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A novel recognition and classification approach
for motor imagery based on spatio-temporal

features
Renjie Lv, Wenwen Chang, Guanghui Yan,Wenchao Nie, Lei Zheng, Bin Guo, and Muhammad Tariq Sadiq

Abstract— Motor imagery, as a paradigm of brain-
machine interfaces, holds vast potential in the field of med-
ical rehabilitation. Addressing the challenges posed by the
non-stationarity and low signal-to-noise ratio of EEG sig-
nals, the effective extraction of features from motor imagery
signals for accurate recognition stands as a key focus in
motor imagery brain-machine interface technology. This
paper proposes a motor imagery EEG signal classification
model that combines functional brain networks with graph
convolutional networks. First, functional brain networks are
constructed using different brain functional connectivity
metrics, and graph theory features are calculated to deeply
analyze the characteristics of brain networks under differ-
ent motor tasks. Then, the constructed functional brain net-
works are combined with graph convolutional networks for
the classification and recognition of motor imagery tasks.
The analysis based on brain functional connectivity reveals
that the functional connectivity strength during the both
fists task is significantly higher than that of other motor
imagery tasks, and the functional connectivity strength
during actual movement is generally superior to that of
motor imagery tasks. In experiments conducted on the
Physionet public dataset, the proposed model achieved
a classification accuracy of 88.39% under multi-subject
conditions, significantly outperforming traditional meth-
ods. Under single-subject conditions, the model effectively
addressed the issue of individual variability, achieving an
average classification accuracy of 99.31%. These results
indicate that the proposed model not only exhibits excellent
performance in the classification of motor imagery tasks
but also provides new insights into the functional con-
nectivity characteristics of different motor tasks and their
corresponding brain regions.

Index Terms— Brain-computer Interface (BCI), Func-
tional Brain Networks, Graph Theory, graph convolutional
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networks (GCN), Motor Imagery (MI).

I. INTRODUCTION

BRAIN-COMPUTER interface systems, serving as a direct
channel for the interaction between the brain and the ex-

ternal environment, enable communication between the human
brain and external devices [1]. As a novel form of human-
machine interaction, BCI has gained significant attention from
researchers in recent years. Initially applied in the field of
medical rehabilitation, BCI systems assist stroke survivors and
paralyzed patients in communicating with the external world,
facilitating the use of wheelchairs, prosthetics, robotic arms,
and more for individuals with impaired limb functions [2].
Currently, with the continuous development of brain science
and signal processing, BCI is also widely used in robot control,
military, education, entertainment, and other fields [3].

BCI systems can be categorized as invasive, non-invasive,
and semi-invasive depending on the method of acquisition
[4]. Invasive and semi-invasive methods are used for signal
acquisition by surgically implanting electrodes in the cerebral
cortex or between the scalp and the cerebral cortex [5].
Although the signals acquired by invasive and non-invasive
methods are of higher quality, the surgical risks are higher
and portability is poor. The non-invasive type only needs to
acquire and process signals directly on the surface of the
cerebral cortex through relevant equipment, without the need
for surgical intervention, and has become a hot direction
of BCI research [6]. Commonly used non-invasive signals
include scalp electroencephalography (EEG), functional near-
infrared spectroscopy [7] (fNIRS), and functional magnetic
resonance imaging [8] (fMRI), etc., among which EEG is the
most common. EEG is usually used by a head-mounted EEG
cap to acquire signals on the scalp, which is characterized
by high temporal resolution and portability [9], etc. The
EEG brain-computer interface system can be further divided
into P300 brain-computer interface, steady-state visual evoked
potentials, and motor imagery. Motor imagery brain-computer
interfaces usually do not require additional stimuli to induce
EEG potential activity and do not require additional assistive
devices, making them easier to use and more promising for
users and researchers [10]. However, due to the non-stationary
and low signal-to-noise ratio characteristics of EEG signals,
it is a challenging problem to improve the classification
and recognition accuracy of motor imagery brain-computer
interface systems [11].
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In recent years, an increasing number of researchers have
employed graph theory and complex network methods to
decode EEG signals, treating the brain as a complex network.
Drawing inspiration from graph theory, they have proposed
functional brain networks to depict the connectivity between
brain regions during tasks involving motor imagery [12]–[14].
However, functional brain networks, being a form of spatially
discrete data, are often challenging to process using traditional
machine learning algorithms and convolutional neural network
(CNN) approaches. Graph neural network algorithms, on the
other hand, prove effective in extracting spatial features from
functional brain networks [15]. Motivated by the insights
from functional brain networks and graph neural networks,
we leverage various brain functional connectivity metrics to
construct spatial features and employ graph neural networks
for classification and recognition tasks.

In summary, this paper makes the following contributions:
1) : Designing a targeted Functional brain network-GCN

model to effectively extract time and space domain features
while quadruple classifying real movement and motor imagery
tasks.

2) : Utilizing distinct brain functional connectivity metrics
and the methods of complex networks in graph theory, we
examine the connectivity relationships among various brain
regions during both actual movement and motor imagery tasks,
as well as across different motor tasks.

3) : The method in this paper obtains better classification
performance and has good robustness compared with other
classification models.

The remaining parts of this paper are organized as follows:
Section II provides a brief overview of related research in
the field. Section III details the experimental methods and
introduces the concepts of brain functional connectivity mea-
sures and graph neural networks. Section IV introduces the
data used in the study, discusses the data preprocessing steps,
analyzes brain functional connectivity using graph theory and
complex network metrics, and presents the performance of our
proposed model. Section V discusses the experimental results,
further validating the model’s performance and comparing it
with other classification methods. Section VI concludes the
paper.

II. RELATED WORK

The classification of motor imagery tasks based on different
feature extraction algorithms is usually divided into traditional
machine learning methods and deep learning methods. Tra-
ditional machine learning-based motor imagery classification
methods mainly consist of preprocessing, feature extraction,
and classification recognition steps [16]. Firstly, the brainwave
signals are preprocessed, primarily involving filtering and
artifact removal. Secondly, feature extraction is performed on
the preprocessed data, with methods mainly including wavelet
transform based on time-frequency features and common spa-
tial pattern algorithms based on spatial domain features, among
which CSP and its improved algorithms are widely applied.
Finally, traditional machine learning algorithms such as LDA,
KNN, SVM, and RF are used for classification recognition

[17]–[22]. However, traditional machine learning methods
often require preprocessing, which not only consumes time
but also requires personal experience and prior knowledge.
Relying solely on personal experience and prior knowledge is
difficult to apply to various scenarios, and it also results in
poor robustness, ultimately leading to lower accuracy in MI
signal recognition.

With the development of deep learning in fields such as
computer vision and language recognition, many researchers
have turned their attention to utilizing deep learning algorithms
for the processing of electroencephalogram (EEG) signals
[23]–[31]. Deep learning methods can directly handle raw
EEG signals and automatically extract features and classify
them, saving time while also improving model classification
accuracy. The work by Schirrmeister et al. [23]and the EEGNet
team [24] has made significant contributions to the spa-
tiotemporal decoding of EEG signals. By introducing models
with temporal and spatial convolutional substructures such
as Shallow ConvNet, Deep ConvNet, and Hybrid ConvNet,
these studies have demonstrated the potential of deep learning
methods in this field. Although the improvement in accuracy
may not be significant compared to traditional methods like
FBCSP, this demonstrates the effectiveness of deep learning
methods comparable to traditional approaches. Specifically,
EEGNet has proposed a compact convolutional neural network
model that conducts deep convolution along both temporal
and spatial dimensions, suitable for decoding various brain-
computer interface paradigms. These CNN-based models have
brought new ideas and tools to the field of brain-computer
interfaces, inspiring many excellent research endeavors. For
example, Altaheri et al. [25] proposed a Dynamic Attention
Time Convolutional Network (D-ATCNet) for decoding MI
signals based on EEG, employing dynamic convolution (Dy-
conv) to represent temporal correlations and adding multi-level
attention to enhance MI classification performance with rela-
tively fewer parameters. Hwang et al. [26] proposed a multi-
band FBCSP and LSTM classification algorithm using sliding
windows and FBCSP based on overlapping frequency bands to
extract features for each window, overcoming dependency on
frequency bands, and using LSTM for temporal classification,
achieving good classification performance in four-class tasks.
Jia et al. [27] proposed a Multi-Branch Multi-Scale Convo-
lutional Neural Network (MMCNN) that addresses individual
differences by extracting and integrating features at different
scales, improving the accuracy of MI-EEG classification. Hou
et al. [28] proposed a motion imagination classification method
combining ESI technology with CNN, using boundary element
method and weighted minimum norm estimation to solve
forward and backward processes respectively, extracting MI-
EEG features using Morlet wavelet analysis in regions of
interest, achieving an average accuracy of 94.5% on the
Physionet public dataset. The shallow convolutional neural
network model proposed by Dose et al. [29] and the algorithm
combining CNN and discrete wavelet transform proposed by
Yang et al. [30] have made significant progress in decoding
spatiotemporal features. In addition, Li et al. [31] proposed a
neural network feature fusion algorithm that utilizes CNN and
LSTM for spatial and temporal feature extraction, achieving
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satisfactory average accuracy. These research works enrich the
methodology of brain-computer interfaces and provide new
ideas and tools for solving complex EEG signal decoding
problems. Although many studies consider both temporal and
frequency domain features when processing EEG signals,
consideration for spatial domain features is often insufficient.
Spatial domain features include the relative positions and
intrinsic relationships between electrodes, which are crucial
for accurately decoding EEG signals. While some current
methods attempt to consider spatial features, they often still
rely on convolutional operations along both temporal and
spatial dimensions, and CNNs may not fully capture the
complex spatial features of EEG signals. This limitation in
handling EEG data may affect model performance.

To further explore better integration of spatial domain
features, some researchers have adopted graph-theoretical ap-
proaches to decode electroencephalography (EEG) signals,
treating the brain as a complex network. They propose func-
tional brain networks to describe the connectivity between
different brain regions during motor imagery tasks. Early
research primarily focused on constructing functional connec-
tivity maps using simple correlations or mutual information
[32]–[34], and analyzing their basic properties such as node
degree, clustering coefficient, and path length. With advances
in research methods and technology, researchers began to
adopt more sophisticated approaches to construct brain func-
tional connectivity maps, such as using phase synchronization
and Granger causality to more accurately capture the dynamic
connections between brain regions [35], [36]. During this
stage, graph theory features such as modularity and between-
ness centrality were widely applied to identify global and
local characteristics of brain networks, and were used in tasks
such as brain disease diagnosis and cognitive state assessment.
In recent years, the combination of graph theory methods
with advanced techniques such as machine learning, deep
learning, and complex network analysis has further enhanced
the ability to analyze EEG signals [37], [38], [57]. However,
traditional deep learning models such as CNNs and LSTMs
often have limitations when extracting features from brain
networks, which are non-Euclidean spatial data. To address
this issue, some researchers have introduced Graph Convolu-
tional Networks (GCNs) to handle non-Euclidean spatial data,
aiming to deeply explore functional brain network features and
classify them. For example, Song et al. [39] considered the
spatial relationships of EEG and proposed a GCNN model for
emotion recognition tasks, achieving relatively high accuracy
in experiments. Additionally, Zhang et al. [40] proposed
an MGCN-GAN model, using multi-layer GCNs to build
generative adversarial networks, successfully explaining the
complex nonlinear relationship between brain structure and
functional connections, and achieving good classification per-
formance on the Human Connectome Project (HCP) dataset.
Huo et al. [41] considered temporal information and proposed
a motion imagery classification model combining BiLSTM
and GCN. By comprehensively considering both temporal
and spatial information and using GCN for feature extrac-
tion and classification, they achieved an average accuracy
of 94.64% on the PhysioNet dataset. Furthermore, Wang et

al. [42] proposed a PGCNN model, utilizing Phase Locking
Value (PLV) to construct functional connectivity matrices and
employing shallow GCN models for emotion classification.
The above literature demonstrates the feasibility of using brain
functional connectivity combined with GCNs for EEG signal
classification. Although the topological relationships between
electrodes have been considered, the functional connections
between them are often overlooked. Moreover, there is little
research analyzing the differences in functional connectivity
between real motor tasks and motor imagery tasks. Given
that the perception and execution of movements require co-
ordinated cooperation among various brain regions, especially
in the context of motor imagery classification based on deep
learning models, it is essential to fully consider the topological
relationships between electrodes across the entire brain and
their functional connections.

In summary, the integration of brain functional connectivity
analysis with GCN models addresses the issue of overlooking
inherent relationships between different electrodes in convolu-
tional neural networks. As electrode positions and functional
connections do not necessarily correspond, brain network
analysis enables exploration of the working mechanisms and
intrinsic connections between brain regions. Therefore, this
study combines brain network analysis with GCN while fully
considering the topological relationships between electrode
positions to achieve classification recognition of motor im-
agery features and real movement features on the PhysioNet
public dataset. Experimental results demonstrate that the al-
gorithm proposed in this study outperforms other methods for
identifying motor imagery EEG signals.

III. MATERIALS AND METHODS

To achieve the recognition of the EEG signals of real
movement and motor imagery tasks, and to analyze the
difference in brain functional connectivity between the two,
this paper proposes a method of motor behavior recognition
by combining brain functional connectivity and graph neural
network, and its technical route is shown in Fig.1.

A. Brain Functional Connectivity Measurements
Multiple different functional connectivity metrics were em-

ployed to comprehensively understand the connectivity re-
lationship between various brain regions during the process
of perception and motor execution. These include coherence
and phase synchronization-based metrics, among which Phase-
Locking Value [43] (PLV) and Phase Lag Index [44] (PLI)
are utilized as phase synchronization-based metrics. These
metrics assess the phase relationship between two electrodes,
analyzing functional connectivity within the brain using phase
synchronization methods. For coherence-based metrics, Spec-
tral coherence [45] (COH) and Phase Slope Index [46] (PSI)
were employed. Spectral coherence measures the linear rela-
tionship between two signals within a specific frequency band,
while phase slope index quantifies the directional coupling
between two signals. By integrating coherence-based and
phase synchronization-based metrics, this analysis aims to
provide a more comprehensive understanding of the functional
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Fig. 1. Technology Roadmap. (a): Real and motor imagery EEG signals from subjects were acquired using a 64-lead device with a sampling rate of
160 Hz. (b): Preprocessing of EEG signals, including filtering, removal of ocular and other artifacts, etc. (c): Calculation of PLV, PLI, COH, and PSI
brain functional connectivity matrices for EEG signals. (d): Mapping brain networks after thresholding the brain functional connectivity matrix. (e):
Computation of complex network metrics between different motion imagery tasks and between real motion and motion imagery for the same task.
(f): Constructing Graph Structures Using Thresholded Brain Functional Connectivity Matrices. (g): The raw EEG signals and adjacency matrices
were inputted into the designed GCN model containing five-layer graph convolution, five-layer graph pooling, and two-layer graph convolution, and
the spatiotemporal features of the EEG signals were extracted and subjected to four classifications (L, R, B, F)

connectivity patterns between different brain regions during
the perception and execution of movements.

1) Phase Locking Value: The Phase-Locking Value mea-
sures the phase difference between two channel signals. As-
suming the electrodes X and Y their corresponding EEG
signals are represented by X(t) and Y (t) , and the phase
difference between X(t) and Y (t) is denoted as θ(t) , the
definition of PLV is as follows:

PLV =
1

N

∣∣∣∣∣
N∑

n=1

ej(θ(tn))

∣∣∣∣∣ , (1)

Where N is the length of the signal θ(t) , the values of
the PLV matrix range from 0 to 1. Specifically, this range
signifies complete independence (0) to perfect synchronization
(1) between the two signals.

2) Phase Lag Index: Phase Lag Index and PLV are similar
and can be used to measure the synchronization level between
two channel signals. Their definition is as follows:

PLI =

∣∣∣∣∣ 1N
N∑

n=1

sign(θ(tn))

∣∣∣∣∣ , (2)

Where sign is utilized to denote the sign of the phase
difference, indicating whether the phase difference is positive
or negative.

3) Spectral coherence: Spectral coherence quantifies the
correlation between signals X(t) and Y (t) in the frequency
domain. To begin, utilize frequency domain transformation
techniques, including Fourier transform and wavelet transform,
to convert time-frequency signals into the frequency domain.
Subsequently, estimate the power spectral densities Pxx(f)
and Pyy(f) , as well as the cross-power spectral density
Pxy(f) , for each frequency f . With this information, compute
the coherent function Kxy(f) and spectral coherence value
using the following two formulas.

Kxy(f) =
Pxy(f)√

Pxx(f)Pyy(f)
, (3)

COHxy(f) = |Kxy(f)|2, (4)

4) Phase slope index: Phase Slope Index is a metric used
to assess the causal relationship between signals. Its core
concept is that if the propagation speeds of waves at different
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frequencies are similar, the phase difference between the signal
source and the receiver will increase with the frequency.
This increase is manifested as a positive slope in the phase
spectrum. The definition of PSI is as follows:

PSI =
ξ
(∑

f∈F Kxy(f)Kxy(f + ∂F )
)

std
[
ξ
(∑

f∈F Kxy(f)Kxy(f + ∂F )
)] , (5)

B. Brain network analysis

The process of brain network analysis is outlined in detail in
Fig. 2. Initially, for preprocessed EEG signals related to real
motor execution and motor imagery tasks, brain functional
connectivity matrices are computed using various functional
connectivity metrics. Subsequently, these matrices undergo a
thresholding process. Finally, distinct measures of complexity
are computed to analyze the differences in brain networks
between real motor execution and motor imagery tasks.

The complexity metrics used in the experiments include
clustering coefficient, global efficiency, transferability, modu-
larity, median centrality, congruence, and feature path length.
These complexity metrics are defined as follows:

The clustering coefficient is employed to depict the close-
ness of nodes and their neighboring nodes within a network.
The clustering coefficient of a node i (denoted as Ci ) and the
overall clustering coefficient of the entire network (denoted
as CC)—that is, the average clustering coefficient across all
nodes in the network—are defined as follows:

Ci =
2li

ki(ki − 1)
, (6)

CC =
1

N

N∑
i=1

Ci, (7)

Where ki represents the number of neighboring nodes of
node i, li denotes the actual number of edges among the ki
neighboring nodes of node i, and N is the total number of
nodes in the network.

Global efficiency is the average reciprocal of the shortest
path lengths lij between all pairs of nodes, providing a
measure of the network’s capacity for parallel information
processing. It is defined as follows:

Ge =
1

N(N − 1)

∑
i,j∈V,i ̸=j

1

lij
, (8)

Transitivity refers to the property that if there is an edge
between node i and node j, and there is also an edge between
node i and node k, then there must be an edge between node
j and node k. The definition of transitivity is as follows:

TRA =

∑
i∈N 2Ri∑

i∈N Di(Di − 1)
, (9)

Where Ri represents the geometric mean of the number of
triangles around the node i, and Di represents the degree of
node i.

Modularity measures the strength of a network’s divi-
sion into different subnetworks, with higher values indicating

stronger connections among similar nodes and vice versa.
Modularity is defined as:

MOD =
1

2e

∑
ij

[
wij −

DiDj

2e

]
δ(ci, cj), (10)

Where e represents the total number of edges in the network,
wij denotes the connectivity between two nodes, and the
function δ(ci, cj) is defined as 1 when nodes i j belong to
the same community and 0 otherwise.

The betweenness centrality of a node represents the number
of shortest paths in the network that include that node. It is
defined as:

BC =
1

(N − 1)(N − 2)

∑
i,j,k∈N
i ̸=j ̸=k

qkj(i)

qkj
, (11)

Where qkj represents the sum of the shortest path counts
between node k and node j, and qkj represents the shortest
path count between node k and node j that passes through
node i.

If nodes with similar weights are connected in the network,
the network is considered assortative. The assortativity coef-
ficient is used to describe the level of connectivity between
nodes with higher weights. It is defined as:

ASS =
l−1

∑
(i,j)∈Lw

ij
DiDj −

[
l−1

∑
(i,j)∈Lw

ij
(Di +Dj) /2

]2
l−1

∑
(i,j)∈Lw

ij

(
D2

i +D2
j

)
/2−

[
l−1

∑
(i,j)∈Lw

ij
(Di +Dj) /2

]2 ,
(12)

The characteristic path length is the average of the shortest
paths between any two nodes in a complex network. It reflects
the level of connectivity among network nodes and is an im-
portant metric for measuring network information transmission
efficiency. A shorter characteristic path length indicates better
network connectivity. It is defined as:

SPL =
1

N(N − 1)

∑
i,j∈N,i̸=j

lij , (13)

C. GCN model design
We applied Phase Locking Value, Phase Lag Index, Spectral

coherence, and Phase Slope Index to the brain signals in
the alpha and beta frequency bands, considering the spatial
characteristics of the EEG signals. Subsequently, we employed
a Graph Convolutional Network model for decoding, fol-
lowed by classification using a Softmax layer on the features
extracted by GCN. The brain functional connectivity-based
GCN model is illustrated in Fig. 3, and the model details are
presented in Table I.

The designed GCN model for this study comprises five
graph convolutional layers, five graph pooling layers, and two
fully connected layers. To mitigate overfitting, L2 regulariza-
tion, and batch normalization are incorporated. Additionally, a
50% dropout is applied to the graph convolutional layers. The
Rectified Linear Unit (ReLU) function serves as the activation
function to address the vanishing gradient problem. Finally,
the Adam optimizer is employed for training with a learning
rate of 0.001.

In the GCN model, the graph is defined as G = (V,E,A),
where V is the set of vertices (comprising 64 electrode
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Fig. 2. Process of brain network analysis. (a): Preprocessing of EEG signals, including filtering, removal of ocular and other artifacts, etc. (b):
Calculation of PLV, PLI, COH, and PSI brain functional connectivity matrices for EEG signals. (c): The connection weights in the brain functional
connectivity matrix were formed into a vector of weights, using the upper quartile as the final threshold value. (d): Mapping brain networks after
thresholding the brain functional connectivity matrix. (e): Computation of complex network metrics between different motion imagery tasks and
between real motion and motion imagery for the same task.

Fig. 3. GCN model design. (a): Preprocessed EEG signals. (b): Constructing graph structures through brain functional connectivity matrices,
including adjacency, degree, and Laplacian matrixes. (c): The GCN model consists of a five-layer graph convolution layer, a five-layer graph pooling
layer, two fully connected layers, and a softmax output layer.

TABLE I
GCN MODEL DETAILS

Layer Filter K-order Pooling Activation function
Input - - - -

Graphconv1 16 4 - ReLU
Graphpooling1 16 - 2 -

Graphconv2 32 4 - ReLU
Graphpooling2 32 - 2 -

Graphconv3 64 4 - ReLU
Graphpooling3 64 - 2 -

Graphconv4 128 4 - ReLU
Graphpooling4 128 - 2 -

Graphconv5 256 4 - ReLU
Graphpooling5 256 - 2 -

FC1 512 - - ReLU
FC2 256 - - ReLU

Softmx 4 - - softmax

channels), E is the set of edges, and A represents the weighted
adjacency matrix between two nodes as defined by the follow-
ing formula:

A =

{
FC
0

,
λ ≥ θ
λ < θ

, (14)

Where FC represents the brain functional connectivity
matrix, and λ denotes the values within FC. When λ is greater
than the threshold θ, it is considered a strong connection, and
the original value is retained. If λ is less than the threshold θ,
it is considered a weak connection, and the value is set to 0.

In the GCN model, graph convolution is achieved through
graph Fourier transform. The Laplacian matrix of the graph is
denoted as L = D−A, where D represents the degree matrix,
with D(i, i) =

∑n
j=1 A(i, j).

The definition of symmetrically normalized Laplacian ma-
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trix is as follows:

L = I −D− 1
2AD− 1

2 , (15)

where I is the unit matrix.
Assuming the brain’s electrical signal X , its graph fourier

transform can be represented as:

X̂ = UTX, (16)

where U is an orthogonal matrix obtained through the
singular value decomposition of the Laplacian matrix L. The
specific process is as follows:

L = UΛUT , (17)

where U = [u1, u2, u3, · · · , uN ] ∈ RN∗N is the diagonal
matrix containing the eigenvalues, Λ = diag([λ1, λ2, · · ·λN ])
and is a diagonal matrix containing the eigenvalues.

The convolution of the signal X on the graph is defined as:

X ∗G = U((UTG)⊙ (UTX)), (18)

Where ⊙ represents the Hadamard product.
Assuming the filter gθ, the process of filtering signal X with

gθ(L) can be represented as:

Y = gθ(L)X = gθ(UΛUT )X = Ugθ(Λ)U
TX, (19)

However, due to the difficulty in directly computing gθ(Λ),
the calculation is performed using K–order Chebyshev poly-
nomials:

gθ(Λ) =

k−1∑
k

θkTk(Λ̃), (20)

Where θk represents the coefficients of the Chebyshev poly-
nomial, Λ̃ = 2Λ

λmax
− I

Tk

(
Λ̃
)
=


1, k = 0

Λ̃, k = 1

2Λ̃Tk−1(Λ̃)− Tk−2(Λ̃), k ≥ 2

, (21)

Therefore, the graph convolution operation can be reformu-
lated as:

Y = U

k−1∑
k

θkTk(Λ̃)U
TX =

k−1∑
k

θkTk(L̃)X, (22)

IV. ANALYSIS OF EXPERIMENTAL RESULTS

This section begins with an introduction to the dataset and
its preprocessing. Following this, we conduct a statistical and
connectivity analysis of brain networks formed by various
indicators of brain functional connections. The GCN model is
then employed to classify the spatiotemporal features of EEG
signals, followed by a detailed analysis of the experimental
results.

A. Introduction to the data set
This study utilizes the publicly available PhysioNet dataset

[47], the GigaDB publicly available dataset [48], and the
motor imagery dataset of acute stroke patients from Xuanwu
Hospital, Capital Medical University [49], to identify motor
imagery tasks and evaluate the effectiveness and robustness of
the proposed methods.

Fig. 4. Experimental Paradigms. The subject is cued to execute the
real execution or MI task for four seconds while the cue appears, then
rest until the next trial starts.

1) The PhysioNet Dataset: The PhysioNet public dataset
was collected using a 64-channel device and includes EEG
signals of real and imagined movements from 109 subjects
(S1-S109), with a sampling rate of 160 Hz. Throughout the
experimental process, participants engaged in 14 trials, consist-
ing of 2 baseline segments and 3 experimental segments (each
containing 4 tasks). The experimental paradigm, illustrated in
Fig. 4, involved real and imagined movements of the left fist,
right fist, both fists, and both feet. The specific tasks were as
follows:

Task 1: The task objective appeared on the left or right side
of the screen, and participants clenched and unclenched the
corresponding fist until the target disappeared, followed by a
rest period.

Task 2: Similar to Task 1, participants were instructed to
imagine clenching and unclenching the corresponding fist until
the target disappeared, followed by a rest period.

Task 3: The task objective appeared at the top or bottom
of the screen, and participants clenched and unclenched both
fists (top) or both feet (bottom) until the target disappeared,
followed by a rest period.

Task 4: Similar to Task 3, participants were instructed to
imagine clenching and unclenching both fists (top) or both
feet (bottom) until the target disappeared, followed by a rest
period.

In this study, to enhance computational efficiency, only 30
participants (S1-S30) were utilized for experimentation.

2) The GigaDB Dataset: This dataset was collected using
a 64-channel device and includes EEG signals of real and
imagined movements from 52 subjects (S1-S52), with a sam-
pling rate of 512 Hz. The dataset comprises two tasks: actual
movement or motor imagery of the left hand and right hand,
each lasting three seconds. In this study, only 20 subjects (S1-
S20) were used to test the proposed methods. For more details
about this dataset, please refer to reference [48].

3) The Xuanwu Hospital Dataset: This dataset was collected
using the international 10-10 electrode placement system (in-
cluding 29 EEG electrodes and two EOG electrodes) from 50
acute stroke patients, with a sampling rate of 500 Hz. During
the experiments, patients performed 40 trials, each lasting 8
seconds (2 seconds for the instruction phase, 4 seconds for the
motor imagery task, and 2 seconds for the rest phase). Each
trial included two motor imagery tasks. In the experimental
phase, patients were asked to imagine gripping a spherical
object with their left or right hand. In this study, only 5 subjects
(S1-S5) were used to test the proposed methods. For more
details about this dataset, please refer to reference [49].
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B. Data preprocessing and environment configuration

The preprocessing of the aforementioned open datasets
follows a procedure similar to other EEG signal processing
workflows. While aiming to retain the original information
as much as possible, early-stage data processing involved the
removal of ocular artifacts and other artifacts to ensure the
acquisition of high-quality data. Subsequently, a fourth-order
zero-phase Butterworth bandpass filter was applied to capture
EEG frequency bands most relevant to motor rhythms [50],
primarily including alpha waves (8-12Hz) and beta waves (13-
30Hz). This preprocessing was consistently applied to all three
public datasets used in the study. The preprocessing of EEG
data in this study was conducted using EEGLAB and Python
toolkits, while the GCN model was implemented using the
TensorFlow framework. Given the inclusion of 109 subjects
in the PhysioNet open dataset, this study opted to enhance
computational efficiency by selecting the first 30 subjects for
experimentation. The preprocessed data from these 30 subjects
were then split into training and validation sets in a 9:1 ratio.
The same approach for splitting the data into training and
validation sets was applied to the other two datasets as well.
All training and testing of neural network models were carried
out on a server equipped with an Nvidia 4090 GPU.

C. Statistical analysis based on functional brain
connectivity indicators

To validate distinctions between motor imagery and actual
movement, as well as among different motor imagery tasks,
brain functional connectivity metrics based on coherence and
phase synchronization were utilized to compute networks in
the alpha and beta frequency bands. However, due to the faint
amplitude of EEG signals and the prevalence of numerous
weak connections, which may be attributed to noise, these
weak connections cannot accurately represent interregional
connections. Therefore, appropriate thresholds were selected
to construct functional brain networks. For this purpose, con-
nection weight values from the brain functional connectivity
matrices for the two frequency bands were compiled into a
weight vector, with the upper quartile serving as the final
threshold.As shown in Fig. 5, the frequency histogram of the
weight vector of the PLV matrix is displayed.Finally, common
network characteristic parameters in complex networks were
utilized to conduct paired t-tests for significant differences
in the thresholded brain networks across different frequency
bands, as presented in Tables II to IX.

The results of the significant difference analysis in Tables II
to IX indicate that there are significant differences in the alpha
and beta bands among LF, RF, and BF during different motor
imagery tasks. When comparing actual movement with motor
imagery during the same task, brain functional networks based
on phase synchronization (PLV and PLI) exhibit significantly
stronger differences than those based on coherence indices
(PSI and COH), and the significant differences are primarily
concentrated in the R′ region. Given that the alpha and beta
bands are the two most relevant bands to motor imagery, the
results of the significance analysis for the alpha and beta bands
are essentially similar.

TABLE II
SIGNIFICANT DIFFERENCES IN TWO-BAND PLV NETWORKS BETWEEN

DIFFERENT MOTOR IMAGERY TASKS

Frequency α β
Groups LR LB LF RB RF BF LR LB LF RB RF BF

CC - - ** - ** ** - - ** - ** **
Ge - - ** - ** ** - - ** - ** **

TRA - - ** - ** ** - - ** - ** **
MOD - - ** - ** ** - - ** - ** **
BC - - ** - ** ** - - - - - -
ASS - - - - - - - - - - * *
SPL - - ** - ** ** - - ** - ** **

LR: left fist vs. right fist. LB: left fist vs. both fists. LF: left fist vs. both
feet. RB: right fist vs. both fists. RF: right fist vs. both feet. BF: both fists
vs. both feet.
-: indicates no significant difference.
*: Means p < 0.05. **: Means p < 0.001.

TABLE III
SIGNIFICANT DIFFERENCES IN TWO-BAND PLI NETWORKS BETWEEN

DIFFERENT MOTOR IMAGERY TASKS

Frequency α β
Groups LR LB LF RB RF BF LR LB LF RB RF BF

CC - - ** - ** ** - - ** - ** **
Ge - - ** - ** ** - - ** - ** **

TRA - - ** - ** ** - - ** - ** **
MOD - - ** - ** ** - - ** - ** **
BC - - ** - ** ** - - ** - ** **
ASS - - - - - - - - ** - * *
SPL - - ** - ** ** - - ** - ** **

LR: left fist vs. right fist. LB: left fist vs. both fists. LF: left fist vs. both
feet. RB: right fist vs. both fists. RF: right fist vs. both feet. BF: both fists
vs. both feet.
-: indicates no significant difference.
*: Means p < 0.05. **: Means p < 0.001.

TABLE IV
SIGNIFICANT DIFFERENCES IN TWO-BAND COH NETWORKS BETWEEN

DIFFERENT MOTOR IMAGERY TASKS

Frequency α β
Groups LR LB LF RB RF BF LR LB LF RB RF BF

CC - - ** - ** ** - - ** - ** **
Ge - - ** - ** ** - - ** - ** **

TRA - - ** - ** ** - - ** - ** **
MOD - - - - - - - - ** - ** **
BC - - ** - ** ** - - ** - ** **
ASS - - - - - - * - - - - -
SPL - - ** - ** ** - - ** - ** **

LR: left fist vs. right fist. LB: left fist vs. both fists. LF: left fist vs. both
feet. RB: right fist vs. both fists. RF: right fist vs. both feet. BF: both fists
vs. both feet.
-: indicates no significant difference.
*: Means p < 0.05. **: Means p < 0.001.

TABLE V
SIGNIFICANT DIFFERENCES IN TWO-BAND PSI NETWORKS BETWEEN

DIFFERENT MOTOR IMAGERY TASKS

Frequency α β
Groups LR LB LF RB RF BF LR LB LF RB RF BF

CC - - ** - ** ** - - - - * *
Ge - - ** - ** ** - - ** - ** **

TRA - - ** - ** ** - - - - * *
MOD - - - - - - - - ** - ** **
BC - - ** - ** ** - - ** - ** **
ASS - - - - - - - - - - - -
SPL - - ** - ** ** - - ** - ** **

LR: left fist vs. right fist. LB: left fist vs. both fists. LF: left fist vs. both
feet. RB: right fist vs. both fists. RF: right fist vs. both feet. BF: both fists
vs. both feet.
-: indicates no significant difference.
*: Means p < 0.05. **: Means p < 0.001.



LV et al.: A NOVEL RECOGNITION AND CLASSIFICATION APPROACH FOR MOTOR IMAGERY BASED ON SPATIO-TEMPORAL FEATURES 9

Fig. 5. Frequency histograms of the PLV brain networks corresponding
to alpha and beta bands.

TABLE VI
SIGNIFICANT DIFFERENCES IN TWO-BAND PLV NETWORKS BETWEEN

MOTION IMAGERY AND REAL MOTION

Frequency α β
Groups L′ R′ B′ F′ L′ R′ B′ F′

CC - - ** - - * ** -
Ge - - ** - - * ** -

TRA - - ** - - * ** -
MOD - - - - - - - -
BC - * - - - - - -

ASS - - - - - - - -
SPL * - ** - - - ** -

L′: Motor Imagery of the left fist vs. Real Movement of the left fist.
R′: Motor Imagery of the right fist vs. Real Movement of the right fist.
B′: Motor Imagery of the both fists vs. Real Movement of the both fists.
F′: Motor Imagery of the both feet vs. Real Movement of the both feet.
-: indicates no significant difference.
*: Means p < 0.05. **: Means p < 0.001.

D. Brain network analysis based on functional brain
connectivity metrics

Following a significant analysis of four brain networks in
the alpha and beta frequency bands, notable differences were
observed among different motor imagery tasks, particularly
between upper and lower limb tasks. The significance dispar-
ity between motor imagery and actual motor execution was
most pronounced during bimanual fist tasks, with the greatest
distinctions apparent in brain functional connectivity indices
based on phase synchronization metrics. Consequently, the
BrainNet Viewer toolbox [51] was utilized to illustrate the
PLV, PLI, COH, and PSI network topologies for the four
motor imagery tasks. Additionally, the PLV and PLI network

TABLE VII
SIGNIFICANT DIFFERENCES IN TWO-BAND PLI NETWORKS BETWEEN

MOTION IMAGERY AND REAL MOTION

Frequency α β
Groups L′ R′ B′ F′ L′ R′ B′ F′

CC - - ** - - - * -
Ge * - ** - - - * -

TRA - - ** - - - * -
MOD - - - - - - - -
BC - - - - - - - -

ASS - - - - - - - -
SPL - * ** - - - ** -

L′: Motor Imagery of the left fist vs. Real Movement of the left fist.
R′: Motor Imagery of the right fist vs. Real Movement of the right fist.
B′: Motor Imagery of the both fists vs. Real Movement of the both fists.
F′: Motor Imagery of the both feet vs. Real Movement of the both feet.
-: indicates no significant difference.
*: Means p < 0.05. **: Means p < 0.001.

TABLE VIII
SIGNIFICANT DIFFERENCE IN THE TWO-BAND COH NETWORK

BETWEEN MOTOR IMAGERY AND REAL MOVEMENT

Frequency α β
Groups L′ R′ B′ F′ L′ R′ B′ F′

CC - - - - - - - -
Ge - - - - - - - -

TRA - - - - - - - -
MOD - - - - - ** * *
BC - - - - - - - -
ASS - - - - - ** * -
SPL - - - - - - - *

L′: Motor Imagery of the left fist vs. Real Movement of the left fist.
R′: Motor Imagery of the right fist vs. Real Movement of the right fist.
B′: Motor Imagery of the both fists vs. Real Movement of the both fists.
F′: Motor Imagery of the both feet vs. Real Movement of the both feet.
-: indicates no significant difference.
*: Means p < 0.05. **: Means p < 0.001.

TABLE IX
SIGNIFICANT DIFFERENCES IN TWO-BAND PSI NETWORKS BETWEEN

MOTION IMAGERY AND REAL MOTION

Frequency α β
Groups L′ R′ B′ F′ L′ R′ B′ F′

CC - - - - - - - -
Ge - - - - - - * -

TRA - - - - - - - -
MOD - - - - - - - -
BC - - * - - - - -
ASS - - - - - * * -
SPL - - - - - - - *

L′: Motor Imagery of the left fist vs. Real Movement of the left fist.
R′: Motor Imagery of the right fist vs. Real Movement of the right fist.
B′: Motor Imagery of the both fists vs. Real Movement of the both fists.
F′: Motor Imagery of the both feet vs. Real Movement of the both feet.
-: indicates no significant difference.
*: Means p < 0.05. **: Means p < 0.001.

topologies during bimanual fist motor imagery and actual
motor execution were depicted.

Fig. 6 to 9 presents the four brain networks and their cor-
responding topologies in the alpha and beta frequency bands
during the execution of four motor imagery tasks. Different
colors of nodes in the network topology represent different
brain regions (specifically: blue - frontal lobe, light blue -
central region, green - parietal lobe, orange - occipital lobe,
and red - temporal lobe). The varying intensity and thickness
of lines indicate the strength of connections in the brain
network. Connectivity between brain regions increased during
the four motor imagery tasks, particularly among the frontal
lobe, parietal lobe, occipital lobe, and temporal lobe, as well
as the primary motor cortex, premotor area, supplementary
motor area, somatosensory cortex, and visual cortex. Notably,
connectivity was stronger for hand-related tasks (left fist,
right fist, and bimanual fists) compared to foot-related tasks,
with bimanual fist connectivity being the most significant,
especially in the PLV brain network. Fig. 10 reveals enhanced
connectivity between frontal, parietal, occipital, and temporal
lobes, as well as the primary motor cortex, premotor area,
supplementary motor area, somatosensory cortex, and visual
cortex during both bimanual fist motor imagery and actual
tasks. Importantly, the connectivity during actual motor exe-
cution was found to be stronger than during motor imagery
tasks.
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Fig. 6. Topology of the PLV brain network for motor imagery alpha and
beta bands. Each row in the figure represents a different motor imagery
task. The left half depicts the connectivity matrix of brain functions in
the alpha band and the corresponding brain network structure after
thresholding. The right half shows the connectivity matrix of brain
functions in the beta band and the corresponding brain network structure
after thresholding.

Fig. 7. Topology of the PLI brain network for motor imagery alpha and
beta bands. Each row in the figure represents a different motor imagery
task. The left half depicts the connectivity matrix of brain functions in
the alpha band and the corresponding brain network structure after
thresholding. The right half shows the connectivity matrix of brain
functions in the beta band and the corresponding brain network structure
after thresholding.

E. Classification of Spatio-temporal features

As indicated in Section IV-D, it is evident that the phase-
locking value brain network exhibits more pronounced con-
nectivity among the frontal, parietal, occipital, and temporal
lobes, as well as the primary motor cortex, premotor area,
supplementary motor area, somatosensory cortex, and visual
cortex, compared to the other three brain networks. To further
validate the impact of different functional brain networks on

Fig. 8. Topology of the COH brain network for motor imagery alpha and
beta bands. Each row in the figure represents a different motor imagery
task. The left half depicts the connectivity matrix of brain functions in
the alpha band and the corresponding brain network structure after
thresholding. The right half shows the connectivity matrix of brain
functions in the beta band and the corresponding brain network structure
after thresholding.

Fig. 9. Topology of the PSI brain network for motor imagery alpha and
beta bands. Each row in the figure represents a different motor imagery
task. The left half depicts the connectivity matrix of brain functions in
the alpha band and the corresponding brain network structure after
thresholding. The right half shows the connectivity matrix of brain
functions in the beta band and the corresponding brain network structure
after thresholding.

experimental results, different brain networks were computed
using PLV, PLI, COH, and PSI, and corresponding graph
structures were experimentally evaluated. As shown in Fig. 11,
the brain network and graph structure constructed using PLV
demonstrated significantly superior accuracy and lower loss on
the training set compared to the other three functional connec-
tivity indices. In the case of the L, B, R, and F motor imagery
four-classification scenarios, the accuracy on the validation set
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Fig. 10. PLV and PLI network topologies for two-fisted real motion
and motion-imagined alpha and beta bands. Each row in the figure
represents different frequency bands, including alpha and beta bands.
The left half illustrates the PLV and PLI brain functional connectivity
matrices, along with their corresponding brain network topology, during
the real bimanual movement task. The right half shows the PLV and
PLI brain functional connectivity matrices, and the corresponding brain
network topology during the imagined bimanual movement task.

Fig. 11. Thirty participants were employed to assess accuracy and loss
on four different brain network validation sets in a four-classification task.

reached 88.39%. Consequently, all subsequent experimental
analyses employed the PLV functional connectivity index to
construct the graph structure.

Due to the nonlinear nature and weak amplitude of EEG
signals, we conducted experiments to validate whether our
designed model could extract deep-level features from EEG
signals. We designed GCN models with varying numbers of
layers for experimental verification, and the implementation
details of different frameworks are outlined in Table XI.
As illustrated in Fig. 12 for different-layer GCN models,
the classification accuracy improved with an increase in the
number of graph convolution layers and graph pooling layers.
However, after reaching five graph convolution layers and five
graph pooling layers, the classification accuracy reached its
peak and did not show further improvement. Moreover, the
loss value was optimal compared to other layer configurations.
Considering both the classification accuracy and loss on the
validation set, the experimentally chosen structure of five
graph convolution layers and five graph pooling layers was
found to be capable of effectively extracting spatiotemporal

TABLE X
DETAILS OF THE IMPLEMENTATION OF THE DIFFERENT LAYERS OF THE

FRAMEWORK

Framework Number of Number of Number of
conv Layers pooling layers filters

C-P-Fc1-Fc2 1 1 32
(C-P)*2-Fc1-Fc2 2 2 32/64
(C-P)*3-Fc1-Fc2 3 3 32/64/128
(C-P)*4-Fc1-Fc2 4 4 32/64/128/256
(C-P)*5-Fc1-Fc2 5 5 32/64/128/256/512
(C-P)*6-Fc1-Fc2 6 6 16/32/64/128/256/512

Fig. 12. In a four-classification task, a comparative experiment was
conducted with 30 participants using GCN models with varying numbers
of layers.

features from EEG signals.

V. DISCUSSION

Through the experimental results in section IV, we have
discovered that brain networks constructed using Phase Lock-
ing Value are more suitable for research in the classification
of motor imagery. Additionally, the functional connectivity of
the brain during actual movements is found to be stronger
than that during imagined movements. Constructing PLV
brain functional connectivity metrics for the alpha and beta
frequency bands allows for a comprehensive consideration
of the topological relationships between electrodes. The PLV
metrics effectively capture the spatiotemporal characteristics
of the EEG signals, facilitating the efficient decoding of EEG
signals. The application of GCN models enables the extraction
of spatiotemporal features from both the EEG signals and the
brain functional connectivity matrix, thereby improving the
classification performance of motor imagery brain-machine
interfaces.

In Section IV-C, during the brain network analysis, we
adopted the upper quartile as the final threshold. Here, we
explain the rationale behind this choice through experimental
analysis and discuss the potential impact of different threshold-
ing strategies on the results. Specifically, we extracted the con-
nection weights from the brain functional connectivity matrix
into a weight vector and conducted comparative experiments
using the upper quartile (Q3), median (Q2), lower quartile
(Q1), and the original matrix without thresholding (Original).
The experiments covered both multi-subject and single-subject
results, with relevant data shown in the Table XI. The results
indicate that choosing the upper quartile (Q3) as the threshold
does not significantly differ in accuracy compared to other
thresholding methods. In terms of time complexity, Q3 is
slightly superior to the other three thresholding options. This
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TABLE XI
POTENTIAL IMPACT OF DIFFERENT THRESHOLDING STRATEGIES ON

THE RESULTS

Threshold
Subject Metrics Q1 Q2 Q3 Original

S11 Acc 99.03% 99.10% 99.17% 99.02%
F1 99.03% 99.09% 99.16% 99.02%

Time(s) 140 142 140 141
S29 Acc 97.98% 98.31% 98.52% 97.90%

F1 97.97% 98.29% 98.51% 97.89%
Time(s) 192 193 190 192

S1-S30 Acc 88.55% 88.47% 88.93% 88.50%
F1 88.54% 88.46% 88.93% 88.49%

Time(s) 143932 143136 137159 143600

advantage is particularly noticeable in multi-subject experi-
ments, where using the upper quartile significantly reduces
time complexity. Even in single-subject scenarios, Q3 still
demonstrates some superiority. Therefore, selecting the upper
quartile as the threshold not only ensures accuracy but also
provides a clear advantage in terms of computational resource
utilization. Additionally, this choice is also beneficial for
visualizing brain networks. The upper quartile effectively re-
moves weak connections with low weights, making the nodes
and edges in the network graph clearer and more concise,
highlighting key functional connections. This not only helps to
present the core structure of the brain network more intuitively
but also enhances the ability to identify important brain regions
and functional modules, thus providing more valuable insights
for further brain science research.

As shown in Tables II to V, significant differences among
different motor imagery tasks are evident, primarily between
upper and lower limbs (LF, RF, and BF). The analysis at-
tributes this distinction to the fact that during upper limb
motor imagery, neural regulation is mainly governed by the
motor cortex in the brain. Signals are transmitted through the
nerves to the spinal cord, eventually controlling the muscles
responsible for upper limb movements. While a similar process
occurs during lower limb motor imagery, neural signals need
to traverse the spinal cord to control muscles below the waist.
The motor cortex in the brain must control a greater number of
neurons for lower limb movements, involving a more exten-
sive network of neurons and a more complex neural circuit
compared to upper limb movements [52]. Furthermore, no
significant differences were observed in several brain network
characteristic parameters between other task combinations
(such as LR with LB and RB), indicating a similarity in the
brain’s functional connectivity structure between the left fist
and right fist, left fist and both fists, as well as right fist
and both fists. As indicated in Tables VI to IX, significant
differences between actual movements and motor imagery
for the same task suggest that these differences are mainly
pronounced during tasks involving the right fist and both fists
(R′ and B′). Moreover, the significance of differences based
on phase synchronization-based brain functional connectivity
metrics (PLV and PLI) tends to be slightly stronger than
those based on coherence-based metrics (COH and PSI). The
reason for this lies in the fact that coherence-based metrics
are influenced by both the amplitude and phase of EEG

signals when analyzing connectivity relationships. In contrast,
phase synchronization-based metrics can effectively mitigate
the impacts of EEG signal amplitude and phase, resulting in
a more robust detection of significant differences.

As illustrated in Fig. 6 to 10, the four brain network
topologies during motor imagery tasks reveal enhanced con-
nectivity between different brain regions, particularly in the
frontal, parietal, occipital, and temporal lobes, when perform-
ing upper limb motor imagery tasks (L, R, and B). These
regions correspond to the primary motor cortex, pre-motor
area, supplementary motor area, somatosensory cortex, and
visual cortex in the cerebral cortex. In contrast, during lower
limb motor imagery tasks (F), connectivity relationships are
observed across the entire brain, validating the significant
differences identified in our significance analysis between
upper and lower limbs. The brain network during lower limb
motor imagery suggests that, compared to upper limb motor
imagery, a more widespread coordination of neural elements
across the entire brain is required to control the execution
of lower limb motor tasks. This outcome underscores the
idea that the perception and execution of movement involve
coordinated efforts from various brain regions throughout
the entire brain, extending beyond regions solely dedicated
to motor perception. Particularly in the context of motion
imagery classification using deep learning models, it becomes
crucial to consider the features of signals from all brain regions
comprehensively.

For a deeper validation of the performance of our proposed
model, we divided the data into 10 folds. One fold served
as the validation set, while the remaining nine folds consti-
tuted the training set, employing ten-fold cross-validation. The
results, depicted in Fig. 13, show that the highest accuracy
reached 90.01%, the lowest accuracy was 87.03%, and the av-
erage accuracy was 88.35%. This provides further evidence of
the stability and reliability of our proposed model. For further
validation of the model’s generalization performance, exper-
imental verification was conducted on the GigaDB dataset,
yielding a result of 84.61%. This also indicates that our pro-
posed model performs well on different datasets and possesses
strong generalization capabilities. Given that both datasets
were collected using 64-channel devices, we considered the
majority of motor imagery-based brain-computer interface
research, which focuses primarily on healthy subjects, with
relatively fewer studies involving patients with motor disor-
ders. However, motor imagery technology is mainly applied in
the treatment of patients with motor dysfunction. Therefore,
to further validate the model’s generalization capability and
evaluate the applicability and effectiveness of motor imagery
technology across different populations, we conducted valida-
tion on a motor imagery dataset collected from acute stroke
patients using a 32-channel device. The experimental results,
as shown in the Fig. 14, demonstrate that the highest accuracy
for a single subject reached 93.55%, and in the multi-subject
scenario, the accuracy reached 95.77%. These results indicate
that our model performs excellently in different application
scenarios and exhibits strong generalization capability.

To validate the performance and robustness of the proposed
algorithm, we randomly selected ten subjects (S4, S9, S11,
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Fig. 13. After dividing the data into 10 parts, with one part used as the
validation set and the remaining nine parts used as the training set, the
results of ten-fold cross-validation are obtained.

Fig. 14. Results of the model in single-subject and multi-subject ex-
periments on a motor imagery dataset of acute stroke patients collected
using a 32-channel device.

S17, S20, S22, S25, S29, S30, and S32) from the PhysioNet
public dataset for individual subject analysis. The experimental
results are depicted in Fig. 15. The results demonstrate that
under single-subject analysis, the highest accuracy reached
99.83%, the lowest accuracy was 98.80%, and the average
accuracy was 99.33%. The highest F1 score reached 99.80%,
the lowest F1 score was 98.79%, and the average F1 score
reached 99.31%. As the designed model in this study extracts
spatiotemporal features from EEG signals, taking into account
the topological relationships between electrodes, it reduces the
complexity of EEG signals. Consequently, the model achieves
commendable results across different subjects. This outcome
also indicates that the model is capable of addressing inter-
individual differences, making it more suitable for individual-
ized applications.

As shown in Table XII, to further verify the performance
of the proposed model, we compared it with several advanced
motor imagery classification algorithms, including HR-SNN
[53], MAML-CNN [54], RACNN [55], Mi-BMInet [56], and
3DCNN-LSTM [57]. These studies all used the publicly
available PhysioNet dataset. The results demonstrate that our
method exhibits superior classification performance compared
to other methods, achieving an accuracy of 88.39%. This
affirms that the integration of brain functional connectivity

Fig. 15. Individual analyses were performed, presenting the accuracy
and F1 scores of ten participants (S4, S9, S11, S17, S20, S22, S25,
S29, S30, and S32), along with their respective average values.

TABLE XII
COMPARISON RESULTS OF DIFFERENT METHODS

Methods Number of Number of Maximum
channels subjects accuracy

HR-SNN 64 105 74.95%
MAML-CNN 17 104 80.6%

RACNN 14 104 76.9%
Mi-BMInet 64 105 82.99%

3DCNN-LSTM 64 20 86.13%
This work 64 30 88.39%

metrics with Graph Convolutional Networks is advantageous
for extracting spatiotemporal features from EEG signals and
decoding brain electrical activity. There are three main reasons
for the success of our approach: (1) Building a brain functional
connectivity network for the complex/dynamic system of the
brain helps preserve crucial information about time and space
scales. (2) Leveraging the success of deep learning in fields
such as computer vision, constructing a graph structure using
brain functional connectivity metrics, and employing GCN for
classification allows for the consideration of both local and
global information between each electrode. This approach cap-
tures complex relationships among electrodes and contextual
information in EEG signals, contributing to improved classi-
fication performance. (3) The integration of brain functional
connectivity with GCN enables the extraction of deep-level
features from EEG signals, enhancing the model’s ability to
discern patterns and nuances in brain activity.

VI. CONCLUSION

Through the analysis of brain EEG signals during both
imagined and actual movements, a 4-classification model for
motor imagery tasks is proposed, incorporating brain networks
and Graph Convolutional Networks based on various brain
functional connectivity indices. Four types of brain functional
connections, namely Phase Locking Value, Phase Lag Index,
Spectral coherence, and Phase Slope Index are employed to
construct brain networks for different motor imagery tasks
as well as real movement tasks. Significance analysis is
conducted using T-tests. Graph structures are built using brain
functional connections, and the GCN model is utilized to ex-
tract spatiotemporal features and deeper abstract features from
EEG signals for the classification of motor imagery tasks. The
model achieves an accuracy of 88.39% in the multi-subject
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group, with individual subject groups achieving classifica-
tion accuracies above 98.62%. The highest accuracy reaches
99.83%, demonstrating significant advantages compared to
other traditional and deep learning algorithms. The research
results not only confirm the effectiveness of combining brain
functional connections and GCN models for recognizing motor
imagery features but also expand the methods for analyz-
ing motor imagery features. This provides new perspectives
for representing and recognizing EEG signal features, with
implications for research in EEG-based classification tasks.
The combination of brain functional connections and GCN
models not only has practical value for motor imagery feature
recognition but also contributes to the exploration of EEG
signal features, offering valuable insights for classification
tasks based on EEG signals.

However, this study has certain limitations. Although sig-
nificant progress has been made in MI-BCI classification
algorithms, a substantial gap remains compared to the bio-
logical mechanisms of the brain. While this study focused
on the alpha and beta bands, which are most relevant to
motor imagery, it did not fully consider the characteristics
of other frequency bands that are also crucial for EEG sig-
nal processing and could provide more detailed information
about brain activity. Neglecting these features may limit a
comprehensive understanding of EEG signals. Furthermore,
most existing literature and open datasets focus on studies
involving healthy individuals, with relatively few focusing on
MI in patients. While this paper attempted an analysis of MI
based on data from acute stroke patients, space limitations
prevented us from delving deeply into brain network analysis.
Future research could proceed in the following directions.
First, expanding the frequency domain analysis to include
more frequency bands could enable the construction of multi-
frequency brain networks, thereby improving classification
performance. Furthermore, future MI-BCI systems could in-
corporate the hierarchical structure of the brain, sparse connec-
tions between neurons, and parallel processing to build neural
networks that better resemble human brain functions. For
example, spiking neural networks (SNNs) could be developed
to simulate information transmission between neurons [58]. By
mimicking the structure and information processing methods
of the brain, MI-BCI systems could achieve higher accuracy
and efficiency, expanding their potential applications in fields
such as medical rehabilitation. Additionally, it is necessary
to collect more patient data, particularly EEG data from
individuals with motor function disorders, to evaluate the
applicability of the method across various conditions. Finally,
conducting an in-depth analysis of brain networks in these
patients is essential for investigating the interactions between
different brain regions, allowing for a more comprehensive
understanding of brain activity patterns during motor imagery.
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