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Abstract—Anxiety can have a profound effect on our lives.
People may experience different levels of anxiety ranging from
mild to severe, and psychologists and psychiatrists mainly rely
on self-report questionnaires to measure this. However, new
computer-aided technologies and neuroimaging techniques could
significantly help them to verify their diagnosis. In this paper,
a novel deep learning model is designed to precisely screen
electroencephalogram (EEG) signals to characterise the neural
patterns associated with anxiety. Our deep learning model inte-
grates a convolutional neural network, an attention module and a
recurrent neural network to effectively estimate the EEG features
signifying normal and anxious emotions. In order to improve the
performance of the model, we adopted a data transformation
approach to generate a spatio-temporal representation of EEG
data. We evaluated the performance of our proposed model using
a publicly available EEG data set acquired from 23 subjects
who reported feeling normal or anxious. Anxiety was further
categorised into four sub-groups based on the level of anxiety. The
model achieved a classification accuracy of 94.24% and 92.58%
for binary (i.e normal and anxious) and multi-class (i.e normal,
light, moderate and severe anxiety) scenarios, respectively. The
obtained results indicated the success of our proposed model in
learning EEG patterns across various levels of anxiety. Addition-
ally, comparing the obtained results with previously published
studies demonstrated considerable superiority of our method.

Index Terms—Electroencephalogram, Anxiety Detection, Deep
Learning, Mental Health, DASPS

I. INTRODUCTION

ANXIETY is a pervasive mental health issue that is intri-
cately linked with stress. Although stress and anxiety can

be considered natural brain responses to various conditions,
they may have negative and dangerous effects on people’s lives
if they remain untreated.

Identifying anxiety in its early stages plays a crucial role in
mitigating potential long-term consequences [1], [2].

Neural signals such as EEG can significantly help in di-
agnosing stress and anxiety by capturing brain and body
excitability levels [3]. While traditional questionnaire-based
approaches have limitations, modern methods such as neu-
roimaging and machine learning offer sustainable solutions for
anxiety detection [1]. EEG emerges as a pivotal tool in inves-
tigating mental disorders like anxiety, offering high temporal
resolution and revealing power spectral density (PSD) mod-
ulations associated with generalized anxiety disorder (GAD)
[4].

Several attempts have been made to identify anxiety and
its level using EEG. The DASPS data set, which is publicly
available, provides a great opportunity for researchers to
investigate the application of machine learning methods in this
context. DASPS stands for “A Database for Anxious States
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based on Psychological Stimulation” [5]. In this dataset, two
main labels, “normal” and “anxious”, were used to categorise
the trials into groups. In addition, four labels comprising
“severe anxiety”, “moderate anxiety”, “light anxiety”, and
“normal anxiety” were provided to divide the anxious category
into four subclasses, based on subject self report. In a recent
study, Chatterjee et al. [6] used DASPS to detect and classify
anxiety. They used labels provided by the dataset to classify
EEG trials into 2 (normal and anxious) and 4 (normal, light,
moderate, and severe anxiety) classes using time and frequency
domain features. Support vector machine (SVM), K-nearest
neighbour (KNN), random forest (RF), decision tree (DT)
and gaussian naive Bayes (GNB) were employed in this
work for classification. The results indicated that KNN had
the highest accuracy of 83.8% for both binary and multi-
class classifications. In another study, Daneshmand et al.
[7] introduced a technique based on the Chebyshev chaotic
map for anxiety classification using the DASPS dataset. They
used DT and KNN as classifiers. The results showed that
KNN achieved 93.75% and 100% accuracy for binary and
four class classification respectively. A study by Muhammad
et al. [8] proposed an anxiety assessment framework using
frequency domain features to assess different levels of anxiety
measured by the DASPS dataset. They used several classifiers
and achieved the highest accuracy by random forest 94.90%
92.74% for 2 and 4 classes respectively.

Compared to the above methods that relied on traditional
machine learning approaches, deep learning (DL) has also
shown promising performance in EEG analysis [9]–[11]. The
main benefit of deep learning is its ability to learn complex
EEG patterns with no need for feature estimation meth-
ods which gives DL-based methods more independence and
adaptability. Maheshwari et al. [9] employed diverse EEG
datasets to detect various types of emotions. Their work
involved developing a rhythm-specific multi-channel convolu-
tional neural network (CNN). They trained their model using
five different EEG frequency bands (i.e. delta, theta, alpha,
beta, and gamma). Their proposed model achieved 53.45%
for classifying DASPS trials into normal and anxious classes.
Similarly, Agarwal et al. [10] utilized a 1D convolutional
long short-term memory (LSTM) network and several datasets
to classify emotions using EEG signals. They also investi-
gated how the accuracy of the classification is distributed
across different scalp regions. Their results indicated that deep
learning can successfully classify different emotional states
observed by EEG. The obtained accuracies for DASPS data
set were 71.93% and 71.63% for binary and four class classi-
fication respectively. In another study, Shikha [11] employed
a stacked sparse autoencoder to classify anxiety using EEG
signals collected by DASPS dataset. They extracted features



from different domains, including time, frequency, and time-
frequency. Their deep learning model achieved an accuracy of
83.93% for classifying normal and anxious trials.

The current paper introduces a novel deep learning model
designed to detect and classify anxiety states collected by
the DASPS data set. We used the labels suggested by [5] to
classify EEG trials into two and four classes. Our proposed
deep learning model autonomously extracts optimal features
directly from raw data, eliminating the need for manual feature
extraction. While traditional pre-processing steps are essential
for noise reduction, they can introduce biases and limita-
tions. By eliminating pre-processing and feature extraction,
the methodology preserves raw EEG integrity and facilitates
a direct analysis of neural dynamics. As a consequence, the
method would be more adaptable across diverse datasets.
The subsequent sections describe the details of the proposed
method. Section III presents the obtained results and section
IV concludes the paper.

II. MATERIAL AND METHODS

A. Dataset

The dataset utilized in this paper is DASPS dataset and is
provided by IEEE DataPort1 [5]. This dataset introduces an
innovative methodology by capturing Electroencephalogram
(EEG) signals from 23 participants during the induction of
anxiety through face-to-face psychological tasks. The exper-
imental design of the DASPS dataset includes six trials for
each subject, with each trial comprising two main phases,
each lasting 15 seconds. In the first phase of each trial,
the participant listens to an emotional scenario described by
a psychotherapist. In the second phase of each trial, the
participant tries to recall the scenario received in phase one.
After completing each trial, the participant is asked to rate
the feeling using the Self Assessment Manikin (SAM) which
assesses both valence and arousal. According to the measured
levels of valence and arousal, the trials were labelled as
normal or anxious. Categorising the trials by two labels led
to obtaining 67 normal and 71 anxious trials. Additionally in
another labelling attempt, the anxious trials were categorised
into four groups including normal, light, moderate and severe.
In the second labelling attempt, 65 trials were identified as
normal, 43 trials were identified as light anxiety, 15 trials were
labelled as moderate anxiety and 15 trials were identified as
severe anxiety. More details about this data set can be found
in [5].

B. Data Analysis

Our proposed data analysis pipeline consists of four major
steps: i) filtering ii) scalp maps generation iii) windowing and
iv) training and classification. The main novel part of the data
analysis pipeline is the proposed deep learning model that has
been used in step iv.

1) Filtering: this stage was performed using a band-pass
filter with cut-off frequencies 12 Hz and 25 Hz to extract
beta-waves from collected EEG signals. Employing a band-
pass filter enhances the quality of EEG signals by removing
irrelevant components such as muscle activity, slow drifts and

1https://ieee-dataport.org/open-access/dasps-database

TABLE I
THE CONVERSION FUNCTION USED IN OUR STUDY TO TRANSFER THE
EEG POTENTIALS RECORDED BY 14 ELECTRODES AT TIME t TO A 2D

SPATIAL MAP. THE CONVERSION IS PERFORMED BY REPLACING THE NAME
OF EACH ELECTRODE IN THE TABLE WITH THE RECORDED POTENTIAL.

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 AF3 0 AF4 0 0 0 0
0 F7 0 F3 0 0 0 F4 0 F8 0
0 0 FC5 0 0 0 0 0 FC6 0 0

T7 0 0 0 0 0 0 0 0 0 T8
0 0 0 0 0 0 0 0 0 0 0
0 P7 0 0 0 0 0 0 0 P8 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 O1 0 O2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

environmental noise. Additionally, it aids the identification and
analysis of the brainwave patterns that are associated with
cognitive states representing emotional processing in the brain
[6], [12], [13].

The extracted beta waves were then normalised using a z-
score for further analysis. After filtering, we assigned labels
to the trials according to the procedure presented in [5].

2) scalp maps generation: The EEG signals collected
from each participant at each trial can be represented by
a M × N matrix, where M and N represent the number
of electrodes and time samples respectively. However, this
representation does not provide any spatial information about
the data. To address this limitation, we generated a spatial
scalp map illustrating the spatial relationship of electrodes in
two-dimensional space. To achieve this purpose, we used the
conversion function outlined in Table I to transfer the EEG
potentials recorded at each time sample t across the scalp to a
11×11 spatial map. This function is constructed based on the
positions of the electrodes in the standard 10−20 EEG system.
Since 14 electrodes were used by this dataset, the conversion
function includes the spatial information of these electrodes.
A similar procedure was employed in relevant studies such as
[14], [15]. At the end of this stage, N scalp maps, each has
11× 11 spatial resolution, are obtained for each participant.

3) Windowing: The sliding window is one of the best
feature extraction techniques that can be used in combination
with deep neural networks. It can improve the accuracy by
providing a more descriptive presentation of EEG temporal
dynamics. Additionally, a sliding window helps to increase the
quantity of the training data which significantly affects deep
learning performance. Selecting the appropriate size for the
sliding window is a challenging task and may lead to different
outcomes. In this paper, various sliding windows whose sizes
are changed within 100ms − 3s were used to identify the
optimal size. It should be noted that there was no overlap
between the adjacent windows. Using this approach, each
trial’s phase is divided into several segments each includes
a sequence of scalp maps. We call this sequence a data clip.
On the other hand, using the conversion function and sliding
window in a cascade form leads to achieving a spatio-temporal
representation of data that can be beneficial in the exploration
of the temporal dynamics of anxiety states using EEG and
deep learning.



Fig. 1. Overall procedure of the proposed anxiety detection and classification using the proposed deep learning method.

C. Proposed Deep Learning Model
In this section, our novel deep learning architecture is

described. This model is proposed to address the challenging
task of anxiety detection and classification using EEG signals.
Our proposed model integrates convolutional and LSTM layers
to extract spatial and temporal features, respectively. The
attention module was also added to the model to dynamically
focus on salient brain signals’ patterns. The deep learning
architecture proposed in this paper comprises of three distinct
blocks, as shown in Figure 1. The initial block includes
three consecutive convolutional layers used for spatial pattern
recognition. All three layers within the first block, operate as
two-dimensional convolutional layers and play pivotal roles in
extracting spatial features from the scalp maps using various
filters and kernels. The first two convolutional layers are
equipped with F1 filters and a 3 × 3 kernel. As a result
of employing the Rectified Linear Unit (ReLU) activation
functions for each filter, this layer delves into the intricacies
of spatial patterns, enabling the network to discern and un-
derstand diverse local features of input data. The third two-
dimensional convolutional layer further refines the model’s
understanding of the features extracted by the preceding layers.
To this aim, F2 filters which represents twice the quantity
utilized in the preceding layer, and a 3 × 3 kernel were
used by this layer to capture more detailed spatial patterns.
To mitigate overfitting, three types of regularizers were im-
plemented on each convolutional layer. These include kernel
regularization using L1 and L2 methods, bias regularization,
and activity regularization using L2 method. Additionally, to
further enhance regularization, each layer is supplemented by a
Spatial Dropout layer with dropout rates of D1, D1, and D2,
respectively. This comprehensive regularization strategy aids
in stabilizing the training process. Moreover, it improves the
model’s generalization performance by preventing the network
from relying on specific features and patterns of the data.
The last convolutional layer is followed by a SE Attention
Module. This module is used to further enhance the important
spatial features by adaptively selecting relevant features before
moving to the next stage. The flatten layer prepares the multi-
dimensional feature maps for further processing and keeps the
temporal dimension. The dense layer with F3 neurons and
Relu activation function serves as a feature transformation
step which refines the extracted spatial features before they
proceed to the next block. This layered approach enriches the
model’s understanding of spatial information within the data.
It also facilitates the extraction of intricate spatial features

that are crucial for accurate analysis. The incorporation of
ReLU activation functions at each layer ensures non-linearity
by enabling the model to capture complex relationships and
nuances within the spatial data representations.

The uniqueness of this architecture lies in the squeeze-and-
excitation (SE) attention module which dynamically recali-
brates feature maps. This module emphasizes vital spatial in-
formation while suppressing less relevant details. In the initial
step, global information is extracted across spatial features.
This process involves performing average pooling on each
extracted feature using convolutional layers. The recalibration
is achieved using channel-specific weights estimated by the
sigmoid activation functions and enhances the discrimination
among EEG features associated with different classes. This
strengthens the contribution of informative features while
attenuating the impact of uninformative ones [16].

The second block focuses on temporal features by employ-
ing LSTM Layers utilising tangent hyperbolic activation func-
tions. The first LSTM Layer with C1 units captures temporal
dependencies within salient spatial feature maps that enable
the model to understand sequential patterns. The second LSTM
Layer with C2 units further refines the temporal features and
enables the model to extract more complex temporal relation-
ships. The subsequent dense layer with F3 neurons integrates
the temporal information into a more compact representation.
Combining CNN and LSTM blocks in our model leads to
obtaining a feature vector that includes both temporal and
spatial features of brain activity when it is processing different
anxiety states.

The classifier block includes a Dense Layer with 2 or 4
neurons and a softmax activation function. 2 refers to normal
and anxious classes and 4 refers to normal, light, moderate
and severe anxiety classes.

III. EXPERIMENTAL RESULTS

In this section, the performance of the proposed model to
detect and classify different anxiety levels using the DASPS
dataset is evaluated. We also compare our results with existing
methods used on this data set to demonstrate the effectiveness
of our model. A summary of all parameters and setups used
in this study is presented in Table II. For the model setup,
we employed binary cross-entropy as the loss function and
the RMSProp optimizer. We trained the model over 300
epochs and utilized k-fold cross-validation with k = 5. This
approach ensures robust evaluation and enhances the reliability
of our findings in classifying anxiety levels. To evaluate



TABLE II
PARAMETERS AND SETUPS USED FOR TRAINING MODEL.

Parameter Name Value

Data preparation
Band-pass filter 12-25 Hz
Normalization Z-score algorithm
Window size (seconds) 0.1, 0.25, 0.5, 1, 2, 3

Proposed Model

F1 25
F2 50
Convolution kernels 3× 3
Convolution activations ReLU
D1 50%
D2 30%
F3 256
LSTM activations Tanh
C1 64
C2 32
Classifier Softmax
Loss Binary Cross Entropy
Optimizer RMSProp
Epochs 300
Batch size 32
K-fold 5

TABLE III
THE COMPARISON OF ACCURACY WHEN SEVERAL WINDOW SIZES WERE

USED FOR GENERATING DATA CLIPS.

Window size 2 classes (acc± std) 4 classes (acc± std)
15 samples (100 ms) 93.39%± 0.72% 92.15%± 0.40%
26 samples (200 ms) 94.24% ± 0.33% 92.58% ± 0.52%
32 samples (250 ms) 94.04%± 0.24% 92.52%± 0.28%
64 samples (500 ms) 93.38%± 0.62% 90.77%± 1.47%
128 samples (1 s) 89.38%± 2.22% 83.76%± 2.99%
256 samples (2 s) 70.58%± 2.21% 60.34%± 2.09%
384 samples (3 s) 62.84%± 1.47% 55.58%± 2.11%

the performance of the proposed deep learning model, we
conducted several experiments using various sliding windows
whose sizes change within [100ms − 3s]. As described in
section II-B, the sliding window technique is used to generate
scalp map clips representing a spatio-temporal visualisation
of EEG dynamics. Various window sizes lead to obtain scalp
map clips whose temporal dimensions are different. The main
objective of evaluating the model’s performance using data
clips with different temporal sizes is to identify the most
optimal window size. Table III presents the accuracy rates
obtained for 2 classes and 4 classes classification associated
with different window sizes. The reported results are the
average accuracy rates across all five folds.

The results revealed that the best accuracy is obtained
when the size of the sliding window is 200ms. The proposed
model achieved 94.24% accuracy for classifying normal and
anxious conditions and 92.58% accuracy for classifying four
anxiety levels (i.e. normal, light, moderate and severe). Our
findings suggest that smaller window sizes may yield superior
results. Several factors contribute to this phenomenon. Firstly,
a smaller window size results in a larger number of scalp
map clips that are used to train the model. Additionally, with
a smaller window size, such as 100, 200, or 250ms, the
number of scalp maps included in each clip decreases, which
enables the capture of rapid fluctuations in beta oscillations,
leading to simplified training by reducing the complexity of
the learning process. However, as the results show, decreasing
the size of the sliding window to 100ms presents the model

with a challenge. One notable issue is the potential loss of
temporal content when using smaller window sizes, which may
hinder the model’s ability to capture long-term dependencies
and subtle temporal dynamics within the EEG signals. In
contrast, with larger window sizes such as 1, 2, or 3s, multiple
beta oscillations can fit within each window. This capacity
to encompass multiple oscillations may inadvertently smooth
over rapid changes, resulting in a loss of temporal resolution.
Consequently, this smoothing effect can pose challenges for
the model in discerning complex patterns within the data.

As evident from Table III, the accuracy of categorising
four classes is lower compared to that of two classes. This
discrepancy can be attributed to several factors related to the
pattern of EEG signals assosiated with these conditions. As
discussed in Section II-B3, in the case of two classes, dis-
tinguishing between the anxious and normal states represents
a clear binary classification task. However, in the context of
four classes, the anxious state is subdivided into four dis-
tinct categories, each representing different levels of anxiety.
Consequently, these classes exhibit greater similarity to each
other, resulting in more difficulty for the model to accurately
distinguish them. Moreover, the increased number of classes
introduces additional complexity to the classification task,
requiring the model to identify subtle differences between the
various anxious states, which may contribute to the observed
decreased accuracy. Additionally, the presence of more classes
may lead to increased class imbalance, further complicating
the classification process. We had a balanced classification in
the 2 class implementation due to having 67 and 71 normal
and anxious trials. However, the 4 class implementation faced
the challenge of dealing with imbalanced data. We tackled
this issue by ensuring that sufficient data from each class is
included in both training and testing rounds. Importantly, our
results revealed that the proposed deep learning model can
learn the pattern of data effectively.

We also compared the performance of our proposed model
with methods previously used with the DASPS data set for
anxiety classification. Table IV provides a summary of all
methods used this data set. Upon review of the table, it
becomes evident that many previous studies on this dataset
have predominantly utilized feature extraction methods and
traditional machine learning algorithms. Muhammad et al.
[8] and daneshmand et al. [7] achieved the highest accuracy
among the researchers who focused on traditional machine
learning approaches. Notably, two references ( [9], [10])
opted to directly feed raw data into their deep learning
models for anxiety classification, albeit after applying varying
preprocessing steps to the data. However, their performance
was considerably weaker than traditional machine learning-
based studies. This diversity in methodologies underscores the
ongoing exploration of diverse approaches in the field, aiming
to enhance the accuracy and reliability of anxiety classification
models.

Comparing the results indicated that our proposed model
achieves promising accuracy in both two and four classes.
Unlike traditional approaches relying on feature extraction,
our method focuses on data representation and utilizes 200ms
segments for anxiety classification. This is a major benefit
because feature extraction is a labour-intensive process which



TABLE IV
THE COMPARISON OF DIFFERENT METHODS.

State-of-the-arts # Classes Features Classifier Accuracy

Baghdadi et al. [5] 2 classes Time, Frequency, and Time-Frequency features Stacked Sparse Autoencoder 83.50%
4 classes 74.60%

Maheshwari et al. [9] 2 Classes No features CNN 53.45%

Agarwal et al. [10] 2 classes: Valence No features 1D CNN-LSTM 71.93%
2 classes: Arousal 71.63%

Chatterjee et al. [6] 2 classes Hjorth parameters and 4 EEG band powers KNN 83.8%
4 classes 83.8%

Shikha et al. [11] 2 classes Time, Frequency, and Time-Frequency features Stacked Sparse Autoencoder 83.98%

Jin et al. [12] 2 classes Time-Domain and Frequency-Domain analysis Random Forest 78.34%
4 classes 70.45%

Daneshmand et al. [7] 2 classes Innovative Chebyshev chaotic map-based features KNN 93.75%
4 classes 100%

Muhammad et al. [8] 2 classes Asymmetry index, rational index, and mean power Random Forest 94.90%
4 classes 92.74%

Proposed method 2 classes No features 2D CNN-LSTM 94.24%
Proposed method 4 classes 92.58%

needs necessary specialized expertise. In contrast, our deep
learning model autonomously identifies and extracts optimal
features from the data, enabling it to effectively distinguish
between two or four anxiety classes without the need for
human intervention in feature selection. Additionally, this
capability gives an excellent adaptability to our method to be
applied to different data sets.

IV. CONCLUSION

This study proposed a novel deep learning approach to
address the challenge of detecting anxiety and identifying
its levels based on EEG. Here, we used a data analysis
pipeline including filtering, data preparation, model training
and classification. In the first stage, a bandpass filter was
used to extract the beta rhythms from raw data. Then a
spatio-temporal conversion approach was used to generate the
training data set. Not only did this conversion incorporate
the spatial information of EEG recording into data, but also
it increased the volume of training data which significantly
improved the effectiveness of our model. The performance
of the proposed method was examined using a 5−fold cross
validation approach. The obtained results indicated that our
proposed model notably outperforms the previously published
deep learning methods. It should be noted that although
our method competes with traditional machine learning tech-
niques, it may be preferable due to being independent of
extensive preprocessing and feature extraction procedures.
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