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Abstract:
Introduction:
Deep neural networks (DNNs) have made significant contributions to diagnosing pneumonia from chest X-ray imaging. However, certain aspects
of  diagnosis  and  planning  can  be  further  enhanced  through  the  implementation  of  a  quantum deep  neural  network  (QDNN).  Therefore,  we
introduced  a  technique  that  integrates  neural  networks  with  quantum  algorithms  named  the  ZFNet-quantum  neural  network  for  detecting
pneumonia using 5863 X-ray scans with binary cases.

Methods:
The hybrid model efficiently pre-processes complex and high-dimensional data by extracting significant features from the ZFNet model. These
significant features are given to the quantum circuit algorithm and further embedded into a quantum device. The parameterized quantum circuit
algorithm using qubits, superposition theorem, and entanglement phenomena generates 4 features from 4098 features extracted from images via a
deep transfer learning model. Moreover, to validate the outcome measures of the proposed technique, we used various PennyLane quantum devices
to detect pneumonia and normal control images. By using the Adam optimizer, which exploits an adaptive learning rate that is fixed to 10−6 and six
layers of a quantum circuit composed of quantum gates, the proposed model achieves an accuracy of 96.5%, corresponding to 25 epochs.

Results:
The integrated ZFNet-quantum learning network outperforms the deep transfer learning network in terms of testing accuracy, as the accuracy
gained by the convolutional neural network (CNN) is 94%. Therefore, we use a hybrid classical-quantum model to detect pneumonia in which a
variational quantum algorithm enhances the outcomes of a ZFNet transfer learning method.

Conclusion:
This approach is an efficient and automated method for detecting pneumonia and could significantly enhance outcome measures related to the
speed and accuracy of the network in the clinical and healthcare sectors.
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1. INTRODUCTION
Pneumonia is a rapidly developing lung infection. It can be

caused by bacteria or viruses. This condition leads to air sac
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inflammation  and  accumulation  of  fluid  in  the  lining  of  the
lungs, known as pleural effusion. It is a leading cause of death
in children under the age of five and is responsible for more
than 15% of deaths [1]. The disease is particularly widespread
in  underdeveloped  and  developing  nations.  Overcrowding,
pollution,  poor  hygiene  standards,  and  limited  medical
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resources contribute to its prevalence. Hence, prompt diagnosis
and treatment play a critical role in preventing the disease from
becoming fatal. Diagnostic tools such as computed tomography
(CT), magnetic resonance imaging (MRI), or radiography (X-
rays) are usually employed for radiological examinations of the
lungs. Among these techniques, X-ray is a cost-effective and
noninvasive diagnostic technique for assessing lung conditions.

Although chest X-ray examinations are a common tool for
detecting  pneumonia,  they  are  prone  to  interpretability  and
unpredictability  [2  -  4].  Hence,  a  computerized  system  is
needed to improve the accuracy of these methods. This study
addresses this need by developing a computer-aided diagnosis
(CAD)  system.  It  employs  a  hybrid  combination  of  CNN
models  and  quantum  circuits  for  precise  binary  detection  of
imaging modalities.

Deep  neural  networks  (DNNs)  are  essential  tools  in
artificial intelligence (AI). Neural networks are used to solve
intricate problems related to computer vision tasks [5, 6]. CNN
models  are  algorithms  for  deep  neural  network  techniques.
They  are  extensively  used  for  detection,  classification,  and
segmentation tasks. However, the optimal performance of these
models  requires  a  substantially  large  dataset.  Unfortunately,
obtaining a vast dataset for image detection and classification
tasks  is  challenging  and  time-consuming.  Specialists  are
required to classify every input sample. In this paper, we used
the transfer learning technique. This approach provides a useful
solution  to  minimize  this  challenge.  This  technique  involves
utilizing  a  trained  model  on  a  large  imaging  dataset.
Furthermore,  this  model  can  be  further  fine-tuned  to  solve  a
specific  task  involving  a  smaller  dataset.  CNN  models  have
been  trained  on  datasets  such  as  ImageNet  [7].  It  occupies
approximately  12  million  images.  It  is  frequently  used  in
computer  vision  applications  such  as  detection  and
classification  tasks.

By  leveraging  quantum  mechanical  phenomena,  we
explore  the  potential  of  quantum circuits  in  various  machine
learning applications. In this study, we incorporate the use of
quantum  circuits  in  our  deep  learning  model  to  improve  its
interpretability. Of particular interest is the variational circuit
algorithm.  It  utilizes  quantum  bits  to  execute  operations  on
various quantum gates or circuits.

Recent  studies  have  highlighted  the  potential  of  hybrid
classical-quantum  models  for  diagnosing  diseases  through
medical  imaging  [8].  Such  models  offer  advantages  in
processing  complex  and  high-dimensional  data  efficiently.
Moreover,  the  successful  application  of  deep  learning  in
detecting diseases such as COVID-19 showcases the ability of
these models to analyze chest X-ray images accurately [9].

In our study, we devised a novel algorithm. It integrates the
ZFNet  architecture  with  the  variational  circuit  algorithm  for
pneumonia detection. The ZFNet model is used to extract 4098
significant features. These meaningful features are applied to
the  quantum  algorithm.  This  quantum  variational  algorithm
employs  quantum  mechanical  phenomena.  For  instance,
superposition, entanglement, and interference can enhance the
accuracy while utilizing quantum circuit depths. Quantum bits
are  manipulated  using  various  quantum gates.  We  tested  the

efficacy  of  this  hybrid  algorithm  using  X-ray  imaging.  The
quantum-based hybrid neural network model provides a precise
pneumonia diagnosis.

The key contributions of our article are as follows:

• To detect pneumonia, we implemented a hybrid ZFNet-
quantum  neural  network  model  against  an  X-ray  imaging
dataset. The network is built using a pre-trained ZFNet neural
network  amalgamated  with  a  quantum  circuit  algorithm  to
achieve  an  accurate  diagnosis.

• To validate the model's effectiveness, we utilized various
quantum  devices,  namely,  the  PennyLane  default  simulator,
pennyLane qiskit.aer simulator, and pennyLane qiskit.basicaer
simulator.

• To compare the performance of the proposed network, we
also trained the imaging data on classical neural networks such
as ZFNet, AlexNet, ResNet18, and ResNet34.

The article is organized as follows: Section 2 presents the
literature  review.  We  introduce  the  hybrid  ZFNet-quantum
neural network algorithm for detecting pneumonia in section 3.
The results  and analysis using a chest  X-ray imaging dataset
are analyzed in section 4 and we also compare the performance
of pre-trained neural networks with that of the hybrid ZFNet-
quantum neural network method. Furthermore, the conclusions
of the paper are presented in section 5.

2. LITERATURE REVIEW

2.1. Current Research

Detecting  pneumonia  from chest  X-rays  has  long been a
challenge  [10,  11].  The  limited  availability  of  public  data
complicates  this  issue.  Extensive  machine  learning  (ML)
techniques have been explored to address this challenge. For
instance,  the  authors  [12]  used  an  X-ray  dataset  to  extract
features for classification. They extracted 8 significant feature
vectors by segmenting regions to classify them. They exploited
a multilayer perceptron (MLP) classifier and achieved 95.39%
accuracy. Moreover, the authors [13] employed 11 insightful
features for pneumonia detection using a schizophrenia patient
dataset. They tested several machine learning algorithms, such
as  regression  models  based  on  logistic  regression  and
classification  models  based  on  support  vector  machines  and
decision trees. However, these methods lack generalizability.
They were trained on trivial datasets.

Compared to ML modeling, which requires the extraction
and  selection  of  handcrafted  features  for  solving  particular
tasks  such  as  classification,  detection,  recognition,  and
segmentation  [14,  15],  DNN  models  enable  end-to-end
classification and detection tasks without manually extracting
handcrafted  features  [16,  17].  Various  fields  utilize  deep
learning-based models [18 - 22], and multiple researchers have
proposed  biomedical  image  detection  techniques.  The
limitations  and  future  directions  of  image  processing
techniques utilized in the medical  sector were explored [23].
CNN architectures are mostly compatible with solving image-
related  detection  and  classification  problems,  as  they  extract
significant  features  by  convolving  input  images  with  filters.
Because  of  their  translation  invariance  and  superior
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performance in image classification tasks, CNNs are preferred
over  traditional  image  processing  methods  and  machine
learning  algorithms,  making  them  a  popular  choice  among
researchers.

In  their  studies  [24,  25],  the  authors  developed  a  simple
CNN  model  using  an  X-ray  imaging  dataset  for  the
classification  of  healthy  controls  from  pneumonia  patients.
Both studies utilized a data-augmented approach to address the
limited availability of data.  The CNN model [24] achieved a
classification  accuracy  of  90.68%,  while  another  study  [25]
obtained a higher accuracy of 93.73%. However, it should be
noted that data augmentation can only help improve the size of
the dataset. The outcome measures of CNNs can or cannot be
improved. The DenseNet-121 architecture was employed [26],
and  the  authors  obtained  76.8%  accuracy  in  detecting
pneumonia.  They  further  analyzed  the  poor  performance  of
their  model  by  suggesting  that  they  lacked  a  patient  history
dataset.

The  authors  [25,  27  -  31]  utilized  CNN  models  for
classifying  pneumonia  and  reported  promising  results.  The
latter  study  aimed  to  clarify  the  effectiveness  of  customized
CNNs  in  distinguishing  healthy  controls  from  pneumonia
patients  and  distinguishing  between  contagious  and  virus-
related  types  of  pneumonia  in  pediatric  X-rays.  The  authors
[32]  segmented  lung  images  and  further  utilized  various
augmentation  methods  to  identify  pneumonia  using  a  CNN
model based on segmented regions. Similarly, the authors [33]
also  used  augmented  techniques  based  on  the  AlexNet  and
GoogLeNet  architectures  and  achieved  an  accuracy  of  95%.
The  authors  [34,  35]  used  convolutional  neural  networks  to
classify  pneumonia.  In  a  study  [36],  the  authors  employed  a
CNN structure  and introduced a  different  objective  function,
sinloss, to detect pneumonia. Some aouthors used Mask-RCNN
for  pulmonary  image  segmentation  and  pneumonia
identification,  incorporating  both  global  and  local  features
while  also  applying  dropout  and  L2  regularization  [37].

Furthermore, transfer learning has emerged as an advanced
technique  for  solving  the  issue  of  data  insufficiency  in
computer vision applications. This approach involves utilizing
information carried out using large datasets to train a network
on existing smaller datasets for solving specific tasks. Recent
studies [38 - 41] have exploited transfer learning methods by
leveraging  various  CNN architectures  already  trained  on  the
ImageNet dataset [26] for pneumonia classification.

Recent  explorations  into  hybrid  classical-quantum
networks  offer  promising  directions  for  enhancing
computational  performance  in  medical  diagnostics.  In
Alzheimer's  disease  detection,  a  novel  approach  showed
significant  improvements  in  processing  efficiency  and
diagnostic  accuracy,  demonstrating  the  potential  of  quantum
computing in healthcare [8]. Brain tumor classification has also
benefited  from  hybrid  deep-learning  models,  yielding  high
accuracy in identifying tumor types [42]. These advancements
highlight  the  growing  interest  in  integrating  quantum
computing  with  traditional  machine  learning  for  medical
applications.  Moreover,  the  application  of  deep  learning  to
detect  COVID-19  from  chest  X-rays  achieved  remarkable
accuracy, emphasizing the power of CNNs in medical image

analysis  [43].  The  evolving  field  of  medical  image  fusion,
through  techniques  such  as  anisotropic  diffusion  and  cross
bilateral filtering, further illustrates the potential for advanced
algorithms to improve diagnostic accuracy and support clinical
decision-making [44].

Transformer-based  models  and  context-aware  networks
have  recently  gained  traction  in  medical  image  analysis,
offering improved performance in complex tasks. For example,
the  Context-aware  Network  Fusing  Transformer  and  V-Net
have been applied for semisupervised segmentation of the 3D
left  atrium,  showing  promising  results  in  improving
segmentation  accuracy  in  challenging  medical  images  [45].
Additionally,  an  actor-critic-based  detection  and  semi-
supervised segmentation approach for the 3D left atrium from
LGE-MRI  has  demonstrated  the  effectiveness  of  integrating
reinforcement learning techniques with deep learning models
for precise medical image analysis [46]. These advancements
suggest that transformer-based models could offer new avenues
for enhancing pneumonia detection.

This literature demonstrates the CNN model's robustness in
classifying  pneumonia  disease  using  a  pretrained  neural
network [47]. Nevertheless, this model has certain drawbacks
and  restrictions,  such  as  training  speed,  which  decreases
according  to  the  complexity  of  the  dataset  and  model,  high-
dimensional  datasets,  and  graphics  processing  unit
(GPU)/tensor processing unit (TPU) requirements, which can
affect  the  model's  performance  and  effectiveness.  Therefore,
this  study  implements  the  hybrid  ZFNet-quantum  neural
network  approach  to  enhance  the  model's  classification
accuracy  and  speed.  This  approach  employs  quantum
parameterized circuits to optimally process quantum data [48].
This study focuses on hybrid models that extract informative
feature  vectors  using  neural  networks  and  merge  them  with
variational  circuits  to  perform  detection  tasks  [49  -  51].
Additionally,  hybrid  models  utilize  transfer  learning
amalgamated  with  quantum  algorithms  [8,  52  -  54]  to
maximize  performance  outcomes  and  speed  up  computer
vision  tasks.

2.2. Research Gap

Previous studies have made significant strides in detecting
pneumonia using machine learning and deep learning models.
Researchers  have employed CNN models  extensively.  These
methods have demonstrated success in classifying pneumonia
from  chest  X-rays.  Despite  these  advancements,  challenges
remain. The availability of large, annotated datasets is a hurdle.
This limits the performance of deep learning models. Transfer
learning  has  offered  a  pathway  to  mitigate  this  challenge.  It
leverages  pretrained  models  to  enhance  classification  tasks
with  smaller  datasets.  However,  the  potential  for  further
enhancing  accuracy  and  efficiency  in  pneumonia  detection
exists.

Hybrid classical-quantum neural network models present a
promising  solution.  They  have  shown  remarkable  results  in
medical  diagnostics.  The  detection  of  Alzheimer’s  disease
using  these  models  has  proven  more  efficient.  It  has
demonstrated  higher  accuracy  than  classical  approaches.
Similar  improvements  have  been  noted  in  brain  tumor
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classification.  These  successes  underscore  the  potential  of
quantum computing to revolutionize medical imaging analysis.

The current research has not fully explored the integration
of  quantum  computing  with  deep  learning  in  pneumonia
detection. This gap indicates an opportunity. A hybrid ZFNet-
quantum  neural  network  model  could  significantly  improve
diagnostic  processes.  It  can  offer  better  accuracy  and
efficiency.  This  approach would be particularly  beneficial  in
clinical  settings.  Therefore,  rapid  and  accurate  diagnosis  is
critical.

Moreover,  advancements  in  medical  image  fusion
techniques suggest additional pathways for innovation. These
methods  have  shown  potential  in  enhancing  image  analysis.
They  do  so  by  improving  the  clarity  and  detail  of  medical
images.  Integrating  these  techniques  with  hybrid  quantum
models  could  further  advance  pneumonia  detection
capabilities.

In  summary,  the  research  gap  lies  in  the  unexplored
integration  of  quantum  computing  with  deep  learning  for
pneumonia  diagnosis.  The  potential  for  hybrid  models  to
enhance diagnostic accuracy and efficiency is significant. This
study aims to address this gap. This study seeks to contribute to
the  field  by  demonstrating  the  efficacy  of  a  ZFNet-quantum
neural  network model in detecting pneumonia from chest  X-
rays.

3. METHOD

3.1. Pretrained CNN Model

A conventional DNN is capable of receiving raw data as
input and automatically identifying the necessary relationships
to  carry  out  classification.  These  networks  are  called  deep
neural networks and are composed of multiple layers of nodes
that  can  find  hidden  pattern  representations  and  compute
mappings  via  nonlinear  activation  independently.  The  entire
classical  network is  formed by concatenating multiple  layers
together.  The  DNN  model  is  represented  in  the  form  of  an
equation and is given as [49]:

(1)

where xk represents the classical input vector, yk denotes the
classical output vector, W and b are the weights and biases of
the  network,  Ø is  the  nonlinearity  introduced in  the  network
and Li represents the layers of the network.

ZFNet is a type of CNN architecture that consists of an 8-
layer CONVNet model. The architecture of the ZFNet model is
illustrated  in  Fig.  (1),  which describes  the  model's  input  and
processing steps. We use 224x224x3 images as our input. The
1st  layer  consists  of  96  filters  of  size  7x7  and  nonlinear
activation  functions  such  as  ReLU  are  applied.  Then,  it  is
followed by a max pooling layer with a stride of 2. The next
layer  consists  of  256 filters,  each utilizing a  3x3 size.  These
filters are once again subjected to local contrast normalization.
The 3rd and 4th layers of the architecture produce 384 3x3 filters
with  a  stride  of  1.  The  5th  layer  includes  256  3x3  filters,
followed by the max pooling layer, which has a 3x3 filter size.
This layer also utilized local contrast normalization. The 6th and
7th  layers  are composed of  4096 units.  In the end,  the output
layer  is  connected  and  consists  of  1000  neurons,  which
represents the number of classes. In our case, there were two
classes, pneumonia patients and normal controls, so we used a
binary classifier to distinguish between them using X-ray data.

ZFNet  is  an  improved  variant  of  AlexNet  that  achieves
higher accuracy. A key difference between the two approaches
is  that  ZFNet  uses  7x7  filters,  whereas  AlexNet  uses  11x11
filters. This is because larger filters tend to discard a significant
amount of pixel information, which can be preserved by using
smaller filter sizes in earlier convolutional layers. The number
of filters increases as the network depth increases, and ReLU
activation  functions  are  used.  As  a  result  of  these
modifications, our new architecture of ZFNet was able to retain
more information in the convolutional layer features.

3.2. Quantum Circuit Algorithm

Quantum  computers  leverage  quantum  mechanical
properties  to  achieve  complex  computational  tasks.  Unlike

Fig. (1). Schematic of a classical convolutional neural network.
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classical  computers,  which  utilize  binary  bits  that  can  only
exist  as  0  or  1,  quantum  computers  employ  qubits  that  can
instantaneously occur in numerous states, enabling vastly more
intricate  computations  to  be  carried  out.  Qubits  serve  as  the
fundamental building blocks of quantum computers and can be
embodied  by  particles  such  as  atoms,  ions,  or  photons.  The
state  of  a  qubit  is  characterized  by  a  quantum  state  vector,
which can be composed of complex combinations of multiple
states  simultaneously.  This  property  enables  quantum
computers  to  perform  significantly  more  complex
computations  faster  and  more  efficiently  than  classical
computers.

Superposition is a key concept in quantum computing that
refers  to  a  qubit's  capacity  to  exist  in  numerous  states
simultaneously. This attribute enables a single qubit to perform
multiple  computations  concurrently,  resulting  in  highly
efficient computations. Specifically, a qubit can represent both
0  and  1  at  the  same  time,  which  allows  for  faster  and  more
efficient computation compared to classical computers.

(2)

where v and δ represent complex numbers and satisfy the
given equation .

Entanglement is another fundamental concept in quantum
computing that describes the correlation between two or more
qubits.  If  we  change  the  state  of  one  qubit,  it  automatically
affects the state of the other qubit. This capability facilitates the
development  of  potent  algorithms  that  can  address  intricate
problems that are beyond the capacity of classical computers.

In  quantum computing,  interference  occurs  when  two  or
more  quantum  states  combine  to  produce  a  new  state.  This
phenomenon  enables  quantum  systems  to  execute  specific
types  of  computations  considerably  faster  than  conventional
computers.

A quantum circuit is a model used to describe the behavior
of quantum systems, particularly in quantum computers. It is

similar  to  classical  circuits  in  that  it  involves  a  sequence  of
operations  that  act  on  input  qubits  to  produce  output  qubits.
Each  qubit  in  the  QVC  is  represented  by  a  line,  and  the
operation  performed  on  each  qubit  is  denoted  by  a  gate  that
transforms the state of the qubit. Commonly used symbols to
represent  gates  include  the  Hadamard  gate,  CNOT gate,  and
Toffoli  gate.  The  output  of  the  circuit  is  determined  by
measuring the state of the qubit. Quantum circuits have various
applications,  including quantum simulation, quantum crypto-
graphy,  and  quantum error  correction.  They  are  also  used  to
implement quantum algorithms that can resolve several tasks
more proficiently than conventional algorithms.

Quantum gates are operations that manipulate the state of a
quantum  system  by  acting  on  qubits  (quantum  bits),  and  in
quantum  computing,  they  are  characterized  by  unitary
matrices. The basic unitary gates include the Pauli gates (X, Y,
and Z) and the Hadamard gate (H), among others. Each gate is
associated  with  a  unitary  matrix  that  describes  how  it
transforms  the  state  of  a  single  qubit.  By  combining  these
gates, more complex quantum circuits can be created, and the
resulting  unitary  matrix  for  the  circuit  can  be  utilized  to
simulate its behavior on a quantum computer. Unitary matrices
are  crucial  in  quantum computing  because  they  preserve  the
norm  of  a  vector,  which  ensures  the  conservation  of
probabilities  during  quantum  operations.

(3)

where l is the identity matrix, U is the unitary matrix and
U† represents the unitary transpose matrix.

This study utilized the chest X-ray dataset and applied the
hybrid ZfNet quantum circuit model for training. The learning
process  was  carried  out  using  quantum  variational  circuits,
which  have  shown  promising  results  in  image  classification
and  detection  and  offer  advantages  over  classical  learning
techniques. A QVC is a type of quantum circuit in which the
circuit  parameters  are  used  to  prepare  a  quantum  state.  The
QVC typically consists of layers of gates that act on a set of

Fig. (2). Schematic of the quantum variational circuit.
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qubits. The gates in each layer are chosen from quantum gates,
such as single-qubit rotations and two-qubit entangling gates.
The parameters of the circuit are associated with the angles of
the single-qubit rotations and the entangling gates. The main
steps  involved  in  a  variational  quantum  circuit  are  encoding
state,  variational  circuit  design,  and  quantum  measurement
state, as shown in Fig. (2).

3.2.1. Encoding Circuit

The  initial  step  is  encoding  the  classical  vector  into  a
quantum vector. Quantum encoding serves as a framework that
connects  the  classical  input  data  A  with  its  corresponding
quantum  state  |Ai.  It  generates  a  quantum  embedding  state
from the classical  input  vector,  essentially  mapping classical
data to quantum states.

(4)

3.2.2. Variational Circuit Design

The QVC circuit is designed by choosing a set of quantum
gates  to  act  on  a  set  of  qubits.  These  gates  typically  include
single-qubit rotations and two-qubit entangling gates.

(5)

3.2.3. Quantum Measurement

In the quantum measurement state, the quantum vector is
converted into a classical vector.

(6)

The quantum variational circuit can be represented in the
form of an equation and is given as

(7)

where  Y  denotes  the  encoding  circuit,  S  represents  the
decoding circuit at the measurement layer and qvc is called the
quantum variational circuit.

The  circuit  parameters  are  adjusted  using  a  classical
optimization  algorithm  to  optimize  a  specific  objective
function. This optimization can be performed using a variety of
classical optimization techniques, such as the Adam optimizer.
Overall, the main idea of a parameterized quantum circuit is to
use circuit parameters to prepare different quantum states and
optimize  a  specific  objective  function  using  classical
optimization  algorithms.

The  hybrid  ZFNet-quantum  neural  network  algorithm  is
given below. First,  the dataset is organized and preprocessed
before  being  fed  into  the  Hybrid  ZFNet-quantum  neural
network. ZFNet generates meaningful features. The significant
feature vector is applied to QVC, which encodes the classical
vector into the quantum vector by creating superposition and
entanglement states utilizing various quantum gates. Finally, a
measurement state is used to decode the quantum vector into a
classical  vector,  which  is  then  fed  into  the  last  layer  of  the
CNN for classifying the chest X-ray imaging dataset.



Classification of Pneumonia via a Hybrid ZFNet-Quantum Neural Network Current Medical Imaging, 2024, Volume 20   7

 

Fig. (3). Hybrid ZFNet-quantum neural network.
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3.3. Hybrid ZFNet-Quantum Neural Network

In our research paper, we present an innovative approach
for  detecting  pneumonia  using  a  transfer  learning  approach
based on ZFNet and a quantum circuit algorithm applied to a
chest  X-ray  dataset.  Our  model  incorporates  a  CNN
architecture to extract significant features, which are then fed
as input to a quantum circuit for pneumonia classification from
healthy controls. Specifically, we constructed a hybrid model
that  combines  the  ZFNet  architecture  with  the  variational
circuit  algorithm  on  the  chest  X-ray  dataset.

A schematic of the hybrid ZFNet-Quantum neural network
for  pneumonia  detection  is  presented  in  Fig.  (3).  A  hybrid
classical-to-quantum transfer learning algorithm involves using
classical CNNs as feature extractors and then utilizing quantum
algorithms and devices for postprocessing these features. The
ZFNet model extracts 4096 significant features that are fed to
the quantum model. The quantum circuit model maps the input
data into quantum bits by using the Hadamard gate and CNOT
gate.  The Hadamard gate  is  used for  the  state  preparation of
qubits, and to transform the state of qubits to another state, the
CNOT gate and the rotational gate are used and the measured
outputs correspond to the classification labels of the task. The
quantum circuit outputs 4 feature vectors and is connected to a
nontrainable matrix that feeds into a binary classification layer
to distinguish pneumonia patients from healthy controls. The
hybrid  classical  to  quantum  transfer  learning  approach  is
presented  as  follows:

(8)

where   is  the  classical  feature  extractor
vector  that  gives  4096  vectors  to  the  QVC,   is  the

output  given  by  the  QVC circuit,  and  fit  is  given  to  the  last
fully  connected  layer  for  classification  between  pneumonia
patients and normal controls.

3.4. Transfer Learning

In deep learning, it is considered better to start with a pre-
trained  model  rather  than  training  an  entire  network  from
scratch and then manipulating the final layer according to the
given requirements, as demonstrated in Fig. (4). When dealing
with  small  datasets,  pretrained  methods  can  successfully
perform specific tasks and provide beneficial results. In deep
learning, there are two types of transfer learning. One is fine-
tuning, in which pretrained models are used for training, and
the  other  is  feature  extraction,  in  which  we  freeze  the  first
layers and adjust the last layer to further train the network and
perform the specific task [51].

The  transfer  learning  technique  involves  utilizing  the
knowledge  and  information  gained  from  a  previous  task  to
improve  performance  on  a  new,  related  task.  Rather  than
starting  from  scratch  with  a  new  dataset  to  train  the  model,
transfer learning permits us to leverage what was learned in the
prior task as a starting point for the new one, reducing the need
for  data  and  computation.  Numerous  studies  suggest  that,  in
many cases, it is more advantageous to use a preexisting deep
neural network rather than training an entirely new model from
scratch.  Fine-tuning  the  last  layer  to  cater  to  a  precise  task
serves  as  an  effective  technique  for  addressing  small  dataset
challenges  using  the  DNN  model.  The  pretrained  model  has
already resolved a particular problem, and it can be repurposed
to address different yet similar issues. These pretrained models
are  usually  trained  on  large  datasets  such  as  ImageNet  or
COCO  for  image-related  tasks.

Fig. (4). Demonstration of the transfer learning method.
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Fig. (5). Transfer learning using the ZFNet model and a transfer learning approach using a hybrid ZFNet quantum neural network.

In  deep  learning,  two  common  approaches  to  transfer
learning  are  used.  The  first  is  fine-tuning,  and  the  second  is
feature extraction.

1.  Fine-tuning  involves  using  a  pretrained  model  as  a
starting point for training on a new task. The parameters of the
pretrained model are adjusted, and new layers are added on top
of it to suit the new task. This approach helps in eliminating the
random initialization of the network. To fine-tune a model, the
pretrained model is trained on smaller amounts of data specific
to  the  new task,  and a  lower  learning rate  is  used to  prevent
overfitting.

2. Feature extraction involves using a pretrained model to
extract relevant information from the input. In this approach,
the  weights  of  all  layers  in  the  pretrained  model  are  frozen,
except for the last layer, which is then trained for the new task.

In this work, two stages were utilized to solve the binary
classification  task.  The  first  is  the  classical  transfer  learning
approach. In this method, we utilized a ZFNet pretrained neural
network  model  as  a  feature  extractor.  In  the  end,  a  new
classifier layer is added to the network so that it can be trained
on a new dataset. The second is the quantum transfer learning
approach,  in  which  the  classical  model  is  used  to  extract
significant  features  from the  dataset.  A  significant  feature  is
given to the QVC circuit, in which various quantum simulators
are used. Finally, the QVC circuit with the new classifier layer
is  trained  on  a  new dataset,  as  shown  in  Fig.  (5).  Our  study
focused on employing the transfer learning approach using a
hybrid  ZFNet-quantum  neural  network  to  detect  pneumonia
utilizing different quantum simulators.

4. RESULTS AND DISCUSSION

4.1. Dataset Description and Preprocessing

The  Kaggle  platform  was  used  to  download  the  dataset.
The  dataset  contained  two  binary  classes,  pneumonia  and
normal control cases, comprising a total of 5863 images. The

dataset was organized into three main folders (train, test, and
val)  with  subfolders  for  each  image  category  (pneumonia/
normal). The dataset was split such that 80% was allocated for
training  the  network  and  20%  of  the  dataset  was  used  for
testing the network.

Before network training, preprocessing techniques must be
applied  to  the  imaging  dataset.  Preprocessing  of  the  X-ray
images  was  performed  in  three  steps.  First,  we  used  data-
augmented techniques such as resizing, cropping, rotating, and
flipping the training examples to avoid overfitting and enhance
efficiency and robustness. Next, the dataset was converted into
PyTorch tensors. Finally, in the normalization step, the input
samples were normalized to a range of 0 to 1.

4.2.  Pneumonia  Detection  Using  a  ZFNet  Pretrained
Network

This  experiment  aimed  to  use  a  DNN  architecture  to
distinguish  pneumonia  patients  from  healthy  controls.  A
transfer  learning  method  was  employed,  utilizing  pretrained
models  such  as  ZFNet  to  classify  healthy  and  pneumonia
patients. The ZFNet architecture, which is based on the transfer
learning approach, has been trained on X-ray imaging. The last
layer  of  ZFNet  is  used  as  a  classifier  and  is  responsible  for
classifying  the  output  vector  against  the  imaging  dataset.
Common hyperparameters utilized in deep learning to train the
classical ZFNet model on chest X-ray datasets are as follows:

4.2.1. Optimizer

The optimizer  is  used  to  update  the  network  parameters,
such as weight and biases during the training of the model. In
this  method,  we  used  the  Adam  optimizer  to  update  the
learning parameters for the ZFNet model on the X-ray dataset.
It  is  particularly  suitable  when  dealing  with  large  datasets,
which makes it computationally efficient.
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4.2.2. Learning Rate

The Adam optimizer uses a step size of 10−6 to update the
model parameters during training.

4.2.3. Batch Size

The  batch  size  is  defined  as  the  number  of  training
examples passed through the network during training, and in
this method, we set the batch size equal to 16.

4.2.4. Epochs

The  complete  dataset  that  passes  multiple  times  through
the network during model training is called the epoch, and it is
set to 25.

4.2.5. Activation Function

ReLu  is  used  as  an  activation  function  to  introduce
nonlinearity  in  the  network.

4.2.6. Cost Function

This computes the difference between the actual output and
the predicted output. To improve the accuracy of the DNN, the
objective function must be minimized during backpropagation.
In this approach, we used cross entropy to minimize the error
during the training of the network.

Table  1.  The  hyperparameter  values  for  the  ZFNet
pretrained  approach.

The common methods for evaluating model performance
are  the  accuracy,  recall,  precision,  F1-score,  and  confusion
matrix, which are defined as follows:

4.2.7. Accuracy

Accuracy is a metric used to evaluate the performance of a
model, particularly for binary and multiclassification problems.
It is used to determine the correct predictions classified by the
model.

(9)

4.2.8. Precision and Recall

These are useful performance measures for balanced and
imbalanced  classification  problems  where  the  distribution  of

classes is even or odd. The precision evaluates the performance
of the model by determining true positive predictions from all
positive  predictions.  Recall  measures  the  performance of  the
model  by  evaluating  the  true  positives  from all  real  positive
labels in the dataset.

(10)

(11)

4.2.9. F1-score

F1-score  is  a  metric  that  is  used  in  DNNs  for  binary
classification  tasks,  and  it  integrates  recall  and  precision  to
evaluate the complete outcome measure of the model.

(12)

The  model  performance  on  the  X-ray  imaging  modality
using a pretrained ZFNet model is presented in Table 2.

The confusion matrix is represented in the form of a matrix
that shows true positive and negative labels and false positive
and  negative  predicted  labels.  The  ZFNet  model  is
implemented on an imaging set,  and the following confusion
matrix illustration is presented in Fig. (6) for the ZF pretrained
network.

A  graphical  representation  of  the  training  accuracy  and
training  loss  for  pneumonia  classification  on  the  ZFNet
pretrained  approach  is  presented  in  Fig.  (7).

4.3. Pneumonia Detection Using a Hybrid ZFNet-Quantum
Neural Network

We  proposed  a  CNN  architecture  based  on  a  quantum
circuit  algorithm  termed  “Hybrid  ZFNet-quantum  neural
network” for X-ray classification tasks. The proposed model is
implemented by integrating a classical neural network with a
quantum circuit for detecting pneumonia in healthy controls in
an imaging dataset. In a hybrid model, the 4098 feature vector
is  taken  from  the  ZFNet  architecture  and  applied  to  an
algorithm based on a quantum circuit. It is composed of qubits,
rotations,  and  CNOT  gates.  Moreover,  we  train  the  hybrid
model  using  various  quantum simulators  by  integration  with
the PyTorch library to validate the speed of the model.

Table 1. Hyperparameter values of the ZFNet pretrained model.

Name of Hyperparameters Loss Function Learning Rate Epochs Optimizer Decay Batch Size
Standards Cross Entropy 10−6 25 Adam 1 x 10-4 16

Table 2. Performance of the ZFNet pretrained model using an X-ray imaging modality.

Model Imaging Modality Precision
(%)

Test Accuracy
(%)

F1- score
(%)

Recall
(%)

ZFNet pretrained neural network X-ray 92 94 93 91
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Fig. (6). Confusion matrix using the pretrained ZFNet model for the chest X-ray imaging dataset.

Fig. (7). Accuracy and loss plot for the ZFNet pretrained model with respect to the number of epochs.

Several hyperparameters need to be set during training to
achieve the optimal outcomes of the implemented technique.
Various  hyperparameters  were  utilized  for  training  the
proposed hybrid approach on the imaging dataset. A learning
rate  of  10−6  was  chosen to  determine the  loss  function at  the

minimum  point.  The  number  of  data  images  applied  to  the
model for training is called the batch size, and it is equal to 16.
The  complete  dataset  passed  through  the  network  multiple
times is called the epoch, and it is set to 20. The loss function
used during backpropagation was cross-entropy. To update the
learning parameters of the implemented hybrid technique, the

Table 3. Hyperparameter standards for the hybrid ZFNet-quantum neural network.

Names of Hyperparameters Batch Size Circuit Depth Learning Rate No. of Qubits Loss Function Epochs
Standards 16 6 10−6 4 Cross Entropy 25

Table 4. Performance of the hybrid ZFNet-quantum neural network using chest X-ray imaging.

Proposed Hybrid Model on various Devices Database F1-Score(%) Recall(%) Precision(%) Test Accuracy (%)
PennyLane simulator X-ray 94 93.5 89 97.5

PennyLane qiskit.aer simulator X-ray 91 91.5 92 95.5
PennyLane qiskit.basic.aer simulator X-ray 90.5 91 92 95
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Fig. (8). Confusion matrix using the hybrid ZFNet-quantum neural network for the X-ray dataset.

Fig. (9). Accuracy and loss plot for the Hybrid ZFNet-quantum neural network with respect to the number of epochs.

Adam  optimizer  algorithm  was  utilized.  The  number  of
quantum bits  used  for  converting  the  data  and  preparing  the
state was 4, and the circuit depth layer corresponded to 6. The
hyperparameters and their corresponding values are presented
in Table 3.

Table  4  shows  the  performance  metrics  against  the
implemented  technique  in  detecting  pneumonia  using  X-ray
data.  We  utilized  the  PennyLane  library  to  implement  the
hybrid model and chose the PennyLane default simulator and
qiskit.basicaer  to  run  the  network.  The  hybrid  model  was
further  integrated  with  the  PyTorch  library  for  binary
classification.  The  results  obtained  from  various  simulators
leveraging the X-ray database are presented in Table 4.

Fig. (8) depicts the confusion matrix for the implemented
hybrid ZFNet-quantum neural network against the chest X-ray
dataset. Moreover, Fig. (9) presents a graphical representation
of the accuracy and loss across several epochs for pneumonia

detection with the proposed model.

The  X-ray  imaging  data  were  also  utilized  to  implement
classical CNNs, namely, AlexNet, ResNet18, and ResNet34, to
compare  their  performance  with  that  of  the  implemented
approach  for  pneumonia  detection.  The  proposed  model
outcomes are compared with those of classical convolutional
networks, and the results are presented in Table 5. This table
demonstrates that the implemented model, which incorporates
a  hybrid  ZFNet-quantum neural  network,  achieves  enhanced
performance outcomes when it leverages the X-ray database.

The results of the ablation study are summarized in Table 6
below.

The testing accuracy and F1-score of the CNNs based on
classical methods and the proposed method against chest X-ray
imaging are presented in the form of a graph and are shown in
Figs. (10 and 11).
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Table 5. The performance outcomes on an imaging database using a classical convolutional neural network.

Model Imaging Modality Precision(%) Recall(%) F1- score(%) Test Accuracy(%)
AlexNet X-ray 91 93 89 90

ResNet18 X-ray 89 90 87 91.5
ResNet34 X-ray 88.5 89.9 93 90.5

ZFNet X-ray 92 91.5 93 94
Proposed model X-ray 89 93.5 94 97.5

Table 6. Performance metrics for the ablation study on the Hybrid ZFNet-quantum neural network.

Model Precision(%) Recall(%) F1- Score(%) Test Accuracy(%)
ZFNet 92 91.5 93 94

Proposed model usingPennyLane simulator 89 93.5 94 97.5
PennyLane qiskit.aer simulator 92 91.5 91 95.5

PennyLane qiskit.basic.aer simulator 92 91 90.5 95

Fig. (10). Comparison between the classical model and a hybrid model concerning testing accuracy.

Furthermore,  the  hybrid  ZFNet-quantum  neural  network
implemented in this study was compared with other state-of-
the-art CNN models using the chest X-ray dataset. The results
of  this  comparison  are  presented  in  Table  7.  The  table
demonstrates  that  the  approach  employed,  which  integrates

convolutional  networks  with  quantum  circuits,  achieved
superior performance in terms of testing accuracy compared to
existing  classical  methods.  Additionally,  a  graphical
representation of the comparison with a state-of-the-art model
can be observed in Fig. (12).

Table 7. Comparison of the proposed hybrid with existing classical networks.

Reference Imaging Modality Method Testing Accuracy (%)
[27] X-ray CNN 92.4
[25] X-ray 2D-CNN 93.73
[28] X-ray DenseNet-121 97
[29] X-ray CNN 96.2
[30] X-ray CNN 96
[31] X-ray CNN 94
[34] X-ray Xception model 87
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Reference Imaging Modality Method Testing Accuracy (%)
[38] X-ray ensemble model 94
[39] X-ray Residual network 95
[40] Chest X-ray (CXR) scan images AlexNet 94
[41] chest X-ray images VGG16 96
[26] ChestX-ray14 CheXNet 80
[45] X-ray Context-aware Network 90.09
[46] X-ray Actor-Critic based detection and segmentation 92.76
[47] X-ray ResNet50 93.06
[55] X-ray Vision Transformer 96.45
[56] X-ray Vision Mamba 96.6

Proposed Hybrid Method X-ray Hybrid ZFNet-quantum neural network 97.5

Fig. (11). Comparison between the classical model and a hybrid model concerning the F1 score.

Fig. (12). Comparison between the CNN architecture and the hybrid network.

(Table 7) contd.....
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In this study, we implemented the hybrid ZFNet-quantum
neural  network  against  chest  X-ray  imaging  data.  For
comparison  purposes,  we  also  implemented  classical  CNN
architectures  such  as  ZFNet,  AlexNet,  ResNet18,  and
ResNet34 for binary classification of pneumonia patients from
healthy  controls.  The  proposed  model  achieved  97.5%
accuracy, and the classical model achieved 94% accuracy. This
shows that when a classical neural network is integrated with a
quantum  variational  circuit,  it  reduces  the  number  of  circuit
learning parameters that minimize the computational intricacy
of  the  model,  which  helps  improve  the  performance  of  the
model.

Quantum learning algorithms leverage quantum mechanics
phenomena, and these quantum properties help in developing
variational  and  parameterized  quantum  circuits.  We  further
used  these  quantum  properties  in  the  field  of  ML  and  deep
neural  networks  to  solve  image-related  tasks  such  as  object
detection, classification, and segmentation in CAD systems.

Furthermore,  various  quantum  devices,  such  as  the
pennyLane  default  simulator,  qiskit.aer  simulator,  and
qiskit.basicaer simulator, were used to train the hybrid model.
These quantum devices are used for improving the speed and
accuracy  of  the  network  because  the  circuit  parameters  are
learned  from  the  unitary  matrix.  Compared  with  classical
methods, quantum computing has more computational power
for high-dimensional datasets.

The  healthcare  sector  utilizes  practical  applications  of
quantum computing to provide better  health-related services,
optimize  prices,  advance  e-health  systems,  and  speed  up
diagnostic  procedures.  The  biomedical  data  are  presented  in
complex and raw form. The application of quantum computing
in  computer  vision  and  image-related  tasks  helps  in  finding
meaningful  information  and  patterns  from  complex  data  in
clinical settings. In the future, real quantum hardware devices
can be used to implement the hybrid classical-quantum neural
network and can also be used to solve multiclassification tasks.

CONCLUSION

In  this  paper,  we  implemented  a  hybrid  technique  to
classify  pneumonia  using  X-ray  imaging  data.  The  hybrid
model  integrates  two  fields—classical  deep  learning  and
quantum computing—and is  employed against  a  chest  X-ray
imaging dataset.  Informative  features  from high-dimensional
data  were  extracted  using  the  ZFNet  model  and  quantum
circuit algorithm to classify the imaging dataset. Moreover, we
also  utilized  the  classical  transfer  learning  method  to  train  a
ZfNet model on the same imaging dataset. Then, a comparison
between  the  performance  outcomes  of  the  proposed  hybrid
approach and the classical CNN architecture is presented. We
conclude  that  the  hybrid  ZFNet-quantum  neural  network
improves the testing accuracy and other outcome measures, as
this technique helps in extracting significant feature vectors by
leveraging quantum circuit algorithms and quantum simulators,
which increases the training speed of the model. This advanced
computational algorithm will help provide feasible and viable
solutions in the healthcare and clinical sectors.
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