

Bitrate/configuration adaptive algorithm. Based on ad-
vanced compression strategies, developing compatible config-
uration adaptive schemes plays a key role in real-world perfor-
mance. Typically, many task-oriented non-uniform compres-
sion algorithms [9]–[11], [13], [17]–[19] build their accuracy-
bitrate profiles by tuning compression configurations therein.
That is to say, they can automatically adapt their non-uniform
compression strategies to estimated bandwidth. To name a
few, DDS’s adaptive feedback control system [17] dynamically
tunes the low and high-quality configurations based on the
estimated available bandwidth. Taking the varying content into
account, AdaMask [9] further customizes the offline accuracy-
bitrate profiles according to online video content. Besides, spe-
cialized task-oriented configuration adaptive algorithms [21]–
[24], [37] adjust only basic configurations such as fps, res-
olution and uniform QP on top of H.26x, without delving
into non-uniform compression. Therein, FrameHopper [22]
exploits RL to determine how many successive frames can be
skipped. Zhang et al. [23] jointly adjust fps, resolution and
bandwidth allocation for video analytics. A2 [24] tunes the
frame resolution and task model complexity to achieve a trade-
off between latency and inference quality. To further adapt to
dynamic contents, CASVA [21] relies on video pre-encoding
to obtain indicators for bitrate changes, while DAO [37] builds
a lightweight DNN model to formulate the relationship among
video content, resolution, accuracy and bitrate.

Moreover, existing quality of experience (QoE)-driven bi-
trate adaptive streaming algorithms [45]–[49] can also inte-
grate non-uniform compression on top of H.26x’s built-in
bitrate allocation scheme [20]. Division et al. [20] propose
a block-wise bitrate allocation scheme for H.264 to ensure
the fidelity, which builds quadratic rate-distortion models
for each block to adjust QPs non-uniformly. In this H.26x
modality, most QoE-oriented bitrate adaptive algorithms [45]–
[49] can automatically map their bitrate decisions to per-
frame, per-block QPs based on spatial diversity. Therein,
various techniques such as the proportional integral derivative
(PID) method [48], Lyapunov optimization [46] and learning
approaches [45], [49] are employed to optimize QoE, consid-
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ering factors like environments [45], motion states [49], chunk
sizes [47], etc.

Semantic video segmentation. Existing DNN-based se-
mantic video segmentation can be summarized into two
streams. The most straightforward way is to simply run seman-
tic image segmentation on each frame [12] or keyframes [29],
[30]. The second stream is to take consecutive frames as in-
put [27], [28] and leverage temporal correlation to alleviate the
excessive computational overhead. For example, Mahasseni et
al. [27] leverage the LSTM network and Clockwork [28] share
DNN features between frames. Recent works [29], [30] extract
dense optical flows to propagate SS results from keyframes
to the target frame, either for real-time SS of high definition
videos [29], or for creating more pixel-wise labels to scale up
SS training datasets [30]. Our design also follows a similar
framework, i.e., propagating both compression strategies and
semantic segmentation results across frames.

X. DISCUSSION

Joint optimization of target DNNs. One may wonder if it
is possible to jointly optimize target DNNs and compression
strategies. The common way is to train an end-to-end auto-
encoder [14]–[16], where both two functions are achieved
by DNNs. However, the major drawbacks include higher
computational complexity, lower robustness, etc. Besides, it
is also not practical to first decide a particular compression
strategy, and then train the target DNN based on this criteria.
On the one hand, it restricts the DNN’s applicability and
generalization, making it uneconomical to invest substantial
time and data in training. In reality, most DNNs for vision
tasks [43], [44] are trained on original raw video datasets,
rather than being specifically tailored for a particular com-
pression strategy. On the other hand, SS-oriented compression
strategies designed without target DNN’s sensitivity as a guide
are usually heuristic (e.g., boundary-guided compression in
Fig. 1), which renders much redundancy.

Generalization. The generalization relates to both the target
DNN and STAC, and we discuss this issue in three cases: (1)
When the target DNN can be directly employed in changing
video environments, STAC also works well. (2) When the
target DNN undergoes continuous tuning or replacement in
response to environment changes, the generalization perfor-
mance of STAC is evaluated in §VIII-D. Alternatively, STAC
can further enhance its generalizability by dynamically up-
dating the quantization tables and NN-based configuration
adaptive module using new samples. Theoretically, this in-
volves significantly fewer samples than tuning the target DNN,
due to the lightweight characteristic. Another approach is
to simplify STAC with JPEG/H.26x quantization tables and
offline accuracy-bitrate profiles, which is a common practice
in this field. (3) When the DNN cannot generalize or adapt its
parameters to changing video environments, STAC can hardly
improve the generalization as well, as it is customized for the
target DNN.

Application scope. Technically, STAC can be applied to
all DNN-based vision tasks, as they all have non-uniform
sensitivity with respect to the pixel plane. Yet, the performance

gain is significant on pixel-based tasks like SS and relatively
insignificant on bounding box-based tasks like OD. When
it comes to OD, the sensitive regions are often clearer and
more concentrated. Most algorithms [9]–[11] transmit only
the region within the bounding box, which typically consumes
a small fraction of bits. In this case, using STAC to further
extract important contents inside the bounding box may yield
minimal performance gain. On the contrary, the sensitive
regions of semantic segmentation are usually scattered and
indistinct. Employing STAC to discriminate the importance
of pixels across the frame plane is more likely to result in
significant performance gains.

Characteristics of sensitive regions. Based on DNN’s gra-
dients, we analyze that the sensitive regions are closely related
to multiple factors including segmentation boundaries, color
differences, object sizes, etc. Regarding the color difference,
the bottom of the vehicle, the shadow, and the ground in
Fig. 4 are almost merged together with subtle color differences,
making it challenging to segment them. Therefore, high clarity
is always preferred to ensure SS accuracy, exhibiting high
sensitivity. The reason lies in the high similarity of image
information within the DNN’s receptive field between adjacent
pixels. If the adjacent pixels happen to be around the boundary,
the high similarity is harmful. However, if the adjacent pixels
belong to the interior of an object, the high similarity becomes
advantageous. In addition, relatively small objects generally
have higher sensitivity [17], such as vehicles and people in the
distance in Fig. 4. The reason is that small objects are often
difficult to fully display their details, making it challenging
for the DNN to extract sufficient features and segment them
from the background.

XI. CONCLUSION

This paper proposes STAC, which takes the first step to
achieve fine-grained video spatio-temporal adaptive compres-
sion using DNN’s gradients. STAC is tailor-designed for
semantic video segmentation, which encounters challenges
in compression strategy synchronization load, time-varying
video content and bandwidth conditions. To tackle these
challenges, we design a region-based spatial adaptive scheme,
a temporal adaptive scheme, and an NN-based intelligent
configuration adaptive scheme. Experimental results show that
STAC achieves up to 63.7-75.2% reduction in bandwidth
consumption or 3.1-9.5% increase in semantic segmentation
accuracy. Moreover, STAC can adapt to various types of net-
works with differentiated fluctuation characteristics, improving
accuracy while guaranteeing real-time performance.
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