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Abstract

Localization has long been a key research topic in computer science due to its ap-

plications in autonomous vehicles, surveillance, security, and indoor positioning sys-

tems. Visual Place Recognition (VPR), which detects previously visited locations through

visual data, is a significant area within localization. Solving VPR is complex due to en-

vironmental and viewpoint variations. Despite numerous high-performing algorithms,

no universal technique can address all variations with complete accuracy; each has its

strengths and weaknesses for specific variations. This thesis introduces a novel element:

the concept of complementarity among VPR techniques. It defines complementarity in

the context of VPR algorithms and establishes the existence and degree of complement-

arity among existing methods. This revolutionary approach contributes significantly to

developing more efficient VPR ensemble setups. It uses complementarity as a guideline to

combine highly complementary techniques and avoid redundant pairings. This research

introduces SwitchHit, a probabilistic, complementarity-based switching system that dy-

namically selects the most suitable VPR technique based on complementarity. Unlike

traditional methods that run multiple techniques simultaneously, SwitchHit intelligently

switches to a better technique when necessary. This feature distinguishes SwitchHit from

other setups and significantly enhances VPR performance in terms of accuracy. The thesis

also explores SwitchFuse, a hybrid model that combines the strengths of switching and

fusion strategies for improved VPR accuracy, outperforming other similar setups, includ-

ing SwitchHit and existing multi-fusion systems. The findings highlight the importance

of innovative approaches, informed by complementarity analysis, to develop robust and

efficient VPR systems. Additionally, it examines the utility of universal voting schemes

within ensemble setups, demonstrating their potential to refine VPR accuracy further.
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This work lays a foundation for future research in leveraging complementarity and en-

semble methods in autonomous navigation and beyond.
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Chapter 1

Introduction

1.1 Visual Place Recognition (VPR)

Visual Place Recognition (VPR) is a critical component of modern computer vision and ro-

botics, designed to enable autonomous systems, such as robots and autonomous vehicles,

to recognise and distinguish locations based on visual inputs. Utilizing images captured

by onboard cameras or sensors, VPR helps these systems navigate and make sense of

their surroundings by identifying whether a current view matches a previously recorded

location as illustrated in Figure 1.1. This technology is crucial for maintaining accur-

ate navigation especially in environments where GPS signals are unreliable. VPR must

effectively handle various visual changes in the environment, including alterations in

lighting, weather conditions, and seasonal variations, ensuring consistent and reliable

recognition performance across different conditions [14–24]. VPR holds a critical role

in numerous applications, including autonomous navigation (for both ground and aerial

robots), augmented reality, and long-term localization in dynamic environments. It is

1



2 CHAPTER 1. INTRODUCTION

Fig. 1.1. An Overview of the Basic Visual Place Recognition task steps based on image retrieval.
Images taken from [1]

essential for the development of robust autonomous systems that can operate in unstruc-

tured environments without relying heavily on GPS, which can be inaccurate in urban

canyons or indoors, or entirely unavailable [25].

One of the key contributions of VPR to computer vision and robotics is its ability

to deal with the vast amount of variability in real-world environments. By enabling

machines to recognise places under different conditions, VPR supports the creation of

more flexible and adaptable navigation systems. This capability is particularly crucial

for tasks such as route planning, re-localization after getting lost, and understanding

environmental changes over time [26]

2



1.2. Key Problems in Solving VPR 3

1.2 Key Problems in Solving VPR

Solving VPR tasks involves overcoming a range of complex challenges, primarily due

to the dynamic and unpredictable nature of real-world environments. The following

sections describe the primary and most frequent environmental challenges in VPR ap-

plications.

Fig. 1.2. A place from Nordland dataset in winter and summer. Images taken from [2].

1.2.1 Environmental Changes

Environmental changes, including variations in lighting (day to night, shadows), weather

(rain, fog, snow), and seasons, significantly alter the appearance of places such as the

examples in Figure 1.2. To address these challenges, VPR systems must develop adapt-

able and robust recognition algorithms. Techniques like domain adaptation and the use

of invariant features have been explored to mitigate these effects [27]. Domain adapta-

tion involves aligning the feature distributions from different environmental conditions,

allowing models to perform consistently across various domains without extensive re-

training. Meanwhile, the use of invariant features ensures that the extracted features

remain stable despite changes in lighting, weather, and viewpoint, thus maintaining re-

3
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liable recognition performance across diverse conditions.

Fig. 1.3. Examples of images with dynamic objects. Images taken from [3,4].

1.2.2 Dynamic Objects

The presence of dynamic objects, such as vehicles, pedestrians, and animals, can obstruct

important features of the environment such as those presented in Figure 1.3, leading to

recognition failures. VPR systems must either be capable of ignoring these transient

obstructions or incorporating them into their recognition process in a way that does not

compromise the accuracy of place recognition [28].

4
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Fig. 1.4. Examples of images appearing different due to change in viewpoint. Images taken
from [5]

1.2.3 Viewpoint and Scale Variability

Changes in the viewpoint and scale at which a scene is observed can dramatically affect

its visual appearance as presented in Figure 1.4 and Figure 1.5, posing significant chal-

lenges for VPR systems. Algorithms must be capable of recognizing a place regardless

of the observer’s position, orientation, or distance. This requires sophisticated geometric

transformations and scale-invariant features to ensure reliable place recognition across

different viewpoints [29].

5
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Fig. 1.5. Examples of images demonstrating the different types of viewpoint variations. Images
taken from [5,6]

1.2.4 Perceptual Aliasing

Perceptual aliasing occurs when distinct locations appear visually similar, leading to in-

correct place recognition such as the examples in Figure 1.6. This issue is prevalent across

all types of environments, as visually similar features can confuse VPR systems. Address-

ing perceptual aliasing requires sophisticated feature extraction and matching strategies

that can discern subtle differences between visually similar places [30]. Research has

shown that advanced techniques, such as context-aware methods and geometric verific-

ation, are effective in mitigating the effects of perceptual aliasing in diverse settings [14].
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Fig. 1.6. Examples demonstrating perceptual aliasing; Different places places generating a similar
visual making them look the same. Images taken from [5]

1.2.5 Summary of Key Problems in VPR

In conclusion, the field of VPR is constantly evolving and leveraging advancements to

develop more sophisticated and resilient algorithms to tackle these challenges. The goal

is to achieve a level of visual place recognition that can closely mimic or even surpass

human capabilities in navigating and understanding complex environments. One such

effort led to the exploration of utilizing multiple algorithms or VPR techniques to en-

hance the accuracy and computational performance of VPR systems [31]. This approach

was inspired by the use of multiple sensor in robotics, which provide a more accurate

and comprehensive understanding of the environment [32]. For example, a combination

7
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of cameras, LiDAR, and ultrasonic sensors provides more comprehensive information

about the surroundings including visual, depth, and proximity data [33]. Additionally,

the multiple-sensor approach is also utilised to tackle cases where one sensor fails or

malfunctions, the robot still has a backup to rely on to keep going. Similarly, relying

on more than one VPR algorithm boosts the chances of obtaining accurate input and

improves the overall effectiveness of solving the VPR task. This thesis focuses on sev-

eral aspects encountered in the journey of designing VPR systems that utilise multiple

algorithms efficiently. Some notable work has been presented in [31], [34] which have

played the role of a stepping stone for the research conducted. The experiments con-

ducted and results collected aim to provide knowledge for designing better ensemble

VPR (Chapter 3) and further continue to test this knowledge by designing different sys-

tems (SwitchHit & Switch-Fuse) demonstrating the utility of such ensemble methods

as presented in Chapter 4 and 5. Lastly, this thesis explores the component of Voting

within ensemble VPR systems, which is underexplored and understudied, highlighting

the potential benefits and implications of universal voting methods.

1.3 Research Questions

This section introduces the main research questions that the thesis will address:

• How can complementarity among different Visual Place Recognition (VPR) tech-

niques be effectively measured and quantified?

• What methods can be developed to dynamically select or combine VPR techniques

based on their assessed complementarity to improve recognition performance?

8
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• How do these innovative systems, designed around the concept of complementarity,

perform under varied and challenging real-world conditions?

• How do different universal voting schemes influence the performance of ensemble

VPR systems in terms of accuracy and reliability across diverse environments?

1.4 Thesis Contributions

This dissertation establishes the concept of complementarity in Visual Place Recogni-

tion systems, proposing a novel methodology to assess and harness this attribute. It

details the development of innovative systems that use intelligent technique selection

or fusion based on complementarity, demonstrably enhancing recognition accuracy and

illustrating the methodology’s effectiveness in practical applications. The details of each

contribution are outlined below:

• The introduction of the concept of Complementarity followed by an exploration

and systematic study of the existence of complementarity among the different state-

of-the-art VPR techniques. Further, designing a framework utilizing a McNemar’s

test-like approach to determine the levels of complementarity between VPR tech-

nique pairs. Providing insightful information for future endeavours to designing

ensemble VPR systems on the basis of complementarity.

• Designing and presenting the SwitchHit System which operates by carefully by

utilizing the information discovered on complementarity in the previously men-

tioned contribution and follows a probabilistic model to allow for dynamic switch-

ing between the available complementary techniques, so as to avoid the use of

9
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brute force and rather perform an efficient selection of the optimal method hence

significantly improving the VPR performance in terms of accuracy.

• The third contribution presented is a hybrid system design entitled "Switch-Fuse"

which tackles shortcomings of both the SwitchHit system as well as other existing

Multi-Fusion systems such as presented in [31] [34]. It is an inventive approach

combining both the robustness of switching VPR techniques based on complement-

arity and The impact of integrating the carefully selected techniques to significantly

improve performance. SwitchFuse holds a structure superior to the basic fusion

methods as, instead of simply fusing all or any random techniques, it is structured

to first switch and then select the best possible VPR techniques for fusion, accord-

ing to the query image, which together as a hybrid model substantially improve

performance on all major VPR data sets.

• Lastly, the introduction, exploration and utilization of universal voting schemes

to improve VPR accuracy in ensemble VPR set ups. Voting which is a common

aspect to almost all types of ensemble VPR setups remained previously under-

researched for VPR, instead followed the common basic practise of voting without

having tested the several other available voting schemes to evaluate their differ-

ences. The idea for this stems from an observation that different voting methods

result in different outcomes for the exact same type of data tested hence the use of

any voting scheme should not be a trivial or random task. We test this observation

for VPR systems, illustrating that it stands true and then propose the best, worst

and satisfactory voting methods that can be employed.

10
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1.5 Thesis Structure

This thesis is organised into seven chapters overall, as follows;

• Chapter 2 presents a detailed literature review on Visual Place Recognition, its

complications, core methodologies and the recent introduction of innovative ap-

proaches i.e. different types of ensemble set ups to solve the VPR problem. Ad-

ditionally, a description on the types of datasets widely employed and different

metrics used to evaluate the techniques and their performance is also provided.

• Chapter 3 introduces the concept of complementarity among different VPR tech-

niques and its significance. With the use of a framework, the chapter further

presents how the complementarity is determined and the level of complement-

arity measured and presented utilizing multiple evaluation metrics. The results for

complementarity are presented for 10 major VPR datasets utilzing 8 state-of-the-art

VPR technqiues.

• Chapter 4 presents the SwitchHit system in detail, its inspiration and design. The

system is based on a probabilistic model to allow for dynamic switching between

multiple VPR methods to ensure a switch to the optimal technique given the query

image. This is achieved utilizing a Bayes’ theorem inspired framework that updates

the matching probability of a system for the given query image based on prior

information and likelihood of matching correctly. The results for the system tested

are presented for six widely employed VPR datasets with a combination of state-of-

the-art VPR techniques utilised within the SwitchHit system, selected on the basis

of the complementarity knowledge of these techniques.

11
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• Chapter 5 presents the Switch-Fuse system in details, the shortcoming it addresses

of the other existing ensemble VPR systems. The chapter discusses in detail the

design and structure of the hybrid model of Switch-Fuse covering the methodo-

logy and all steps involved starting with a tripartite model with each component

consisting of VPR techniques dedicated to different types of variation that can be

encountered. The query image is input to all three units of the system, where

the probability of a correct match is calculated by the primary technique in each

unit, and switching is conducted to select an alternate technique where required.

Finally, a technique is selected by each unit, each of which then undergoes fusion

where the normalized distance vectors are added ensure a significant enhancement

in performance. The results are evaluated using different evaluation metrics for

six datasets while the results for Switch-Fuse are compared with each technique,

SwitchHit, and multi-process fusion systems.

• Chapter 6 presents the use of universal voting schemes for VPR and it opens a dis-

cussion to the observation that different voting schemes result it different results

for the same data hence the choice of a voting method must be a well curated de-

cision. This chapter analyses several universal voting schemes to determine if the

observed principles apply to VPR tasks involving voting, similar to other research

fields. Furthermore, it aims to maximize the place detection accuracy of a VPR

ensemble setup and identify the optimal voting schemes for selection. The experi-

ments in the chapter present five different widely used voting methods from other

research fields and applies them to a standard ensemble VPR system to present

how the produced results vary, the significance of this difference in performance

and suggest what voting schemes are then better than others given the type of VPR

12
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task to be performed.
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Chapter 2

Literature Review

Visual Place Recognition (VPR) is a fundamental task in the field of computer vision and

robotics, aiming to enable autonomous systems to recognise previously visited places

based on visual cues, as illustrated in Figure 2.1. The core challenge of VPR lies in

the system’s ability to identify a location despite significant changes in appearance due

to variations in lighting, weather conditions, seasonal changes, and dynamic elements

within the environment. The primary challenges in VPR stem from the variability and

complexity of real-world environments caused by appearance changes, viewpoint vari-

ations, dynamic objects, and perceptual aliasing, as discussed in detail in Chapter 1.

This chapter further dives into the past, present and future of VPR by presenting

a detailed survey on the different core methodologies that are part of solving the VPR

problem. With years of research been done on VPR there are two major categories the

core methodologies can be divided into, with a few other innovative approaches that

have been introduced in recent times. However, in the broadest sense the two categories

are the traditional approaches referring to feature based methods and secondly modern
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approaches primarily referring to deep learning methods. A detailed description of each

category is presented ahead to further understand what are the difference, principles and

existing challenges.

Fig. 2.1. Visual place recognition success: autonomous systems identifying places amid environ-
mental changes using visual cues. Images taken from [1]

2.1 Pre-deep-learning era in VPR

The Pre-deep-learning era in VPR is just another way of referring to feature based ap-

proaches due to their vast history and use for solving the VPR problem. Feature based

approaches have garnered significant attention for their robustness and efficacy in hand-

ling the complex challenges associated with place recognition. The analysis delves into

the essence of feature-based methods, underscoring their foundational principles, cat-

egorizations, challenges, and advancements.

Beginning from the foundational principles of feature-based approaches for VPR, they

rely on the extraction and matching of distinctive visual features from images. These
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features, both local and global, serve as the fundamental building blocks for recognizing

places under varying environmental conditions. The principle behind these methods is

to identify and describe unique aspects of an image, such as edges, corners, textures, or

entire scene layouts, which can be invariant to changes in scale, rotation, illumination,

and viewpoint. They way these operate is categorized into the following types explained

below.

2.1.1 Local Descriptors

Local descriptors pertain to specific interest points within an image, such as keypoints

detected by algorithms like Scale-Invariant Feature Transform (SIFT) [29] which extract

distinctive invariant features from images that are invariant to image scale and rotation,

and partially invariant to change in illumination and 3D camera viewpoint. SIFT and it

is successors have enabled a wide range of applications and advanced vision systems, in-

cluding automatic panorama creation [35,36], object recognition [37], large-scale image

retrieval [38], video object retrieval [39], place recognition [40], categorization [41–44],

robot localization [45], shot location [46], texture [47,48] and gesture recognition [49]

showcasing the versatility of local invariant features. Building upon this foundation, al-

ternative approaches like Speeded Up Robust Features (SURF) [50] offer quicker feature

extraction while maintaining performance, enhancing the practicality of local features for

various applications. SURF, along with Oriented FAST and Rotated BRIEF (ORB) [51],

which combines efficient keypoint detection and a robust binary descriptor, highlight

the continuous evolution of feature extraction techniques, ensuring their relevance and

utility in real-time VPR tasks.

17
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2.1.2 Global Descriptors

Contrarily, global descriptors encapsulate the overall characteristics of an image, offering

a holistic view of the scene. Hence global descriptors capture the overall characterist-

ics of an image, offering an alternative to the detailed but computationally expensive

local descriptors. Firstly, Global Features from Accelerated Segment Test (GIST) [52]

descriptors summarize the spatial layout of the image, capturing the dominant spatial

structures without focusing on individual objects or features. GIST descriptors are effi-

cient to compute and have been used in VPR to quickly filter candidate locations before

more detailed analysis and is used for matching place images in [53–56]. Next, Histo-

gram of Oriented Gradients (HOG) [57] descriptors capture edge or gradient structures

that are invariant to geometric and photo-metric transformations, except for object ori-

entation. Though originally designed for human detection, HOG has found applications

in VPR due to it is ability to represent the structural essence of a scene as used in [58].

Hence techniques like GIST & HOG generate global descriptors that summarize the spa-

tial layout or dominant gradients of an image, facilitating coarse matching and initial

filtering in VPR systems.

It is also important to know that the process of feature extraction involves detecting

points of interest and computing their descriptors, which are then used to represent

and match images. However, the matching phase, especially for local features, often

employs algorithms like Approximate Nearest Neighbors (ANN) for efficient comparison.

For global features, similarity metrics such as cosine similarity or Euclidean distance are

commonly used to gauge the resemblance between scene representations.

18



2.1.3. Descriptor Aggregation Methods 19

2.1.3 Descriptor Aggregation Methods

Another important notable approach to mention are the Descriptor Aggregation Methods.

These methods, in order to represent a place effectively, extract features that are often

aggregated into a compact representation, using methods like Bag-of-Words (BoW) [41]

and Vector of Locally Aggregated Descriptors (VLAD). BoW is actually inspired by text

retrieval, and it is models represent an image as a histogram of visual word occurrences,

where visual words correspond to cluster centres in the feature space. BoW models,

despite their simplicity, have shown effectiveness in VPR, especially when combined

with powerful feature detectors and descriptors. Secondly, Vector of Locally Aggreg-

ated Descriptors (VLAD) [59] is then an extension of the BoW model that aggregates

feature descriptors themselves, rather than their occurrences. It captures the distribution

of features around cluster centres, improving place recognition accuracy. Moreover, the

only differences are the pre-trained network, PlaceNet [92] instead of VGG-M [93], and

the post-processing phase using VLAD instead of BoW.

Indeed feature-based methods have consistently been used throughout for solving

VPR and have evolved over time to ensure better efficiency, however despite their strength

several challenges remain when utilizing these approaches including high computational

costs, sensitivity to environmental changes, and the issue of perceptual aliasing where

different places appear indistinguishably similar. To then address these challenges, re-

cent advancements have focused on enhancing feature descriptors, optimizing matching

algorithms, and integrating machine learning techniques for adaptive feature selection

and matching.
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2.2 Deep Learning in VPR

Deep learning has transformed Visual Place Recognition (VPR) by offering robust tech-

niques to address challenges like changing viewpoints, lighting, and seasonal shifts.

These methods, ranging from supervised to unsupervised and semi-supervised approaches,

have been pivotal in tackling real-world complexities.

Fig. 2.2. Basic CNN architecture: Layered convolutional filters combining outputs to form final
descriptor

Supervised deep learning techniques have seen success by using large labeled datasets

to learn intricate visual features. A common strategy involves pre-trained frameworks.

Early models like OxfordNet, GoogLeNet, AlexNet, and VGG16 were initially trained on

large datasets for image classification. One approach utilized OxfordNet and GoogLe-

Net to extract VLAD descriptors, creating compact image descriptors [60]. As shown

in Figure 2.2, CNN architectures typically use layered convolutional filters to extract

features, which are then combined to form a final descriptor. Further advancements

used AlexNet and Places205 for feature extraction, enhancing robustness to environ-

mental changes [8]. In landmark-based methods, Edge Boxes were utilized for landmark

detection, followed by AlexNet for feature extraction to isolate stable elements in dy-

namic scenes [61]. Another method used BING and AlexNet’s pooling layer for efficient
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descriptor extraction [62].

Transfer learning has been crucial in enhancing pre-trained frameworks by allowing

models to adapt to VPR’s specific challenges. By leveraging models like AlexNet, GoogLe-

Net, and VGG16, initially trained on datasets like ImageNet, transfer learning enables ef-

fective reuse of visual patterns. In one approach, AlexNet (pre-trained on Places205) was

fine-tuned to handle environmental changes [8]. Another method adapted AlexNet365

from the Places365 dataset to extract region-based features for VPR [63]. The IVPR-

SSADTL model further utilizes deep transfer learning with a pre-trained MixNet for VPR

tasks, improving generalization across environments [64].

Region-based approaches have also been key. One method leveraged VGG16 to ex-

tract salient regions, focusing on areas providing strong visual cues [65]. In another

approach, Region-VLAD used AlexNet365 to aggregate these regional features into ro-

bust descriptors, handling diverse conditions effectively [63].

End-to-end frameworks like NetVLAD have set a standard in VPR by combining VGG/

AlexNet with a NetVLAD layer, using triplet loss to aggregate local features into global

descriptors [1]. This method allows networks to learn compact yet distinctive place

descriptors. The concept was extended to 3D LiDAR data, where PointNet was used to

capture spatial structures in LiDAR point clouds [66].

Transformer-based architectures have emerged, further advancing VPR. PLACEFORMER

employs a transformer model to capture global and local features, directly addressing il-

lumination and viewpoint changes [67]. R2FORMER refines region-level features using a

transformer network [68], while TRANsVPR combines CNNs and transformers for learn-

ing global and local descriptors [69]. MixVPR offers holistic feature aggregation using

pre-trained backbones to achieve high-performance global descriptors [70].
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CosPlace rethinks VPR as a classification problem, partitioning large geographical

areas into cells and training the model to recognize these cells as distinct classes [71].

This allows CosPlace to learn discriminative descriptors without requiring extensive neg-

ative sample mining, achieving state-of-the-art results with reduced memory usage, mak-

ing it scalable for large-scale VPR tasks.

While supervised learning dominates VPR, unsupervised deep learning techniques

provide alternatives when labeled data is scarce. GAN-based methods, such as using Gen-

erative Adversarial Networks (GANs) for domain translation, transform images between

conditions like seasons to learn invariant features [72]. Another approach expands this

concept to 3D LiDAR data, using GANs to learn stable features across diverse LiDAR con-

ditions [73]. In addition, autoencoder-based methods have been used to map images

into a HOG descriptor space for loop closure [74].

Semi-supervised learning techniques bridge the gap between supervised and unsuper-

vised methods, using both labeled and unlabeled data. One framework combined weakly

supervised and unsupervised learning to derive domain-invariant features, employing an

attention-aware VLAD module [75]. Another approach used a self-supervised method

to disentangle place-related features, while SegMap, an autoencoder-like network, was

presented for learning 3D point cloud segments [76].

Beyond these primary categories, parallel frameworks like SRALNet and ROMS in-

tegrate features such as semantic priors and multimodal data to enhance robustness

in dynamic environments. Hierarchical frameworks, including a multi-process fusion

technique and X-Lost, combine features from multiple sources to filter loop candidates,

improving recognition accuracy [34,77].

In summary, the diverse deep learning techniques in VPR, from supervised approaches

22



2.3. Sequence-based Methods 23

like PLACEFORMER and CosPlace to unsupervised methods like GANs and autoencoders,

and further to semi-supervised and complex frameworks like SRALNet, illustrate the

rapid evolution of the field, offering increasingly sophisticated solutions. More detailed

discussions on deep learning in VPR can be found in survey papers such as [21,23,78].

2.3 Sequence-based Methods

Sequence-based methods leverage temporal information by considering sequences of im-

ages instead of individual frames. This approach exploits the continuity and dynamics

within a traversal, providing additional cues for place recognition. By analyzing se-

quences, these methods can mitigate the effects of transient occlusions and significant

appearance changes, enhancing the robustness of place recognition. SeqSLAM [26], for

instance, introduced a novel approach to visual navigation under changing conditions by

matching coherent sequences of images rather than individual frames. This method suc-

cessfully demonstrated robust place recognition across extreme environmental changes,

such as transitions from day to night and changes in seasons.

However, the effectiveness of sequence-based methods can be diminished by the com-

putational complexity associated with processing and matching image sequences, espe-

cially for long traversals. To tackle these shortcomings, new sequence-based methods

are persistently being introduced. For example, SeqVLAD [79] proposes a sophisticated

approach that categorizes and benchmarks various techniques for integrating informa-

tion across individual images to enhance recognition accuracy. It explores the potential

use of transformers instead of conventional CNNs and introduces SeqVLAD, an ad-hoc

sequence-level aggregator.
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Similarly, SeqNet [80] is another approach that introduces an innovative framework

that emphasizes the use of sequential image data by developing a hybrid system that gen-

erates initial match hypotheses through learned sequential descriptors, effectively cap-

turing temporal dynamics and enabling robust place recognition even in challenging en-

vironments. Adding to the advancement of sequence-based methods is MATC-Net [81],

which introduces a multi-scale asymmetric temporal convolution network. MATC-Net

provides a compact sequence representation that integrates temporal sequence informa-

tion effectively, optimizing loop closure detection (LCD) tasks in hierarchical visual place

recognition (VPR) frameworks. By generating sequential and global features, MATC-Net

demonstrates improved performance across different challenging datasets, enhancing

the robustness and efficiency of VPR systems.

Lastly and most recent is the Sequence Descriptor approach introduced in [82] that

proposes a method that effectively captures and utilizes both spatial and temporal in-

formation from sequences of images, aiming to overcome challenges such as environ-

mental changes and perceptual aliasing that often hinder VPR systems. These are just

some examples of endeavors focusing on perfecting sequence-based methods. There is

more literature being introduced every year, such as [83–86], indicating that sequence-

based methods are continually evolving and hold potential for further improvements and

solutions.

2.4 Fusion and Complementarity-Based Methods

Fusion-based techniques play a crucial role in enhancing the performance of visual place

recognition (VPR) systems by integrating multiple complementary methods. These tech-
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niques aim to leverage the strengths of different approaches, providing more flexible,

reliable, and accurate place recognition capabilities across various scenarios and envir-

onments.

2.4.1 Fusion-Based Methods

With a wide variety of fusion-based VPR methods that can be designed, the common

denominator is their design to overcome the limitations of relying on a single type of

method or data source. This approach aims to provide more robust and accurate place

recognition capabilities. Notable examples of such fusion methods are presented in works

like [31] and [34], which discuss and demonstrate the fusion of multiple VPR techniques

to produce enhanced VPR accuracy. Inspired by multi-modal fusion practices that integ-

rate data from sensors like visual, depth, LIDAR, and GPS, Probabilistic Robotics [87]

is an example of work that discusses how different sensors compensate for each other’s

weaknesses. For example, LIDAR can complement visual sensors in poor lighting. By

combining data from these sources, robots achieve more accurate and robust perform-

ance. It emphasizes how fusing diverse sensor inputs strengthens decision-making and

localization, embodying the concept implicitly. Similarly, in the context of SLAM (Sim-

ultaneous Localization and Mapping), [88] discusses how integrating multiple sensors,

such as visual sensors and LIDAR, helps compensate for the limitations of individual

sensors, resulting in improved robustness and accuracy across different environments.

This approach reflects the implicit use of complementarity, where multiple sensor inputs

enhance the system’s overall performance. Additionally, [89] demonstrates how the in-

ception architecture captures complementary features at multiple scales by using filters

of varying sizes. This fusion of diverse features allows for better generalization across
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different image types, further illustrating the power of complementarity in deep learning.

subsectionComplementarity in Computer Vision, Robotics and VPR

While multi-sensor fusion across various fields has demonstrated the importance of

integrating complementary inputs, the same principle is crucial when considering the fu-

sion of techniques within VPR systems. An extremely important component to consider,

which up until now has not been fully studied, is the consideration of complementarity

among these fused VPR techniques. Joining two highly performing VPR techniques with

the assumption that both will compensate for each other is misguided, as the high per-

formance of both methods can be redundant, making the effort fruitless. This raises the

question of complementarity among VPR techniques—whether it exists, how it can be

measured, and its significance. These questions are researched, answered, and discussed

in the next chapter.

Complementarity is not only crucial in VPR but has been effectively leveraged in other

areas of feature detection. For instance, [90] introduced the concept of mutual cover-

age, which evaluates how combining feature detectors enhances spatial feature coverage

across an image. By measuring how well-combined interest points cover the image, the

complementarity of detectors can be assessed. The study demonstrates how different

detectors complement each other in vision tasks by improving spatial feature distribu-

tion, showcasing the benefits of combining complementary techniques. Similarly, [91]

explores how detectors like the Scale-invariant Feature Operator (SFOP) perform well

when combined with others, particularly under challenging conditions like JPEG com-

pression and light reduction. This study emphasizes that complementarity can enhance

detector performance by compensating for weaknesses in one method with strengths in

another. For instance, SFOP performs better on simpler scenes, while other detectors
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excel in more complex environments, showcasing complementarity in action. In another

study, [92] investigated how combining local feature detectors improves overall robust-

ness by leveraging the strengths of different detectors. Detectors often have varying

strengths under different conditions (e.g., lighting or scale changes), and using comple-

mentary detectors together helps overcome the limitations of individual methods. This

combination approach enhances feature detection, especially in challenging or dynamic

environments. Further research by [93] extended this concept by using mutual cover-

age to quantify complementarity between feature detectors. The authors demonstrated

that detectors identifying features in different areas of an image provide complementary

advantages, significantly improving detection performance. This metric was shown to

predict the effectiveness of detector combinations, especially in real-time applications,

where complementary techniques are essential for robust feature detection. Moreover,

the work by [94] demonstrates the effectiveness of predicting and integrating maximally

complementary techniques to boost the performance of baseline methods. Although this

work was published subsequent to the research conducted in this thesis, it underscores

the relevance and potential for significant improvements in visual place recognition by

harnessing complementary strengths.

These examples highlight the broad applicability and benefits of complementarity-

based approaches in enhancing performance and robustness across various domains.

By leveraging complementary strengths, systems can overcome individual limitations,

leading to significant improvements in performance, as demonstrated in both VPR and

related fields.
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2.5 Evaluation Metrics Utilised For VPR

Evaluation metrics for Visual Place Recognition (VPR) are crucial for assessing the per-

formance of VPR systems across various conditions and challenges. These metrics help in

understanding the effectiveness, reliability, and limitations of different VPR approaches.

However, there are some common practises that differ between the robotics and com-

puter vision communities. For example robotics mostly focuses on high precision hence

usually requires a single correct match for localisation estimates and therefore more com-

monly employs evaluation metrics such as Precision Recall Curves, AUC for PR Curves

and F1-Score. On the other hand the computer vision community for the most part uses

Recall@N and mean-Average Precision (mAP). This section discusses evaluation metrics

predominantly used for both, computer vision and robotics tasks. The following are some

commonly used evaluation metrics in VPR:

2.5.1 Precision and Recall Curves

Precision-Recall (PR) curves are used for evaluating the performance of Visual Place Re-

cognition (VPR) systems, especially in scenarios where there is a significant imbalance

between the classes of interest, typically, the number of non-matching places far exceeds

the number of matching places. PR curves plot the precision (the ratio of true positive

outcomes to the total predicted positives) against the recall (the ratio of true positive out-

comes to the actual total positives) at various threshold settings as illustrated in Figure

2.3. For VPR, precision measures how many of the identified places correctly match the

query place, while recall measures how many of the actual matching places the system

can identify
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Fig. 2.3. A generic illustration explaining how to interpret a PR-Curve for any VPR model.

Precision quantifies the number of correct positive predictions made. It is crucial in

scenarios where the cost of a false positive is high. The equation for precision is given

by:

Precision =
True Positives

True Positives + False Positives
, (2.1)

Recall measures the ability of a model to identify all relevant instances within a data-

set. High recall is essential in situations where missing a positive instance has a signific-

ant penalty. The recall equation is:

Recall =
True Positives

True Positives + False Negatives
, (2.2)

In VPR, precision could relate to how accurately a system identifies images of the

same location, while recall would measure the system’s ability to retrieve all instances of
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a given place.

There are several reasons for why PR curves are used so widely for the evaluation of

VPR performance. Some of the reasons are as follows;

• Balancing Precision and Recall: In VPR, it is crucial to maintain a balance between

identifying all relevant places (high recall) and ensuring that the identified places

are correct (high precision). PR curves provide a visual representation of this trade-

off, helping researchers to choose an optimal threshold that balances these metrics

according to their specific application needs.

• Handling Class Imbalance: PR curves are particularly useful in VPR due to the com-

mon issue of class imbalance (far more negative samples of non-matching places

than positive samples of matching places). They offer a more informative measure

of performance in such conditions than metrics like accuracy.

• Model Comparison with AUC: By comparing the area under the PR curves (AUC-

PR) of different models, researchers can evaluate and choose the best-performing

model for their specific VPR application. A higher AUC-PR indicates better overall

performance in terms of precision and recall balance.

In conclusion, PR curves play a crucial role in the evaluation and development of

VPR systems, especially in addressing the challenges posed by class imbalance. Their use

enables a deeper understanding of the trade-offs between precision and recall, guiding

the optimization and selection of VPR systems for practical applications.
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2.5.2 Area-Under Curve (AUC) of PR-Curves

The Area Under the Curve (AUC) of Precision-Recall (PR) curves is a critical evaluation

metric for Visual Place Recognition (VPR) [95], especially when dealing with imbalanced

datasets and it is often used as a performance metric for VPR [6,63,74,96]. Additionally,

AUC is a suitable criterion for applications requiring high Precision and Recall. The PR

curve illustrates the trade-off between precision (the proportion of true positive results

in all positive predictions) and recall (the proportion of true positive results in all actual

positives) at various threshold levels as explained in equations 2.1 and 2.2.

In VPR, where the negative (non-place matches) vastly outnumber the positive (cor-

rect place matches), the AUC of PR curves becomes particularly informative. This metric

is more sensitive to changes in the number of false positives among the minority class

(the places of interest), making it a preferred choice for evaluating the performance of

VPR systems in scenarios with a significant class imbalance.

Area-Under Curve (AUC) is the area underlying a Precision-Recall (PR) Curve [95],

commonly used as a performance metric for VPR [6, 63, 74, 96]. AUC-PR is a suitable

criterion for applications requiring high Precision and Recall, especially in imbalanced

datasets where PR curves are more informative than ROC curves. The AUC-PR measures

the area under the PR curve, where a higher AUC represents better VPR performance,

with an AUC of 1 indicating optimal precision and recall balance.

2.5.3 F1 Score

The F1 score is a crucial evaluation metric for Visual Place Recognition (VPR), espe-

cially significant in scenarios where both the precision of place identifications and the
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recall of the system (it is ability to identify all relevant places) are equally important.

This balanced approach makes the F1 score an invaluable tool for assessing the overall

performance of VPR systems. For VPR, a high F1 Score would indicate both low false

positives and low false negatives, ideal for reliable place recognition. The F1 Score is

calculated as:

F1 =
2 · Precision ·Recall

Precision+Recall
(2.3)

F1 score provides a more comprehensive understanding of a system’s performance

than using either precision or recall alone. This is particularly important in real-world

applications of VPR, such as autonomous navigation, where failing to recognize a place

correctly (low recall) or misidentifying a place (low precision) can have serious con-

sequences. The F1 score helps in identifying VPR systems that are not only accurate but

also reliable across various conditions and challenges.

2.5.4 Mean Average Precision (mAP)

Mean Average Precision (mAP) is a another widely used metric for Visual Place Recog-

nition (VPR) and other areas of computer vision, particularly for tasks involving image

retrieval and object detection. mAP provides a single-figure measure of quality across re-

call levels, encapsulating both the precision and recall of a system into a comprehensive

indicator of performance.

The concept of Average Precision (AP) originates from the area of information re-

trieval and is used to evaluate the quality of results returned by a search system. For

a single query, AP is calculated by taking the mean of the precision scores at each rank
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where a relevant document is found, up to a certain cut-off rank, considering all relevant

documents. However, in the context of VPR, where the task often involves identifying

images of the same place from a database, mAP averages the AP scores across all quer-

ies. This averaging process allows mAP to summarize the performance of the VPR system

across it is entire dataset, providing a holistic view of it is effectiveness.

2.5.5 Extended Precision (EP)

Extended Precision (EP) is a metric introduced to evaluate Visual Place Recognition

(VPR) techniques in robotics, specifically designed to improve upon traditional evalu-

ation methods by offering a more nuanced view of a system’s performance [97]. The

EP metric addresses the limitations of existing metrics by combining two key perform-

ance indicators: the Precision at minimum Recall (PR0) and the Recall value at which

Precision drops from 100% (RP100).

The formula for Extended Precision (EP) combines the Precision at minimum Recall

(PR0) and the Recall value at which Precision drops from 100% (RP100) into a single

scalar value:

EP =
PR0 +RP100

2
(2.4)

PR0 is the Precision at the minimum Recall value, which is determined by the number

of False Positives (FP) before the first True Positive (TP). RP100 represents the highest

value of Recall that can be achieved without any FP. If the PR0 is less than 1, RP100 is

set to 0, and EP depends only on the Precision at minimum Recall.

The EP metric provides a comprehensive measure of a VPR method’s performance,
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considering both the accuracy of initial matches and the robustness against incorrect

matches as more results are considered. Secondly, by encapsulating performance into

a single scalar value, EP facilitates straightforward comparisons between different VPR

techniques, helping identify which methods are more suitable for particular environ-

ments or tasks. This is crucial for the development of more reliable and effective loc-

alization systems in robotics, as it allows for the assessment of a method’s upper and

lower performance bounds and the identification of statistically significant performance

differences.

2.5.6 Summary of Evaluation Metrics in VPR

In conclusion, evaluation metrics are crucial for VPR systems, offering insights into their

performance, reliability, and computational efficiency. Metrics like Precision, Recall, F1

Score, and mAP highlight the balance between accuracy and the practical utility of VPR

systems. Beyond performance, considerations of computational demand and adaptabil-

ity to environmental changes are vital as demonstrated in [98–100]. Ultimately, these

metrics guide the ongoing development and refinement of VPR technologies, ensuring

they meet the diverse needs of real-world applications.

2.6 Datasets for Visual Place Recognition

Datasets used for testing Visual Place Recognition (VPR) systems are crucial for eval-

uating the effectiveness and robustness of these systems across various environmental

conditions, lighting changes, and structural variations. These datasets are collected and

curated to represent a wide range of real-world scenarios that autonomous robots might
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encounter. There are several example of such scenarios including urban and street views,

indoor setting, seasonal/weather variation or even synthetic datasets as shown in Figure

2.4 and 2.5. Accordingly these datasets can be collected using relevant means such as

mounted cameras, hand-held devices, repeated traversals, or again even synthetically

generated using computer graphics and simulation environment.

2.6.1 GardensPoint

Captured on the Queensland University of Technology campus, GardensPoint includes

sequences from day and night with significant viewpoint and appearance changes [3,8].

This dataset is crucial for testing the robustness of VPR algorithms under varying lighting

conditions and daily changes. It helps in evaluating how well VPR systems can adapt to

changes in illumination and appearance, which are common in urban environments.

Fig. 2.4. A collection of images from widely employed VPR datasets. Images taken from [1], [7],
[2], [3,8], [4].
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2.6.2 Tokyo 24/7

Tokyo 24/7 is designed to test VPR systems across different times of the day, including

day, dusk, and night scenes in urban Tokyo [101, 102]. This dataset emphasizes the

challenge of recognizing places under extreme lighting variations and in dense urban

environments, which are critical for autonomous driving and navigation applications in

metropolitan areas. The dataset’s variety in time-of-day captures helps in understanding

the performance of VPR systems under diverse lighting conditions.

2.6.3 Essex3IN1

Essex3IN1 comprises images from three distinct indoor environments captured under

three different lighting conditions [5]. This dataset is particularly useful for evaluating

VPR performance in controlled indoor settings, such as offices, homes, and public build-

ings. It allows researchers to analyse how VPR systems handle indoor lighting variations,

which can significantly affect recognition accuracy in real-world indoor applications.

2.6.4 SPEDTest

The SPEDTest dataset, derived from the larger SPED (Semantic Place Description) data-

set, focuses on testing VPR robustness against changes in scene content due to the pres-

ence of different objects and variations in scene layout [9]. This dataset is essential for

evaluating the adaptability of VPR systems to dynamic environments where the arrange-

ment and presence of objects can change frequently, such as in shopping malls or busy

public spaces.
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Fig. 2.5. A collection of images from widely employed VPR datasets. Images taken from [9],
[10–13].

2.6.5 Cross-Seasons

Cross-Seasons contains images of the same locations captured in different seasons, present-

ing challenges related to changes in vegetation, weather, and lighting conditions [4].

This dataset is pivotal for assessing the capability of VPR systems to handle seasonal

variations, which is important for applications involving long-term outdoor navigation

where environments change significantly across seasons.

2.6.6 SYNTHIA

The SYNTHIA dataset consists of synthetic images generated from a virtual city environ-

ment [7] . It offers variations in weather, seasons, and lighting conditions, providing a

controlled yet challenging environment for testing VPR systems. This dataset is partic-

ularly valuable for benchmarking VPR algorithms in a virtual setting before real-world

deployment, as it allows for extensive testing under a wide range of controlled condi-

tions.
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2.6.7 Nordland

Captured from a train journey through Norway, the Nordland dataset showcases changes

in scenery across four seasons [2, 103]. It is widely used for testing the ability of VPR

systems to handle extreme seasonal variations, making it a standard for evaluating per-

formance under significant environmental changes. This dataset’s unique longitudinal

aspect makes it particularly useful for long-term place recognition research.

2.6.8 Corridor

The Corridor dataset involves indoor environments with repetitive structures, such as

hallways and corridors, posing challenges related to perceptual aliasing [11]. This data-

set is critical for testing VPR systems in environments where different parts of the scene

look remarkably similar, such as in office buildings and universities, where the challenge

is to distinguish between visually similar locations.

2.6.9 17-PLACES

This dataset consists of 17 different places developed at two locations with changing il-

lumination conditions throughout the day and night [13]. It includes images of various

indoor settings like hallways, bedrooms, and laboratories. This dataset is useful for eval-

uating VPR systems in diverse indoor environments, providing a comprehensive testbed

for systems designed for real-time applications.
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2.6.10 Living-room

The Living Room dataset is composed of high-quality images taken by a robot during a

home exploration task, capturing images from a near-floor viewpoint [12]. This dataset

provides a unique perspective that differs from typical human-eye-level captures, making

it useful for testing VPR systems in domestic robotics applications where the viewpoint

is closer to the ground.

2.6.11 Datasets Conclusion

The datasets detailed in this section represent a selection of the diverse VPR resources

leveraged throughout this thesis for experimentation. They showcase a range of environ-

ments, conditions, and challenges in visual place recognition. However, it is important

to acknowledge that these examples are just a subset of the broader array of datasets

available in the field such as [104–119], and each offers unique properties for testing

and researching VPR technologies

2.7 Summary

This chapter not only explores the evolution, methodologies, and challenges of Visual

Place Recognition (VPR) but also presents a comprehensive backdrop against which the

current research is positioned. Through a detailed review of traditional and modern VPR

approaches, significant strides in the field are underscored, while highlighting gaps that

still limit VPR systems’ performance in dynamic and complex environments.

A critical gap identified is the lack of complementarity assessment among fused VPR
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techniques. The concept of complementarity is pivotal in developing robust and efficient

fusion methods, a key point this thesis tries to showcase. Complementarity ensures that

combined techniques enhance each other’s strengths while compensating for weaknesses,

chapter 3 explores this idea in detail and illustrates it through experiments. However,

many existing fusion-based techniques lack a focus on well-studied complementarity,

thereby missing opportunities for enhanced performance. This section critically analyses

related works, highlighting their shortcomings and the research gaps they leave open,

which this thesis aims to address. The study on multi-process fusion [31] discusses

combining multiple techniques to improve visual place recognition. While insightful, it

assumes complementarity without exactly verifying it. The static fusion process does

not adapt to changing conditions, potentially leading to situations where techniques

are no longer complementary. Additionally, it lacks empirical evidence showing com-

plementarity in various scenarios, resulting in possible redundancy, meaning that mul-

tiple techniques might overlap in their functionality, leading to overlapping efforts and

missed opportunities to harness unique strengths and boost performance. Hierarchical

multi-process fusion [34] presents a novel approach by combining techniques through

a hierarchical structure. Despite improvements over the multi-process fusion approach,

it lacks complementarity focus. The hierarchical fusion does not adapt dynamically, and

there is no detailed analysis of how techniques complement each other in real-time,

potentially again leading to redundancy rather than enhancement. Lastly, the explora-

tion of hyperdimensional computing [120] leverages high-dimensional vectors for robust

data fusion. However, it remains largely theoretical with limited practical applications

demonstrating real-time complementarity. There is a lack of empirical validation show-

ing how hyperdimensional techniques complement traditional methods. The complexity
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of implementation also makes it difficult to evaluate complementarity, leaving a gap in

practical guidelines. Despite the potential improvements these methods offer, their lack

of emphasis on well-studied complementarity represents a significant research gap. Ad-

aptive fusion strategies that dynamically assess and leverage complementary strengths

are needed for optimal performance across diverse environments. This thesis addresses

these gaps by emphasizing on proposing a framework to study complementarity among

different VPR methods. The proposed framwork is also used as the basis of an adapt-

ive fusion/switching strategy dynamically selects and weights techniques based on their

complementary strengths, ensuring performance enchancement. Comprehensive evalu-

ations using diverse datasets and real-world experiments validate these methods, ensur-

ing robustness across different conditions. Comparative analyses with the different VPR

techniques highlight the advantages and potential drawbacks of the proposed approach

later in the thesis. By addressing the shortcomings of existing fusion methods through

complementarity, this thesis demonstrates significant performance improvements.

41



42 CHAPTER 2. LITERATURE REVIEW

42



Chapter 3

Proposed Complementarity Framework
1

Chapter 1 discussed the importance of the need for new and innovative approaches to

solve the VPR problem and how developing new methods from scratch is not the only

solution. A notable and promising method discussed previously is the multi-process fu-

sion methodology which is a type of ensemble VPR set up. Chapter 1 however goes on

further to identify a major shortcoming in such existing systems which is the assumption

that the VPR methods fused together complement each other. This chapter puts forth

a solution to address this by presenting a well-defined criterion for selecting and com-

bining different VPR methods from a wide range of available options. This is achieved

by the introduction of the concept of complementarity among the VPR methods and the

framework presented that systematically explores complementarity identifies combina-

tions which can result in better performance. The framework acts as a sanity check to

find the complementarity between two techniques by utilising a McNemar’s test-like ap-

proach, explained ahead in this chapter. It further allows for an estimation of upper and

1The work is published in IEEE RA-L (IEEE Robotics and Automation Letters) 2021: vol. 6, no. 3, pp.
5976-5983, July 2021, doi: 10.1109/LRA.2021.3088779.
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lower complementarity bounds for the VPR techniques to be combined as illustrated in

Figure 3.1, along with an estimate of maximum VPR performance that may be achieved.

Based on this framework, results are presented for eight different VPR methods on ten

widely-used VPR datasets showing the potential of different combinations of techniques

for achieving better performance.

3.1 The Need for Complementartity

Chapter 1 presents VPR as a fundamental yet challenging task that still remains an open

problem in the field of robotics and computer vision research. It has been the subject

of significant advancements in recent times, introducing several new types of innovative

approaches to perform this task. More specifically the recent approach that has drawn

attention is the idea of an ensemble VPR system, for example those that ones introduced

in [31], [34].

This new approach combines several image processing methods and negates the re-

quirement for multiple sensors to improve VPR performance in terms of accuracy. The

concept comes from the empirical data which suggests that some VPR methods are more

suitable for certain types of environments and scenarios than others [121]. Hence, util-

ising multiple VPR techniques simultaneously may compensate for each other’s weak-

nesses. Although these systems mentioned above exhibit promising results, they do not

provide a well-defined criterion for selection of VPR techniques based on complementar-

ity out of the available options. Supposing that the fused VPR methods will complement

each other in all cases is not a valid assumption and may have detrimental effect on per-

formance and computation. For example, if the VPR techniques that are combined are
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redundant, they will not achieve higher performance and will only add to the compu-

tational cost which may not be suitable for resource-constrained systems. Hence, com-

plementarity information is vital and can enable a multi-process fusion based system to

make an informed decision regarding selection of VPR techniques from available options.

This chapter presents the idea that complementarity of VPR methods has not been

studied systematically so far. It bridges this gap and puts forth a framework that can

be used as a sanity check for the selection of complementary pairs of VPR techniques for

multi-process fusion systems. This framework is based on a McNemar’s test-like approach

[122], [123] that categorizes each VPR outcome from a technique as either success or

failure (considering ground truth information). The framework allows estimation of

upper and lower complementarity bounds for the VPR techniques to be combined, along

with an estimate of maximum VPR accuracy that may be achieved. This framework is

then employed for eight VPR methods to identify highly complementary pairs on widely

used VPR data sets.

The reminder of this chapter is organised as follows. Section 3.2 provides an intro-

duction to Complementarity framework. Section 3.3 includes the experimental set up

and design. The results and insights produced after the experimentation are presented

and discussed in Section 3.4. Finally, a summary of this chapter is given in Section 3.5

3.2 Proposed Complementarity Framework

This section presents the framework for computing complementarity, for establishing the

upper and lower complementarity bounds, and for estimating the maximum achievable

VPR performance in terms of accuracy by a muti-process fusion system. This framework
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may be employed on an arbitrary number of VPR methods to determine the improved

selection from among the pool of techniques available. It may also be utilised as a sanity

check on whether the VPR techniques that a multi-process fusion system has assembled

for integration are likely to improve accuracy. The framework employs a McNemar’s test

like approach to perform a case-by-case analysis of each VPR technique to compute the

complementarity of the given technique with other available methods. Precision-recall

curves, F-scores and accuracy percentage are usually utilised as performance metrics for

VPR methods. Although viable for some applications / scenarios, these performance met-

rics do not provide the specific information that tells where exactly does a VPR method

succeed or fail, and does not show the whole picture. For example, two VPR methods

compared over a dataset of 100 images using these performance metrics may appear to

have same performance if they both are able to match 70 images (out of 100). However,

it is highly likely that the set of 70 images successfully matched by the first VPR method

is not the same set that is also correctly matched by the second VPR technique. This neg-

lected piece of information is critical for determining complementarity of different VPR

methods, and is vital knowledge to have specifically when dealing with multi-process

fusion systems.

McNemar’s test is a form of chi-squared test with one degree of freedom that evalu-

ates the performance of two algorithms based on their outcomes on a case-by-case basis

over the same dataset. For utilizing McNemar’s test, a criterion is needed to determine

whether a test case results in success or failure. The proposed framework is loosely in-

spired by the McNemar’s test as a pairwise analysis is performed on VPR methods on

a case-by-case basis over the same dataset. The two VPR methods in question would

produce results in the form of correct or incorrect matches verified using ground truth.
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Fig. 3.1. Sample output of the complementarity framework: Primary VPR-Tech1 is combined
with secondary methods. The lines green (minimum), blue (maximum), and yellow (median)
complementarity bounds.

This data may then be divided into four possible cases as shown in Figure 3.2: first be-

ing the number of images where both algorithms are able to match the images correctly,

second where the first algorithm matched correctly while the second produced an in-

correct match, then vice versa and finally where both algorithms failed and produced

incorrect matches. For computing complementarity, the prime focus remains on case

two and three as these hold the number of images where the two algorithms perform

differently and can help boost each other’s performance. The equations presented in this

chapter, are all developed as part of this research to provide a robust framework.
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3.2.1 Computing complementarity.

Let A be the primary VPR technique. Let B be a VPR method that may be combined with

A in a multi-process fusion system to enhance VPR accuracy over an image dataset D.

VPR performance in terms of accuracy is defined as the ratio of number of images of

D that are correctly matched (verified by groundtruth) to the total number of images

of D. The complementarity is calculated by the following equation, which is an original

formulation in this work:

CBA =
T

M
(3.1)

Fig. 3.2. Possible outcomes of pairwise analysis of VPR methods on a case-by-case basis over the
same dataset.

Where CBA is the complementarity of B with A; T is the number of images of D which

are incorrectly matched by A but correctly matched by B when the two methods are

run; M is the number of images of D that are incorrectly matched by A when run. A

large value of CBA implies that B complements A well on dataset D and will result in a

48



3.2.2. Establishing complementarity bounds. 49

potential increase in VPR accuracy. On the other hand, a small value of CBA means that

B does not complement A well. In other words, A and B are redundant, and combining A

with B will increase computational cost without any substantial increase in VPR accuracy.

3.2.2 Establishing complementarity bounds.

It is interesting to further explore the upper and lower extremities of complementarity of

B with A. Let K be the set of n individual datasets on which A and B are run.

K = {D1, D2, D3, . . . .Dn} (3.2)

Let J be the set of complementarity scores (B with A) computed over n dataset in K.

J = {CBA1, CBA2, CBA3. . . CBAn} (3.3)

The upper complementarity bound is then established as

U = max{CBA1, CBA2, CBA3. . . CBAn} (3.4)

The lower complementarity bound is estimated as

L = min{CBA1, CBA2, CBA3. . . CBAn} (3.5)

The median of complementarity of B with A is computed as

Q = median{CBA1, CBA2, CBA3. . . CBAn} (3.6)
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3.2.3 Explanation of Complementarity Scores

In this section, we provide an explanation of the complementarity scores used in this

thesis, including their mathematical foundation, interpretation, and handling of un-

defined values. The complementarity score between two VPR techniques is a measure of

how well the techniques compensate for each other’s weaknesses. Mathematically, the

complementarity score C is defined as:

C(A,B) =
NA∩B

NA +NB −NA∩B

where:

• NA is the number of proposed matches by technique A,

• NB is the number of proposed matches by technique B,

• NA∩B is the number of common proposed matches by both techniques A and B.

3.2.4 Motivation and Interpretation of Complementarity Scores

The motivation for using complementarity scores is to quantify how well two VPR tech-

niques compensate for each other’s weaknesses, guiding the selection of techniques that

improve overall VPR performance. A complementarity score ranges from 0 to 1, with

specific interpretations for these boundary values:

• Complementarity Score of 0: Indicates total redundancy, where the techniques

make the same proposed matches, correct or incorrect. This means that combining

these techniques would add no value, as they do not complement each other and

would only increase computational cost without improving VPR performance.
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• Complementarity Score of 1: Signifies perfect complementarity, where each tech-

nique makes entirely different proposed matches. This maximizes the overall chance

of correct matches, as one technique’s failures are fully compensated by the other,

leading to significant improvements in VPR performance.

3.2.5 Handling Undefined Values

If the denominator in the formula becomes zero (NA+NB−NA∩B = 0), the complement-

arity score C is undefined. This occurs if NA = 0 and NB = 0, meaning both techniques

fail to make any proposed matches. Practically, this is handled by:

• Assigning a complementarity score of 0, as neither technique contributes to recog-

nition.

• Excluding such pairs from the analysis to prevent distortion of results.

3.2.6 Ensuring Valid Scores

By the formula design, the complementarity score cannot exceed 1, as the numerator

represents the subset of proposed matches common to both techniques, and the denom-

inator represents the union of proposed matches by both techniques. The complement-

arity score is a robust metric for evaluating the synergistic potential of different VPR

techniques. A score of 0 indicates redundancy, while a score of 1 indicates complete

complementarity, providing a clear measure for enhancing VPR performance in terms of

accuracy through technique combinations. Handling undefined values by default assign-

ment or exclusion ensures the robustness and reliability of the analysis.
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3.2.7 Estimating maximum achievable performance.

It is beneficial to estimate the maximum achievable VPR performance (in terms of accur-

acy) of a multi-process fusion system over a dataset at an early stage. This is estimated

as follows:

MAPE =
(T +W +X)

Y
(3.7)

Where MAPE is the maximum achievable VPR performance estimate for the fusion

system over a dataset D; T is the number of images of D which are incorrectly matched

by A but correctly matched by B when the two methods are run; W is the number of

images of D which are correctly matched by A but incorrectly matched by B when the

two methods are run; ; X is the number of images of D which are correctly matched by

both A and B when the two methods are run; Y is the total number of images of D.

3.3 Complementarity Experimental Setup

This section demonstrates the use of the proposed complementarity framework by com-

paring several VPR techniques in a pairwise manner, tested on multiple widely used

VPR datasets [124] as listed in Table 3.1 that are used for the experiments, namely

GardensPoint [3], 24/7 Query [101], Essex3in1 [5], SPEDTest [9], Cross-Seasons [4],

Synthia [7], Corridor [11], 17-Places, Living room [12], and Nordland [2].

The implementation details of the eight VPR techniques that are utilised in the exper-

iments are given below [125].

AlexNet: The use of AlexNet for VPR was studied by [8], who suggested that conv3

is the most robust to conditional variations. The conv3 layer refers to the third convo-

lutional layer of the AlexNet architecture, which has been shown to effectively capture
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TABLE 3.1: VPR-BENCH DATASETS USED FOR DETERMINING COMPLEMENTARITY

Dataset Environment Query Images Ref Images Viewpoint-Variation Conditional-Variation
GardensPoint University Campus 200 200 Lateral Day-Night
24/7 Query Outdoor 375 750 6-DOF Day-Night
ESSEX3IN1 University Campus 210 210 6-DOF Illumination
SPEDTest Outdoor 607 607 None Seasonal and Weather

Cross-Seasons City-Like 191 191 Lateral Dawn-Dusk
Synthia City-like(Synthetic) 947 947 Lateral Seasonal

Nordland Train Journey 1622 1622 None Seasonal
Corridor Indoor 111 111 Lateral None
17-Places Indoor 406 406 Lateral Day-Night

Living-room Indoor 32 32 Lateral Day-Night

mid-level features that are less sensitive to changes in environmental conditions. Gaus-

sian random projections are used to encode the activation-maps from conv3 into feature

descriptors. The implementation of AlexNet for this purpose is similar to the one em-

ployed by [74].

NetVLAD: The original implementation of NetVLAD was in MATLAB, as released by

[1]. The Python part of this code was open-sourced by [126]. The model selected for

evaluation is VGG-16, which is a deep convolutional neural network architecture known

for its 16 layers, trained in an end-to-end manner on Pittsburgh 30K dataset [1] with a

dictionary size of 64 while performing whitening on the final descriptors.

AMOSNet: This technique was proposed by [127], where a CNN was trained from

scratch on the SPED dataset. The authors presented results from different convolutional

layers by implementing spatial pyramidal pooling on the respective layers. While the

original implementation is not fully open-sourced, the trained model weights are shared

by authors.

HybridNet: While AMOSNet was trained from scratch, [127] took inspiration from

transfer learning for HybridNet and re-trained the weights initialised from the top-5 con-

volutional layers of CaffeNet [128] on SPED dataset. This work implements HybridNet
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using conv5 of the shared HybridNet model [129].

RegionVLAD: This technique is introduced and open-sourced by [63]. This work uses

AlexNet (trained on the Places365 dataset) as the underlying CNN. The total number of

regions of interest is set to 400, and uses conv3 for feature extraction. The dictionary

size is set to 256 visual words for VLAD retrieval. Cosine similarity is subsequently used

for matching descriptors of query and reference images.

CALC: The use of convolutional auto-encoders for VPR was proposed by [74], where

an auto-encoder network was trained in an unsupervised manner to re-create similar

Histogram of Oriented Gradients (HOG) descriptors for viewpoint variant (cropped) im-

ages of the same place. The model parameters use are from 100,000 training iterations.

Cosine-matching is used for descriptor comparison.

Histogram of Oriented Gradients (HOG): HOG is one of the most widely used hand-

crafted feature descriptors [58]. This work uses a cell size of 16 × 16 and a block size

of 32 × 32 for an image size of 512×512 for the implementation. The total number of

histogram bins is set to 9. Cosine-matching between HOG descriptors of various images

is used to find the best place match.

CoHOG: This technique uses image entropy for region-of-interest extraction. The

regions are subsequently described by dedicated HOG descriptors, and these regional

descriptors are convolutionally matched to achieve lateral viewpoint-invariance. It is an

open-source technique and uses an image size of 512 × 512, cell size of 16 × 16, bin-

size of 8, and an entropy-threshold (ET) of 0.4. CoHOG also uses cosine-matching for

descriptor comparison [130].
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3.4 Complementarity Results and Analysis

This section presents the results generated by utilizing the proposed framework over

a set of eight VPR techniques on various standard VPR datasets. The figures ahead

illustrate the complementarity scores of different VPR methods with each other across

these datasets, allowing for a visual analysis of how different pairs of VPR methods

exhibit varied complementarity levels.

Fig. 3.3. Complementarity of VPR methods with AlexNet on Multiple VPR datasets.

One of the most intriguing findings is how certain VPR techniques, which perform

poorly on their own, show remarkably high complementarity scores when paired with

others. This phenomenon occurs when the errors made by one technique are system-

atically different from the errors made by another, allowing them to effectively cover
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each other’s weaknesses. Figure 3.3 for example, demonstrates high complementarity of

AlexNet with NetVLAD, HybridNet, and RegionVLAD on several datasets. For example,

NetVLAD achieves complementarity scores of 0.9, 0.65, 0.65, and 0.9 on the 24-7, Es-

sex3in1, GardenPoint, and Livingroom datasets, respectively. Similarly, HybridNet shows

strong performance on the 24-7, Corridor, Nordland, and SPED datasets, while Region-

VLAD achieves the highest scores on the 24-7 and Essex3in1 datasets.

Fig. 3.4. Complementarity of VPR methods with AMOSNet on Multiple VPR datasets.

In another interesting example, CoHoG and NetVLAD are the only methods that com-

plement AMOSNet well as illustrated in Figure 3.4. For instance, AMOSNet and CoHoG

achieve high complementarity scores of 0.7, 0.8, and 1 on the 24-7, Essex3in1, and Livin-

groom datasets, respectively. The combination of AMOSNet and NetVLAD reaches scores

of 0.85, 0.65, and 0.9 on the same datasets. This suggests that combining AMOSNet with
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CoHoG or NetVLAD can lead to a robust VPR system, while CALC consistently scores low,

indicating poor complementarity with AMOSNet.

Fig. 3.5. Complementarity of VPR methods with CALC on Multiple VPR datasets.

When considering CALC as the primary VPR technique as shown in Figure 3.5, CoHoG

and NetVLAD emerge as suitable partners. CoHoG exhibits high complementarity scores

on the 24-7, Essex3in1, Livingroom, and SPED datasets, while NetVLAD matches CALC

well on the 24-7, Essex3in1, GardenPoint, and Livingroom datasets. Despite CALC’s gen-

erally lower standalone performance, its combination with these techniques significantly

boosts overall performance. This highlights the importance of evaluating complementar-

ity independently of individual performance metrics.

The complementarity levels are also presented in the form of radar charts (Figure

3.6), representing the lower and upper bounds of complementarity of each VPR tech-
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Fig. 3.6. Max (upper bound), Min (lower bound), and Median complementarity of VPR methods
with: AlexNet, AMOSNet, CALC, CoHoG, HoG, HybridNet, NetVLAD, RegionVLAD.

nique with all other methods. These charts provide a holistic view of how much the

complementarity levels vary among different techniques. For example, combinations

with AlexNet show the largest upper bounds with NetVLAD, RegionVLAD, and Hybrid-

Net, while CALC has the smallest bounds. AMOSNet combinations exhibit the highest

upper bounds with NetVLAD and CoHoG, whereas HybridNet and CALC have the smal-

lest bounds.

The detailed numerical results of the remaining figures for different datasets, includ-

ing the exact complementarity scores for each technique pair across all datasets recorded
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TABLE 3.2: MAXIMUM ACHIEVABLE PERFORMANCE ESTIMATE FOR DIFFERENT COMBINATIONS OF

VPR METHODS ON STANDARD DATASETS

VPR Combinations 17Places 24-7 Corridor CrossSeasons Essex3in1 Garden Point Livingroom Nordland SPED SYNTHIA
AlexNet + AMOSNet 43.1 87.2 73.8 32.9 28.0 54.0 62.5 83.6 81.3 32.2
AlexNet + CALC 36.2 72.0 54.0 31.9 19.0 34.0 59.3 53.8 59.6 30.62
AlexNet + CoHoG 44.0 95.7 71.17 28.7 82.8 48.5 96.8 50.8 63.4 32.7
AlexNet + HoG 33.7 69.3 62.1 28.2 15.7 36.0 59.3 79.9 65.2 32.1
AlexNet + HybridNet 43.3 90.6 74.7 35.0 30.1 52.0 68.7 87.4 81.7 31.3
AlexNet + NetVLAD 48.2 97.6 65.7 36.1 70.9 65.5 96.8 52.7 76.2 34.2
AlexNet + RegionVLAD 44.5 94.1 58.5 31.9 60 53.5 71.8 57.1 67.2 31.2
AMOSNet + CALC 41.8 85.6 63.0 35.0 30.0 55.5 56.2 83.4 81.3 30.4
AMOSNet + CoHoG 44.0 95.4 69.3 29.3 84.2 60.5 100 83.1 84.1 32.5
AMOSNet + HoG 42.11 85.6 69.3 30.8 27.1 52.5 56.2 90.3 82.8 32.5
AMOSNet + HybirdNet 42.11 89.8 72.0 34.5 30.9 57.9 62.5 89.5 82.5 29.8
AMOSNet + NetVLAD 47.2 97.6 66.6 35.0 73.8 75.5 96.8 83.6 86.1 34.1
AMOSNet + RegionVLAD 44.5 94.6 65.7 33.5 61.9 62.0 68.7 83.4 84.0 31.2
CALC + CoHoG 42.3 94.3 54.9 25.1 83.3 45.5 96.8 26.6 59.1 29.6
CALC +HoG 34.4 63.4 47.7 27.2 13.3 33.0 53.1 75.0 60.1 30.6
CALC + HybridNet 42.3 94.3 54.9 25.1 83.3 45.5 96.8 26.6 59.1 29.6
CALC + NetVLAD 47.0 97.3 47.7 34.5 71.4 63.5 96.8 30.0 74.4 32.1
CALC + RegionVLAD 43.3 93.0 43.2 32.9 61.4 51.5 65.6 35.1 64.4 28.4
CoHoG + HoG 42.8 94.6 63.9 19.3 82.3 47.5 96.8 73.5 62.9 31.2
CoHoG + HybridNet 45.0 95.4 77.4 31.9 84.7 58.5 100 86.2 83.1 31.4
CoHoG + NetVLAD 45.8 97.6 61.2 27.2 88.5 74.5 96.8 22.3 74.6 32.9
CoHoG + RegionVLAD 44.0 97.0 59.4 25.6 86.1 59.5 96.8 28.4 64.0 31.5
HoG + HybridNet 42.6 90.1 75.6 33.5 29.5 50.5 62.5 91.4 82.5 31.3
HoG + NetVLAD 45.8 97.6 61.2 27.2 88.5 74.5 96.8 22.3 74.6 32.5
HoG + RegionVLAD 43.3 93.8 54.9 26.1 59.0 50.0 65.6 74.3 68.6 32.5
HybridNet + NetVLAD 45.0 94.9 72.9 36.1 61.4 61.0 75.0 86.4 83.0 29.7
HybridNet + RegionVLAD 45.0 94.9 72.9 36.1 61.4 61.0 75.0 86.4 83.0 29.7
NetVLAD + RegionVLAD 46.7 98.4 51.3 35.6 79.5 77.0 96.8 31.3 77.5 33.1

in Table 3.2, are provided in Appendix A. These results highlight the significant improve-

ments that can be achieved by maximizing complementarity, offering insights into the

improved selection of VPR techniques for ensemble setups.

3.5 Complementarity Summary

The well-defined Complementarity framework presented in this chapter is essential for

determining the viability of combining different VPR methods for a multi-process fusion

system. The complementarity information computed through the proposed framework

helps to select the best possible combination of VPR techniques to ensure performance

improvement in fused systems. The framework is based on a McNemar’s test-like ap-

proach [122], [123] that categorizes each VPR outcome from a technique as either

59



60 Chapter 3. Proposed Complementarity Framework

success or failure (considering ground truth information). It allows the estimation of

upper and lower complementarity bounds for the VPR techniques to be combined, along

with an estimate of the maximum VPR performance (in terms of accuracy) that may

be achieved. This chapter provides a significant contribution to the development of en-

semble VPR methods proposed within this thesis. For exmaple one of the key insights

from our analysis is the identification of VPR techniques that are particularly well-suited

for specific environmental conditions. For instance, NetVLAD consistently shows high

complementarity scores across different datasets, making it highly effective for day-night

scenarios. Similarly, CoHoG and AMOSNet demonstrate high complementarity in scen-

arios with significant seasonal variations, suggesting their suitability for environments

where appearance changes drastically with seasons. HybridNet and RegionVLAD exhibit

strong performance under varying illumination conditions, making them ideal candid-

ates for scenarios with fluctuating lighting. These insights into the suitability of spe-

cific VPR techniques for different environmental conditions informed the design of the

Switch-Fuse System described in Chapter 5 ahead. By selecting techniques based on

their demonstrated strengths in particular scenarios, the system dynamically switches

and fuses the most appropriate techniques to enhance overall matching accuracy.

The remainder of this thesis utilises the insights and results produced in this chapter

which further reiterates the importance of the findings presented in this chapter. To

this end, Section 3.1 explained the need for complementarity and its importance that

had, to this author’s knowledge, had been overlooked to date. Section 3.2 introduced

the Complementarity framework and its design. While Section 3.3 is dedicated for a

demonstration of the framework utilizing a large experimental setup. This explains, in

detail, where and how the framework is employed and produces interesting cases for
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future reference and deeper analysis along with critical insights that are the basis of later

chapters presented ahead.
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Chapter 4

SwitchHit
1

Chapter 3 introduced the concept and importance of complementarity for different en-

semble VPR set ups and provided insights to evaluate level of complementarity among

different VPR techniques. Based on the findings presented in Chapter 3 , this chapter is

dedicated to the research conducted for designing a complementarity-based Switching

system. SwitchHit, unlike other existing multi-fusion systems for VPR, does not simply

run all techniques at once to enhance performance, rather predicts the probability of

correct match for an incoming query image and dynamically switches to another com-

plementary technique, as required.

Further motivation for SwitchHit is driven by the lack of a universal VPR technique

that can work in all types of environments, on a variety of robotic platforms, and under a

wide range of viewpoint and appearance changes. Nonetheless, recent work has shown

the potential of combining different VPR methods intelligently for some specific VPR

datasets to achieve better performance. This, however, requires ground truth informa-

1The work presented in this chapter has been accepted and presented at IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022.
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tion (correct matches) which is not available when a robot is deployed in a real-world

scenario. Moreover, running multiple VPR techniques in parallel may be prohibitive for

resource-constrained embedded platforms. SwitchHit, on the other hand, is built on

a probabilistic model and knowledge of complementarity of different VPR techniques

and operates by switching to the best available VPR techniques. This innovative use

of multiple VPR techniques allow SwitchHit to be more efficient and robust than other

combined VPR approaches employing brute force and running multiple VPR techniques

at once. Thus, it is more suitable for resource constrained embedded systems and achiev-

ing an overall superior performance from what any individual VPR method in the system

could have achieved running independently. Figure 4.1 depicts an example of how the

SwitchHit system selects and switches between VPR methods for each query image to

ensure the selection of the best VPR technique for a given query, to maximize perform-

ance. The system does this by predicting the probability of each technique correctly

matching the query image and switching from a technique with low chances of correctly

matching to a technique with higher chances of correctly matching the query image. The

top of the figure displays the fluctuating pattern of switches between different VPR tech-

niques. The bottom presents the total percentage of each VPR technique selected using

SwitchHit and the final results such a system produces which clearly indicate a surge in

the total number of correctly matched images for the chosen data set.

4.1 Shortcomings of Existing Ensemble VPR Setups

Instead of another attempt to develop a new VPR technique from scratch, a well-received

and intuitive solution was put forward in [31], [34] that introduced the concept of multi-
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Fig. 4.1. SwitchHit: Dynamically optimizing VPR with dynamic VPR technique selection and
switch

process fusion between different VPR techniques. They take inspiration from the practise

of fusing multiple sensors to improve place recognition performance as that has been the

focus of several research works [8], [74], [1]. However, multi-sensor approaches help

boost performance, they do carry certain disadvantages, such as expensive and bulky

sensors, and potentially significant increase in computation. To overcome these short-

comings, the concept of fusing multiple VPR techniques gained popularity. The authors

of [127] combined multiple image processing methods into a merged feature vector us-

ing a convex optimization approach to decide the best match from the sequence of images

generated. The effort did generate some promising results over multiple datasets but had

limited overall performance due to the absence of sequential information. Similarly, a

multi-process fusion system was introduced in [31] which combined multiple VPR meth-
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ods using a Hidden Markov Model (HMM) to identify the optimal estimated location

over a sequence of images. In continuation of this, a three-tier hierarchical multi-process

fusion system was then presented in [34] which was customizable and may be extended

to any arbitrary number of tiers. A different place recognition method is used in each

tier to compare the query image with the provided sequence of images. The existing

research conducted for advancing VPR via such approaches presented promising results

and undoubtedly held even more potential.

However, two major and common shortcomings reoccurring throughout were the

absence of complemenentarity and the use of brute force to run multiple techniques sim-

ultaneously. Firstly, instead of a carefully curated group of complementary VPR methods,

a selection of somewhat random VPR techniques were chosen to be fused together, often

on the basis of each method’s individual performance not considering the redundancy

that two otherwise high-preforming techniques might have with each other. The work

presented in Chapter 3 presents insights to tackle this issue however the utility of the

knowledge presented in Chapter 3 was yet to be tested. Secondly, employing multiple

VPR techniques simultaneously to fuse their results to enhance performance is not always

an efficient approach especially for resourc,e constrained environments.

SwitchHit attempts to tackle both these issues by basing its tested group of VPR tech-

niques on careful selection by considering the information provided on complementarity

and follows a probabilistic model to allow for dynamic switching between the available

complementary techniques as to avoid the use of brute force.
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4.2 SwitchHit Methodology

This section discusses the probabilistic complementarity-based switching system that es-

timates the probability of the primary VPR technique correctly matching the query image.

Fig. 4.2. Bayes’ Theorem inspired framework: Updating VPR matching probabilities using priors
and event likelihoods"

While if the probability of match is lower than the set threshold the system looks for the

best alternative technique by calculating and selecting the technique with highest com-

plementarity to the primary VPR technique.

The framework is based on the idea of Bayes inference which is a method of statistical

inference using Bayes’ theorem to update the probability for a hypothesis once more evid-

ence is provided. The framework employs the basis of this statistical approach in terms

that the hypothesis is that the incoming query image is correctly matched. The evid-

ence is the matching score the VPR technique computes for every query image. Training
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the system on several data sets provide us with the prior probability of a correct match

the VPR techniques have overall and the likelihood of correctly matching the query im-

age given a certain matching score range, which is also computed during training. The

prior information is used to estimate the posterior probability of matching correctly given

the input query image matching score. This will help the system to avoid running even

after several incorrect matches and help regulate performance although with access to

ground truth at the training stage. Furthermore, this decision is then the guiding factor

to computing the complementarity of the primary VPR technique with other available

VPR techniques to allow a dynamic switch to a better alternative technique for the query

image.

The system runs by performing six major steps that are explained in detail ahead and

also illustrated in Figure 4.2 which depicts the Bayes’ theorem inspired framework that

updates the matching probability of a system for the given query image based on prior

information and likelihood of matching. Where P(Mmatch) and P(Mmismatch) is probability

of match and mismatch respectively. P(Mmatch) and P(Z|Mmismatch) is probability of event

Z occurring given its match or mismatch respectively while figure 4.3 explains the second

component of the framework that is the selection and switching to a VPR Technique with

the highest complementarity if the probability of match (Posterior) is below the threshold

value. The system begins by training for the data sets mentioned in the Table 4.1 to

gather the prior and likelihood values to determine later whether a switching step is

required and finally, if needed, switches to a VPR technique that is the best alternative

for the given the query image. Below each step performed is explained in detail along

with their mathematical representation.

A. Computing Probability of Total System Match and Mismatch (Prior). These are
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the equations proposed in this thesis to compute the probability of correct match that a

VPR technique has overall for given data set. Where P(Mmatch) is the probability of total

correct matches which is calculated by the total number of correct matches in the data

set divided by the total number of images in the given data set. This is vice versa for

P(Mmismatch) which is the probability of total incorrect matches for the dataset.

P (Mmatch) =
Total No. of matches in Dataset

Total No. of Images in Dataset
(4.1)

P (Mmismatch) =
Total No. of Mismatches in Dataset

Total No. of Images in Dataset
(4.2)

B. Computing Probability of Any Score Event given its match or mismatch (Like-

lihood). These equations compute the probability of any score event/range occurring

given that it is correctly or incorrectly matched by the VPR technique. P(Z|Mmatch) is the

probability of each score range given that it is correctly matched by a technique. This is

calculated by a solving the fraction between number of correct matches given a certain

score range and the total number of images or entries occurring in the given score range.

This is vice versa for P(Z|Mmismatch) which is the probability of each score range given

that it is incorrectly matched by a given technique. These equations are used for each

score range considered in this experimentation beginning from 0 and ending at 1 with

an interval of 0.1 between each range.

P (Z|Mmatch) =
W

X
(4.3)

Where P(Z|Mmatch) is the probability of each score range given that it correctly matched

by a technique and W is a number of matches within the given score range and X is the
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total number of images within given score range.

P (Z|Mmismatch) =
Y

X
(4.4)

Where P(Z|Mmismatch) is the probability of each score range given that it’s not correctly

matched by a technique, Y is the number of mismatches within the given score range

and X is the total number of images within given score range.

C. Computing Probability that Query Image is Matched Given Input Score Event

(Posterior). This equation computes the posterior probability of the VPR technique

correctly matching the image given the input query matching score generated. Where

P(Mmatch) is the probability of match by the primary technique overall which is the prior in

the framework. P(Z|Mmatch) is the likelihood for the VPR technique given it will correctly

match for a certain score event. This produces an updated but non-normalized probabil-

ity distribution between the matching and mismatching. Finally, P(Z) is the marginaliza-

tion in the equation and is the summation of both updated non-normalized distribution

of match and mismatch. In other words P(Z) is the summation of P(Z|Mmatch)*P(Mmatch)

and P(Z|Mmismatch)*P(Mmismatch).

P (Mmatch|Z) =
P (Mmatch) ∗ P (Z|Mmatch)

P (Z)
(4.5)

D. Determining VPR Technique for Switching. The posterior probability calcula-

tion allows us to predict the level of certainty or confidence with which the technique

will correctly match the query image. When this value of probability is lower than the ac-

cepted value (0.5) the system attempts to switch to another technique complementary to

the current primary technique. The system calculates the probability of complementarity

that the primary technique has to the other available VPR techniques.
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Once the technique with the highest complementarity is determined, the system

switches toward this technique and determines the new posterior probability of matching

the query image.

Fig. 4.3. Select and Switch: Adapting to the Most Complementary VPR Technique Below
Threshold Probabilities

E. Calculating Probabilities of Complementarity This equation computes the com-

plementarity for the given query image that the primary technique has to the other avail-

able VPR methods in the system. We define the terms score event and event Z to clarify

their usage in the calculations. A score event refers to a specific range within the total

score range of 0 to 1, divided into equal intervals. For example, dividing the range

into intervals of 0.1 results in the following score events: [0.0-0.10], [0.10-0.20], ...,

[0.90-1.0]. An event Z corresponds to one of these score event ranges. For instance,

event Z as [0.30-0.40] represents scores within that interval. These divisions help ana-

lyse score distributions and occurrences. Refer to Figure 4.2 for a visual representation

of the score range divisions and corresponding score events. Where P (ZQ | Mmatch by A)

and P (ZQ | Mmismatch by A) are the probabilities of the certain score event for the query

image given it is matched or mismatched by technique A. Similarly, P (ZQ | Mmatch by B)
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and P (ZQ | Mmismatch by B) are the probabilities of the certain score event for the query

image given it is matched or mismatched by technique B.

P(CAB) =
P (ZQ|Mmatch by A) ∗ P (ZQ|Mmatch by B)

P (ZQ|Mmismatch by A) ∗ P (ZQ|Mmismatch by B)
(4.6)

The equation computes the complementarity of A with B (CAB). This is the comple-

mentarity the two techniques have to each other given a certain matching score range,

i.e., query image matching score range.

F. The Dynamic Switch. Once a successful loop of switching has taken place from

the primary to the selected secondary VPR technique, the same Bayes inference inspired

framework is implemented to predict the posterior probability of correct match for the

new temporary primary technique. If the probability of correct match produced is above

the predetermined threshold, the reference image matched by this technique is con-

sidered the final result i.e. the correct match. If however, this too fails to produce a

satisfactory probability for correct match, the system switches again to the next best op-

tion to observe its results. Given that the probability for match by the third technique

is satisfactory, the reference image it matches the query image to will be considered the

final result. If not, then in the worst case the system selects the technique with the best

probability among the group and considers the result produced by this technique. This,

ensures that it exhausts all possible options the system could undergo to correctly match

an image and improving overall performance of the system by producing better results

than any individual VPR technique from the system could have produced independently.
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TABLE 4.1: COMBINATIONS OF VPR TECHNQIUES TESTED ON EACH DATASET FOR SWITCHHIT

VPR Datasets VPR Technique Combinations
Corridor CALC, HoG, NetVLAD CoHoG, HybridNet, CALC NetVLAD, AMOSNet, CoHoG
Livingroom AMOSNet, CoHoG, NetVLAD AlexNet, NetVLAD, RegionVLAD CALC, CoHoG, AlexNet
ESSEX3IN1 CALC, CoHoG, HybridNet CoHoG, NetVLAD, HoG AlexNet, NetVLAD, RegionVLAD
GardenPoint NetVLAD, RegionVLAD, CoHoG AlexNet, NetVLAD, RegionVLAD CALC, AMOSNet, NetVLAD
Cross-Seasons AlexNet, NetVLAD, HybridNet CoHoG, HoG, NetVLAD CoHoG, HoG, AlexNet
SYNTHIA CALC, HybridNet, CoHoG RegionVLAD, NetVLAD, AlexNet AlexNet, NetVLAD, CoHoG

4.3 SwitchHit Experimental Setup

This section discusses the choice of VPR techniques selected to be employed within the

SwitchHit system along with a wide variety of the VPR datasets used to test the perform-

ance of SwitchHit. The experimental set up to test SwitchHit was designed to ensure

that the maximum number of state-of-the-art VPR techniques are tested along with en-

suring the testing is performed on datasets that consist of all major types of variations

that can be possibly be encountered. Table 4.1 lists the several combinations of VPR tech-

niques, covering multiple majorly employed methods, that were selected beforehand to

test SWitchHit. This again was not a random selection but rather a carefully curated

group of combinations based on the knowledge of complementarity provided in Chapter

3. To ensure a comprehensive evaluation, k-fold cross-validation with a fold size of 4

was employed. This approach allowed testing on the entire dataset, ensuring that the

final performance reflects the system’s behavior across diverse scenarios. Additionally,

the deployment in unseen environments and the reliance on a relatively large training

dataset is, however, a limitation. Future work can explore strategies like transfer learning

to improve adaptability in new environments without requiring extensive training data,

further enhancing the system’s practicality in diverse real-world settings.
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4.4 SwitchHit Results and Analysis

The results gathered and collected for evaluating the SwitchHit performance are presen-

ted to show case the overall performance improvement over various datasets. Moreover,

to also depict how SwitchHit, merely by making intelligent switches to more optimal

techniques, is able to produce improved results that even the highest performing in-

dividual VPR technique can achieve as a stand-alone choice. SwitchHit, unlike other

ensemble VPR set ups does not employ brute force rather applies a more structured

approach to only run one selected method at any given time. The performance is eval-

uated in terms of total number of correctly matched images for a dataset as well as the

PR-curves generated to observe SwitchHit accuracy by contrast to the stand-alone VPR

methods.

Fig. 4.4. Switching patterns and total Number of correct matches for Corridor dataset.

74



4.4. SwitchHit Results and Analysis 75

Fig. 4.5. Switching patterns and total Number of correct matches for ESSEX3IN1 dataset.

Total Correct Matches For a VPR Dataset: Measuring the total number of correct

matches vs. the number of incorrect matches for all the tested images in a dataset is the

most basic method to simply visualize the difference two VPR methods have in terms of

performance, for a sample case see the example provided in Figure 4.1. SwitchHit and

its performance is presented in this simplistic but informative manner to show how it

outperforms other VPR methods including the ones SwitchHit itself employs. The results

for this are presented in terms of bar charts for representation. Figures 4.4 to 4.10

illustrate these results. Additionally, x-axis ranges differ due to the large differences in

dataset sizes, ensuring clear and accurate representation of each dataset’s performance

metrics.

The Switching Patterns: These results are unique and specific for a setup like Switch-

Hit and hence an interesting manner is proposed for representing exactly what is happen-
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Fig. 4.6. Switching patterns and total Number of correct matches for Livingroom dataset.

ing within a SwitchHit system as it goes through various query images or places and tries

to correctly match the image/place. For cases when the system predicts a low probability

score of correct match it switches to either one of two options the available choosing

the one with the higher complementarity to the currently running VPR technique. This

allows for the highest chance that the next chosen method will be able to correctly match

the query image. This forms various patterns depicting the switches that were made with

a example case provided in Figure 4.1

Precision-Recall and AUC: True-Positives (TP) are the places that a VPR matched

correctly, False-Positives (FP) are those erroneously matched, and False-Negatives (FN)

are real positive matching places discarded by the VPR technique. For reference, chapter

2 discusses in detail the use of PR-curves and AUC; their significance and methodology

is further detail.
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4.5 Results and Performance of SwitchHit on Various

VPR Datasets

Figures 4.4 to 4.8 present the results in a unique manner, depicting the switching pattern

of SwitchHit for various datasets along with the increase in performance in terms of

correctly matched images. The results for the Corridor dataset in Figure 4.4 show that

all three combinations tested present varied switching patterns, with each combination

correctly matching an average of three to four more images than any individual VPR

technique. For instance, the combination of CALC, HoG, and NetVLAD demonstrates

significant performance improvement.

Similarly, Figure 4.5 illustrates the results for the ESSEX3IN1 dataset where the com-

bination of CALC, CoHoG, and HybridNet outperforms the best standalone VPR tech-

nique. SwitchHit correctly matches four to five more images than CoHoG, which has the

highest individual performance. Another notable example is the combination of AlexNet,

NetVLAD, and RegionVLAD, where SwitchHit mostly shifts between NetVLAD and Re-

gionVLAD, matching three more images correctly than the best individual technique.

The Livingroom dataset results in Figure 4.6 reveal that SwitchHit improves perform-

ance by two images while switching between AMOSNet and NetVLAD. The combina-

tion of AlexNet, NetVLAD, and RegionVLAD exceeds NetVLAD’s performance by match-

ing three more images correctly. Additionally, the combination of CALC, CoHoG, and

AlexNet, which are not the best VPR techniques for this dataset, improves performance

by four images and matches NetVLAD’s performance.

Lastly, Figure 4.7 shows the results for the GardensPoint dataset, where SwitchHit

makes successful switches between NetVLAD and RegionVLAD, correctly matching more
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Fig. 4.7. Switching patterns and total Number of correct matches for GardensPoint dataset.

images than the highest-performing individual VPR technique.

The detailed numerical results and switching patterns of the all other datasets tested

are provided in Appendix B. These results emphasize the substantial performance im-

provements achieved by SwitchHit through switching, demonstrating its effectiveness in

enhancing VPR accuracy beyond the capabilities of individual techniques.

4.6 SwitchHit Summary

This chapter presents SwitchHit, an innovative and intelligent switching system for VPR

techniques based on complementarity. The experiments conducted to test the system

show how it selects and employs the best of each VPR technique, even those that are

relatively low performing overall. It is built on the empirical data presented in Chapter
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Fig. 4.8. PR curves for Corridor, ESSEX3IN1 and GardensPoint datasets illustrating SwitchHit
performance in comparison to all other individual VPR techniques for each data set.

3, which demonstrates that for combining two techniques via fusion or switching, the se-

lection of two high-performing VPR methods is not always the most efficient approach;

rather, knowledge of their complementarity is essential to ensure maximum perform-

ance improvement and avoid redundancy. This requirement can be fulfilled by two high-

performing techniques, two low-performing techniques, or one of each. Consequently,

the observed cases in results where an otherwise low-performance VPR technique in-
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cluded in SwitchHit significantly boosts performance. The insights and results further

reiterate that there are several more ideas to be generated to solve the VPR problem

informatively even just using the existing VPR techniques available. Although SwitchHit

aims to optimize performance through intelligent switching, it is important to note that

the computational and storage requirements vary based on the complexity of the tech-

niques employed. While improvements in computation and storage were not the main

focus, avoiding brute force methods provides a theoretical advantage. However, the sys-

tem’s dependency on large datasets to effectively learn the complementarity between

different VPR techniques can be a challenge in data-scarce environments. Despite this,

SwitchHit offers an interesting approach to VPR, enhancing recognition accuracy and

robustness by leveraging the strengths of diverse techniques.
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SwitchFuse
1

Chapter 4 presents the SwitchHit system, designed to allow efficient Switching among

the available VPR methods to boost VPR performance in terms of accuracy. The system

was presented as a solution to the approach of using brute force in ensemble VPR meth-

ods. However, although SwitchHit is substantial step towards an innovative approach for

solving the VPR problem it is not without its limitations. The multi-fusion work presented

in [31], [34] which utilised a fusion methodology that runs multiple techniques to then

merge the results for each. SwitchHit, on the other, is based on switching between the

VPR techniques at the required time to select the VPR method with the highest chance

of correctly matching the query image. The limitations however that exist for both these

approaches are non-negligible and hence require an interesting solution. First being

that the multi-fusion approach, including methods described in [27] and [28], is not the

most sophisticated due to its use of brute force, while switching, as seen in the SwitchHit

architecture, is restricted to the availability of a suitable VPR technique and its correct

1The work presented in this chapter has been accepted and presented at the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS2023),Detroit, Michigan, USA
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identification to have a better chance of recognizing the location correctly.

This chapter presents a solution that addresses both limitations by combining two

otherwise separate approaches, bringing together their strengths while minimizing their

weaknesses. The system presented, SwitchFuse, effectively integrates the robustness

of switching VPR techniques based on complementarity with the effectiveness of fus-

ing carefully selected techniques to significantly boost performance. Unlike basic fusion

methods that simply combine random techniques, SwitchFuse is designed to first switch

and then select the most suitable VPR techniques for fusion based on the query image.

By uniting these two processes—switching and fusing—into a hybrid model, SwitchFuse

achieves substantial performance improvements across major VPR datasets, as demon-

strated through PR curves.

For reference the remaining chapter is organised as follows. Section 5.1 presents

the path from of Switch or Fuse to SwitchFuse, Section 5.2 introduces SwitchFuse as

a system, design and structure. Section 5.3 presents the experiments conducted to test

the SwitchFuse system to evaluate its performance improvement followed by Section

5.4 that discusses and evaluates the results produced via different performance metrics.

Lastly, Section 5.5 is dedicated to a conclusive discussion on what SwitchFuse is able

to achieve and whether its a system leading towards more intelligent and sophisticated

system ideas for VPR improvement.

5.1 Switch or Fuse to SwitchFuse

There are many VPR techniques available today, some with excellent performance. How-

ever, there is still no universal VPR system that is robust to all environmental variations.
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Leaving us a with a pool of strong VPR techniques but each with its own set of ad-

vantages and disadvantages. As discussed in Chapters 3 and 4 the research endeavours

have shifted their focus from developing an entirely new VPR technique to utilizing the

existing techniques to achieve their maximum potential. Very interesting work in this re-

gards is the concept of multi-fusion systems that introduces the concept of multi-process

fusion between different VPR techniques presented by [31], [34]. Chapter 3 provides

substantial knowledge for further designing such ensemble VPR systems and provides

a guideline to follow to achieve higher efficiency. With this new information available,

which is the complementarity of the VPR methods, it opens gates for many more inter-

esting paths to take, SwitchHit (Chapter 4), is an example of such a case. This means for

a scenario where an ensemble VPR approach appear to be beneficial due to the lack of a

universal method, a choice of whether a switching or fusing ensemble VPR set up needs

to be made. Both these approaches with their advantages carry some shortcomings and

having to make a choice means baggage of the limitations of either,

SwitchFuse, is based on observing that both fusion and switching methods have the

potential to improve performance. Switching takes precedence over fusion in some cases

as it merely shifts to the better-performing algorithm and ends up selecting just one

rather than running all or multiple techniques at once to combine their results. But sim-

ultaneously switching does fail at times when all available techniques have a probability

of a proposed match that is below threshold, a major shortcoming faced by SwitchHit. In

such a case SwitchHit selects the technique with the highest probability but not necessar-

ily the best option. However, introducing fusion to the scenario mitigates this problem

by enhancing the ability to fuse a few selected VPR techniques with a high probability of

matching correctly.
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5.2 Methodology

The SwitchFuse system has a tripartite model containing three units designed to incor-

porate a variety of VPR techniques, categorized on the basis of their performance for

different types of variations. However, the system is not restricted to a variation cat-

egorization and can be employed for any other type of classification of different VPR

techniques. The switching component allows for the selection of the best suited tech-

niques for fusion to ensure improved performance. Such an approach saves us from

having to use brute force and fuse all or some random techniques together, rather it in-

telligently selects from the pool of techniques in different units using a Bayes theorem

inspired framework and fuses the final selected and most suitable techniques only.

Fig. 5.1. The SwitchFuse System, a tripartite model, selects and fuses the best VPR techniques to
enhance match accuracy.

Figure 5.1 illustrates the SwitchFuse System, a tripartite model consisting of three

well-curated tiers based on complementarity and environmental variations. Each unit

of the model determines one VPR technique with the highest probability of correctly

matching the query image. These determined VPR techniques then undergo fusion, in-
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volving their feature vectors to calculate combined similarity vectors for determining the

proposed match, thus improving performance. The three units are categorized based on

their performance on various major types of environmental variations, as illustrated in

Figure 5.1. The query image is input to all three units of the system, where the prob-

ability of proposed is calculated by the primary technique in each unit. Switching is

conducted to select an alternate technique when required.

As illustrated in Figure 5.2, each unit of the tripartite model selects the best VPR tech-

nique available by calculating the probability of proposed match and determining the

VPR technique with the highest probability as the final selected VPR Technique. Finally,

a single technique is selected by each unit, so all three units select one VPR technique,

each of which has the highest likelihood of correctly matching the query image. These

selected techniques then undergo fusion, where the next step is to add the normalized

distance vectors produced by each of these techniques, as displayed in Figure 5.3, ensur-

ing a significant enhancement in performance. To provide a clearer understanding, the

following pseudo-code outlines the algorithm used in the tripartite model:
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Algorithm 1 Tripartite Model Algorithm for VPR Technique Selection

1: Input: Query Image Q, VPR Techniques N = {N1, N2, ..., Nn}
2: Output: Selected VPR Techniques {N1, N2, N3}
3: for each Unit Ui in {Unit1, Unit2, Unit3} do
4: Set n = 1
5: while n ≤ N do
6: Calculate Pn (Posterior probability for VPR technique Nn given Q)
7: if Pn > 0.5 then
8: Select Nn as the best VPR technique for Ui

9: break
10: else if n < N then
11: n = n+ 1
12: else
13: Select N(P ) (VPR technique with the highest posterior probability)
14: end if
15: end while
16: end for
17: Fuse the selected VPR Techniques {N1, N2, N3} to determine the final match

The system can be primarily divided into two main steps starting from performing

switching for each unit of the model and then the selected VPR techniques undergo

fusion to determine the proposed match for the query image.

5.2.1 Switching

A. Input Query Image to Each Component of the Tripartite Model: The first step

is the query image provided as an input to each of the three parts of the system. The

query image then undergoes several steps and calculations for the final selection of a

best suited VPR technique from each component. LetX be the set of query images in a

data set and Z be the set of components of the tripartite model performing switching.

X = {Q1, Q2, Q3, . . . .Qn} (5.1)
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Fig. 5.2. One unit of the tripartite model calculates and selects the VPR technique with the
highest match probability.

Z = {A,B,C} (5.2)

B. Applying Switching to Each Unit to Determine A Single-Suited VPR Technique:

This step is divided into further sub-steps that help determine a single technique as an

output by each unit of the system. All of these sub-steps are performed individually for

each component.

Computing Probability that Query Image will be Correctly Matched (Posterior):

This equation, based on Bayes’ theorem, computes the posterior probability of the VPR

technique correctly matching the image given the input query matching score. Here,
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P (Mmatch) represents the probability of a match by the primary technique overall, which

is the prior probability of match. This prior probability can be estimated from the train-

ing data by calculating the ratio of correctly matched instances to the total number of

instances. P (Z|Mmatch) is the likelihood that the VPR technique will correctly match

given a certain matching score. This likelihood can be derived from the performance

characteristics of the VPR technique observed during validation. This produces an up-

dated but non-normalized probability distribution between the matching and mismatch-

ing. Finally, P(Z) which is the marginalization in the equation is the summation of both

updated non-normalized distribution of match and mismatch i.e.. P(Z) is the summa-

tion of P(Z|M)*P(Mmatch) and P(Z|Mmismatch)*P(Mmismatch). Finally, P(M|Z) which is the

calculated posterior, is used to determine the probability of correctly matching the given

image.

P (Mmatch|Z) =
P (Mmatch) ∗ P (Z|Mmatch)

P (Z)
(5.3)

Determining VPR Technique for Switching: The posterior probability calculation

allows us to predict the level of certainty or confidence with which the technique will

correctly match the query image. While in case this value of probability is lower than the

accepted value (0.5) the system attempts to switch to another technique complementary

to the current primary technique. The system calculates the probability of complement-

arity that the primary technique has to the other available VPR techniques. Once the

technique with the highest complementarity is determined the system switches towards

this technique and determines the new posterior probability of matching the query im-

age.

Calculating Probabilities of Complementarity: This equation computes the comple-
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mentarity for the given query image that the primary technique has to the other available

VPR methods in the system. Where P(ZQ|Mmatch by A) and P(ZQ|Mmismatch by A) is the prob-

ability of the certain score for query image given that it is matched or mismatched by

technique A. Similarly P(ZQ|Mmatch by B) and is the probability of the certain score event

for query image given its matched or mismatched by technique B. The equation com-

putes the complementarity of A with B (CAB) i.e. the complementarity the two tech-

niques, have to each other given a certain matching score i.e. query image matching

score. Finally, the system switches to the technique with the higher P(CAB).

P(CAB) =
P (ZQ|MA) ∗ P (ZQ|MB)

P (ZQ|MmismatchA) ∗ P (ZQ|MmismatchB)
(5.4)

The Dynamic Switching: The posteriors for each technique are constantly checked

against the threshold probability of above 0.5 to proceed. If the probability of match

is below threshold the system will switch to another technique and perform the same

steps to determine the probability of match until a suitable technique with satisfactory

probability of match is found. In case no such technique can be found the system selects

whichever technique has the highest probability of match. This selected technique is

considered the output or prime selected technique of a single unit.

The Chosen VPR Techniques: The output is a set of three selected VPR techniques,

one selected by each unit from the tripartite model. Let N be the set of selected tech-

niques for any given query image where n ∈ N and n represents an individual selected

VPR technique.

N = {n1, n2, n3} (5.5)
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Fig. 5.3. The fusion step normalizes and sums distance vectors from selected VPR techniques to
enhance matching accuracy.

5.2.2 Fusion

As illustrated in Figure 5.3 the fusion step incorporates how each selected VPR tech-

nique produces a distance vector with the distance scores between the query image and

reference images in the database. After normalizing these distance vectors before fusion,

which is performed by taking the summation of these normalized/observation vectors,

the selected VPR techniques are combined to provide the results. As discussed above fu-

sion is the last and final step of the system. Generally, to perform VPR each query image

is compared against a database of prior images mainly by using different feature extrac-

tions and image matching techniques. This process results in a D dimensional similarity

vector, which is a list of similarity scores between the query and reference images in the

database. The similarity vector can be interpreted as the bigger the similarity score the
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stronger the chances of a correct match.

In the fusion step, the selected VPR techniques with the highest probability of cor-

rectly matching the image are used simultaneously to fuse their similarity scores. In

the currently tested system the number of selected techniques is limited to three but

depending on computational resources and a different pool of techniques the number

can be increased or decreased. Each n produces a similarity vector with the similarity

scores between the query image and reference images in the database. Furthermore, as

the set of techniques is arbitrary hence the distribution of these similarity scores within

each technique may not be consistent with the distribution of other techniques. So it is

important to normalize prior to fusing the set of N to maximize the likelihood that each

similarity vector has a minimum and maximum value of -0.001 and 0.999 respectively

where ϵ = 0.001. (In case of normalized values falling under threshold a value of 0.001

is forcefully assigned.) This equation is inspired by the methodology presented in [34].

D̂n(i) =
D̂n(i)−min(Dn)

max(Dn)−min(Dn)
− ϵ,∀i, n ∈ N (5.6)

The final step is to produce the combined similarity vector for fusion that is the DF .

The matched image is the one with the maximum DF score.

DF =

N∑
n=1

D̂n (5.7)

5.3 SwitchFuse Experimental Setup

The SwitchFuse system allows for the selection of the most suitable VPR techniques

for fusion given any query image, over different VPR data sets. TABLE 5.1 lists all the
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TABLE 5.1: VPR-BENCH DATASETS TESTED FOR SWITCHFUSE

Dataset Conditional-Variation
GardensPoint Day-Night
ESSEX3IN1 Illumination

Cross-Seasons Dawn-Dusk
Nordland Seasonal
Corridor None

Living-room Day-Night

data sets along with their variations types including Corridor [11], Living room [12],

ESSEX3IN1 [5], GardensPoint [3], Cross-Seasons [4], and Nordland [2]. A wide variety

of datasets are selected to maximize the likelihood that each type of conditional variation

is tested for the system.

TABLE 5.2: VPR TECHNIQUES EMPLOYED IN EACH CONDITIONAL VARIATION UNIT OF THE

SWITCHFUSE SYSTEM

Conditional Variations
Seasonal Illumination Day-Night
AlexNet HybridNet NetVLAD

AMOSNet CoHOG RegionVLAD
HOG CALC HybridNet

Table 5.2 presents the structure in which VPR techniques have been employed in

the proposed SwitchFuse system for the purpose of this thesis. Each unit of different

conditional variation is provided with three techniques that are theoretically known to

be complementary pairs for the respective variation type in Chapter 3. The first unit

consists of AMOSNet [127], HOG [58],

and AlexNet [74]. The second unit employs CoHOG [130], HybridNet [127] and

CALC [74]. Finally, the last unit consists of HybridNet [128], NetVLAD [129] and Re-

gionVLAD [63]. This combination ensures the inclusion of complementary pairs and all

techniques widely used for experiments. The implementation and experimental details
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Fig. 5.4. Precision-Recall curves showcasing performance of SwitchFuse in comparison to Switch-
Hit, MPF and other VPR methods on GardensPoint, Corridor, Nordland, Cross-Season, ESSEX3IN1
and Livingroom.

of all VPR techniques, including the dataset splitting strategy, follow the same approach

as outlined in Chapter 4, ensuring comprehensive evaluation across the entire dataset.
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Fig. 5.5. Performance improvement in terms of correctly matched images by SwitchFuse in
comparison to SwitchHit, MPF and other VPR methods on GardensPoint and Corridor dataset.

Fig. 5.6. Performance improvement in terms of correctly matched images by SwitchFuse in
comparison to SwitchHit, MPF and other VPR methods on Nordland and CrossSeasons dataset.

5.4 SwitchFuse Results and Analysis

The SwitchFuse System like the testing of other VPR techniques considered in this thesis,

multi-fusion and the SwitchHit system has been tested using the same widely employed

datasets to ensure standardization with level and type of variations encountered. Further

the results are assessed using the same evaluation metrics are employed to draw accurate

comparison among all these systems and observe the level of difference in performance.

The commonly employed evaluation metrics, firstly on an image-by-image basis to show

the increase in total correct matches and then the accuracy and PR-curves as described
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in Chapter 3. The improvement produced in the results via SwitchFuse is due to the

accurate prediction and selection of the best suited VPR techniques and then their fusion,

as further explained via different examples.

Figure 5.4 compares the SwitchFuse system to the SwitchHit system [131], Multi-

Process Fusion (fusing three best performing VPR techniques overall) [31] and as well

as other VPR techniques to showcase the difference in performance using PR curves. The

results and improvements vary over different data sets due to their extremely varying

environments and sizes. For example testing out the GardensPoint an accuracy of 0.64

is observed over the data set and this is a significant improvement over SwitchHit, MPF

or any other VPR techniques in comparison. Similarly, for the Corridor data set Switch-

Fuse produces an overall accuracy of 0.84 which again is not only higher in comparison

to all single VPR techniques but both SwitchHit and MPF as well. SwitchFuse is able

to achieve an accuracy of almost 0.7 for Nordland data set which again is significantly

higher than both SwitchHit and MPF. It is also a good example to observe how in some

cases SwitchHit outperforms MPF and vice versa. Empirical data for different techniques

that should be suitable together for fusion is not always true for all data sets or query

images and the SwitchFuse system, as evident by the results, helps predict VPR tech-

niques which are actually useful to be fused. Similar results for other data sets including

CrossSeasons, ESSEX3IN1 and Livingroom are presented depicting the higher accuracy

SwitchFuse was able to achieve in comparison to SwitchHit or MPF on these data sets.

After testing SwitchFuse for a series of varied data sets it can be concluded that the sys-

tem is in fact able to boost accuracy performance over different environmental variations

by performing informed switching, and then fusing these selected techniques only.

Figure 5.5 to 5.7 depicts a comparative analysis between overall performance on each
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Fig. 5.7. Performance improvement in terms of correctly matched images by SwitchFuse in
comparison to SwitchHit, MPF and other VPR methods on ESSEX3IN1 and Livingroom dataset.

data set tested on the basis of total increase in number of correctly matched images. It

is a simple way to observe over an image-by-image basis how the overall accuracy of the

system is better than other systems in comparison. Figure 5.5 presents the GardensPoint

and Corridor data set where an improvement of 15 or more images than SwitchHit [131],

MPF [31] and even significantly more images than other individual VPR techniques can

be observed. Figure 5.6, the SwitchFuse system has around 60 more correctly matched

images for the Nordland data set than any other option available throughout experi-

mentation. While for the CrossSeason in Figure 5.6 and ESSEX3IN1 data set in Figure

5.7 an improvement of 3 to 4 images can be observed which is still higher than even the

best performing VPR technique, MPF or SwitchHit. ESSEX3IN1 is one of the examples

to show the capability of SwitchFuse where MPF has lower performance than a single

technique (CoHOG) which is trained specifically for the data set, while SwitchHit has

very minor improvement but together they outperform any options available including

CoHOG. A pattern of significant improvement in performance by the SwitchFuse system

helps conclude that the hybrid model of SwitchFuse allows for an intelligent switching to

the most suitable VPR techniques to be fused and the fusion methodology further boosts
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performance.

Fig. 5.8. Example of the SwitchFuse System’s performance in various scenarios. These examples
were specifically chosen to illustrate the system’s strengths in correctly matching query images
under different environmental conditions.

Figure 5.8 and Figure 5.9 are actual representations of examples taken from the ex-

periment to showcase how the SwitchFuse system performs. Figure 5.7 explains this

over the GardensPoint data set to show the different VPR techniques selected, on each

query image, to be fused. It is important to mention that although mostly a combination

of the same techniques can be observed over a data set this does change, more in some

cases than the others. Although it is possible for each query image to have its own com-

bination of VPR techniques for fusion, a certain level of uniformity can be observed over

the data set with mostly the same combination being selected. Furthermore, Figure 5.9

gives an example illustrating a case where none of the three individual VPR techniques

are able to correctly match the query but the selection of the three specific techniques

and their fusion results in a successful match. Many similar cases can be observed overall

on multiple queries that result in the performance improvement seen using SwitchFuse.
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Fig. 5.9. Displays SwitchFuse’s final selections from an example of GardensPoint dataset: green
and red blocks for individual matches or mismatches, circles for SwitchFuse outcomes, and a yel-
low window showing a successful match where individually all techniques failed yet SwitchFuse
is successful.

5.5 SwitchFuse Summary

This chapter presents SwitchFuse, a hybrid system designed to incorporate the properties

of both dynamic switching and fusion systems. The proposed method not only attempts

to overcome the shortcomings that both systems possess individually but forms an am-

algamation of the strengths of these two otherwise discrete approaches. SwitchFuse

combines the adaptability of switching with the robustness of fusion, efficiently select-

ing and combining VPR techniques based on their complementarity and environmental

variations. The results demonstrate a significant improvement as evident by the increase

in overall performance accuracy, outperforming several other methods like SwitchHit

and multi-process fusion. SwitchFuse is an example showcasing the wide possibilities

of attempting innovative methods to solve the VPR problem and has been tested on a

certain number of datasets. In the larger scope, SwitchFuse holds potential for further
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deeper study into its computational and storage efficiency. While this research primarily

focused on performance improvements in terms of accuracy through efficient switch-

ing and fusion, the avoidance of brute force methods suggests potential advantages that

merit further exploration in future work exploring improvement in terms of computa-

tional improvement. An important observation to be made is that the basis of switching

and selection of different VPR techniques in this work is complementarity, bringing us

full circle back to Chapter 3 and the utility of the knowledge on VPR complementarity.

However, this also points in other directions such as whether a different metric other

than complementarity could help aid in the selection process for developing ensemble

methods; or if other than switching, fusing, or SwitchFuse, there are other innovative

approaches yet to be explored in terms of ensemble VPR setups.
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Chapter 6

Universal Voting Schemes for Improved

VPR Performance
1

The previous three chapters predominantly focus on gathering and utilizing complement-

arity knowledge and exploring different ideas for ensemble VPR setups. However, in con-

cluding Chapter 5, it is important to discuss how complementarity or specific methods

towards building ensemble setups, such as switching or fusion, are not the only compon-

ents of ensemble VPR setups that remain unexplored. Other factors also influence the

performance of any VPR setup consisting of multiple VPR techniques. One such factor

that frequently appears in research involving multiple VPR methods is voting. Voting is

a major aspect common to many strategies involving multiple techniques, as highlighted

in recent studies [96,132]. This makes it an extremely relevant topic to explore in terms

of its application and significance for any ensemble VPR setup.

Drawing inspiration from various voting schemes widely employed in other fields

1The work presented in this chapter has been accepted and presented at 2023 International Conference
on Robotics and Automation Workshop (ICRA 2023), London, UK, 2023.
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such as politics and sociology, this chapter explores the impact of different voting meth-

ods on VPR performance in terms of accuracy. The idea for this chapter stems from the

observation that different voting methods can lead to varying outcomes for the same

data. This phenomenon has been extensively researched in other fields, and each voting

scheme is utilised for specific cases in different academic contexts. The following sections

will delve into various voting schemes and their potential applications in enhancing the

robustness and accuracy of ensemble VPR systems.

This chapter hence analyses several universal voting schemes to test if this observa-

tion stands true for VPR tasks involving voting as well. And if so, it would be worthwhile

to maximise the place detection accuracy of a VPR ensemble set up and determine the

optimal voting schemes for selection. In this chapter, a wide variety of voting schemes

are tested to demonstrate the improvement in VPR results for several datasets. Further-

more, it is established whether a single optimal voting scheme exists or, as observed in

other fields of research, the selection of a voting technique is relative to its application

and environment. The chapter additionally presents these different voting methods to

determine the best or worst or satisfactory cases in order to make informed decisions

while selecting a voting mechanism. The results collected are presented in this chapters

with the help of several illustrations, such as depicting the performance bounds of a

voting mechanism in terms of radar charts, PR curves to showcase the difference in per-

formance and finally a comparison methodology using a McNemar-like test variant to

determine the statistical significance of the differences. This test is performed to further

confirm the reliability of outcomes and reiterate the significance of using a certain voting

method over another. Finally comparisons are drawn for better and informed selection

of a voting technique.
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The reminder this chapter follows this organizational set up, beginning from Section

6.1 providing an introduction to the current voting practises and knowledge. Section 6.2

presents the several universal voting schemes selected for testing and their methodolo-

gies explaining their employment in terms of VPR. Section 6.3 describes the experimental

setup designed to test each of the voting mechanism. The results based on testing these

different voting schemes are presented in Section 6.4 and the final conclusions and in-

sights entering voting world for VPR are given in section 6.5.

6.1 Introduction to Universal Voting Schemes

With many excellent VPR techniques available to the robotics community to tackle the

VPR task, a problem that remains is lack of a universal VPR technique that performs

equally well in all types of variations encountered. Chapter 1 to 5 discuss this problem in

detail stating the several methods existing to work around this problem and tackle this

issue using innovative approaches introducing different ensemble setups. From taking

inspiration from Multi-sensor use in robotics to Multi-fusion of VPR techniques and dis-

covering complementarity in VPR methods to switching among different methods based

on their level of complementarity, overall several endeavours have been made in the right

direction. However, the journey towards any one ensemble VPR set up is only beginning

as several other factors are yet to studied and explored. One such factor commonly re-

curring among many of the so far designed ensemble set ups is some sort of voting that

occurs at different stages in different systems proposed. [96]

Innovative solutions such as the concept of multi-process fusion between different

VPR techniques [31], [34], and SwitchHit [131] highlight the capabilities of various
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Fig. 6.1. Sample radar chart from the experimental setup shows performance bounds of voting
methods; a red line closer to the boundary indicates better performance.

VPR techniques by switching to a more suitable option. Further interesting work presen-

ted by [96] involves gathering a collection of very small CNN voting units to enhance

VPR performance in terms of accuracy. Additionally, [132] discusses the idea of probab-

ilistic voting for VPR using the nearest neighbor descriptors. These approaches, whether

conventional or unconventional, incorporate voting mechanisms at different stages to

improve the overall performance of VPR systems.

Exploring work conducted for voting in other fields such as politics and sociology

[133,134], it is evident many researchers have attempted to create a uniform and stand-

ardized voting system that can be considered fair or optimal in any scenario. For instance,

research in political science has examined various voting methods like the Borda count

and their impact on electoral outcomes [134]. Moreover, even within the VPR field, there

are examples of comparing and contrasting voting schemes such as in the work presented
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in [135]. This has elevated the choice of voting selection method in other fields and VPR,

from being a random or trivial task to a well-thought and curated decision. However, the

exploration of different voting schemes to determine which is the optimal approach to

use in an ensemble VPR setup is an area that has not yet been thoroughly explored and

can help produce some interesting insights.While voting is an essential component of

ensemble setups, other fusion approaches such as feature mixing, random Gaussian pro-

jections, and hyperdimensional computing are also relevant. Feature mixing integrates

features at various levels, enhancing overall performance [136]. Random Gaussian pro-

jections reduce the dimensionality of feature vectors, making fusion more efficient [137].

Hyperdimensional computing uses high-dimensional binary vectors, offering robustness

to noise and efficient handling of large-scale data [120]. These methods provide alternat-

ive ways to enhance VPR accuracy. However, the exploration of different voting schemes

to determine the optimal approach for an ensemble VPR setup remains an area that has

not been thoroughly explored and can yield interesting insights. This chapter presents

and evaluates the applications of universally employed voting schemes on a standard

VPR ensemble setup with multiple VPR techniques to observe the difference in perform-

ance and results across a varied set of VPR datasets. This setup involves running several

VPR methods in parallel to generate the top matches for a given query image, which

are then combined using various voting schemes to determine the final match. As illus-

trated in Figure 6.2, the standard VPR ensemble setup includes multiple VPR techniques

(VPR Technique A, B, C, and D) that each produce top-matched reference images. These

matches are subjected to different voting schemes to select the final reference image,

combining the strengths of individual techniques to enhance overall performance.

In addition it could show how the common practice of selecting the basic and com-
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monly used type of voting might not always be the wise decision to take in terms of

the VPR task. Figure 6.1 shows an example of a sample output from the proposed ex-

perimental setup to evaluate the difference in performance bounds between each voting

methodology. The red line in the radar chart is representative of the performance bounds

(images correctly matched) and the axis represent the total number of query images in

the data set. The various dimensions are useful to interpret the difference in the per-

formance of a voting scheme, in comparison to the other voting schemes, such that the

closer the red line is to the boundary the better the performance,

Voting as a concept when employed universally offers a pool of options each with its

own set of individual characteristics. Furthermore, each voting scheme due to its unique

methodology produces different results hence it is correct to assume that selection of a

voting scheme in any field is not a trivial task. Researchers in different fields have made

the effort to tackle the lack of standardization among voting schemes and determine

the optimal voting schemes for different types of tasks. However, an attempt to employ

universal voting methods or an exploration to determine which of the voting schemes is

optimal to use in an ensemble VPR set up is an area that has not yet been attempted.

This chapter presents and evaluates the applications of universally employed voting

schemes on a standard VPR ensemble setup with multiple VPR techniques to observe the

difference in performance and results across a varied set of VPR datasets. This setup

involves running several VPR methods in parallel to generate the top matches for a given

query image, which are then combined using various voting schemes to determine the

final match. As illustrated in Figure 6.2, the standard VPR ensemble setup includes

multiple VPR techniques (VPR Technique A, B, C, and D) that each produce top-matched

reference images. These matches are subjected to different voting schemes to select
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the final reference image, combining the strengths of individual techniques to enhance

overall performance.

In previous chapters, it has been argued that a fusion of all available VPR techniques

is undesirable due to inefficiencies and the potential for diminished performance. In-

stead, more efficient methods have been showcased, such as using complementarity for

switching or the Switch-Fuse system. However, for the sake of this experiment, it was

necessary to maintain a standard ensemble setup to fairly compare the performance dif-

ferences caused by different voting methods. This approach controls for variables other

than the voting method, ensuring that the observed differences in performance can be

attributed solely to the voting methodologies employed.

A variety of voting systems with unique characteristics, widely employed in other

fields such as politics and sociology, have been selected for testing. The goal is to de-

termine whether a single best voting method exists among these schemes or if, much

like in other fields, the optimal voting method is case-specific. The results are presented

in terms of performance bounds of voting schemes on different datasets, precision-recall

(PR) curves for comparing accuracy, and statistical significance of performance differ-

ences via McNemar-like test’s test and Z-scores values.

Figure 6.2 illustrates this ensemble setup in detail. The ensemble consists of multiple

VPR techniques (denoted as VPR Technique A, B, C, and D), each producing a set of top

matched reference images. These images are then subjected to different voting schemes

to observe the differences in results and determine the final selected reference image,

which is the most likely correct match for the query image.
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6.2 Universal Voting Schemes Methodology

This section presents the different universally employed voting schemes and describes

their methodologies in detail to understand their employment for VPR setup. These vot-

ing methods have been employed in a series of different VPR data sets to observe how the

use of different voting mechanism effects overall results in a basic ensemble VPR system.

These voting schemes are tested in a VPR set up that is simultaneously employing all

state-of-the-art VPR techniques available and the final step involves selecting the correct

reference image by using a voting methodology. The total number of VPR techniques

for this experiment is the voters while all reference images are the candidates and the

selected top reference image/images by each VPR technique represents their votes.

The structure of this methodology section is based on analyzing different voting

schemes that have been carefully selected to include unique voting systems to be tested.

This work will help determine whether there is a clear winner when selecting the type

of voting technique to employ or if its a relative choice dependent on other factors for

example dataset type.

6.2.1 Voting Scheme I: Plurality Voting

Plurality voting mechanism belongs to the family of positional voting, which involves

different ranks for different candidates, with each rank holding a different priority. For

plurality voting, the candidate with the most first-place votes is selected as the final match.

This is the most common and basic type of voting, similar to hard voting used in clas-

sification problems. When dealing with an ensemble of VPR techniques, each of which

results in different reference images selected to match with the query image, it is not al-
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Fig. 6.2. A standard VPR ensemble setup employing several VPR methods simultaneously, which
produces the top best matches by each method. These matches are subjected to various voting
schemes to observe differences in results. The image shows the VPR techniques as voters, the top
matched reference images as candidates, and the final selected reference image as the winner.

ways simple or obvious which image is the correct match to the query. Here, the plurality

voting mechanism is employed to test the results it produces over different VPR datasets.

Let c be the retrieved image and vc be the number of votes each retrieved image

acquires. Argmax returns the reference image with the maximum votes, which is the

final selected matched image to the query.

argmax; c ∈ 1, 2, ..., n; vc (6.1)

In some cases, multiple vc may evaluate to the same value, leading to a tie. To address

this, the tie can be resolved by selecting the image with the highest combined confidence

score from the VPR techniques. This approach leverages additional information to make

a more informed decision. Alternatively, other methods such as randomly selecting one
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of the tied images or conducting a secondary round of voting using a different voting

scheme can be considered.

6.2.2 Voting Scheme II: Condorcet Voting

Condorcet is a ranked type of voting method that attempts to determine the overall

selection of the candidate, reference image, by comparing the results of each voter, VPR

technique, from the ensemble techniques in one-on-one match-ups. Each VPR technique

produces a sequence of potential correct images that are ranked based on matching

scores. A pairwise comparison matrix M is created where each element Mij represents

the number of times reference image ci is ranked higher than reference image cj by the

ensemble of VPR techniques.g

Let C be the set of reference images where n is the total number of reference images.

C = {c1, c2, ..., cn} (6.2)

Let’s denote the ranked positions as B where v is the total number of ranks.

B = {b1, b2, ..., bv} (6.3)

Each bv in B contains a ranked preference order for the reference images in C. For

example, if we have 3 reference images c1, c2, c3, a ranked position could be bv(c1, c2, c3),

indicating that c1 is the technique’s first choice, c2 is the second choice, and c3 is the third

choice. To calculate the pairwise victories for each pair of candidates ci and cj in C, we

sum the number of times ci is ranked higher than cj across all VPR techniques.
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The Condorcet winner is the reference image that would win in a head-to-head

matchup against any other candidate. The reference image that is ranked higher than all

other images is the final selected reference image. However, in the case of a tie, where

two or more candidates have equal pairwise victories, the candidate with the highest

overall rank is selected as a tiebreaker. This approach was chosen because it leverages

the existing ranking information provided by the VPR techniques, ensuring consistency

in the decision-making process and reducing the need for additional steps or methods.

The matrix M is formally defined as follows:

Mij =
v∑

k=1

δ(bk(ci) < bk(cj)) (6.4)

where δ is the function which equals 1 when the condition is true and 0 otherwise.

The Condorcet winner is the image ci such that:

∑
j ̸=i

Mij >
∑
j ̸=i

Mji (6.5)

Equation 6.4 thus sums over the comparisons ci > cj to find the image ci that is

preferred over all others.

6.2.3 Voting Scheme III : Broda Count Voting

Broda Count is another positional voting system utilised for various types of electoral

tasks. Similar to the plurality voting, it also belongs to the family of positional voting

where the candidates, potential matches to the query image, are ranked in descending

order based on their matching scores. The position or rank of the reference image is
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important as a higher rank (i.e., higher points/score) suggests a higher chance or pref-

erence for the particular image being selected as the final match in the ensemble VPR

setup. However, in the event of a tie, where two or more reference images have the same

total score, the tie is resolved by selecting the image with the highest individual rank

from one of the VPR techniques.

Let c be the reference image selected while i represents the total number of techniques

being considered. j represents the rank of each reference image and n is the value of

points or score for a given rank. Finally, Sc is the summation of all the points for a single

reference image. Here, xi,j represents the score assigned by the i-th technique to the

reference image at rank j.

Sc =
i=n∑
i=1

xi,j (6.6)

The image with the highest sum is selected as the final match to the query.

argmax i ∈ {1, 2, ..., n} Sc (6.7)

6.2.4 Voting Scheme IV: Contingent Voting

Contingent Voting is a form of rank-choice voting in which the candidates, reference

images, are ranked while each rank represents a different priority. This type of voting

on an ensemble VPR setup allows ensuring that the final selected image has the broadest

possible support/votes from among all the VPR techniques being employed.

In a contingent voting system, the first-choice votes, meaning the top-ranked candid-

ates or images, are tallied. The images with the highest first-place votes are considered

for further stages of the voting process. If a reference image has an absolute major-
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ity (more than 50%) of the first-choice votes, it is simply selected as the final image.

If, however, no reference image has an absolute majority, the images with the lowest

votes are eliminated, and their ranks and scores are transferred to the image with the

highest votes. Lastly, the steps for recount and redistribution are performed by taking

into account the recounted votes, and the process is repeated until a single best winner

for a reference image is found. Although there are several other ways for counting and

redistributing the votes for a contingent system, the core principle is the same one as

employed in this setup, where the VPR techniques select the possible reference image

matches and rank their preferences, and the voting aims to select a reference image that

has the broader votes/support of selection among all the employed VPR methods.

Contingent voting does not lend itself to a single mathematical formula like some

other voting systems, but it involves a series of steps that can be explained mathematic-

ally. Each VPR method employed in an ensemble VPR setup puts forth a ranked ballot

of reference images to match, and these are assigned preferences such as "1" for the first

choice, "2" for the second choice, and so on. Additionally, in the event of a tie, where two

or more images have the same number of votes after redistribution, the tie is resolved by

eliminating the image with the lowest combined score across all ranking positions. This

method ensures that the reference image with the strongest overall support remains,

which maximizes consensus while maintaining fairness.

For representation, let C be the set of reference images where n is the total number

of reference images.

C = {c1, c2, ..., cn} (6.8)
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Let’s denote the ranked positions as B where v is the total number of ranks.

B = {b1, b2, ..., bv} (6.9)

For counting first-choice votes, let N be the total number of VPR techniques and let

Vi be the number of first-choice votes recorded by the candidate i. For checking for

an absolute majority, if any reference image receives more than 50% of N/2 of the first-

choice votes, that reference is the final selected image to match. To explain, if a reference

image d exists such that Vd is greater than N/2, then the reference image is selected.

For elimination of the lowest ranked image, the image with the least first-choice

votes is eliminated. The votes from the eliminated image are then redistributed to the

remaining images. This redistribution is weighted by the rank of the images; higher-

ranked images receive a greater proportion of the redistributed votes. To recount and

recalculate, the votes are tallied again with the redistributed votes, and the process is

repeated to check for an absolute majority winner. This cycle continues until an image

receives more than 50% of the votes or until only one image remains to be selected.

6.2.5 Voting Scheme V: Instant RunOff Voting

Instant Runoff Voting (IRV) is another type of ranked voting used to ensures the selection

of a candidate with the broadest support/votes is selected. Images are selected in order of

preference, in this case in terms of highest to lowest similarity scores. Then for tabulation

of the votes, if any reference image receives an absolute majority it is simply selected as

the final reference image, similar to Contingent voting. If, however, no such reference

image exists, the votes are recounted and redistributed to their second-choice candidates.
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After redistribution, the votes are recounted, and the process repeated until a candidate

with a majority is selected.

Let N be the number of VPR techniques being employed and let C be the set of

reference images where n is the total of images. Each N ranks all reference images from

1 to n.

C = {c1, c2, ..., cn} (6.10)

The next step is to find the first-choice votes for each image and determine whether

an absolute winner exists. If it does, the process is stopped and a final image is selected.

If no such winner is found, the candidate with the fewest first-choice votes, let’s call this

reference image D, is identified. Reference image D is then eliminated and all votes for

D are redistributed to the next-highest-ranked reference image still in the running. This

redistribution is achieved by transferring each vote to the highest-ranked image on each

ballot that has not yet eliminated. This ensures that each vote is transferred to the next

available preference.

The votes after this redistribution are recounted without the eliminated reference

images to determine if an image with an absolute majority now exists. This process

continues until a reference image achieves a majority. However, in the case of a tie

where two or more images have the same number of votes after redistribution, the tie is

resolved by selecting the image with the highest cumulative rank.

6.3 Universal Voting Schemes Experimental Setup

This briefly describes the two components involved in the testing of these voting schemes.

As described in Figure 6.2, each voting scheme is tested on the same basic ensemble

115



116 Chapter 6. Universal Voting Schemes for Improved VPR Performance

TABLE 6.1: VPR-BENCH DATASETS TESTED FOR DIFFERENT VOTING SCHEMES

Dataset Environment Query Ref. Images
GardensPoint University 200 200
ESSEX3IN1 University 210 210
CrossSeasons City-Like 191 191
Corridor Indoor 111 111
17Places Indoor 406 406
Livingroom Indoor 32 32

VPR setup consisting of all the same techniques and run on each data set individually.

This ensures the performance difference observed is solely based on the difference in

the voting methodology and nothing else such as datasets or individual performance

of a VPR technique. The VPR set up consists of eight state-of-the-art VPR techniques

including AMOSNet [127], HOG [58], and AlexNet [128], HybridNet [127], NetVLAD

[129], RegionVLAD [63], CoHOG [130], and CALC [74]. These have been selected

not only for their wide use overall but also taking into consideration that these VPR

techniques have been the focus for experimental designs for Chapter 3 to 5 as well.

This gives us some predictability for the type of results expected from each technique

individually and roughly provides more standardization for the testing for these voting

techniques. The data sets chosen for testing the performance differences observed are

also commonly used VPR datasets and also the ones utilised so far in Chapter 3 to 5. Table

6.1 shares some details about the datasets utilised such as the type of their environment

and number of query and reference images. Table 6.2 shares some details for knowledge

about the different characteristics of the universal voting schemes, these try to provide a

clear and intuitive comparison of the voting schemes.

116



6.4. Universal Voting Schemes Results and Analysis 117

Voting Scheme Methodology Advantages Drawbacks
Plurality Most first-place votes Simple implementation Potential ties
Condorcet Pairwise comparisons Comprehensive prefer-

ence consideration
May not yield a definit-
ive winner

Borda Count Rank-based scoring Incorporates all ranked
preferences

Moderately complex

Contingent Rank-choice with elim-
ination

Broad acceptance Multi-step process

Instant Runoff Rank-choice with redis-
tribution

Ensures majority sup-
port

Multi-round counting

TABLE 6.2: COMPARISON OF VOTING SCHEMES

6.4 Universal Voting Schemes Results and Analysis

This section discusses and presents the results produced by testing each of the selected

voting methodologies over various VPR datasets, under the same ensemble VPR set up.

The results are presented in three different categories to efficiently evaluate the utility of

each voting method. Firstly, the results are presented in terms of the performance bounds

of each voting method and PR curves for accuracy as explained in Chapter 3, and finally

Z-score for testing the significance in the performance difference that is observed. Z-score

and the use of the McNemar-like test’s test are discussed in detail below to highlight its

importance and contribution to the results collected.

6.4.1 PR curves and Radar Charts

Figure 6.3 presents the results that were produced starting from the 17Places dataset, for

which two of the voting methods, Instant Runoff and Condorcet Voting, have the highest

performance bounds, followed by Borda Count and then Plurality and Contingent Voting

methods. For the Livingroom dataset, an overall uniform performance bound is observed

for most methods, but with Plurality, Instant Runoff, and Contingent Voting slightly out-
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Fig. 6.3. Difference in performance bounds of each voting methodology in terms of query images
correctly matched for 17Places and Livingroom Dataset

ranking the others. The next two datasets presented in Figure 6.4 are Corridor and

CrossSeasons, for both of which Borda Count ranks the highest among all methods,

followed by Contingent Voting and then the others. The last two datasets in Figure

6.5 tested for their performance bounds are ESSEX3IN1 and GardensPointWalking. ES-

SEX3IN1 has similar performance bounds for most methods, although Contingent Voting

outranks the others slightly. GardensPointWalking has the least favorable performance

bounds for Contingent and Plurality Voting, while Condorcet, Borda, and Instant Runoff

have better performance bounds overall. The x-axis ranges in these figures differ due

to the large variations in dataset sizes, allowing for clear and accurate representation of

each dataset’s performance metrics.

Next, Figure 6.6 presents results in terms of PR curves to showcase the perform-

ance difference observed for the different voting methods tested for multiple VPR data

sets. Varied results in performance are observed beginning from the Corridor Data set

where Instant RunOff and Condorcet voting outperform the remaining three substan-

tially. The livingroom dataset has a more uniform performance in terms of the precision-

recall observed over this dataset with most voting methods performing similarly. The

118



6.4.1. PR curves and Radar Charts 119

Fig. 6.4. Difference in performance bounds of each voting methodology in terms of query images
correctly matched for CrossSeasons and Corridor Dataset

Fig. 6.5. Difference in performance bounds of each voting methodology in terms of query images
correctly matched for ESSEX3IN1 and GardensPointWalking Dataset

Corridor and CrossSeasons datasets both have the highest performance when utilizing

Broda Count as the voting method followed by Condorcet Voting. For the ESSEX3IN1

dataset plurality and Contingent voting appear to produce better accuracy. While Gar-

densPointWalking data has the opposite results as it has the least favourable results when

employing plurality and Contingent Voting. However, Condorcet Voting appears to pro-

duce better results in comparison to other voting methods tested.
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Fig. 6.6. PR curves for voting methods i.e Plurality, Condorcet, Contingent Voting, Broda Count
and Instant Run Off voting for datasets 17Places Livingroom, Corridor, CrossSeasons, ESSEX3IN1
and GardensPointWalking).
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6.4.2 McNemar-like Test’s

To further confirm that the results presented in Figures 6.3 to 6.5 are not a chance oc-

currence but rather conclusive evidence of the significant difference between different

voting schemes, utilising a variant of the McNemar test [138], inspired by the original

statistical test references [122, 123]. This variant helps identify the statistically relevant

performance differences, with a confidence interval, between the various voting schemes,

distinguishing the best cases from the worst cases. By adapting the approach described

in [138] to perform a pairwise evaluation of voting methods using a series of frame-by-

frame matches/mismatches on the same dataset. Since this approach cannot compare

more than two VPR methods simultaneously, a series of independent pairwise tests are

necessary to compare multiple voting methods. These results are presented in the form

of a Z-Score table that states the different Z-scores corresponding to their confidence in-

tervals to showcase the statistical significance. In particular, a 95% significance level cor-

responds to Z = 1.96 and presents a highly significant performance difference between

the two compared voting schemes.

X2 =
|Nsf −Nfs|√
Nsf +Nfs

(6.11)

The value to generate the Z-score utilizing the two-tails table is generated as N sf

denotes the number of trials where the voting 1 succeeded, and 2 failed; N fs denotes

the number of trials where 1 failed and 2 succeeded. X2 is distributed, to a good ap-

proximation, as chi-squared with one degree of freedom. Where the confidence interval

associated with Z can be determined using tables [190]. The results are presented in

Figure 6.7 in form of a heat map to efficiently locate pairs and voting methods that
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are significantly better than their compared counterparts. The table can be interpreted

using the Z scores mentioned and the corresponding confidence interval to understand

whether the difference is significant or not.

Z-Scores

Figure 6.7 presents results in terms of different data sets tested such as ESSEX3IN1 for

which overall Contingent voting scheme is significantly better in performance than the

others. The second best option for selection can be concluded as IRV over Plurality

or Broda and lastly Broda is a better selection over Plurality voting. Again, the results

demonstrate how substantial the difference can be in selection if voting schemes are con-

Fig. 6.7. Pairwise voting method comparisons use a sign convention: positive Z indicates the first
method outperforms the second, and negative Z the opposite. The legend’s color ranges from
green (highest confidence intervals) to red (lowest).

sidered based on performance rather than simply selecting the conventional approach.

Considering the results for Livingroom Dataset IRV is a far better selection over Broda

with a confidence interval of over 95% and Contingent voting is again better than Broda

with over 90% confidence interval. The differences in outcomes among various voting

schemes can sometimes be significant, but the value lies not just in identifying signi-
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ficant differences but in providing a guideline for better selection. By considering all

possible voting options, a more informed decision can be made. As shown in Figures 6.3

and 6.4, the research demonstrates that conventional methods are not always the best

choice. For instance, in the GardensPointWalking dataset, the results suggest that while

the differences are substantial, identifying better options such as IRV over Contingent

and Plurality provides further valuable insights.

CrossSeasons dataset is another example of why random selection of a voting method

is not the best idea given Contingent voting, which is the ideal scenario for a case like

ESSEX3IN1, consistently underperforms in comparison to other available methods such

as Condorcet, IRV, Broda with a confidence interval ranging from even 90% to 95%.

Furthermore, in comparison to IRV and Broda, Plurality voting significantly performs

better for this case with a z score of over 1.96. Similarly, Corridor dataset again does

not stick to the pattern observed for ESSEX3IN1 and Contingent voting is not the better

option to be selected over any of the other schemes. In fact Condorcet, IRV and Broda all

are the better choice while IRV is better than Plurality but Plurality is better than Broda.

Lastly for 17Places the results vary where Condorcet is better than Contingent, and so

is IRV. Some cases the difference is not significant to consider while Plurality is better

to consider than some of the other choices. Overall, the heat-map is a useful reference

point in navigating through the selection of a voting scheme in different ensemble cases

to improve performance.
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6.5 Universal Voting Schemes Summary

This chapter explores and implements the different universally used voting schemes that

can be extended to an ensemble VPR setup to discover whether they provide any perform-

ance improvement over the conventional practices of voting. Furthermore, evaluating

the performance difference via McNemar’s test-like approach using a pairwise analysis

to determine whether the difference in performance is statistically significant. With a

selection of five employed and diverse voting methods which are very commonly used

among other fields of research, the experimental setup tests these schemes on multiple

datasets to provide the results presented. The selected methods tested include Plural-

ity voting, Condorcet voting, Contingent Voting, Broda count, and IRV voting. Several

insights were collected, the first and foremost being that the employment of different

voting schemes, much like in other fields, produces varied results when only the voting

method is different. This finding confirms that the selection of a voting method for a

VPR ensemble setup is not a trivial task but rather a process of careful selection, with

different voting schemes standing out in performance for different types of datasets or

variations in surroundings. Furthermore, among the tested voting methods, the closest

to the conventionally employed method is the Plurality method. Interestingly, the results

showcase that the assumption that this common practice method might be a good choice

for all cases is not true. For example, in most experiments, the Condorcet, IRV, and Broda

methods were almost always the better option compared to Plurality. Within these meth-

ods, IRV outperformed Plurality in some cases, and Plurality outperformed Broda in spe-

cific scenarios. These conclusions indicate that selecting the appropriate voting method

depends on specific requirements and context. Overall, when a fundamental ranking
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system without prerequisites related to dataset type, variation, or size is required, Con-

dorcet Voting demonstrates overall consistency and produces significant results, followed

by IRV and Contingent Voting, with Broda Count showing relatively lower performance.

To further confirm the findings, the results are supported with a statistical analysis con-

firming the statistical significance of the results. These can be seen in the Z-score table in

Figure 6.5, presenting Z-score values that correspond to the confidence intervals to show-

case how our results presented in Figure 6.3 are significant in difference. It is important

to note that the primary goal of this experiment was to highlight the impact of selecting

different voting methods on VPR performance. Hence, computational efficiency was not

the focus of this study. The experiment aimed to determine how varying voting schemes

influenced VPR accuracy, and future work could explore the computational efficiency of

these voting schemes once accuracy differences have been established. Moreover, the

experiment utilized a standard ensemble VPR setup, as discussed earlier, which relies

on a brute-force approach. While this method is not computationally efficient, it was

deliberately chosen to ensure that any observed differences in VPR accuracy are solely

driven by the selection of different voting methods, rather than by computational optim-

izations. Future research could explore how to improve computational efficiency while

maintaining the accuracy gains observed through careful voting scheme selection.

In conclusion, the investigation of various voting systems within an ensemble VPR

setup highlights their substantial potential to enhance VPR accuracy and robustness.

The findings demonstrate that the choice of voting scheme significantly influences the

overall performance of VPR systems, with Condorcet, IRV, and Broda methods consist-

ently outperforming the conventional Plurality method. This insight emphasizes that

the selection of an appropriate voting method is a critical decision, directly impacting
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the efficiency and effectiveness of VPR ensembles. By employing adaptive and scalable

voting algorithms, future research can further refine the integration of multiple VPR tech-

niques, leading to more resilient and efficient VPR systems. The potential for innovative

approaches to VPR through the thoughtful selection and application of voting methods

offers promising avenues for future exploration, aiming to maximize performance.
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Chapter 7

Conclusions and Future Directions

7.1 Overview

Visual Place Recognition (VPR), a critical component of autonomous navigation systems,

faces significant challenges due to environmental variabilities, such as changes in lighting

and weather conditions; viewpoint alterations from different navigation angles; dynamic

obstacles like moving vehicles and pedestrians; and perceptual aliasing, where different

scenes appear confusingly similar. These issues complicate the task of VPR, severely lim-

iting the efficacy and robustness of traditional methodologies. While these traditional

methods are potent, their adaptability and efficiency diminish when confronted with

these diverse and unpredictable variations. Responding to these challenges, this thesis

explores the concept of complementarity among various VPR techniques. Traditional

VPR systems, relying on single-method approaches, often struggle to address all opera-

tional environments effectively. This research posits that a synergistic approach, which

leverages the distinct advantages of multiple VPR methods, can significantly enhance
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system performance.

The exploration starts by introducing and systematically evaluating the complement-

ary nature of various Visual Place Recognition (VPR) methods. This initial phase is crucial

as it assesses how different techniques can enhance each other’s strengths and mitigate

weaknesses when combined. This understanding of complementarity is pivotal, as it lays

the foundational groundwork for developing more sophisticated ensemble systems like

SwitchHit and SwitchFuse. SwitchHit introduces a dynamic switching mechanism that

selects the most suitable VPR technique based on environmental inputs, thus optimizing

performance adaptively. Building on this, SwitchFuse combines the strengths of selected

VPR techniques through a sophisticated fusion process, further enhancing the recogni-

tion accuracy. Moreover, the thesis examines the role of universal voting schemes in

ensemble VPR setups. This exploration highlights how different voting mechanisms can

influence the decision-making process of VPR systems, potentially leading to improve-

ments in accuracy and reliability. This novel exploration highlights how different voting

mechanisms can influence the decision-making process of VPR systems, potentially lead-

ing to improvements in accuracy and reliability. By systematically analyzing these various

approaches, the research presented in this thesis offers a different perspective on solving

VPR tasks, paving the way for the development of autonomous systems that can navigate

more effectively in complex and changing environments.

While this thesis does not claim to completely solve the longstanding challenges in

VPR, it provides significant insights and methodologies that improve upon existing tech-

niques. The proposed systems and frameworks are designed to address specific issues re-

lated to environmental variability, adaptability, and decision-making processes, thereby

contributing to the advancement of VPR technology.
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7.2 Summary of Contributions and Significance

The contributions highlighted in this thesis mark significant steps forward in the field

of Visual Place Recognition (VPR). The research introduces innovative frameworks and

systems in each chapter, providing new approaches to address longstanding challenges.

These contributions present not only valuable theoretical knowledge but also demon-

strate practical implications that could enhance how autonomous systems navigate. The

following is a glimpse into the work each chapter contributes, pushing the boundaries of

what’s possible in VPR.

• The thesis presents a novel framework for assessing the complementarity among

different Visual Place Recognition (VPR) techniques, offering a systematic approach

to enhance VPR systems’ performance by leveraging the unique strengths of vari-

ous algorithms. This framework represents an attempt to quantify and utilise the

concept of complementarity in VPR, addressing the challenge of environmental

and viewpoint variability that has affected the reliability of existing VPR methodo-

logies. The introduction of complementarity provides valuable insights for building

efficient and robust ensemble VPR methods. The framework, tested on a wide ar-

ray of VPR datasets and state-of-the-art methods, offers detailed insights into the

complementarity behaviour among these widely employed methods. It is adaptable

and can be tested to study the complementarity of any other VPR methods.

• The thesis introduces SwitchHit, a novel ensemble setup designed to dynamically

select the most suitable Visual Place Recognition (VPR) technique based on the

concept of complementarity among different VPR methods. This chapter advances

the field of VPR by addressing the limitations of existing systems when confronted
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with dynamic and varied real-world environments. SwitchHit, through its probab-

ilistic, complementarity-based switching system, enables a VPR system to intelli-

gently adapt its technique selection in response to specific environmental cues and

variations in the query images, optimizing recognition performance.

• Building upon the success of SwitchHit, the SwitchFuse system is introduced, in-

corporating both switching and fusion strategies to further optimize VPR accuracy.

SwitchFuse represents a hybrid model that utilises the complementarity framework

to select the best techniques for fusion and incorporates a tripartite model to ad-

apt dynamically to various environmental variations. This approach to VPR system

design sets new benchmarks for accuracy and reliability, outperforming existing

multi-fusion and standalone VPR systems, as well as SwitchHit itself.

• The introduction and exploration into universal voting schemes for VPR opened

another promising and previously under-researched avenue. By evaluating the im-

pact of different voting methodologies on ensemble VPR setups, it was revealed

that the choice of voting scheme could significantly influence an ensemble VPR sys-

tem’s performance. This research underscores the potential for refining ensemble

VPR methods further, highlighting the need for careful selection and application

of voting schemes based on the specific requirements of the VPR task. This was

demonstrated by applying several universal voting methods on the same experi-

mental setup to show the difference in performance by merely changing the voting

method and then analyzing the significance of this difference.

While this thesis does not claim to completely solve all longstanding challenges in

VPR, it provides significant insights and methodologies that improve upon existing tech-
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niques. The proposed systems and frameworks are designed to address specific issues re-

lated to environmental variability, adaptability, and decision-making processes, thereby

contributing to the advancement of VPR technology.

7.3 Impact on Computer Vision and Robotics

Reviewing the significant contributions made to Visual Place Recognition (VPR) through

this thesis unveils several new ideas and their widespread implications. These advance-

ments in VPR set new benchmarks in computer vision and robotics, transforming theor-

etical concepts into practical, real-world applications.

The evaluation of complementarity among VPR techniques addresses a critical gap

in existing methodologies. By systematically quantifying and leveraging the strengths

of various VPR algorithms, this framework enhances the adaptability and robustness of

autonomous systems against environmental and viewpoint variabilities. The significance

of this framework extends beyond VPR, offering profound implications for computer

vision by suggesting a method for combining diverse algorithms to optimize system per-

formance. For instance, complementarity-based approaches can significantly enhance

the robustness and reliability of autonomous vehicles navigating through complex, dy-

namic environments by leveraging the strengths of multiple recognition techniques.

In the realm of robotics, this framework provides a robust strategy for enhancing

autonomous navigation, particularly in environments where conditions can change un-

predictably. It encourages the development of intelligent systems that can dynamically

adjust their processing based on real-time inputs, which is crucial for deploying robots

in complex scenarios such as rescue missions or unpredictable urban landscapes. For
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example, in rescue and disaster response scenarios, complementarity-based approaches

enable rescue robots to dynamically adapt to changing conditions, improving their ef-

fectiveness in search and rescue missions.

The development of systems like SwitchHit, which dynamically selects the most ap-

propriate VPR technique based on complementarity, represents a significant advance-

ment in VPR. SwitchHit enables real-time adaptability to the dynamic and varied nature

of real-world environments. This system showcases the potential of probabilistic models

to facilitate intelligent decision-making in real-time, thereby optimizing the recognition

performance of autonomous systems. In robotics, this translates to a framework for

autonomous vehicles and mobile robots to adapt their navigational strategies based on

environmental cues, ensuring effective operation in diverse conditions such as urban

navigation, disaster recovery, or varied industrial environments.

Exploring hybrid systems like SwitchFuse, which integrate switching and fusion strategies

to enhance VPR performance in terms of accuracy, sets new benchmarks for accuracy

and reliability. These systems utilise a strategic fusion of technologies to optimize the

strengths of individual VPR techniques. The broader impact on computer vision involves

demonstrating how hybrid systems can be designed to leverage the complementary

strengths of different algorithms, offering a new model for systems that require robust

decision-making capabilities under varied conditions. In robotics, SwitchFuse provides a

blueprint for the development of advanced autonomous systems that can utilise a com-

bination of sensory inputs and analytical methods to achieve superior operational effect-

iveness. This is particularly relevant for applications requiring high levels of precision

and reliability, such as autonomous drones in surveillance tasks or robotic systems in

manufacturing settings, where environmental conditions and operational demands can
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vary extensively.

The exploration of universal voting schemes unveils their significant impact on the

performance of ensemble VPR systems. Strategic voting scheme selection can greatly en-

hance the accuracy and reliability of ensemble methods. The implications for computer

vision are broad, as nuanced algorithmic adjustments can refine the decision-making pro-

cesses of computer vision systems, enhancing their application in real-world scenarios.

For robotics, these insights contribute to the development of more sophisticated collabor-

ative systems, where multiple autonomous agents must synchronize and make decisions

in real-time. This could revolutionize applications such as swarm robotics, where ef-

fective consensus mechanisms are crucial for coordinated action in complex tasks like

exploration, mapping, or coordinated transport and assembly operations.

By targeting these specific subfields, the research underscores the practical implica-

tions and potential impact of complementarity-based approaches in advancing the state-

of-the-art in computer vision and robotics.

7.4 Future Directions

Building on the research previously discussed, the following section explores the po-

tential future directions for this work in Visual Place Recognition (VPR). Each chapter

proposes transformative changes and outlines a roadmap for their implementation, aim-

ing to make significant progress in practical applications in both computer vision and

robotics.

• The innovative framework for assessing complementarity among Visual Place Re-

cognition (VPR) techniques, introduced in Chapter 3, sets the stage for transformat-
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ive advancements in the VPR field. A promising future direction entails leveraging

machine learning and artificial intelligence to automate the identification of com-

plementarity, enabling VPR systems to dynamically adapt to environmental changes

without manual tuning. Additionally, there’s significant potential in developing ad-

aptive systems that not only optimize VPR performance in terms of accuracy based

on contextual cues but also conserve computational resources by intelligently ap-

plying the most effective techniques for the task at hand. Further exploration into

the environmental and contextual factors affecting complementarity could lead to

VPR systems capable of operating in extreme conditions, enhancing their resilience

and versatility.

• The development and introduction of SwitchHit in Chapter 4, as a dynamic, complementarity-

based selection system for Visual Place Recognition (VPR) techniques, suggests a

promising advancement in intelligent, adaptable VPR systems. Future research

could focus on enhancing SwitchHit’s predictive capabilities through the integra-

tion of more sophisticated machine learning models that consider a wider range of

environmental variables and data inputs. This enhancement could further refine

the system’s ability to make accurate, context-aware decisions on technique selec-

tion, thereby optimizing performance across an even broader spectrum of scen-

arios. Additionally, investigating the potential for SwitchHit to operate in con-

junction with sensor fusion technologies could open up avenues for creating VPR

systems that are not only more accurate but also more resilient to extreme en-

vironmental conditions or sensor degradation. Unlike traditional methods such

as the Extended Kalman Filter (EKF), which rely on predefined models, or recent

transformer-based solutions, which are computationally intensive, SwitchHit aims
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to provide a more flexible and contextually adaptive approach by leveraging real-

time data and learning from the environment dynamically.

• The SwitchFuse system, in Chapter 5, which intelligently combines switching and

fusion strategies for Visual Place Recognition (VPR), lays a robust groundwork for

advancing VPR technology. Future explorations could delve into harnessing deep

learning algorithms to automate the fusion process, enabling SwitchFuse to dynam-

ically learn the most effective fusion strategies tailored to specific environmental

contexts and query images. This approach could significantly enhance the sys-

tem’s adaptability and performance in diverse conditions. Additionally, extending

the SwitchFuse concept to integrate with multi-sensory data, beyond visual inputs,

presents a thrilling prospect. By incorporating data from lidar, radar, or auditory

sensors, SwitchFuse could achieve a new level of environmental understanding

and recognition accuracy. This differs from standard fusion approaches like EKF or

transformer-based solutions by focusing on the dynamic and adaptive integration

of complementary sensory inputs, thus providing enhanced robustness and flexib-

ility. There is also potential in exploring the scalability of SwitchFuse in large-scale

applications, such as city-wide navigation systems or search-and-rescue operations,

where its advanced fusion capabilities could provide critical improvements in op-

erational efficiency and reliability.

• Lastly, Chapter 6 and its exploration of universal voting schemes in ensemble Visual

Place Recognition (VPR) systems opens new dimensions for refining the accuracy

and reliability of VPR ensemble methods. Future directions could concentrate on

a deeper investigation into adaptive voting mechanisms, where the selection of
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voting schemes is dynamically adjusted based on the context or specific character-

istics of the environment. This adaptive approach could leverage machine learning

models to analyse the performance impact of different voting strategies over time,

leading to a more intelligent system that optimizes its decision-making process.

Unlike traditional sensory fusion methods, this approach focuses on leveraging the

complementarity and dynamic adaptability of the ensemble, which can significantly

enhance performance in real-time applications. There’s also significant potential in

applying the insights gained from universal voting schemes to collaborative robotics

systems, where multiple autonomous agents must make collective decisions based

on shared visual information. This application could vastly improve the coordina-

tion and efficiency of robot swarms in complex tasks, from exploration to disaster

response, by ensuring optimal consensus-building mechanisms are employed.

By targeting these specific subfields, the research underscores the practical implica-

tions and potential impact of complementarity-based approaches in advancing the state-

of-the-art in computer vision and robotics. Future work will continue to build upon these

foundational advancements, pushing the boundaries of VPR systems and their applica-

tions in increasingly complex and dynamic environments.

7.5 Closing Remarks

This thesis marks a significant milestone in the evolution of Visual Place Recognition

(VPR), laying down the foundational work that paves the way for future advancements.

By introducing the concept of complementarity, and the innovative development of sys-

tems like SwitchHit and SwitchFuse, along with the examination of universal voting
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schemes, this research has made considerable progress in addressing some of the long-

standing challenges in VPR. This research stands as a testament to the potential of com-

bining various VPR techniques to enhance system performance, highlighting its import-

ance in the broader context of technological advancement.

However, the journey does not end here; there is much more to explore and refine.

The field of VPR is ripe with opportunities for further innovation. By delving deeper into

machine learning algorithms, expanding our understanding of environmental dynamics,

and exploring the integration of these systems into real-world applications, we can con-

tinue to build on this foundation. The path forward involves collaborative efforts across

disciplines, harnessing the power of technology to develop smarter, more adaptive sys-

tems. This thesis not only contributes to the academic discourse but also lights the way

for practical applications that could transform our interaction with technology, making

the dream of fully autonomous navigation a closer reality.
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Appendix A

Detailed Complementarity Analysis

Fig. A.1. Complementarity of VPR methods with AlexNet on Multiple VPR datasets.

This section presents the results generated by utilizing the proposed framework over

a set of eight VPR techniques on various standard VPR datasets. Figures 3.3 to 3.10
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depict the complementarity scores of different VPR methods with each other across these

datasets, allowing for visual analysis of how different pairs of VPR methods exhibit varied

complementarity levels.

Fig. A.2. Complementarity of VPR methods with CoHOG on Multiple VPR datasets.

One of the most intriguing findings is how certain VPR techniques, which perform

poorly on their own, show remarkably high complementarity scores when paired with

others. This phenomenon occurs when the errors made by one technique are system-

atically different from the errors made by another, allowing them to effectively cover

each other’s weaknesses. For instance, CALC, despite its relatively lower individual per-

formance, demonstrates high complementarity with NetVLAD across several datasets. As

shown in Table 3.2, their combination achieves a complementarity score of 0.9 on the

Essex3in1 and Livingroom datasets. This high score indicates that CALC and NetVLAD
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make different errors on these datasets, and their combination significantly boosts over-

all performance.

Fig. A.3. Complementarity of VPR methods with HybridNet on Multiple VPR datasets.

Taking a closer look, Figure 3.3 illustrates the levels of complementarity AlexNet

has with other methods. Notably, AlexNet demonstrates high complementarity with

NetVLAD, HybridNet, and RegionVLAD on several datasets. For example, NetVLAD

achieves complementarity scores of 0.9, 0.65, 0.65, and 0.9 on the 24-7, Essex3in1,

GardenPoint, and Livingroom datasets, respectively. Similarly, HybridNet shows strong

performance on the 24-7, Corridor, Nordland, and SPED datasets, while RegionVLAD

achieves the highest scores on the 24-7 and Essex3in1 datasets.

In another interesting example, Figure 3.4 reveals that CoHoG and NetVLAD are the

only methods that complement AMOSNet well. For instance, AMOSNet and CoHoG
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Fig. A.4. Complementarity of VPR methods with NetVLAD on Multiple VPR datasets.

achieve high complementarity scores of 0.7, 0.8, and 1 on the 24-7, Essex3in1, and

Livingroom datasets, respectively. Similarly, the combination of AMOSNet and NetVLAD

reaches scores of 0.85, 0.65, and 0.9 on the same datasets. This suggests that combining

AMOSNet with CoHoG or NetVLAD can lead to a robust VPR system. On the contrary,

CALC consistently scores low, indicating poor complementarity with AMOSNet.

When considering CALC as the primary VPR technique, Figure 3.5 shows that CoHoG

and NetVLAD emerge as suitable partners. CoHoG exhibits high complementarity scores

on the 24-7, Essex3in1, Livingroom, and SPED datasets, while NetVLAD matches CALC

well on the 24-7, Essex3in1, GardenPoint, and Livingroom datasets. Interestingly, despite

CALC’s generally lower standalone performance, its combination with these techniques

significantly boosts overall performance. This highlights the importance of evaluating
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Fig. A.5. Complementarity of VPR methods with RegionVLAD on Multiple VPR datasets.

complementarity independently of individual performance metrics.

As we continue our analysis, Figure 3.6 highlights CoHoG’s complementarity with

HybridNet, AMOSNet, and NetVLAD, while showing that CALC is the least favourable

option. This pattern is further reinforced in Figure 3.7, where HoG demonstrates strong

complementarity with CoHoG, NetVLAD, HybridNet, and AMOSNet.

HybridNet, as shown in Figure 3.8, achieves high complementarity with CoHoG and

NetVLAD, particularly on the 24-7, Essex3in1, and Livingroom datasets. However, com-

binations with AMOSNet and CALC generally have lower scores. Figure 3.9 illustrates

that NetVLAD pairs well with HybridNet and AMOSNet, especially on the Livingroom

and Nordland datasets, while RegionVLAD and CALC are less suitable partners.

Lastly, Figure 3.10 indicates that RegionVLAD complements well with CoHoG, NetVLAD,
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and HybridNet, but not with CALC and AlexNet. Carefully considering these results, it

can be concluded that NetVLAD is the most suitable VPR technique for forming viable

combinations with other methods, while CALC is the least favourable due to its consist-

ently low complementarity scores.

The complementarity levels are also presented in the form of radar charts (Figure

3.12), representing the lower and upper bounds of complementarity of each VPR tech-

nique with all other methods. These charts provide a holistic view of how much the

complementarity levels vary among different techniques. For example, combinations

with AlexNet show the largest upper bounds with NetVLAD, RegionVLAD, and Hybrid-

Net, while CALC has the smallest bounds. AMOSNet combinations exhibit the highest

upper bounds with NetVLAD and CoHoG, whereas HybridNet and CALC have the smal-

lest bounds.

Lastly, the research provides numerical data for an accurate estimation of the max-

imum achievable VPR performance using different complementarity pairs (Table 3.2).

These results highlight the significant improvements that can be achieved by maximizing

complementarity, offering insights into the improved selection of VPR techniques for en-

semble setups. By analyzing these insights, it is evident that certain combinations, such

as CALC with NetVLAD, can yield high complementarity and thus noticeably improve

VPR performance, even if one of the techniques performs poorly on its own.
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Detailed Performance Analysis of

SwitchHit

This section presents the results generated by utilizing the SwitchHit framework over

various standard VPR datasets. Figures 4.4 to 4.11 depict the switching patterns and

performance improvements of different VPR method combinations across these data-

sets, allowing for a visual analysis of how SwitchHit enhances the performance of VPR

techniques. The detailed numerical results and switching patterns, including the ex-

act number of correctly matched images for each combination of VPR techniques across

all datasets, are provided below. These results emphasize the substantial performance

improvements achieved by SwitchHit through intelligent switching, demonstrating its ef-

fectiveness in enhancing VPR system performance beyond the capabilities of individual

techniques.

Corridor Figure 4.4 presents the results for the Corridor dataset where the three

combinations tested all present a varied switching pattern for the dataset. The three
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combinations used are CALC, HoG, and NetVLAD; CoHoG, HybridNet, and CALC; and

NetVLAD, AMOSNet, and CoHoG. All three combinations have varying switching pat-

terns, correctly matching an average of three to four more images than any individual

VPR technique.

Fig. B.1. Switching patterns and total Number of correct matches for CrossSeasons dataset.

ESSEX3IN1 Figure 4.5 shows the results for the ESSEX3IN1 dataset where the first

combination given to SwitchHit contains CALC, CoHoG, and HybridNet. CALC delivers

the worst performance individually while CoHoG has the highest performance as a stan-

dalone technique. SwitchHit correctly matches four to five more images than CoHoG,

thus outranking the best state-of-the-art option available otherwise.

Livingroom In Figure 4.6, the results for the Livingroom dataset reveal that SwitchHit
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Fig. B.2. Switching patterns and total Number of correct matches for SYNTHIA dataset.

improves performance by two images while switching between AMOSNet and NetVLAD.

The second combination contains AlexNet, NetVLAD, and RegionVLAD. This combina-

tion, which contains NetVLAD, known for its high performance on the Livingroom data-

set, is outperformed by SwitchHit by matching three more images correctly. The last

combination tested on the Livingroom dataset is CALC, CoHoG, and AlexNet, which are

generally not the best VPR techniques for this dataset. Yet, SwitchHit improves perform-

ance by four images and matches NetVLAD’s performance. CrossSeasons Figure 4.7

illustrates the results for the CrossSeasons dataset. In the first experiment, SwitchHit

shifts between NetVLAD and HybridNet constantly and matches two more images cor-

rectly than HybridNet. The next combination switches only once from NetVLAD to HoG,

leading to one more image correctly matched. The last combination for CrossSeasons
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Fig. B.3. Switching patterns and total Number of correct matches for GardensPoint dataset.

presents a unique result as SwitchHit makes no switches at all and remains constantly

on AlexNet, producing the same result as AlexNet, the best VPR technique available.

SYNTHIA The SYNTHIA dataset results in Figure 4.8 show that the first combination

of CALC, HybridNet, and CoHoG results in 12 more correctly matched images than Hy-

bridNet. The next combination of RegionVLAD, NetVLAD, and AlexNet leads to SwitchHit

switching between all three techniques, resulting in ten more correctly matched images

than NetVLAD. The last combination tested for SYNTHIA correctly matches two more

images than the highest performing individual VPR technique.

GardensPoint Figure 4.9 shows the results for the GardensPoint dataset. The first

combination consists of NetVLAD, RegionVLAD, and CoHoG, making four successful

switches from NetVLAD to RegionVLAD. The next combination of AlexNet, NetVLAD, and
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Fig. B.4. PR curves showcasing SwitchHit’s performance on Livingroom, CrossSeasons and SYN-
THIA datasets versus other VPR techniques.

RegionVLAD results in SwitchHit mostly shifting between RegionVLAD and NetVLAD,

matching three more images correctly than the highest performing VPR technique present.

The last combination between CALC, AMOSNet, and NetVLAD switches between all three

options and matches two more images correctly.

PR Curves Analysis Figure 4.10 presents the PR-curves for the datasets SwitchHit

is tested on, starting from Corridor, ESSEX3IN1, and GardensPoint datasets tested for
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three different SwitchHit scenarios. For Corridor, SwitchHit manages to outperform all

individual VPR techniques available. The results for ESSEX3IN1 and GardensPoint data-

sets show that SwitchHit performs better than any individual VPR technique, including

CoHoG and NetVLAD, the highest performing VPR techniques for the datasets.

Figure 4.11 presents the PR curves for the Livingroom dataset, showing that Switch-

Hit outperforms NetVLAD with an AUC of 0.97 in both cases tested. For Cross-Seasons,

SwitchHit outperforms other individual VPR techniques in the first two cases. For SYN-

THIA, SwitchHit performs better than any individual VPR technique in all three cases

tested, demonstrating its ability to improve overall performance by utilizing comple-

mentary VPR techniques.
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