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Abstract 1 

The Southern Ocean is experiencing major environmental and ecological changes which 2 

could drastically alter communities and impact ecosystem functioning. We still have a poor 3 

understanding of the structure of Southern Ocean food webs and their likely responses to 4 

ongoing and future changes, which limits our ability to develop and implement effective 5 

management and conservation strategies. This thesis employs multiple approaches to 6 

investigate several aspects relating to the structure and dynamics of Southern Ocean food 7 

webs. First, the links between morphological traits and trophic niches are explored within the 8 

demersal fish community of the subantarctic island of South Georgia, highlighting the role of 9 

functional traits in driving community structure. Second, functional traits including body size, 10 

mobility, foraging habitat and feeding mode are used to identify the drivers of stabilising sub-11 

structures (modularity) across regional food webs. This leads to the hypothesis that habitat 12 

heterogeneity is a major determinant of the distribution of modules within networks. Third, 13 

an extensive dataset of mesopelagic fish and zooplankton samples from across a latitudinal 14 

temperature gradient is used to determine the impact of warming on predator-prey body mass 15 

ratios (PPMR). This reveals that ongoing environmental change may reorganise the size-16 

structure of Southern Ocean ecosystems, with implications for their stability. Fourth, the 17 

possible consequences of ongoing baleen whale population recovery for competitor 18 

biomasses are explored using the Ecopath framework, with the conclusion that strong trade-19 

offs between conservation objectives are likely unless substantial increases in suitable 20 

primary production occur. This thesis finishes with a synthesis of these new insights into the 21 

structure and dynamics of Southern Ocean food webs and discusses the major future 22 

directions for food web research more generally.  23 
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1 General Introduction 174 

Our oceans are experiencing unprecedented environmental and ecological changes. These 175 

include climate-driven warming of waters (including more frequent, stronger marine 176 

heatwaves), melting of sea ice, and changes in primary productivity (Cooley et al. 2022). 177 

Additionally, the growing human population is resulting in ever-increasing demand for food, 178 

driving the over-exploitation of marine resources (Costello et al. 2020). These stressors often 179 

do not act in isolation, but instead interact additively and synergistically to increase the 180 

vulnerability of species and communities (Gissi et al. 2021). It is predicted that climate 181 

change will soon become the single greatest driver of global biodiversity loss (Newbold 182 

2018; He et al. 2019). A primary response of marine ectotherms to changing conditions 183 

(particularly temperature rises) is to shift their distribution to track favourable conditions, and 184 

regional species turnover rates are far greater within the marine environment than on land 185 

(Blowes et al. 2019). Species that are unable to track favourable conditions may experience 186 

physiological impacts resulting in fundamental changes such as decreases in size-at-age, 187 

changes to fecundity, or even local extinctions (Nikolaou and Katsanevakis 2023; Niu et al. 188 

2023). Such shifts in the distribution and local abundance of marine species will alter 189 

regional community composition, with impacts on ecosystem structure.  190 

Polar regions are particularly under threat, as many endemic species have limited capacity to 191 

undergo compensatory distribution shifts due to the shrinking of suitable habitat (such as sea 192 

ice or waters within their thermal tolerance range) or the presence of physical barriers (e.g. 193 

the Antarctic continental shelf). Polar ecosystems will thus be increasingly impacted both by 194 

abiotic and biotic factors, as environmental changes drive the decline of native species and 195 

influxes of sub-polar species alter the composition of regional species assemblages. Such 196 

biodiversity changes and homogenisation are of great concern from both conservation and 197 

management perspectives, as they may increase the vulnerability of ecosystems to further 198 

changes and could disrupt ecosystem functioning and the maintenance of ecosystem services 199 

(Olden et al. 2004).  200 

1.1 Biodiversity and ecosystem stability 201 

Recognition of ongoing biodiversity change has led to a focus on the links between diversity 202 

and the dynamics and stability of communities and maintenance of ecosystem processes. 203 

Ecological stability has numerous definitions (as reviewed by Ives and Carpenter 2007), the 204 

most common being the overall temporal variability or amplitude of fluctuations in the focal 205 
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community properties (dynamic stability), the extent to which discrete perturbations alter 206 

these properties (resistance), and the ability or rate at which the properties return to 207 

equilibrium (recovery) (McCann 2000; Ives and Carpenter 2007) (Figure 1.1).  Species 208 

diversity may enhance community stability through mechanisms such as the ‘portfolio effect’ 209 

(statistical averaging) and the ‘covariance effect’ (whereby negative covariance in abundance 210 

of competing species increases with higher diversity) (Tilman and Downing 1994; Tilman et 211 

al. 2006). Ecosystem resilience (the combination of resistance and recovery) often increases 212 

with diversity. This is due to the greater variety of ecological roles present within the 213 

community and the number of species able to perform the same roles (functional 214 

redundancy), which increases the overall capacity to tolerate perturbations (Biggs et al. 2020; 215 

Yachi and Loreau 1999). 216 

 217 

Figure 1.1: Conceptual visualisation of three common stability measures. The blue line 218 

represents a community property (e.g. biomass). Dynamic stability generally describes the 219 

temporal variability or amplitude of fluctuations in the property, resistance measures the 220 

degree of change in the property after perturbation, and recovery represents the rate at which 221 

of the property returns to baseline (dashed line) after perturbation, or the relative quantity of 222 

the community property that is recovered post-disturbance. 223 
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Much diversity-stability research has focussed on simple communities spanning single or few 224 

trophic levels and may therefore fail to consider important ways in which species diversity in 225 

larger, more complex ecological networks can modify ecosystem properties. As discussed by 226 

Stachowicz et al. (2007), changes to predator and prey diversity in multi-trophic marine 227 

communities can modify diversity-stability relationships through mechanisms such as altered 228 

strength of top-down and bottom-up control, and trophic cascades. In the context of climate 229 

change, there is evidence that fluctuations in species populations and overall diversity are 230 

driven as much by changes in the interactions between species as by direct environmental 231 

effects on organisms themselves (Ockendon et al. 2014). If we are to disentangle and predict 232 

the likely ecosystem-level responses to changes in species distributions, then it is important 233 

that we gain an understanding of how ecological communities are structured and what 234 

implication this structure has for ecosystem stability. This approach requires the explicit 235 

consideration of species interactions, which can be achieved using food web models.  236 

1.2 Food web models 237 

Food web models depict the feeding relationships between species and provide a useful 238 

framework for relating the structure of multitrophic communities to ecosystem functioning, 239 

given that they incorporate not only their constituent species but also the relevant patterning 240 

of interactions (i.e. energy flow) within the system (Thompson et al. 2012; Hines et al. 2019). 241 

Models are generally constructed using information on the diet of each species within the 242 

focal ecosystem. This data may come from a range of sources including direct observation of 243 

feeding interactions, morphological analysis of stomach or scat samples, and methods such as 244 

stable isotope analysis or the DNA sequencing of tissue samples (Horswill et al. 2018). The 245 

limitations to these different methods are well described. Morphological methods are biased 246 

towards identifying prey species with hard structures and the resulting information only 247 

represents recent dietary composition, while isotope analysis can identify more long-term diet 248 

in addition to providing quantitative estimates of diet reliance but cannot resolve prey 249 

taxonomy to the species-level (Nielsen et al. 2017; Horswill et al. 2018). DNA sequencing 250 

sits somewhere in-between, as it can resolve recent prey taxonomy without requiring intact 251 

prey specimens to be present but fails to provide information on the relative proportions of 252 

species in the diet (Nielsen et al. 2017; Horswill et al. 2018). Despite their individual 253 

limitations, these methods can provide invaluable contributions to the creation of 254 

comprehensive food web models for a wide range of ecosystems, and recent research has 255 

begun combining some of these techniques to maximise the reliability of inferred diets (e.g. 256 
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Horswill et al. 2018; Bonin et al. 2020). Data on feeding relationships are often also 257 

supplemented with information from the primary literature to infer interactions for species 258 

that are known to occur in the system concerned.  259 

There are various approaches to modelling food webs, which exist along a spectrum of 260 

capabilities and data requirements (Figure 1.2). At their most basic, food webs can be 261 

described using simple unweighted binary network models, whereby species (or groups of 262 

taxonomically or functionally similar organisms) are represented by nodes and their 263 

interactions are described by the links between them. Such models are relatively easy to 264 

construct, as they only require knowledge of which groups consume each other. Despite their 265 

simplicity, these models can provide useful insights, with a variety of metrics that can be 266 

calculated to describe the position and role of individual nodes within the wider ecosystem or 267 

provide an understanding of the overall structure of the food web, both of which are relevant 268 

to determining the implications of perturbations for ecosystem functioning (Table 1.1). 269 

Qualitative network models can be particularly useful in data-poor systems, as they require 270 

only a general understanding of the interactions between ecosystem components, and have 271 

been used to explore possible ecological consequences of climate change or management 272 

activities (Melbourne-Thomas et al. 2013; Forget et al. 2020).  273 

274 

Figure 1.2: Conceptual diagram highlighting the requirements and capabilities of binary and 275 

quantitative food web models. 276 

 277 
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Table 1.1: List of common node-level and network-level food web metrics, their descriptions, 278 

and implications for our understanding of food web structure. 279 

Metric Description Implication References 

Species richness 

(S) 

Number of nodes within the food 

web. 

Provides information on 

food web size. 

Thompson et al. 2012; 

Kortsch et al. 2019 

Link richness 

(L) 

Number of feeding links between 

nodes. 

Provides information on 

food web size. 

Thompson et al. 2012; 

Kortsch et al. 2019 

Average food 

chain length 

The number of nodes that energy 

passes through from the base to the 

top predator in the food chain.  

Provides information 

about network structure 

and organisation of 

interactions. 

Post 2002; Thompson et 

al. 2012 

Linkage density 

(L/S) 

Average number of links per node 

(unweighted).  

Indicates food web 

complexity. 

Kortsch et al. 2019 

Connectance 

(L/S2) 

Proportion of total possible trophic 

links that actually occur in a network 

(unweighted). 

Indicates food web 

complexity.  

Thompson et al. 2012 

Clustering 

coefficient 

For a given node, indicates the degree 

to which connected nodes are also 

linked to each other. At the network 

level, indicates the average level of 

clustering.  

Indicates food web 

complexity and structure.  

Kortsch et al. 2019; 

Marina et al. 2018 

 

Degree Number of incoming and outgoing 

links to a specific node. 

Indicates how connected 

the node is. Used to 

estimate generality and 

vulnerability. 

Thompson et al. 2012; 

Kortsch et al. 2019; 

Marina et al. 2018 

 

Degree 

distribution 

Overall frequency distribution of the 

number of interactions for each node 

in the network 

Can help identify 

species/groups with 

important roles in 

connecting the 

community. 

Thompson et al. 2012; 

Kortsch et al. 2019; 

Marina et al. 2018 

Generality Number of prey consumed by a node. 

At network scale, estimated as the 

mean number of prey per consumer. 

Indicates node/network 

sensitivity to bottom-up 

processes influencing 

prey dynamics. 

Thompson et al. 2012 

Vulnerability Number of predators of a given node. 

At network scale, estimated as the 

mean number of consumers per prey.  

Indicates node/network 

sensitivity to top-down 

processes influencing 

predator dynamics. 

Thompson et al. 2012 

Modularity How densely nodes within subgroups 

interact with each other compared to 

with nodes from other subgroups. 

Provides an indication of 

the structure and 

organization of links 

within the food web. 

Grilli et al. 2016; 

Kortsch et al. 2019 

Proportion of 

basal, 

intermediate, 

and top species 

Fraction of species with no resources, 

with both consumers and resources, 

and with no consumers, respectively. 

Provides an indication of 

food web structure and 

possible top-down or 

bottom-up control. 

Kortsch et al. 2019; 

Gibert 2019 

Omnivory Variety in prey trophic level for a 

given consumer node. 

Proportion of omnivory 

has implications for 

network stability and 

energy flow. 

McCann and Hastings 

1997; 

Kratina et al. 2012; 

Heymans et al. 2014 

 280 

  281 
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More complex models can provide additional knowledge about structure and patterns of 282 

energy transfer that is not available in unweighted models. For example, these weighted 283 

networks can reveal the energy flux between groups and capture the strengths of interactions 284 

(Marina et al. 2024; Gauzens et al. 2019). The development of such quantitative models 285 

comes with greater data requirements, such as abundances, body masses, metabolic rates and 286 

relative dietary contributions, limiting their application to regions where such information is 287 

available. Modelling frameworks such as Ecopath with Ecosim are used to construct models 288 

of energetic fluxes that meet the assumption of mass-balance over a specific time period 289 

(often a single year) (Christensen and Walters 2004). Ecopath models lie at the far end of the 290 

complexity and data needs scale, with key parameters including the biomass, diet 291 

composition by weight, production per unit biomass, consumption per unit biomass and 292 

assimilation efficiency of each group, while additional parameters representing biomass 293 

accumulation rates, fishery catches and discards, and migration rates can also be supplied 294 

(Christensen and Walters 2004). Parameters are ideally location- and group-specific but can 295 

also be taken from other models or literature where necessary. These form the basis of linear 296 

equations underlying the production of each group, as determined both by their parameters 297 

and those of their consumers. A key parameter which is often an output of Ecopath models is 298 

the ecotrophic efficiency (EE), representing the proportion of the production or mortality of 299 

each group that is explained in the model. Values range from zero (limited to top predators 300 

that are not fished) to one (100% of production is consumed by other groups in the model). 301 

As such, the EE is a key parameter representing whether or not the model is in balance, with 302 

values above one indicating groups with mortality rates that cannot be sustained by 303 

production rates. Extensive adjustments to group parameters must often be made before the 304 

assumption of mass balance (EE ≤ 1) is met for all groups. Balanced Ecopath models 305 

represent a powerful tool for exploring topics including the direct and indirect impacts of 306 

fisheries on trophic interactions (Coll et al. 2006; Subramaniam et al. 2020), the 307 

consequences of climate change for aquaculture (Chapman et al. 2020), and the effect of 308 

multiple climate and anthropogenic stressors on trophic dynamics (Stock et al. 2023). 309 

Additionally, the inclusion of temporal population trends for key groups can also facilitate the 310 

development of time-dynamic models using the Ecosim plugin, and spatially resolved models 311 

can also be constructed (Christensen and Walters 2004).  312 
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1.3 The drivers of food web structure 313 

Early research into the relationship between diversity and stability used random matrices to 314 

describe the structure of species communities (e.g. May 1973). We now know that complex 315 

networks are non-randomly structured, and that their topology may be influenced by a variety 316 

of factors.  317 

A major driver of the structure of food webs is the distribution of functional traits across the 318 

community (Gravel et al. 2016; Brose et al. 2019). Predator and prey traits influence both the 319 

likelihood of co-occurrence of interacting species, and the ability of each species to capture 320 

and consume, or escape, the other. Marine food webs are often strongly size-structured, as 321 

body size determines gape limitation, prey density, handling time and energy content 322 

(Petchey et al. 2008; Rall et al. 2012; Potapov et al. 2019). The relative size of predators to 323 

their prey (the predator prey mass ratio, PPMR), can be used to predict food web structure 324 

(Petchey et al. 2008; Morales-Castilla et al. 2015; Laigle et al. 2017). PPMR generally 325 

decreases with trophic height of the consumer (Jonsson and Ebenman 1998; Tucker and 326 

Rogers 2014), and may also predict the strength of trophic interactions, with a positive 327 

relationship between PPMR and interaction strength identified for some consumer-resource 328 

pairs (Emmerson and Raffaelli 2004; Woodward et al. 2005). Body size is also often related 329 

to important life-history traits such as generation time and reproductive rate (Stearns 1983; 330 

Janis and Carrano 1991; Gillooly 2000) and is therefore also strongly linked to abundance, 331 

which typically declines as size increases (White et al. 2007). This relationship, in 332 

combination with the fact that predator body masses are generally one to three orders of 333 

magnitude greater than those of their prey (Woodward et al. 2005), often results in a 334 

pyramidal structure of declining abundance with increasing trophic level (Cohen et al. 2003; 335 

Jacquet et al. 2020). Further traits such as taxonomy, prey type, habitat type, and motility can 336 

also be used to infer interactions (Morales-Castilla et al. 2015; Laigle et al. 2017; Brose et al. 337 

2019), and phylogeny, feeding habitat and feeding method have been found to explain food 338 

web structure in various marine communities (Rezende et al. 2009; Jacob et al. 2011; Cirtwill 339 

and Eklöf 2018). 340 

As previously discussed, environmental changes are driving extensive reorganisation of 341 

marine communities, so abiotic factors can clearly also have a major influence on food web 342 

structure. Gradients of seawater temperature, depth, and days of ice cover are associated with 343 

significant variation in local food web metrics, and food web complexity (i.e. the number of 344 

species and interactions) increases with local habitat heterogeneity (Kortsch et al. 2019). 345 
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Similarly, warming may drive declines in the proportion of basal species, and changes in 346 

metrics such as connectance and omnivory level (Gibert 2019). Within both terrestrial and 347 

aquatic food webs, warming and nutrient enrichment are expected to drive significant 348 

changes in producer and consumer activity and biomass, altering the patterns of energy flow 349 

within the communities (O'Connor et al. 2009; Sentis et al. 2017; O’Gorman et al. 2017; 350 

2019). The greater metabolic demands associated with warming may drive declines in the 351 

body size distribution of many marine communities, through changes in species composition 352 

and size at age (Coghlan et al. 2024; Saunders and Tarling 2018). Larger organisms may 353 

decline in size more rapidly than smaller organisms, due to reduced surface area to body mass 354 

ratios and the associated challenge of maintaining a higher metabolic rate (Forster et al. 2012; 355 

Petrik et al. 2020). As a result, warming may drive substantial changes to PPMR and the size 356 

structure of communities, with implications for the patterning of interaction strengths and 357 

energy flow. Ultimately, changes to the distribution of many marine organisms may result in 358 

the gain or loss of species with key traits and disproportionately large influence on food web 359 

structure and ecosystem functioning. These changes could disrupt key structural features and 360 

might reduce the stability of food webs. 361 

1.4 Food web stability 362 

Several different mechanisms have been found to influence the stability of food webs. One 363 

such driver is the pattern and coupling of weak and strong interactions. Interaction strength 364 

quantifies the magnitude of the effect that individual species have on one another (Berlow et 365 

al. 1999). Food webs are dominated by weak interactions, which provide stability by 366 

dampening population oscillations between consumers and their resources (Paine 1992; 367 

McCann et al. 1998). As a result, removal of either strong or weak interactors can reduce the 368 

temporal stability of ecosystem processes and resistance to changes in community 369 

composition (O'Gorman and Emmerson 2009; 2010). In general, highly connected generalist 370 

species display weaker net effects than specialist predators, which rely heavily on a small 371 

number of food sources (Montoya et al. 2009; O'Gorman and Emmerson 2010; Wootton and 372 

Stouffer 2016). Larger body size ratios often lead to greater interaction strengths, therefore 373 

the size distribution of the different components of the food web may be an important 374 

determinant of system stability (Woodward et al. 2005). The coupling of different energy 375 

channels (e.g. from primary production versus detritus) can also enhance the dynamic 376 

stability of higher consumers, by generating asynchrony in energy flux (Blanchard et al. 377 

2011). Similarly, larger mobile consumers may also drive food web flexibility and stability 378 
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when basal resource availability fluctuates asymmetrically, either spatially or temporally, by 379 

coupling multiple distinct sub-food webs (McCann et al. 2005; McCann and Rooney 2009; 380 

Mougi 2018). 381 

There has been much focus on the organisation of nodes into ‘modules’: subgroups of species 382 

that interact often with one-another but have few connections to species outside their 383 

subgroup. This structuring has been identified in a variety of social and biological networks 384 

including food webs (Newman and Girvan 2004; Krause et al. 2003; Rezende et al. 2009; 385 

Pérez-Matus et al. 2017; Zhao et al. 2017), although the prevalence of modules in marine 386 

food webs has recently been disputed (Marina et al. 2018). Modularity has been found to 387 

increase stability in both theoretical and modelled empirical food webs by restricting the 388 

propagation of secondary extinctions to the subgroups in which the initial species loss occurs 389 

(Teng and McCann 2004; Thébault and Fontaine 2010; Stouffer and Bascompte 2011; Zhao 390 

et al. 2017) (Figure 1.3). Stability in this context is generally estimated as robustness using 391 

the R50 value, the proportion of species that need to be primarily removed to cause 50% of 392 

the food web to become extinct (Jonsson et al. 2015). A value of 0.5 indicates a robust food 393 

web, as no secondary extinctions occur (Figure 1.3). The relationship between modularity 394 

and robustness to species extinctions is not necessarily clear-cut, however, as the degree to 395 

which it promotes network stability may depend on spatial scale, with smaller systems 396 

benefiting the most from this structure (Mougi 2018). Few papers have explicitly investigated 397 

the mechanisms driving modular structure, but species’ traits appear to play an important 398 

role. Modules have been characterised using species’ niche organisation and diets (Guimera 399 

et al. 2010), and may contain separate trophic groups (clusters of species with common prey 400 

and predators) (Gauzens et al. 2015). Furthermore, modularity has previously been linked 401 

with body size distributions and phylogeny, and further traits such as foraging mode and 402 

habitat are also suggested to contribute to this structure (Rezende et al. 2009; Kortsch et al. 403 

2015). 404 

 405 
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 406 

Figure 1.3: The theoretical stabilising effects of modularity. A species extinction (red node) 407 

could potentially drive secondary extinctions in species that prey on it directly (pale orange 408 

nodes connected by dashed line). A) In a non-modular food web, the high inter-409 

connectedness of species means that secondary extinctions are likely to propagate widely 410 

throughout the network. B) In a modular food web, the low number of links between modules 411 

means that secondary extinctions are primarily restricted to the same module as the initial 412 

extinction. Results of random extinction analysis confirm that the more modular network, 413 

with an R50 value of 0.46, exhibits greater robustness than the non-modular food web, which 414 

has an R50 of 0.31. 415 

1.5 The Southern Ocean 416 

Given the mounting pressures of climate change and human activities, it is imperative that we 417 

establish which biotic and abiotic factors drive the structure of different marine food webs, 418 

and how this structure relates to their stability. This is particularly true in polar regions, where 419 

our understanding of the ecology of many species and the structuring of different food webs 420 

is still limited.  421 

The Southern Ocean plays a key role in global oceanic circulation and nutrient distribution, 422 

linking the world’s major ocean basins (Carter et al. 2008). A major feature is the Antarctic 423 

Circumpolar Current (ACC), a wind-driven, eastward-flowing current that surrounds the 424 

continent (Carter et al. 2008) (Figure 1.4). The ACC acts as a thermal barrier, maintaining 425 

stable low water temperatures in the Southern Ocean, particularly in high-latitude shelf 426 

regions where temperatures range from around +2 °C down to -1.9 °C (Weiss et al. 2012; 427 

Mintenbeck 2017). As a result, many Antarctic organisms are highly stenothermal (Peck et al. 428 

2014). A further major physical feature of the Southern Ocean is sea ice. The Southern Ocean 429 

A B 
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can be split into broad zones based on their differing sea ice dynamics and coverage 430 

(Deppeler and Davidson 2017). At high latitudes, sea ice coverage is nearly complete and 431 

persists throughout the year, while areas further north experience seasonal fluctuations 432 

between winter maxima and summer minima (Convey et al. 2009; Deppeler and Davidson 433 

2017) (Figure 1.4). Further north still, the open ocean zone remains almost completely ice-434 

free throughout the year (Deppeler and Davidson 2017). Sea ice plays an important role in 435 

structuring the water column and driving the formation of water masses (Cherkasheva et al. 436 

2014). It also acts to limit the penetration of light into surface waters, which, in conjunction 437 

with the strong seasonal variation in light conditions, means that light availability is a major 438 

factor affecting Southern Ocean ecosystems (Park et al. 2017).  439 

 440 

Figure 1.4: The Southern Ocean and Antarctic continent. Solid orange and green lines 441 

indicate the median February minimum and September maximum sea ice extent 1981-2010, 442 

respectively. Dashed black line represents the general position of the Southern Antarctic 443 

Circumpolar Current front. All map layers obtained from Quantarctica 3.0 (Matsuoka et al. 444 

2021) and displayed in Antarctic Stereographic projection. Text labels identify locations of 445 

particular relevance to this thesis. 446 
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Southern Ocean food webs have traditionally been viewed as relatively simple and centered 447 

primarily around the Antarctic krill (Euphausiia superba). This species is highly abundant in 448 

regions such as the south-west Atlantic Ocean, and acts as prey for many species including 449 

baleen whales, penguins, seals, squid and fish (Trathan and Hill 2016). Other zooplankton are 450 

also important components of regional Southern Ocean ecosystems, such as the smaller ice 451 

krill (Euphausia crystallorophias) which is abundant in the permanent ice zone (Thomas and 452 

Green 1988), hyperiid amphipods such as Themisto gaudichaudii, and the many copepod 453 

species which can represent over 45% of pelagic filter-feeder biomass in some areas 454 

(Voronina 1998; Kouwenberg et al. 2014). While some top predators may feed directly on the 455 

zooplankton component, squid and fishes make up another major link in energy flow within 456 

the Southern Ocean ecosystem. The Southern Ocean fish community has relatively low 457 

diversity, with only 322 recognised species relative to the ~28,000 fish species known 458 

globally, but their contribution to the Antarctic marine ecosystem is substantial (Eastman 459 

2004). Most species are demersal, found on and around the continental shelves, and display a 460 

variety of different feeding strategies and diets ranging from purely planktivorous to 461 

omnivorous and in some cases primarily piscivorous (Casaux and Barrera-Oro 2013; 462 

Bansode et al. 2014). Mesopelagic lanternfish (family Myctophidae) are also a key 463 

component of Southern Ocean food webs, with a biomass of potentially over 200 million 464 

tonnes, and may represent a key krill-independent pathway of energy flow to higher trophic 465 

levels (Saunders et al. 2018; 2019; McCormack et al. 2020). Clearly, while it is true that 466 

Antarctic krill are a central component of many ecosystems, the complexity of Southern 467 

Ocean food webs has been underestimated. If we wish to assess the impacts of environmental 468 

and anthropogenic change on these ecosystems, it is important that we gain a better 469 

understanding of their structure and dynamics. 470 

The popular view of Antarctica and its surrounding waters is often that of a pristine, 471 

undisturbed landscape. In fact, the Southern Ocean has been subject to significant human 472 

activities. Exploitation of Antarctic fur seals and Southern elephant seals during the early 473 

19th century resulted in the near extinction of their populations on sub-Antarctic islands like 474 

South Georgia, although their populations have subsequently grown rapidly (Miller 1991; 475 

Hucke-Gaete et al. 2004). The early 20th century then marked the beginning of the 476 

commercial exploitation of whales within the Southern Ocean, which drove severe declines 477 

in their abundance (Miller 1991). Some whale species have recently shown evidence of 478 

recovery (Zerbini et al. 2019; Calderan et al. 2020), but populations of others have displayed 479 
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much slower recovery rates and are still at only a fraction of their pre-exploitation numbers 480 

(Crespo et al. 2019; Tulloch et al. 2019). The major declines in the abundance of these top 481 

predator species are likely to have had significant effects on the wider regional food webs by 482 

altering levels of top-down regulation and potentially reducing the competitive pressure on 483 

other predator species. The ongoing recovery of many whale species may therefore represent 484 

further changes in energy flow within Southern Ocean ecosystems, as their predatory and 485 

competitive influence is restored. Exploitation in the Southern Ocean has since shifted to 486 

focus on finfish such as toothfish (Dissostichus mawsoni and D. eleginoides) and mackerel 487 

icefish (Champsocephalus gunnari), in addition to a large krill fishery which operates 488 

primarily in the South Atlantic (Kock et al. 2007). These fisheries are managed by the 489 

Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), which 490 

practices an ecosystem approach to management involving regular monitoring of target and 491 

non-target species and abiotic conditions to minimise human impacts on ecological 492 

relationships and conserve Antarctic species and ecosystem functioning (Kock et al. 2007). 493 

Despite this careful approach, these fisheries still represent an important additional pressure 494 

on Antarctic marine ecosystems, and their potential future expansion may have significant 495 

implications for the functioning of Southern Ocean food webs, particularly when viewed in 496 

combination with the effects of climate change. 497 

It is becoming increasingly clear that the Antarctic is vulnerable to the effects of climate 498 

change. The Southern Ocean has displayed regional variation in temperature trends, with 499 

some areas remaining stable or cooling while others, such as the western Antarctic Peninsula 500 

and Scotia Sea, have warmed significantly (Meredith and King 2005; Whitehouse et al. 501 

2008). Similarly, there has been regional variation in sea ice trends, with rapid declines in sea 502 

ice extent and concentration in some areas and increases in others (Parkinson 2019). These 503 

changes have serious implications for regional ecosystems. Changes to the timing and extent 504 

of seasonal sea ice expansion and contraction, and strengthened water column stratification 505 

following ice melt, could alter the timing and magnitude of primary production, potentially 506 

reducing the amount of food available for consumers (Quetin et al. 2007). Reductions in the 507 

availability of sea ice could also directly impact the populations of key mid-trophic species 508 

such as Antarctic krill and the Antarctic silverfish, Pleuragramma antarcticum, as they use 509 

this substrate for refuge and spawning (Massom and Stammerjohn 2010; La Mesa and 510 

Eastman 2011). Temperature rises and sea ice declines have already driven a southward 511 

contraction in the distribution of Antarctic krill, while fish species such as the Antarctic 512 
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toothfish are also expected to exhibit range shifts in the future (Cheung et al. 2008; 513 

Kawaguchi et al. 2024). Ocean warming is also expected to drive range shifts in the benthos 514 

due to the thermal sensitivity of many benthic species (Barnes et al. 2009). Temperature-515 

driven shifts in body size could alter the structure of communities, while changes in the 516 

dominance of certain mid-trophic species (e.g. krill versus the tunicate Salpa thompsoni) 517 

might reduce the efficiency of energy flow to higher trophic levels (Pauli et al. 2021; Pietzsch 518 

et al. 2023). Warming and reductions in sea ice cover could also facilitate the influx and 519 

successful establishment of invasive species, which will lead to changes in community 520 

composition and novel interactions (Morley et al. 2020; Queirós et al. 2024).  521 

If we are to manage Southern Ocean ecosystems effectively in the face of the varied 522 

anthropogenic and environmental threats discussed above, then we must improve our 523 

understanding of the drivers of food web structure and their likely responses to change. Much 524 

previous research on Southern Ocean ecosystems has involved species-specific models of 525 

habitat-use or population dynamics, and simple trophic models (see McCormack et al. 2021a, 526 

and references therein). Various ecological network modelling studies have also been 527 

conducted to investigate the structure and dynamics of regional food webs. To date, food web 528 

models have been developed for various Southern Ocean regions (e.g. Ballerini et al. 2014; 529 

Hill et al. 2012; López-López et al. 2021; Jacob et al. 2011; Pinkerton and Bradford-Grieve 530 

2014; McCormack et al. 2020, amongst others). Such models have provided insights into 531 

regional food webs, including the major energy pathways (McCormack et al. 2020; 532 

McCormack et al. 2021b), the importance of environmental variables for structuring 533 

networks (López-López et al. 2021; Rossi et al. 2019), and the association between species’ 534 

functional traits and network structure (Jacob et al. 2011). Researchers have also modelled 535 

the possible ecosystem responses to scenarios of climate change and anthropogenic activities 536 

including the historic exploitation of baleen whales (Surma et al. 2014) and future changes in 537 

primary production (Ballerini et al. 2014), declines in the biomass of Antarctic krill (Hill et 538 

al. 2012), and increased exploitation of Antarctic toothfish (Pinkerton and Bradford-Grieve 539 

2014).  540 

There remain a variety of knowledge gaps surrounding the structure of Southern Ocean food 541 

webs and their likely responses to future change. In particular, there is still a poor 542 

understanding of the role that body size, mobility, feeding-mode and other morphological and 543 

behavioural traits play in driving the structure of Southern Ocean food webs. Additionally, 544 

identifying the presence and distribution of stabilising features such as modularity, and 545 
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determining their underlying drivers, will bring our knowledge of Southern Ocean food webs 546 

more in line with wider food web theory and improve our understanding of how robust they 547 

are to perturbations. There is also a need to investigate what the consequences of changes in 548 

environmental and ecological conditions will be for ecosystem structure. Comparisons of 549 

regional food webs are still largely lacking and would provide us with a clearer understanding 550 

of the resilience of different Southern Ocean ecosystems to the above changes, which would 551 

improve our ability to implement suitable management and conservation measures. 552 

1.6 Thesis outline 553 

This thesis combines a number of approaches from theoretical and empirical ecology and 554 

ecosystem modelling at a variety of spatial scales to provide insight into the structure of 555 

Southern Ocean food webs and their possible responses to environmental and ecological 556 

change. The component data chapters can be split into two main themes, encompassing the 557 

relationships between functional traits and trophic structure and the impacts of changing 558 

ecological and environmental conditions on communities and ecosystems, although these 559 

themes overlap for some chapters, as visualised in Figure 1.5. 560 

Chapter 2 focusses on the demersal fish community around South Georgia, using stomach 561 

content analysis and morphological measurements to identify how simple morphological 562 

traits map onto broad feeding guilds.  This is a novel approach within Southern Ocean food 563 

webs which provides a baseline understanding of how morphological traits underlie the 564 

ecology of demersal fish and highlights the role that krill may play in bridging ecological 565 

niches imposed by morphology.  566 

Chapter 3 expands upon the trait-based approach, applying it to a comparison of four highly 567 

taxonomically resolved food webs across the Southern Ocean and northern hemisphere to 568 

determine how functional traits (both morphological and behavioural) underlie the 569 

distribution of modules. Traits such as body size, foraging habitat, feeding mode and mobility 570 

are found to be good predictors of module membership. Differences in the relative 571 

importance of traits, and in the structuring of modules across trophic levels, are postulated to 572 

be tied to the degree of habitat heterogeneity between systems. 573 

Chapter 4 then focuses on how warming alters body size relationships in the myctophid 574 

community of the Scotia Sea, using an extensive dataset of myctophid stomach contents and 575 

environmental zooplankton samples. A clear decline in predator-prey mass ratio (PPMR) with 576 

warming is driven by shifts in the size distribution of both the myctophids and their prey. This 577 
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provides insight into the possible implications of environmental change for the size structure 578 

and distribution of interaction strengths within Southern Ocean food webs.  579 

Chapter 5 explores the possible ecological consequences of the recovery of Southern Ocean 580 

baleen whale populations and implications for management. This makes use of a suite of 581 

published regional Ecopath models, which were then standardised and subject to a custom 582 

balancing algorithm to generate ensembles of plausible alternative models. Clear trade-offs 583 

between whale recovery and the biomass of key competitors are identified, and the potential 584 

structural features and environmental factors which could mitigate these are discussed. 585 

Chapter 6 provides a synthesis of the insights gained in the previous chapters and puts them 586 

into context of the wider state of knowledge regarding contemporary and future Southern 587 

Ocean food webs. 588 

 589 

Figure 1.5: Conceptual diagram displaying the main linkages between the primary themes of 590 

this thesis and each of the four data chapters. The thickness of the links indicates the extent to 591 

which the chapters fall within each theme.  592 
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2 Morphological traits distinguish feeding guilds in a 593 

Southern Ocean fish community 594 

Submitted to Functional Ecology 595 

Abstract 596 

Morphological traits reflect an organism’s ecological niche and role within ecosystems, thus 597 

improving our understanding of the drivers of community structure. Here, we combined 598 

morphological measurements with stomach contents analysis of nine demersal fish species 599 

from the subantarctic island of South Georgia, where climate change has already affected the 600 

distribution of a key prey species, Antarctic krill. Although most species include krill in their 601 

diets, cluster analysis identified five distinct feeding guilds, with traits such as gape size 602 

proving especially useful for determining guild membership. Individuals feeding primarily on 603 

fish had larger gapes and higher caudal and pectoral fin aspect ratios, enhancing their ability 604 

to capture and consume such large, fast prey. In contrast, benthic feeders had smaller gapes 605 

and lower fin aspect ratios, reflecting their reliance on suction feeding and higher 606 

manoeuvrability. Continued research into the relationship between morphology and diet will 607 

improve understanding of the drivers of trophic dynamics in marine ecosystems and aid our 608 

ability to predict the effects of environmental change on community composition and 609 

structure.   610 

2.1 Introduction 611 

The field of ecology is increasingly focusing on how complex interactions between 612 

individuals shape the structure and functioning of ecosystems (Åkesson et al. 2021). A key 613 

component of this approach is the consideration of how functional traits including 614 

physiological, morphological, behavioural and life history attributes shape how organisms 615 

respond to each other and to their environment (Violle et al. 2007). This trait-based approach 616 

to ecology seeks to identify how the functional traits of organisms combine to determine their 617 

interactions and thus drive the organisation of ecological communities. By describing the 618 

distribution of traits within ecosystems, it is possible to generalize the mechanisms 619 

underlying complex ecological processes and predict the resilience of key ecosystem 620 

functions to perturbations (Kiørboe et al. 2018).   621 

Ecomorphology is a key component of trait-based ecology, whereby an individual’s body 622 

form is linked to its behaviour and interactions with others (Barr 2018). An organism’s 623 
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physical features represent adaptation to its environment, and therefore the combination of 624 

different morphological traits largely underlie its ecological niche. As such, morphological 625 

traits may be strongly tied to the distribution and functional role of organisms within 626 

ecosystems, e.g. wing shape and beak dimensions strongly predict diet and foraging niche in 627 

birds (Pigot et al. 2016); eye size is linked to adult habitat and activity level in amphibians 628 

(Thomas et al. 2020); whilst diet and habitat preferences are driven by traits including body 629 

size, eye position and head shape in ants (Gibb et al. 2015).  630 

Marine ecosystems are often strongly size structured due to gape limitations and the interplay 631 

between body size and feeding (Jennings et al. 2001; Potapov et al. 2019). In fish, gape size 632 

often reflects feeding mode, with ambush piscivores generally exhibiting large gapes while 633 

suction feeding planktivores tend to have small gapes (Luiz et al. 2019). Gape size also often 634 

constrains the maximum size of prey that can be consumed, thus determining the structure of 635 

feeding relationships (Christensen 1996). Allometric scaling relationships have been 636 

identified for tropical and temperate fish species, whereby gape size, and thus also average 637 

and maximum prey size, generally increase with predator body size (Bachiller and Irigoien 638 

2013; Dunic and Baum 2017). In many species maximum prey size increases more rapidly 639 

than minimum prey size as fish become larger, resulting in a widening of their trophic niche 640 

(Scharf et al. 2000). Differences in allometric relationships for body size and gape 641 

morphology could also influence levels of resource partitioning and competitive interactions 642 

within the fish community (Schuckel et al. 2012; Barnes et al. 2021). Other traits may also be 643 

important, such as fin morphology which is linked to habitat use and prey acquisition: e.g. 644 

high aspect ratios of the caudal and pectoral fins are linked with greater swimming efficiency 645 

and maximum speed (Higham 2007; Sambilay 1990) and generally found in more active 646 

species that feed on pelagic or mobile prey such as zooplankton and fish (Bridge et al. 2016; 647 

Hobson 1979). Lower aspect ratios provide greater manoeuvrability and thrust at low speeds 648 

and may therefore be better suited to less active benthic or ambush feeding (Higham 2007; 649 

Bridge et al. 2016).  650 

While an increasing number of marine studies use trait-based approaches, these often involve 651 

competition models focused primarily on basal groups and overlook trophic interactions 652 

between predators and their prey (Kiørboe et al. 2018). There is therefore a need to further 653 

describe the traits driving trophic relationships, particularly in remote and understudied 654 

marine ecosystems. Here we describe the relationships between morphology and diet for nine 655 

of the most abundant demersal fish species around the sub-Antarctic island of South Georgia 656 
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in the Atlantic sector of the Southern Ocean. Previous research on the diet and biology of 657 

these species has revealed a system largely dominated by consumption of Antarctic krill, 658 

Euphausia superba, in addition to fish and macrozooplankton such as amphipods, 659 

particularly in periods of low krill availability (Kock et al. 2012). There is some evidence of 660 

interspecies dietary differentiation (McKenna 1991; Targett 1981), but to date there has been 661 

no comprehensive investigation of the links between morphological traits and dietary niches 662 

across the wider groundfish community. Such information will improve our understanding of 663 

the mechanisms underlying community structure and energy flow through this component of 664 

demersal food webs. Many marine species at South Georgia are at the northern edge of their 665 

distributions and may therefore be vulnerable to ocean warming, which has been particularly 666 

rapid in this region (Whitehouse et al. 2008). A southward range contraction by E. superba 667 

has already been observed (Kawaguchi et al. 2024) and changes in the dynamics and 668 

distribution of other zooplankton groups might also be expected (Whitehouse et al. 2008), 669 

ultimately driving significant changes in community composition and associated feeding 670 

interactions. Identifying how morphological traits influence prey selection will provide 671 

insight into the possible consequences of such shifts in prey availability for community 672 

structure. The general relationships between feeding ecology and morphology identified here 673 

will also be broadly applicable to other regions, furthering our ability to generalize the drivers 674 

of marine ecosystem assembly.  675 

We hypothesise that dietary differences between and within species are explained by 676 

differences in their functional traits. We expect that predators with larger gape sizes and 677 

higher fin aspect ratios primarily consume fish and krill due to their ability to capture and 678 

consume such larger, mobile prey, while those feeding on smaller, less mobile prey such as 679 

benthic invertebrates or amphipods display smaller gape sizes and lower fin aspect ratios to 680 

provide the necessary manoeuvrability for benthic foraging. 681 

2.2 Materials and methods: 682 

2.2.1 Sample collection: 683 

Sampling of the groundfish community was conducted from the FV Robin M Lee over the 684 

South Georgia and Shag Rocks shelves between the 1st and 10th of February 2023 as part of 685 

the biennial groundfish survey conducted by the British Antarctic Survey and the 686 

Government of South Georgia and the South Sandwich Islands. The survey utilises a random 687 

stratified design across five shelf areas and two depth strata (100-200m and 200-350m). A 688 
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total of 47 bottom trawls were completed using an FP-120 net (Caedmon Nets, UK; Figure 689 

2.1). See Hollyman et al. (2023) for further details on sampling methodology. For this study, 690 

nine fish species were sampled: icefish (Champsocephalus gunnari, Chaenocephalus 691 

aceratus, and Pseudochaenichthys georgianus); rockcods (Notothenia rossii, Trematomus 692 

hansoni, Lepidonotothen squamifrons, L. larseni, and Gobionotothen gibberifrons); and 693 

dragonfish (Parachaenichthys georgianus). Fish were opportunistically sampled from 694 

catches, with efforts made to choose specimens representing a range of body lengths for each 695 

species. Selected individuals were frozen at -20°C for later analysis at King Edward Point 696 

research station, South Georgia.  697 

 698 

Figure 2.1: Distribution of haul locations, identifying the two depth zones sampled. Inset map 699 

displays the sampling region (red rectangle) in the context of the wider Antarctic continent. 700 

Map generated in QGIS 3.28.0-Firenze. 701 

2.2.2 Morphological measurements and stomach contents dissection: 702 

In the laboratory, each fish was thawed before being weighed using either a small (Kern, 703 

PCB1000-2, +/- 0.01 g) or large (M3, WPL industries, +/- 1 g) top-loading scale depending 704 

on the size of the fish. For large fish (>400 mm total length, TL), measurements of TL were 705 
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recorded using a fish board and dissecting ruler. All other specimens were photographed 706 

using a Sony RX100i digital camera mounted on a copy stand (Kaiser R2N), with length later 707 

measured in ImageJ software (Schneider et al. 2012). Gape measurements to the nearest mm 708 

were taken for each specimen using Vernier callipers for maximum vertical gape (Gheight) and 709 

a dissecting ruler for maximum horizontal gape (Gwidth). The gape height and width of each 710 

fish were then combined to estimate the maximum oral gape area (Garea) using the following 711 

equation (Ward-Campbell et al. 2005): 712 

𝐺𝑎𝑟𝑒𝑎 =  𝜋(0.5𝐺ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 0.5𝐺𝑤𝑖𝑑𝑡ℎ)  713 

Photographs were also taken of each specimen’s caudal and pectoral fins, with the latter 714 

excised at the fin base and laid flat. The aspect ratio (AR) of each fish’s caudal and pectoral 715 

fins was estimated using the following equation: 716 

𝐴𝑅 =
ℎ2

𝑎
   717 

where a is the fin area (in mm) and h is either the caudal fin height or length of the leading 718 

edge of the pectoral fin, measured in ImageJ (Pauly 1989). 719 

Each fish stomach was dissected, and non-empty stomachs were weighed to the nearest 0.01 720 

g. Stomach contents were grouped according to the lowest identifiable taxonomic level, 721 

weighed, and counted, excluding fish prey displaying no evidence of digestion (likely to be 722 

the result of net feeding). Where stomachs contained many individuals of a prey group, 30 723 

individuals were subsampled and weighed, and the total number of individuals in the stomach 724 

was estimated.  725 

To investigate potential ontogenetic shifts in diet, each individual fish was assigned to a size 726 

class, estimated by splitting the range of sampled TL across the community into four size bins 727 

of 176 mm. These were numbered 1 to 4 in ascending size order. This split, whilst arbitrary, 728 

provided the best balance of sample sizes across size classes for most species. We defined 729 

size classes at the community level rather than at the species level to ensure that size classes 730 

were comparable across species. The relative importance of each prey group in the diet of 731 

each species-size class combination was estimated from three separate measures of 732 

importance using the % Index of Relative Importance (%IRI), calculated as: 733 

%𝐼𝑅𝐼𝑖 =
(%𝑁𝑖+%𝑊𝑖)∗ %𝐹𝑂𝑖

∑ (%𝑁𝑖+ %𝑊𝑖) ∗ %𝐹𝑂𝑖
𝑛
𝑖=1

∗ 100  734 
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Where %FO is the percentage frequency of occurrence, %N is the proportional abundance 735 

and %W is the proportional weight of each prey group in the diets of each species-size class 736 

(Pinkas et al. 1970). We set a minimum sample size of five non-empty stomachs, resulting in 737 

the exclusion of the largest and smallest size classes of Parachaenichthys georgianus and 738 

Chaenocephalus aceratus, respectively (n = 2 in both cases).  739 

2.2.3 Identification of feeding guilds 740 

All analyses were conducted using R statistical software version 4.3.0 (R Core Team 2023; 741 

see Table A1 for an overview of the various packages used). Species-size classes were 742 

grouped into feeding guilds with hierarchical cluster analysis, using Bray-Curtis 743 

dissimilarities calculated from the prey %IRI values. Prey were grouped into eight broad 744 

taxonomic groups: 1) krill (all members of the Euphausiidae); 2) Themisto gaudichaudii (an 745 

abundant swarming amphipod); 3) other non-swarming amphipods (primarily Vibilia sp., 746 

Primno macropa, and individuals of superfamily Lysianassoidea); 4) isopods; 5) fish; 6) 747 

mysids; 7) benthic decapods (Notocrangon sp. and Chorismus sp.); 8) miscellaneous benthos 748 

(including polychaetes, annelids, bivalves, gastropods, and echinoderms which were 749 

sporadically found in stomachs). Differences between assigned feeding guilds were identified 750 

using the similarity percentage routine (SIMPER). 751 

2.2.4 Predator-prey size relationships  752 

We explored the relationship between predator mass and average prey mass using a linear 753 

mixed effects model. This model included the count-weighted average prey body mass (log10 754 

g) of each prey type within each stomach as a response, and predator body mass (log10 g) and 755 

feeding guild plus their interaction as predictors, to identify predator-prey size relationships 756 

specific to different dietary groups. Prey type was included as a random effect to account for 757 

potential differences in size relationships across prey taxa, and different covariate weighting 758 

structures were investigated to account for any systematic variance in the residuals (e.g. 759 

exponential, fixed, constant). Model selection by BIC comparison was used to identify the 760 

best random effects, variance weighting, and fixed effects structures (in that order).  761 

2.2.5 Morphological trait distributions  762 

We first explored inter- and intra-specific trait variation, to provide context for later trait 763 

analyses. This included nonparametric Kruskal-Wallis analysis of variance (due to non-764 

normality of residuals), and pairwise comparisons of trait distributions from the post-hoc 765 
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Dunn’s test with Bonferroni correction. We also plotted trait-body size relationships to 766 

describe ontogenetic trends across species. 767 

To identify relationships between morphological traits and feeding guild membership, the 768 

distribution of trait values (gape area, caudal fin AR, and pectoral fin AR) across individuals 769 

within each feeding guild were again compared using Kruskal-Wallis analysis of variance and 770 

Dunn’s test. We also used a principal components analysis (PCA) based on Euclidian 771 

distances for gape area and caudal and pectoral fin AR, to explore the distribution of feeding 772 

guilds in multi-dimensional trait space. To minimise the influence of individual body size on 773 

the ordination, we standardised each measurement to the TL of the individual using the 774 

following equation: 775 

𝑌𝑖
∗ =  𝑌𝑖 |

𝑇𝐿0

𝑇𝐿𝑖
|

𝑏

 776 

Where 𝑌𝑖
∗ is the standardized predicted value of trait Y for individual i, Yi is the measured 777 

value of the trait for individual i, TLi is the measured TL of individual i, TL0 is the mean TL 778 

for all individuals and the parameter b is the slope from an ordinary least-squares (OLS) 779 

regression of log-transformed Y and TL (Lleonart et al. 2000). This standardization effectively 780 

adjusts the trait measurements to values they would have if the individuals were of the 781 

average body size for the sampled population (Lleonart et al. 2000). We conducted this 782 

standardisation for all individuals of the same species that were assigned to the same feeding 783 

guild, to reduce allometric effects while still reflecting situations where different size classes 784 

of a given species were assigned to separate guilds.  785 

We then implemented a random forest (RF) model to assess whether feeding guild 786 

membership could be predicted from the standardised morphological traits. RF modelling is a 787 

classification tool that uses bootstraps for the prediction of group membership and provides 788 

an indication of the relative importance of predictor variables for partitioning individuals into 789 

clusters (Cutler et al. 2007). We implemented a cross-validation approach by randomly sub-790 

sampling 70% of the data to calibrate the model and then using the remaining 30% for 791 

prediction. This was repeated 100 times to investigate the variability around classification 792 

accuracy and relative importance of each trait. We assessed the predictive ability of the RF 793 

model through the True Skill Statistic (TSS), with values of 1 and 0 indicating perfect and 794 

completely random predictions, respectively (Allouche et al. 2006). 795 
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2.3 Results 796 

A total of 893 individuals were sampled for this study (Table 2.1). In most species, stomach 797 

contents were present for the majority of individuals, although for Scotia Sea icefish 798 

(Chaenocephalus aceratus) only 25% of stomachs were non-empty (Table 2.1).   799 

Table 2.1: Species sampled in this study, including Food and Agriculture Organization 3-800 

alpha taxonomic identification code for each species, number of individuals sampled, range 801 

of total lengths (TL mm) of individuals sampled, and the number of non-empty stomachs. 802 

The number of stomachs by size group is shown in Figure 2.2. 803 

Species Common name Code  N fish TL range (mm) N stomachs 

Family Channichthyidae (icefish)     

Champsocephalus gunnari Mackerel 

icefish 

ANI 135 154-573 88 

Chaenocephalus aceratus Scotia Sea 

icefish 

SSI 119 164-622 30 

Pseudochaenichthys 

georgianus 

South Georgia 

icefish 

SGI 117 187-523 75 

Family Nototheniidae (rockcod)     

Notothenia rossii Marbled 

rockcod  

NOR 75 336-795 66 

Trematomus hansoni Striped rockcod TRH 69 169-383 61 

Lepidonotothen squamifrons Grey rockcod NOS 101 100-462 86 

Lepidonotothen larseni Painted notie NOL 81 93-216 67 

Gobionotothen gibberifrons Humped 

rockcod 

NOG 104 150-572 95 

Family Bathydraconidae (dragonfish)     

Parachaenichthys georgianus South Georgia 

dragonfish 

PGE 92 123-434 58 

2.3.1 Species trait relationships 804 

The sampled fish displayed various interspecific differences in their traits. The icefish P. 805 

georgianus and C. aceratus and rockcod N. rossii had the largest gapes, while the remaining 806 

rockcods, particularly L. larseni, had the smallest gapes (Figure A1a). The intercepts of the 807 

species-specific gape-size relationships showed a similar rank order (with the icefish P. 808 

georgianus highest and G. gibberifrons and L. larseni lowest) with consistent slopes across 809 

species (Figure A1b). C. gunnari and C. aceratus displayed the highest caudal ARs and N. 810 

rossii and the icefish P. georgianus exhibited the highest pectoral ARs, while the dragonfish P. 811 

georgianus had the lowest caudal and pectoral ARs (Figure A1c,e). The relationships between 812 

fin AR and body size varied considerably between species (Figure A1d,f). 813 
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2.3.2 Feeding guilds 814 

The cluster analysis identified five feeding guilds at a dissimilarity level of 50% (Figure 2.2; 815 

see A2 for pairwise similarities for each guild): (i) ‘krill feeders’ included all size classes of 816 

the icefish C. gunnari and P. georgianus, and the rockcod L. larseni (which was only 817 

represented by the smallest size class); (ii) ‘benthos feeders’ consumed miscellaneous 818 

benthos and isopods, and represented all size classes of G. gibberifrons; (iii) ‘Themisto and 819 

krill feeders’ contained all size classes of T. hansoni, in addition to the smallest L. 820 

squamifrons and size class 2 C. aceratus, though fish were also important in their diet; (iv) 821 

‘fish feeders’ contained the larger C. aceratus and L. squamifrons, and all N. rossii; and (v) 822 

‘benthic shrimp feeders’, represented by the dragonfish P. georgianus, which fed primarily on 823 

mysids and the decapods Notocrangon sp. and Chorismus sp. 824 

 825 

 826 

 827 

 828 
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 829 

Figure 2.2: Sankey diagram depicting the trophic interactions between prey groups (left) and 830 

predators (right). Link thickness is proportional to the %IRI (links representing <1% are 831 

omitted for clarity). Node colours represent the feeding guilds determined by cluster analysis 832 

(green = ‘krill feeders’, orange = ‘benthos feeders’, purple = ‘Themisto and krill feeders’, 833 

pink = ‘fish feeders’, yellow = ‘benthic shrimp feeders’). Numbers within predator boxes 834 

indicate the size class (also represented by silhouette size), and numbers in brackets indicate 835 

sample size (number of non-empty stomachs). See Table 2.1 for a key to species codes. 836 

The final selected linear mixed effects model of prey mass as a function of predator mass 837 

included a random intercept for prey type (reflecting different average body sizes for prey 838 

taxa), and a combination of fixed variance weighting structure for predator body mass and 839 

constant variance weighting structure for prey type (Table A3). The fixed effect structure 840 

included predator body mass and feeding guild as additive predictors, with no significant 841 

interaction identified (Table A4). Overall, the linear mixed effects model identified a 842 

significant increase in prey size with predator size, with a consistent slope but different 843 
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intercepts of the relationship across feeding guilds (F6,599 = 134.80, p < 0.001; Figure 2.3; 844 

Table A5). 845 

 846 

Figure 2.3: Partial residuals plot from a linear mixed effects model of the relationship 847 

between predator body mass and count-weighted average prey mass consumed across feeding 848 

guilds. Each point represents one predator. Dashed line represents the overall model fit, with 849 

shading representing 95% confidence intervals. Solid lines represent fits for each feeding 850 

guild. Model coefficients are provided in Table A5. 851 

2.3.3 Distinguishing feeding guilds with functional traits 852 

Significant differences in trait values between feeding guilds were observed for all traits 853 

(Figure 2.4; Table A6-A7). ‘Fish feeders’ had the largest gape areas, while ‘krill feeders’ and 854 

‘benthic shrimp feeders’ generally had intermediate gape areas, with ‘benthos feeders’ and 855 

‘Themisto and krill feeders’ having the smallest gape areas (Figure 2.4a). There were only 856 

small differences in caudal fin AR across guilds, with the largest values observed in the ‘fish 857 

feeders’ and ‘krill feeders’ and the smallest observed in the ‘benthic shrimp feeders’ (Figure 858 

2.4b). Similarly, the ‘fish feeders’ had the highest pectoral fin ARs while the ‘benthic shrimp 859 

feeders’ had significantly lower values compared to other groups (Figure 2.4c). These 860 

differences between feeding guilds were captured in multi-dimensional space by the PCA of 861 

length-standardised fish traits, which consisted of three dimensions with Dim1 and Dim2 862 

together explaining 86% of the variance (Table A8). Gape area and pectoral fin AR were most 863 
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strongly related to Dim1 (r = 0.62 and r = 0.59, respectively), while caudal fin AR was 864 

strongly correlated with Dim2 (r = 0.84; Figure 2.5a; Table A9). The PCA indicated 865 

substantial overlap in the trait space for each feeding guild, with the primary differentiation of 866 

the feeding guilds being between the ‘fish feeders’, which generally had positive Dim1 867 

scores, and the ‘benthic shrimp feeders’, ‘Themisto and krill feeders’, and ‘benthos feeders’ 868 

which generally had negative Dim1 scores and overlapped considerably with one another 869 

(Figure 2.5a). Additionally, ‘benthic shrimp feeders’ were separated from the ‘Themisto and 870 

krill feeders’ guild along Dim2 (Figure 2.5a). The ‘krill feeders’ were the least differentiated 871 

by the traits, with individuals spread across most of the trait space (Figure 2.5a).   872 

Despite the high levels of overlap in trait space for some feeding guilds, the Random Forest 873 

model could predict feeding guild membership from the length-standardised traits relatively 874 

well, with an average TSS score of 0.77 ± 0.12 over 100 cross-validation runs. The most 875 

important trait for predicting guild membership was gape area (84% relative importance), 876 

followed by caudal and pectoral fin AR (both 8% relative importance; Figure 2.5b).  877 
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 878 

Figure 2.4: Boxplots displaying the distribution of absolute traits for each feeding guild: (a) 879 

gape area; (b) caudal fin aspect ratio (AR); (c) pectoral fin AR. Numbers in brackets represent 880 

sample sizes, letters indicate groupings assigned by a Dunn’s test with Bonferroni correction 881 

(groups with a letter in common are not significantly different). Boxplots are organized in 882 

decreasing order of median trait value. Note the log scale in panel (a). 883 
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 884 

Figure 2.5: a) PCA plot of individual fish based on the length-standardised morphological 885 

traits, coloured by feeding guild. Ellipses encompass 80% of the points from that guild; b) 886 

relative importance of each length-standardised trait (as a proportion of the summed 887 

importance of all traits) for classifying individuals into feeding guilds, as identified by the 888 

Random Forest model. Error bars are the 95% confidence intervals from 100 cross-889 

validations of the model.  890 
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2.4 Discussion 891 

We investigated the role of morphological traits in driving prey selection at the community 892 

level, providing insight into the partitioning of energy flows across species and size classes of 893 

demersal fish. Such a trait-based understanding of trophic interactions can ultimately be used 894 

to model community structure and function (Kiørboe et al. 2018) and could thus elucidate 895 

how future environmental change will alter the structure and stability of food webs.  896 

Our analyses suggest that members of this community display differing levels of dietary 897 

specialisation, with the diets of some groups dominated by specific taxa while others are 898 

clearly more opportunistic and generalist. The feeding relationships we observed are 899 

supported by previous dietary research in the region (e.g. McKenna 1991; Reid et al. 2007; 900 

Targett 1981; Clarke et al. 2008; Main et al. 2009; Hollyman et al. 2021), indicating that we 901 

successfully described the broad summer dietary niches of the studied fish. There can, 902 

however, be interannual variability in diets (e.g. Main et al. 2009, Hollyman et al. 2021), 903 

possibly driven by changes in krill availability, and it is notable that the %IRI of krill in C. 904 

gunnari diets in 2023 (the collection year for this study) was the third highest in 14 years of 905 

data (see Figure A2). Thus, our data may represent a situation in which krill were more 906 

readily available to the demersal fish community than usual. Overall, the utilisation of krill by 907 

all feeding guilds highlights the key role this group plays in maintaining energy flow within 908 

Southern Ocean food webs. Demersal fish are themselves a major dietary component of 909 

albatrosses, petrels, gentoo penguins, and Antarctic fur seals (Hill et al. 2005; Reid et al. 910 

2005; Waluda et al. 2017), indicating that these fish are a key link between krill and many top 911 

predators in the Southern Ocean.  912 

2.4.1 Size-based feeding 913 

Average prey mass increased with predator mass, with a consistent scaling across all feeding 914 

guilds regardless of prey type, suggesting strong size-structuring. Previous research has 915 

shown that predator-prey size scaling relationships vary with diet type, as piscivores exhibit 916 

positive allometric relationships but benthic invertivores have no significant change in prey 917 

size with predator size (Dunic and Baum 2017). In contrast, our results support the 918 

generalisability of predator-prey size relationships across feeding guilds, suggesting that such 919 

allometric scaling could be applied more broadly to predict feeding interactions. Further work 920 

will be required to determine whether the contrast with Dunic and Baum (2017) is down to 921 

any differences in the available prey field and/or the behaviour of the focal fish species. The 922 
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variation in the intercepts of the relationship between predator size and prey size for different 923 

feeding guilds may reflect differences in the levels of dietary specialisation of their 924 

constituent members. Surprisingly, the ‘fish feeders’ had the smallest intercept, which could 925 

be due to their generalist diets consisting of a broad range of prey sizes including numerous 926 

very small prey items in addition to fewer large fish prey. As fish grow, their minimum prey 927 

sizes often increase less steeply than their maximum prey sizes, resulting in a broadening of 928 

their trophic niche, which may be the case for members of this guild (Scharf et al. 2000). In 929 

contrast, the apparent high dependence of the ‘krill feeders’ on such a relatively large-bodied 930 

prey, with minor contributions from other prey groups, may lead to a low trophic niche 931 

breadth which ultimately drives the higher intercept for this feeding guild. There were also 932 

some ontogenetic changes in prey selection, e.g. C. aceratus switched from a mixture of krill, 933 

Themisto sp., and limited fish consumption to a fish-dominated diet as they became larger, 934 

while G. gibberifrons moved from small and relatively immobile taxa like bivalves, 935 

polychaetes, annelids, and gastropods to more mobile, large isopods as they grew. These 936 

shifts indicate that these fish are potentially gape limited at smaller sizes or that their foraging 937 

behaviour changes as they grow.  938 

2.4.2 Functional traits and feeding guilds 939 

We found that some easily measured morphological traits can be used to distinguish feeding 940 

guilds. Gape area was the best predictor of guild membership, and ‘fish feeders’ generally 941 

had the largest gapes, reflecting the influence of gape limitation on the diets of fish. One krill-942 

feeding species, the icefish P. georgianus, had absolute and standardised gape areas of similar 943 

or even greater dimensions to those of ‘fish feeders’, which suggests that prey selection by 944 

this species is not driven solely by gape limitation. Thus, the combination of multiple traits is 945 

important in determining trophic niches in ecological communities. It has been proposed that 946 

the elongated head, non-protractile jaw, and large gape of channichthyids including P. 947 

georgianus facilitates a ram feeding mode (Bansode et al. 2014), and this might aid 948 

zooplanktivores that feed on swarming prey as they can efficiently capture many prey items 949 

simultaneously. The diets of larger P. georgianus also contained some fish and both P. 950 

georgianus and C. aceratus (‘fish feeder’) are morphologically very similar, which indicates 951 

that there may be further factors driving prey selection in these species. At the other end of 952 

the scale, the ‘benthos feeders’ had the smallest absolute and relative gape areas of all the 953 

feeding guilds. Possession of a relatively small mouth aperture correlates inversely with flow 954 

velocity (Wainwright et al. 2007) and may benefit these fish which likely use suction feeding 955 
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to capture benthic epi- and infauna. Interestingly, L. larseni had an extremely small gape area 956 

despite being a member of the ‘krill feeders’ guild, which normally utilise large mouths to 957 

consume many prey items simultaneously. This suggests that L. larseni may target individual 958 

krill despite their sub-optimal trait configuration, highlighting the adaptability of the demersal 959 

fish community to incorporate such ubiquitous, high energy content prey in their diet. 960 

The fin ARs measured across this community are quite low for fish in general (Sambilay 961 

1990). This reflects the demersal nature of these fish, as low AR typically corresponds with 962 

lower swimming efficiency but higher manoeuvrability at low speeds, suited to fish that 963 

inhabit benthic environments (Bridge et al. 2016; Pauly 1989). Despite the narrow range of 964 

AR values, it was possible to distinguish some species and feeding guilds based on this trait. 965 

For example, C. gunnari are known to feed pelagically, which may explain their relatively 966 

high caudal AR as this facilitates sustained swimming (Higham 2007). Similarly, the high 967 

pectoral fin AR of the ‘fish feeders’ likely aids in capturing mobile prey, providing greater 968 

potential for efficient, lift-based swimming (Pauly 1989; Bridge et al. 2016). The extremely 969 

low fin AR observed for the ‘benthic shrimp feeders’ may be closely tied to the ecology of 970 

their main prey (mysids and the decapods Notocrangon spp. and Chorismus spp.), which 971 

spend much of their time either partially buried in substrate or perched on sponges (Gutt et al. 972 

2004). Low pectoral fin AR, representing greater manoeuvrability and stability at low speeds 973 

(Higham 2007), may provide this group with the mobility required to position themselves 974 

rapidly and accurately in relation to these individual prey items. Additionally, malacostracan 975 

crustaceans including shrimps are capable of rapid ‘tail-flip’ antipredator escape responses 976 

(Arnott et al. 1998), therefore the high acceleration potential provided by very low caudal AR 977 

may allow the ‘benthic shrimp feeders’ to strike and capture their prey before they are able to 978 

flee. The remaining guilds are more difficult to distinguish by their fin morphology alone, 979 

suggesting either that similar swimming capabilities are required for feeding on krill, 980 

amphipods, and benthic taxa, or that their fin morphology is not tied strongly to their diet. 981 

2.4.3 Further considerations 982 

While our simple morphological traits proved useful for differentiating some feeding guilds, 983 

we also conclude that there is a significant region of shared trait space between certain guilds. 984 

In particular, the ‘krill feeders’ guild displayed a broad range of morphologies which 985 

overlapped with all other guilds, suggesting that krill were readily available to fish regardless 986 

of their morphology and behaviour. Euphausia superba is traditionally considered a pelagic 987 

species which spends most of its time in epipelagic waters, but there is evidence that krill-988 
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benthos interactions are common, with large krill swarms often observed close to the seabed 989 

and krill found in the diet of strictly benthic species like the benthic skate Amblyraja 990 

georgiana (Schmidt et al. 2011; Main and Collins 2011). Plasticity in krill behaviour may 991 

mean they act as both a swarming prey in the water column for bentho-pelagic predators to 992 

feed on and also come into contact with the epibenthos where they become available to 993 

benthic feeders. The combination of such widespread accessibility and the high energetic 994 

value and general abundance of krill makes them a suitable prey item for fish displaying a 995 

wide variety of trait configurations. This further highlights the key role of krill within 996 

Southern Ocean food webs, indicating that they effectively bridge the ecological niches 997 

otherwise imposed by longer-term morphological evolution. 998 

The density and availability of krill to shelf predators around South Georgia varies 999 

interannually (Fielding et al. 2014) and, as noted above, availability may have been high 1000 

during sampling for the current study. Competition theory holds that niche partitioning should 1001 

increase as resources become limited, with predators focusing on the prey they are best suited 1002 

to exploit, thereby promoting coexistence (Schoener 1982). The link between morphology 1003 

and diet might therefore become clearer in periods of krill scarcity when levels of dietary 1004 

segregation within the groundfish community may increase as species match their longer-1005 

term evolutionary niches. Continued monitoring of diets across the whole demersal 1006 

community, including over different seasons, would provide insight into such competitive 1007 

dynamics and could reveal temporal shifts in the importance of different prey taxa. For 1008 

example, amphipods such as T. gaudichaudii are widely consumed by Southern Ocean fish, 1009 

squid, seabirds, and marine mammals (Padovani et al. 2012; Havermans et al. 2019), and our 1010 

results highlight their role in supplementing the diets of many demersal species around South 1011 

Georgia. These amphipod taxa might therefore provide an alternative resource for demersal 1012 

fish around South Georgia during periods of low krill availability, although the extent to 1013 

which they could support the total energy requirements of the groundfish community requires 1014 

further study (Kock et al. 1994).  1015 

Further studies on the links between morphological traits and diet will help elucidate the 1016 

evolutionary constraints on prey selection. The traits used in this study represent broad and 1017 

easily measurable morphological features expected to influence feeding, but there are likely 1018 

to be further fine-scale morphological features that could be investigated in future studies. 1019 

For example, jaw length is linked to stealth and jaw closing speed and may therefore 1020 

influence prey selection (Ferry et al. 2015), mouth position relates to feeding mode and 1021 
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habitat association (Helfman et al. 2023), and gill raker morphology determines feeding mode 1022 

and minimum prey size (Macnuson and Heitz 1971). Ultimately, predator-prey interactions 1023 

are determined by the combination of traits exhibited by both predator and prey individuals, 1024 

including mobility, body size, physical and chemical defences, camouflage, visual acuity, 1025 

feeding method, and habitat association (Spitz et al. 2014; Weigel and Bonsdorff 2018). It 1026 

will therefore be important to consider the traits of prey alongside those of their predators 1027 

when further investigating the drivers of feeding interactions. Detailed predator-prey trait 1028 

matching could also facilitate analyses of the drivers of predation at the individual level by 1029 

capturing the fine-scale variation in trait space across predator diets. By describing the 1030 

distribution of traits across the available prey assemblage it is also possible to investigate how 1031 

environmental change alters the suitability of the prey field for different predators (Weigel 1032 

and Bonsdorff 2018), which will be a powerful tool for predicting the ecological 1033 

consequences of climate change. 1034 

2.4.4 Conclusion 1035 

Ongoing ecological changes, including shifting distributions of key prey like Antarctic krill, 1036 

may result in the re-organisation of marine communities. This study provides a baseline 1037 

understanding of how morphological traits underlie the ecology of Southern Ocean demersal 1038 

fish. Continued investigation of the links between functional traits and prey selection will aid 1039 

the production of generalisable community models to answer questions regarding trophic 1040 

dynamics in marine food webs and the implications of abiotic change.   1041 
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3 Trophic structuring of modularity alters energy flow 1042 

through marine food webs 1043 

Published in Frontiers in Marine Science (https://doi.org/10.3389/fmars.2022.1046150)  1044 

Abstract 1045 

Food web interactions govern how ecosystems respond to climate change and biodiversity 1046 

loss. Modularity, where subgroups of species interact more often with each other than with 1047 

species outside their subgroup, is a key structural feature which has been linked to food web 1048 

stability. We sought to address the lack of understanding of how modularity varies among 1049 

ecosystems by comparing the structure of four highly resolved marine food webs and the 1050 

importance of functional traits for predicting module membership. Modules in two offshore 1051 

networks were partitioned largely by trophic level, creating an interdependence among them, 1052 

whereas modules in two semi-enclosed bays were generally separated into energy channels 1053 

with less trophic separation and containing distinct basal resources, providing greater 1054 

redundancy in the flow of energy through the network. Foraging habitat and mobility 1055 

predicted module membership in all networks, whilst body mass and foraging strategy also 1056 

differentiated modules in the offshore and bay ecosystems, respectively. Environmental 1057 

heterogeneity may be a key factor driving the differences in modularity and the relative 1058 

importance of functional traits for predicting module membership. Our results indicate that, 1059 

in addition to overall network modularity, the trophic structure of modules within food webs 1060 

should be considered when making inferences about ecosystem stability. 1061 

3.1 Introduction 1062 

The current global rate of species extinctions is unprecedented (Ceballos et al. 2015), and 1063 

there is concern that biodiversity loss will reduce ecosystem functioning and services 1064 

(Schmid et al. 2009; Tilman et al. 2014). Species interaction networks are key to 1065 

understanding the ecosystem-level consequences of biodiversity loss, with certain network 1066 

structures helping to limit the spread of perturbations through the ecosystem (Bruder et al. 1067 

2019; Clark et al. 2020). Food webs provide tractable representations of species interactions 1068 

and thereby allow us to compare the key structural features of communities that may confer 1069 

stability (Rooney and McCann 2012; Ives and Carpenter 2007).  One such stabilising feature 1070 

is modularity, which is the presence of subgroups (modules) of species that interact often or 1071 

strongly with one-another but have few or weak connections to species outside their subgroup 1072 

https://doi.org/10.3389/fmars.2022.1046150
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(Krause et al. 2003). Modularity is believed to enhance food web stability by restricting the 1073 

propagation of extinctions after a perturbation, thus buffering the wider network against 1074 

disruption (Thébault and Fontaine 2010; Stouffer and Bascompte 2011). While common 1075 

network-level properties, such as connectance or mean trophic level, are scale-dependent 1076 

(Wood et al. 2015; Galiana et al. 2021), modularity is uncorrelated with species richness 1077 

(Rivera-Hutinel et al. 2012; Montoya et al. 2015), facilitating structural comparisons across 1078 

networks. Studies of modularity to date have generally quantified modularity in single food 1079 

webs and with a variety of underlying methods, which precludes direct comparison of results 1080 

across ecosystems (e.g., Rezende et al. 2009; D'Alelio et al. 2019). Assessing modularity in 1081 

networks with different species assemblages would help to identify generalisable patterns in 1082 

the distribution of modules, providing insight into the underlying drivers of stability. 1083 

Physical and environmental variables play a key role in determining food web structure, with 1084 

habitat heterogeneity shown to increase network complexity and niche availability (Tews et 1085 

al. 2004; Kortsch et al. 2019). The diversity of ecological niches and refuges present in 1086 

intertidal and coastal regions may therefore increase modularity compared with more uniform 1087 

offshore areas. Differences in environmental factors such as temperature and depth may also 1088 

drive structural contrasts between ecosystems (Gibert 2019; López-López et al. 2021). For 1089 

example, the historically stable temperatures of Antarctic waters and their relative biotic 1090 

isolation from other oceans (Murphy et al. 2007; Morley et al. 2020), might lead to less 1091 

modular networks compared to lower latitudes.  1092 

Functional traits provide a framework for describing community structure, as the match 1093 

between consumer and resource traits determines the distribution of feeding interactions 1094 

(Bartomeus et al. 2016). A key trait underlying trophic interactions in marine systems is body 1095 

size, and the relative size of consumers to their resources has been recognised as a potentially 1096 

key determinant of species organisation into modules (Rezende et al. 2009; Gravel et al. 1097 

2013). The consumer-resource body mass ratio generally declines with increasing consumer 1098 

size due to the higher energy demands of larger organisms, which leads to a greater reliance 1099 

on proportionally larger prey (Arim et al. 2007).  As larger organisms usually occur higher in 1100 

the food web, the result is a negative relationship between consumer trophic level and 1101 

consumer-resource body mass ratio: a macroecological pattern which is consistently found in 1102 

different food webs (Jonsson et al. 2005; Tucker and Rogers 2014). This indicates that body 1103 

size could also determine the distribution of modules across trophic levels. Previous research 1104 

has suggested that the level of diet contiguity in the food web may determine modularity, 1105 
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with modules in some networks displaying trophic clustering such that they encompass a 1106 

relatively limited range of trophic levels and have low overlap of trophic levels between 1107 

modules (Guimera et al. 2010; Kortsch et al. 2015). Other traits may also play an important 1108 

role, with foraging habitat determining the spatial distribution of species and thus their 1109 

likelihood of interacting (Rezende et al. 2009; Kortsch et al. 2019). Mobility and feeding 1110 

mode also contribute to the trophic role of species within networks, by determining their 1111 

activity levels and the types of resources they consume (Lazzaro et al. 2009; Gilabert et al. 1112 

2019). In fact, it has been proposed that modules in some networks represent semi-isolated 1113 

energy channels, whereby energy flows from a distinct set of basal resources to an 1114 

assemblage of higher consumers with a particular set of functional traits (Gauzens et al. 2015; 1115 

Rodriguez et al. 2022). Clearly, despite the consensus that modularity acts to stabilise food 1116 

webs, there are contrasting viewpoints on what the key determinants of modularity are and 1117 

how modules are distributed within communities.  1118 

In this study, we compared the modular structure of the four most highly resolved marine 1119 

food webs currently available. We quantified how differences in their spatial distribution and 1120 

constituent taxonomic groups translate into the organisation of modules and the relative 1121 

importance of functional traits for predicting module membership. Our primary research 1122 

objectives were 1) to determine whether there are differences in the organisation of modules 1123 

between networks; 2) to identify which functional traits can be used to predict the species that 1124 

are included in each module. 1125 

3.2 Materials and methods 1126 

3.2.1 Study systems 1127 

Based on a review of marine food webs in the GATEWAy (Brose et al. 2019) and ECOWeB 1128 

(Cohen 2010) databases and the wider literature, we identified four systems in which the 1129 

overwhelming majority of nodes were highly resolved to genus or species level (excluding a 1130 

handful of cryptic taxa and basal groups such as sediment and detritus). Aggregation of taxa 1131 

in the other networks could mask potential modules and introduce methodological biases 1132 

(Krause et al. 2003), so they were not considered here. The four chosen food webs represent a 1133 

range of locations from the high Antarctic (Weddell Sea), and (sub)Antarctic (Scotia Sea), to 1134 

temperate (Lough Hyne) and Arctic (Kongsfjorden). The networks differ in their size 1135 

(number of nodes and links), spatial extent (including depth), and functional groups (Table 1136 

3.1). The Scotia Sea food web was obtained from the British Antarctic Survey’s UK Polar 1137 
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Data Centre (López-López et al. 2021), while the remaining webs were extracted from the 1138 

GATEWAy database (Brose et al. 2019). Each of these networks was compiled through a 1139 

combination of direct observation and diet analysis of organisms within the focal ecosystem, 1140 

and wider literature research to characterise the diet of organisms in other regions or for 1141 

closely related taxa. Following Grilli et al. (2016), we removed cannibalistic links in order to 1142 

focus on interspecific interactions.  1143 

Table 3.1: Characteristics of the four study systems. SS = Scotia Sea, WS = Weddell Sea, LH 1144 

= Lough Hyne, KO = Kongsfjorden. 1145 

Name Nodes Links Approximate 

latitude (°N) 

Approximate 

extent (km2) 

Min to 

max 

bottom 

depth 

(m) 

Ecosystem 

type 

Constituent 

functional 

groups 

SS 228 10,827 -57.0 1.5×106 >1,000 

to 

>3,000 

Offshore Pelagic 

(excluding 

birds and 

mammals), 

benthos 

excluded 

WS 490 15,987 -76.0 2×105 200 to 

500 

Offshore Pelagic 

(including 

birds and 

mammals), 

benthos 

LH 340 5,012 51.5 0.5 0 to 50 Coastal bay Pelagic 

(including 

birds and 

mammals), 

benthos, 

intertidal 

KO 260 1,590 79.0 209 0 to 400 Coastal bay Pelagic 

(including 

birds and 

mammals), 

benthos, 

intertidal 

 1146 

3.2.2 Module identification 1147 

The modularity of each food web was calculated with a Simulated Annealing algorithm using 1148 

the ‘netcarto’ function in the R package ‘rnetcarto’ (Doulcier and Stouffer 2015). This 1149 
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algorithm uses a probabilistic procedure whereby nodes are initially partitioned into arbitrary 1150 

modules and then iteratively moved into different modules until the maximum modularity is 1151 

obtained (Guimerà and Nunes Amaral 2005; Chen et al. 2014). Modularity ranges from -1 to 1152 

+1, with negative and positive values indicating a less and more modular structure than 1153 

expected at random, respectively (Newman and Girvan 2004; Newman 2006). One hundred 1154 

simulations were conducted per network to assess the variability in outputs resulting from the 1155 

stochastic component of the algorithm. 1156 

3.2.3 Functional traits 1157 

Eight functional traits were selected to investigate the partitioning of species into modules 1158 

(Table 3.2). These traits were chosen because they could be easily identified and generalised 1159 

across all species in the four ecosystems. For each species, body mass estimates were derived 1160 

from the original food web studies, and the remaining trait values were assigned based on 1161 

data obtained via literature review, assessment of images, and diet compositions. 1162 

Table 3.2: Functional traits identified for each species in the four food webs. See Appendix 1163 

B1: Supplementary methods and results for more details. 1164 

Trait Description 

Body mass Species averages from field measurements and literature, log10 transformed 

Foraging 

habitat 

Physical space in which organisms forage. Categories vary due to environmental 

differences between food webs. Scotia Sea: epipelagic, mesopelagic, 

bathypelagic. Weddell Sea: epipelagic, meso/benthopelagic, benthic. Lough Hyne 

and Kongsfjorden: pelagic, benthic, intertidal. 

Mobility A scale of increasing mobility: sessile; passive drifter; crawler; use of swimming 

appendages; jet propulsion; lift-based swimming. 

Prey-capture 

strategy 

A scale based on how actively the species captures prey: primary producer; 

passive capture; ambush predator; active suspension/detritus feeder; active 

searcher/hunter 

Prey-capture 

appendages 

Binary, presence or absence of external appendages which could be reasonably 

considered to play a role in prey grasping and manipulation. 

Body 

robustness 

A scale of body type, from fragile to robust: gelatinous; soft-tissue with no 

internal skeleton; soft-tissue with internal skeleton; external carapace; external 

hard shell 

Spines Binary, presence or absence of defensive spines 

Translucency Binary, used to distinguish species that are clearly see-through (e.g. most 

gelatinous zooplankton, some amphipods) from those which are not (e.g. crabs, 

fish) 
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3.2.4 Statistical analysis 1165 

All analyses were conducted in R 4.1.0 (R Core Team, 2021). Differences in the modular 1166 

structure of each network were investigated by comparing the distribution of node-level 1167 

metrics (prey averaged trophic level, body mass, generality, vulnerability, and omnivory) 1168 

across modules. The data did not conform to normality and homogeneity of residuals, and so 1169 

non-parametric Kruskal-Wallis tests were performed followed by post-hoc Dunn tests with a 1170 

Bonferroni correction.  1171 

We used Random Forest (RF) models to investigate the relative roles of the functional traits 1172 

in explaining the modular structure of each network. The RF model is a machine learning 1173 

classification tool which uses bootstraps of the data to predict observations and provide a 1174 

measure of the relative importance of predictor variables (Cutler et al. 2007). A benefit of RF 1175 

models is that they make no prior assumptions about the distribution of response or predictor 1176 

variables and can handle datasets containing multiple data types (Cutler et al. 2007). We 1177 

implemented the conditional RF algorithm using the ‘cforest’ function in the R package 1178 

‘party’ (Hothorn et al. 2005), which relies on a conditional inference framework and is 1179 

unbiased in cases where predictors have a highly variable number of categories or are 1180 

correlated (Strobl et al. 2007; Strobl et al. 2008). For each food web, we implemented a 1181 

cross-validation approach by randomly sub-sampling 70% of the data for model calibration 1182 

and then making predictions from the remaining 30%. This process was repeated 20 times to 1183 

give an indication of the variability in the classification accuracy and relative importance of 1184 

each functional trait. The predictive ability of the models was assessed using the average True 1185 

Skill Statistic (TSS), which represents the proportion of successful predictions versus false 1186 

predictions, with values of 0 and 1 indicating completely random and perfect predictions, 1187 

respectively (Allouche et al. 2006).  1188 

To further investigate the role of body size (specifically, whether size-structured feeding is 1189 

related to modularity), we used analysis of covariance (ANCOVA) to test the relationship 1190 

between consumer-resource body mass ratio and consumer trophic level, while distinguishing 1191 

between trophic links occurring within or between different modules. The average consumer-1192 

resource body mass ratio of each consumer species was used as the dependent variable to avoid 1193 

any confounding effects resulting from the fact that some consumers had many resources while 1194 

others had very few. The main and interactive effects of consumer trophic level and link 1195 

position (within or between modules) were the explanatory variables. Weighted Generalised 1196 
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Least Squares models were used, with an exponential variance structure by trophic level to 1197 

account for heterogeneity in the model residuals. 1198 

3.3 Results 1199 

The Scotia Sea network represents a pelagic system, dominated by phytoplankton, gelatinous 1200 

zooplankton, crustaceans, and fish, while benthic taxa are excluded due to the lack of 1201 

available information on benthic communities. The Weddell Sea has a similar functional 1202 

group composition, though it also includes many benthic species including sessile sponges, 1203 

mobile detritivores, and demersal fish, in addition to incorporating mammals and seabirds. 1204 

Both Lough Hyne and Kongsfjorden include a variety of benthic, intertidal and pelagic 1205 

species, including macroalgae, sponges, crustaceans, and fish, in addition to seabirds and 1206 

mammals. The Weddell Sea, Lough Hyne and Kongsfjorden food webs have similar 1207 

maximum trophic levels (5.1, 4.6 and 4.8, respectively), while the Scotia Sea has a maximum 1208 

trophic level of 6.1. The trophic distribution of species is similar in the Weddell Sea, Lough 1209 

Hyne and Kongsfjorden, with most species found between trophic levels 2 and 4, while in the 1210 

Scotia Sea, species are distributed quite evenly between trophic levels 2 and 5 (Figure 3.1a). 1211 

The trophic distribution of body masses is similar in all networks, with larger organisms 1212 

found at higher trophic levels (Figure 3.1b).  1213 

 1214 
Figure 3.1: Plots of (a) the cumulative proportion of species across trophic levels, and (b) the 1215 

distribution of body masses at each trophic level, coloured by network. 1216 



51 

 

3.3.1 Module identification  1217 

Modularity was significantly different between all four food webs (X2
(8) = 374.80, p < 0.001; 1218 

Dunn’s test: p < 0.001). Three modules were identified in the Scotia Sea and Weddell Sea 1219 

networks (Modularity = 0.157 ± 0.007 and 0.319 ± 0.002, respectively), while five were found 1220 

in Lough Hyne and Kongsfjorden (Modularity = 0.404 ± 0.009 and 0.496 ± 0.005, respectively) 1221 

(Figure 3.2). Energy flow between modules in the Scotia Sea and Weddell Sea was generally 1222 

one-sided, with the majority of links between any pair of modules flowing in the same 1223 

direction, whereas flows were more two-sided in Lough Hyne and Kongsfjorden (Figure 3.2). 1224 

These results were deemed to be representative of the 100 Simulated Annealing runs, with at 1225 

least 95% of within-module interactions found to be consistent across runs in each network 1226 

(see Appendix B1: Supplementary methods and results for details of the Simulated Annealing 1227 

result selection process and robustness). 1228 
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 1229 

Figure 3.2: Modular structure of the four studied food webs: (a) Scotia Sea; (b) Weddell Sea; 1230 

(c) Lough Hyne; (d) Kongsfjorden. Networks are plotted with nodes coloured and positioned 1231 

along the x- and y-axes according to module and trophic level, respectively. Inset chord 1232 

diagrams display the distribution of interactions within and between modules, with chord 1233 

thickness proportional to the number of links and colour indicating the source module of the 1234 

interactions.  1235 

Some of the networks displayed similarities in the distribution of species across modules. In 1236 

both the Scotia Sea and Weddell Sea there was a basal module that contained most (>90%) of 1237 

the basal resources, being made up largely of epipelagic phytoplankton and crustaceans, and a 1238 

top predator module that was made up primarily of fish and squid (in addition to marine 1239 

mammals and seabirds in the Weddell Sea) (Figure 3.3a-b). The main difference between these 1240 
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networks was the remaining module, which was composed primarily of gelatinous organisms 1241 

and crustaceans in the Scotia Sea and benthic taxa such as echinoderms, sponges, and 1242 

bryozoans in the Weddell Sea (Figure 3.3a-b). In both Lough Hyne and Kongsfjorden, basal 1243 

resources were present in four out of five modules. In both networks there was a macrophyte 1244 

module consisting largely of seaweeds and sessile algae and a module containing many benthic 1245 

and intertidal amphipods, while fishes were distributed across all modules (Figure 3.3c-d). Both 1246 

food webs contained a benthic consumer module consisting mainly of gastropods, crustaceans, 1247 

and worms, and a sessile filter-feeding module composed mostly of sponges and bryozoans in 1248 

Lough Hyne and of bivalves and barnacles in Kongsfjorden (Figure 3.3c-d). The final module 1249 

in both networks was largely made up of bentho-pelagic organisms (Figure 3.3c-d).  1250 

 1251 

Figure 3.3: The relative proportion of different taxonomic groups within each module in the 1252 

four food webs: (a) Scotia Sea; (b) Weddell Sea; (c) Lough Hyne; (d) Kongsfjorden. Species 1253 

were initially grouped by taxonomy and then groups with few individuals were either 1254 

combined (if they had similar ecology) or were assigned to the group “Other”. 1255 

3.3.2 Module topology 1256 

There was a significant difference in trophic level between modules in each of the food webs 1257 

(Scotia Sea: X2
(2) = 147.16, p < 0.001; Weddell Sea: X2

(2) = 192.56, p < 0.001; Lough Hyne, 1258 

X2
(4) = 86.643, p < 0.001; Kongsfjorden, X2

(4) = 16.57, p = 0.002; Figure 3.4). In the Scotia Sea 1259 

and Weddell Sea, trophic level was significantly different among all three modules (Dunn’s 1260 
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test: p < 0.001), while in Lough Hyne and Kongsfjorden significant differences were only found 1261 

between certain module pairs. The mean difference in trophic level between all possible species 1262 

pairs which belong to separate modules was greater in the Scotia Sea (1.62, SE = 0.009) and 1263 

Weddell Sea (1.43, SE = 0.004) than in Lough Hyne (0.70, SE = 0.004) and Kongsfjorden 1264 

(0.44, SE = 0.005), and this pattern was retained after accounting for the effects of the differing 1265 

number of modules and maximum trophic level in each network (Appendix B1). This 1266 

highlights the greater trophic clustering of modules that is present in the Scotia Sea and Weddell 1267 

Sea compared with Lough Hyne and Kongsfjorden. A comparison of the distribution of trophic 1268 

levels for each module across all Simulated Annealing runs suggested that these results are 1269 

robust to changes in the number of modules or distribution of nodes between modules 1270 

(Appendix B1). Results for the other node-level metrics (i.e. generality, vulnerability, and 1271 

omnivory) generally reflect the distribution of modules across trophic levels in these networks, 1272 

with clear differences between modules for the Scotia Sea and Weddell Sea, but not for Lough 1273 

Hyne and Kongsfjorden (Figure B1-B5). 1274 

 1275 
Figure 3.4: Boxplots of prey-averaged trophic level across modules within each network: (a) 1276 

Scotia Sea; (b) Weddell Sea; (c) Lough Hyne; (d) Kongsfjorden. Large black points indicate 1277 

the mean, thick horizontal lines represent the median, boxes indicate the interquartile range, 1278 

whiskers are 1.5 × the interquartile range, and outliers beyond this range are indicated as 1279 

small black points. Boxes not sharing a common letter are significantly different from one 1280 

another using a Dunn’s test (p < 0.05). 1281 
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3.3.3 Functional traits  1282 

The Random Forest models performed well at predicting module membership from the 1283 

functional traits, as evidenced by their high TSS scores (>0.56; Figure 3.5). Body mass was a 1284 

key trait for predicting module membership in the Scotia Sea, accounting for ~30% of overall 1285 

importance, followed by habitat, mobility, feeding appendages, and translucency, which all had 1286 

similar values of importance (Figure 3.5a). In the Weddell Sea, mobility and habitat together 1287 

accounted for almost 60% of importance, and body mass was also valuable (~13% of 1288 

importance, Figure 3.5b). In Lough Hyne and Kongsfjorden, mobility, capture strategy and 1289 

habitat accounted for ~60% of the total importance, while body mass represented <10% of 1290 

overall importance (Figure 3.5c-d). 1291 

 1292 

Figure 3.5: Relative importance of each functional trait (as a proportion of the summed 1293 

importance of all traits) for classifying species into modules, as identified by Random Forest 1294 

models for each network: (a) Scotia Sea; (b) Weddell Sea; (c) Lough Hyne; (d) Kongsfjorden. 1295 

Error bars are the 95% confidence intervals resulting from 20 cross-validations of the 1296 

importance of each trait. True Skill Statistics (TSS) values indicate the predictive 1297 

performance of the model. 1298 
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The importance of body mass in the Scotia Sea and Weddell Sea RF models is reflected in the 1299 

distribution of sizes across modules. There was a significant difference in body mass among 1300 

all modules in the Scotia Sea (X2
(2) = 113.75, p < 0.001; Figure 3.6a) and Weddell Sea (X2

(2) = 1301 

191.09, p < 0.001; Figure 3.6b). While the distribution of body masses was also significantly 1302 

different between some modules in Lough Hyne and Kongsfjorden (X2
(4) = 27.634, p < 0.001, 1303 

and X2
(4) = 32.414, p < 0.001, respectively), modules were not as obviously separated 1304 

according to body mass as in the other webs (Figure 3.6c-d), which also reflects the results of 1305 

the RF models. A comparison of the distribution of body mass values in each module across 1306 

all Simulated Annealing runs suggested that these results are robust to changes in the number 1307 

of modules or distribution of nodes between modules (Appendix B1). See Figure B6-B12 for 1308 

a description of the distribution of the remaining traits across modules in each network. 1309 

 1310 
Figure 3.6: Boxplots of body mass across modules within each network: (a) Scotia Sea; (b) 1311 

Weddell Sea; (c) Lough Hyne; (d) Kongsfjorden. Large black points indicate the mean, thick 1312 

horizontal lines represent the median, boxes indicate the interquartile range, whiskers are 1.5 1313 

× the interquartile range, and outliers beyond this range are indicated as small black points. 1314 

Boxes not sharing a common letter are significantly different from one another using a Dunn 1315 

test (p < 0.05). 1316 
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There were some key differences in the distribution of consumer-resource body mass ratios 1317 

among networks (Figure 3.7). There was a significant interaction between consumer trophic 1318 

level and link position in the Scotia Sea (F1,338 = 29.76, p < 0.001) and Weddell Sea (F1,643 = 1319 

44.53, p < 0.001). In both, consumer-resource body mass ratio declined more steeply with 1320 

consumer trophic level for interactions within modules than for interactions between modules 1321 

(Scotia Sea: within, p < 0.001, r2 = 0.35; between: p = 0.807; Weddell Sea: within, p < 0.001, 1322 

r2 = 0.50; between, p < 0.001) (Figure 3.7a-b). In contrast, no significant interaction between 1323 

consumer trophic level and link position was observed in Lough Hyne (F1,447 = 0.01, p = 0.919) 1324 

or Kongsfjorden (F1,326 = 0.39, p = 0.531). Instead, consumer-resource body mass ratio declined 1325 

significantly with increasing consumer trophic level regardless of link position in both Lough 1326 

Hyne (F1,449 = 106.80, p < 0.001, r2 = 0.20) and Kongsfjorden (F1,328 = 142.66, p < 0.001, r2 = 1327 

0.27; Figure 3.7c-d). 1328 

 1329 

 1330 

 1331 



58 

 

 1332 

Figure 3.7: Average body mass ratio of every consumer to each of its resources, plotted 1333 

against the trophic level of the consumer, for each network: (a) Scotia Sea; (b) Weddell Sea; 1334 

(c) Lough Hyne; (d) Kongsfjorden. Point shape and colour indicate whether the focal 1335 

interaction occurred among species within the same module, or between modules. There was 1336 

an interactive effect of consumer trophic level and link position on consumer-resource body 1337 

mass ratio for the Scotia Sea (within: y = 6.62 – 1.17x, p< 0.001, r2 = 0.35; between: y = 2.48 1338 

– 0.04x, p = 0.807, r2 = 0.01) and Weddell Sea (within: y = 11.77 – 2.59x, p< 0.001, r2 = 1339 

0.50; between: y = 5.27 – 0.70x, p< 0.001, r2 = 0.10). There was only a significant main 1340 

effect of consumer trophic level on consumer-resource body mass ratio for Lough Hyne (y = 1341 

9.22 – 1.71x, p< 0.001, r2 = 0. 20) and Kongsfjorden (y = 11.64 – 2.47x, p< 0.001, r2 = 1342 

0.27). 1343 

3.4 Discussion 1344 

This study provides insight into the patterns and drivers of modularity in marine food webs. 1345 

We found two distinct ways in which modules were organised: (1) a strong differentiation by 1346 

trophic level in the Weddell Sea and Scotia Sea, matching the trophic clustering of modularity 1347 

described for other food webs (Guimera et al. 2010; Kortsch et al. 2015); and (2) multiple 1348 

modules spanning from distinct basal resources to higher trophic levels in Lough Hyne and 1349 
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Kongsfjorden, resembling the description of modules as energy channels (Gauzens et al. 1350 

2015; Zhao et al. 2017). Our results also confirm the importance of body mass and foraging 1351 

habitat for determining modularity (Krause et al. 2003; Rezende et al. 2009), whilst 1352 

highlighting the added importance of mobility and prey capture strategy. The strong size-1353 

structuring of modules in the Weddell Sea and Scotia Sea leads to shallower trends in 1354 

consumer-resource body mass ratios with consumer trophic level for interactions between 1355 

modules than those within modules. This represents a disruption to the macroecological 1356 

pattern of declining consumer-resource body mass ratios with consumer trophic level 1357 

observed in many food webs (Jonsson 2014; Tucker and Rogers 2014), suggesting that 1358 

feeding interactions between modules are occurring at sub-optimal size ratios. In contrast, 1359 

Lough Hyne and Kongsfjorden display weak size-structuring and show a declining 1360 

relationship between consumer-resource body mass ratios and consumer trophic level both 1361 

for interactions occurring within and between modules. Our results suggest contrasting 1362 

mechanisms underlying the structure of marine food webs in different regions, which may 1363 

affect their stability in the face of global change. 1364 

3.4.1 Drivers of structural differences 1365 

Strong spatial and temporal variability in abiotic conditions, such as temperature, desiccation, 1366 

and salinity, can drive differentiation of ecological niches and patterns of species zonation, 1367 

particularly in intertidal ecosystems (Gingold et al. 2010; Kraan et al. 2013; Gallucci et al. 1368 

2020). Intertidal and benthic community composition is also shaped by habitat heterogeneity, 1369 

which determines the distribution of traits such as mobility and feeding mode (Pacheco et al. 1370 

2011; Buhl-Mortensen et al. 2012; Srinivas et al. 2020). In contrast, offshore ecosystems are 1371 

generally considered less complex with major structuring environmental gradients (e.g. light, 1372 

temperature, pressure) changing predictably with depth (López-López et al. 2021), and may 1373 

therefore display stronger size-structuring of trophic interactions. As the breadth of available 1374 

niches increases with environmental, habitat, and resource heterogeneity, food webs may 1375 

become more modular and separated into distinct energy channels. In highly heterogeneous 1376 

environments, module membership may therefore be determined primarily by traits specific 1377 

to the environmental niche, such as prey capture strategy and mobility, rather than by more 1378 

general structuring factors such as body mass. Below, we explore this hypothesis in the 1379 

context of our focal food webs. 1380 

The Scotia Sea network represents a pelagic oceanic ecosystem, and the Weddell Sea network 1381 

represents a deep shelf system incorporating both pelagic and benthic shelf species. The 1382 



60 

 

offshore nature of these networks means that basal resources are limited largely to 1383 

phytoplankton and detritus, with both networks excluding the pronounced heterogeneity of the 1384 

intertidal zone. The Antarctic Circumpolar Current also provides these Southern Ocean 1385 

ecosystems with relatively stable and predictable oceanographic conditions (Murphy et al. 1386 

2007; Morley et al. 2020), which might help to drive the similarity in modular organisation. 1387 

Both ecosystems experience a high degree of connectivity, with large-scale diurnal vertical 1388 

migrations in the Scotia Sea and strong bentho-pelagic coupling in the Weddell Sea 1389 

(Piatkowski et al. 1994; La Mesa et al. 2019; Pineda-Metz 2020). This may result in a stronger 1390 

interdependence between modules in both ecosystems, as the deeper top-predator modules rely 1391 

on the energy generated in the near-surface basal resource modules, linked via the diurnal 1392 

migrators or bentho-pelagic couplers. This might reduce the influence of factors like habitat 1393 

heterogeneity and prey capture strategy, with depth-based foraging habitat and size-based prey-1394 

handling constraints becoming the primary factors structuring modularity in both networks. 1395 

The additional importance of mobility in the Weddell Sea largely reflects the distinct 1396 

locomotory methods used in the different modules, i.e., sessile or crawling organisms in the 1397 

benthic module, drifting phytoplankton and primary consumers with appendages in the 1398 

epipelagic basal module, and mobile swimmers in the top predator module.  1399 

 1400 

In contrast, Lough Hyne and Kongsfjorden are semi-enclosed coastal ecosystems which 1401 

encompass both the intertidal and subtidal zones and experience high environmental 1402 

variability. Kongsfjorden is subject to significant seasonal inputs of terrestrial nutrients (Calleja 1403 

et al. 2017; Retelletti Brogi et al. 2019), and experiences strong gradients in turbidity, 1404 

temperature, and salinity due to glacial inputs and influxes from the West Spitsbergen Current 1405 

(Hop et al. 2002; Calleja et al. 2017). As a result, there are significant differences in community 1406 

composition and abundance at different locations within the fjord (Hop et al. 2002; Calleja et 1407 

al. 2017). Lough Hyne experiences high terrestrial nutrient loads (Jessop et al. 2011), in 1408 

addition to significant pH gradients, high variability in water temperature, and seasonal 1409 

hypoxia at depth (Bell 2002; Sullivan et al. 2014), which are also likely to drive spatial contrasts 1410 

in community structure. The presence of the physically complex and variable intertidal zone, 1411 

and the fluctuating environmental conditions may promote the differentiation of ecological 1412 

niches. This could drive the diversity of energy channels centred around different types of basal 1413 

resources, supporting species with a mix of foraging behaviours, mobilities, and habitat traits 1414 

(Gauzens et al. 2015; Rodriguez et al. 2022). 1415 

 1416 
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3.4.2 Implications for food web stability 1417 

Modules partially isolate sections of the food web from one another, and thereby reduce the 1418 

propagation of perturbations and maintain the functioning of the wider network (Stouffer and 1419 

Bascompte 2011). Previous studies have used overall network modularity to make inferences 1420 

regarding their stability and functioning (e.g., Stouffer and Bascompte 2011; Grilli et al. 1421 

2016; D'Alelio et al. 2019), but there has been little consideration of how the positioning of 1422 

modules across trophic levels might alter stability. Our results suggest that, in networks with 1423 

strong trophic clustering of modules, inter-module energy flows will be key to maintaining 1424 

consumer populations and providing top-down regulation. Any perturbation affecting species 1425 

in one module will have consequent effects on those in other modules, thus undermining the 1426 

potential stabilising effect of modularity. The trophic clustering of modules also has 1427 

implications for stabilising consumer-resource mass ratios, which are generally greatest near 1428 

the base of the food web and decrease at higher trophic levels (Jonsson 2014; Tucker and 1429 

Rogers 2014). This is because larger consumers need to consume larger prey to maximise 1430 

energy intake and handling efficiency, such that optimal prey size gets closer to the size of the 1431 

predator as its trophic level increases (Costa 2009). We found this pattern only exists for 1432 

interactions within modules in networks that exhibit strong trophic (size) structuring of 1433 

modularity, while many interactions between modules may be allometrically sub-optimal. For 1434 

example, a predator in a lower-level module may be too small to handle prey from a higher-1435 

level module, while prey in lower-level modules may be too small to provide enough energy 1436 

for predators in higher-level modules. This may reduce the redundancy of alternative 1437 

pathways for energy flow in the food web by constraining consumers largely to within-1438 

module prey choices. Furthermore, the allometric scaling of metabolism and consumption 1439 

rates means that consumer-resource body mass ratios can determine the strength of trophic 1440 

interactions (Emmerson and Raffaelli 2004; Vucic-Pestic et al. 2010). An environmental 1441 

perturbation which results in prey loss from a given module may therefore have a strong 1442 

destabilising effect as predators are forced to feed on sub-optimal prey sizes to compensate, 1443 

thereby also disrupting the distribution of strong and weak interactions within the food web.  1444 

In contrast, food webs with modules that represent semi-isolated food chains may be more 1445 

robust to perturbations, as species extinctions in a given module will not impact the supply of 1446 

energy to species in other modules. This structure maintains the negative relationship between 1447 

consumer-resource mass ratio and consumer trophic level, regardless of whether consumers 1448 

interact with resources within or between modules, because such modules encompass species 1449 



62 

 

at a broad range of trophic levels and body masses. This means consumers are allometrically 1450 

unconstrained in their ability to feed on species in different modules and may be able to adapt 1451 

their feeding behaviour in response to perturbations within their own module. For example, 1452 

while the loss of key basal resources from an individual module could have detrimental 1453 

consequences for the specialised primary consumers in that module, higher predators may be 1454 

able to maintain sufficient energy intake by feeding on species from other modules. This is 1455 

analogous to fast and slow energy channels coupled by mobile predators, which promote 1456 

stability by generating asynchronously fluctuating resources that dampen variation in consumer 1457 

populations (Rooney et al. 2008; McCann and Rooney 2009). The stabilising effect of modular 1458 

energy channels could be tested by simulating food webs with different distributions of 1459 

modules and running analyses such as sequential node deletions to compare the relative effects 1460 

of overall modularity and module distribution on network robustness (Dunne et al. 2004). It is 1461 

important that such analyses incorporate link weighting and indirect effects such as population 1462 

dynamics to avoid the underestimation of secondary extinctions (Zhao et al. 2016). 1463 

3.4.3 Further considerations 1464 

We explored the potential mechanisms underlying the modular structure of marine food webs, 1465 

but more highly resolved networks across a range of ecosystem types are necessary to 1466 

generalise our results. While most nodes were resolved to the genus or species level, a small 1467 

minority of basal and consumer groups in each network were subject to greater aggregation. 1468 

It has previously been suggested that certain topological metrics such as linkage density and 1469 

mean chain length are sensitive to the level of aggregation employed, though there has been 1470 

no explicit investigation of the effects on modularity (Martinez 1993). However, it has also 1471 

been demonstrated that there is no consistent relationship between species richness and 1472 

modularity at different scales (Montoya et al. 2015); This suggests that slight 1473 

underestimations of the number of species (and links) resulting from species aggregation are 1474 

unlikely to have a material impact on the resulting modular structure of our focal networks.  1475 

A further unknown is the effect of different data compilation approaches on network structure. 1476 

Each of the focal food webs was compiled using species- and region -specific diet information, 1477 

but also broader literature sources spanning variable taxonomic and spatial resolutions, which 1478 

increases the level of uncertainty over some interactions. However, modularity has been found 1479 

to be relatively robust to variation in sampling effort (Rivera-Hutinel et al. 2012), and each of 1480 

the focal ecosystems has been subject to extensive long-term sampling whereby the ecology of 1481 
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most constituent species is well understood. The underlying core species list and structure of 1482 

each of our focal networks is therefore likely to be robust to minor variation in the distribution 1483 

and number of interactions and nodes. We encourage researchers to provide information 1484 

regarding the number of data sources used to determine the diet composition of each species 1485 

and some indication of sampling completeness (e.g. yield-effort curves), and to ensure minimal 1486 

and comparable levels of taxonomic aggregation, as these efforts will facilitate the assessment 1487 

of the comparability of network structures (Martinez 1993; Gauzens et al. 2013).  While 1488 

network size alone does not drive modularity (Rivera-Hutinel et al. 2012; Montoya et al. 2015), 1489 

contrasts between our study datasets may have arisen from a combination of natural and 1490 

arbitrary differences in the scale at which the network is considered. In this study, the two 1491 

offshore food webs had arbitrary differences in their boundaries and constituent species (e.g. 1492 

omission of the sea floor, marine mammals, and seabirds in the Scotia Sea), but their modular 1493 

structure was still consistent, which provides some confidence in our ability to detect 1494 

overarching trends despite methodological differences. Food web modules have been found to 1495 

represent distinct functional groups (i.e. groups of species with similar ecological functions 1496 

such as pollination, herbivory, predation etc.; Montoya et al. 2015). Therefore, there is a risk 1497 

that omitting species with certain characteristics when describing food webs means we only 1498 

capture part of the processes structuring ecosystems, and that our perception of modularity or 1499 

stability is influenced by the scale at which the network is considered. This is a topic which 1500 

merits further investigation and should certainly be discussed when comparing networks. 1501 

3.4.4 Conclusion 1502 

This study provides insight into the underlying drivers of modularity in marine food webs 1503 

through the comparison of multiple highly resolved networks. Modules in relatively stable 1504 

offshore environments appear to be structured largely by body mass, while those in more 1505 

heterogeneous coastal and intertidal settings are organised according to the broader diversity 1506 

of ecological niches and feeding modes. The resulting differences in modular structure (i.e. 1507 

trophic clustering of modules versus differentiation into energy channels) could underpin 1508 

ecosystem responses to species loss and other perturbations and suggest that traditional 1509 

modularity metrics do not fully represent the stability of food webs. Further testing of the link 1510 

between the distribution of modules and the degree of network robustness (e.g., using 1511 

simulated networks and species extinction scenarios) will ensure that we continue to make 1512 

progress towards gaining a comprehensive understanding of the underlying determinants of 1513 

network stability.  1514 
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4 Temperature alters the predator-prey size relationships 1515 

and size-selectivity of Southern Ocean fish. 1516 

Published in Nature Communications (https://doi.org/10.1038/s41467-024-48279-0) 1517 

Abstract 1518 

A primary response of many marine ectotherms to warming is a reduction in body size, to 1519 

lower the metabolic costs associated with higher temperatures. The impact of such changes 1520 

on ecosystem dynamics and stability will depend on the resulting changes to community size-1521 

structure, but few studies have investigated how temperature affects the relative size of 1522 

predators and their prey in natural systems. We utilise >3,700 prey size measurements from 1523 

ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how 1524 

temperature influences predator-prey size relationships and size-selective feeding. As 1525 

temperature increased, we show that predators became closer in size to their prey, which was 1526 

primarily associated with a decline in predator size and an increase in the relative abundance 1527 

of intermediate-sized prey. The potential implications of these changes include reduced top-1528 

down control of prey populations and a reduction in the diversity of predator-prey 1529 

interactions. Both factors could reduce the stability of community dynamics and ecosystem 1530 

resistance to perturbations under ocean warming.  1531 

4.1 Introduction 1532 

Global warming represents a major threat to the structure and functioning of ecosystems. One 1533 

possible consequence of rising temperatures is a decrease in body size across many species 1534 

and communities (Daufresne et al. 2009). At the individual level, warming alters the 1535 

physiology of organisms and is likely to reduce body sizes within populations as organisms 1536 

attempt to maintain metabolic functioning (Daufresne et al. 2009; Deutsch et al. 2022). At the 1537 

community level, warming may alter assembly processes through environmental filtering, 1538 

competition, or trophic interactions, which may result in communities dominated by smaller-1539 

bodied species (Daufresne et al. 2009; Rutterford et al. 2023).  The subsequent impacts on 1540 

population abundances and species interactions can drive changes to structure and 1541 

functioning at the ecosystem scale (Brierley and Kingsford 2009). Aquatic ectotherms such as 1542 

fish are particularly susceptible to temperature-induced reductions in body size, due to the 1543 

lower rates of oxygen diffusion in water and the energetic costs associated with maintaining 1544 

water flow over surfaces (Forster et al. 2012). Additionally, gape limited feeding means that 1545 
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many fish species display ontogenetic changes in prey selection, with larger predators 1546 

consuming larger, more energetically valuable prey (Scharf et al. 2000; Sánchez-Hernández 1547 

et al. 2019). Declines in prey size with warming may therefore reduce the rates of energy 1548 

acquisition by larger predators, resulting in reduced fish growth and smaller overall body 1549 

sizes within populations (Queiros et al. 2024). Furthermore, such altered prey size 1550 

distributions may favour smaller-sized predator species, providing them with a competitive 1551 

advantage and thereby shifting the fish community composition towards smaller body sizes 1552 

(Gjoni et al. 2023). Evidence from the last interglacial period suggests that fish communities 1553 

experienced declining body size in response to warmer conditions (Agiadi et al. 2022; 1554 

Salvatteci et al. 2022), and the average size of contemporary fish is expected to show a 1555 

similar pattern under the current rate of global warming (Cheung et al. 2013). However, there 1556 

is currently little understanding of how these changes will impact the structure and stability of 1557 

marine ecosystems.  1558 

Body mass is a key life-history trait which determines factors such as consumption rates, 1559 

handling times, and gape size (Petchey et al. 2008; Potapov et al. 2019). As such, body mass 1560 

provides an important link between individual physiology and food web structure and is 1561 

therefore often used to parameterise models of population dynamics and energy flow within 1562 

ecosystems (Boit et al. 2012; Martinez 2020). In the marine environment, predators are 1563 

generally larger than their prey, and the predator-prey mass ratio (PPMR) is a good predictor 1564 

of trophic interactions. For example, allometric diet breadth models accurately predict who 1565 

eats who in aquatic ecosystems (Petchey et al. 2008), whilst declines in PPMR typically result 1566 

in lower per capita interaction strengths as predators are able to gain the same amount of 1567 

energy by consuming fewer large prey (Brose et al. 2006). At the community level, larger 1568 

ectotherms may decline in size more rapidly than smaller ectotherms with warming as a result 1569 

of their reduced surface area to body mass ratio and the associated challenge of maintaining a 1570 

higher metabolic rate (Forster et al. 2012; Petrik et al. 2020). This is particularly true for the 1571 

marine environment, where larger fish and invertebrates display the strongest temperature-1572 

size responses (Lavin et al. 2022). If warming causes a greater decline in the size of 1573 

ectotherm predators relative to that of their smaller prey (i.e. changes in community size 1574 

structure), the average PPMR might decrease, with consequences for interaction strengths 1575 

and thus energy flow through marine ecosystems.   1576 

The physiological basis for temperature effects on PPMR at the community level may be 1577 

complicated by behavioural responses to environmental change. For example, predators may 1578 
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select for more nutritious (larger) prey in an effort to increase per capita energy intake under 1579 

energetically stressful conditions, thus reducing their PPMR (Lemoine et al. 2013; O'Gorman 1580 

et al. 2016). Alternatively, predators might feed in a more density-dependent manner, 1581 

consuming a greater proportion of abundant but relatively smaller prey and thereby 1582 

increasing PPMR. Importantly, behavioural responses are unlikely to be uniform across 1583 

predator body sizes, given the different dietary niches of small and large organisms and their 1584 

differential susceptibility to warming. Previous research has identified variable size-1585 

dependent relationships between PPMR and temperature, such that both systematic increases 1586 

(Dobashi et al. 2018) and decreases (Gibert and Delong 2014) to per capita interaction 1587 

strength are possible.  1588 

It is clear we still have limited understanding of how temperature-driven changes in body size 1589 

may alter community-level feeding relationships, and it is vital to address this knowledge gap 1590 

if we are to predict ecosystem responses to warming. This is particularly true for the Southern 1591 

Ocean, which is experiencing widespread environmental changes including rapid regional 1592 

warming in areas such as the western Antarctic Peninsula (Meredith and King 2005) and 1593 

northern Scotia Sea (Whitehouse et al. 2008). The Southern Ocean supports a diverse array of 1594 

higher predator populations including seabirds, seals, penguins, and whales, with a food web 1595 

largely centred around krill (particularly Euphausia superba) (Hill et al. 2006). However, it is 1596 

expected that krill will shift their distribution southward in response to ocean warming 1597 

(Atkinson et al. 2019), with potentially drastic consequences for many regional predator 1598 

populations unless other suitable prey are available (Klein et al. 2018). Previous research has 1599 

identified mesopelagic lanternfish (Family Myctophidae, hereafter myctophids) as one such 1600 

potential alternative resource, due to their extremely high biomass and their role in supporting 1601 

energy flow to higher predators including seals and penguins during periods of low krill 1602 

availability (McCormack et al. 2021b). Additionally, myctophids themselves are major 1603 

generalist consumers of prey including krill, amphipods and copepods, and therefore exert 1604 

significant influence over food web dynamics (McCormack et al. 2020). Myctophids are 1605 

strongly size distributed in the Southern Ocean, with smaller species and individuals found at 1606 

lower (warmer) latitudes (Saunders and Tarling 2018), and they display clear size-selectivity 1607 

in their feeding (Cherel et al. 2010; Saunders et al. 2019). Warming may therefore alter the 1608 

size distribution of myctophids and the size relationships between these predators and their 1609 

prey, and it is important that we understand what these likely changes will be in order to 1610 

model ecosystem responses.  1611 
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In this study, we assessed the relationship between temperature and the relative sizes of 1612 

myctophids and their prey using a dataset of 1,576 stomachs and 3,707 prey size 1613 

measurements from ten myctophid species sampled across >10° of latitude in the Southern 1614 

Ocean (Figure 4.1). We hypothesised that myctophids would exhibit a decline in PPMR with 1615 

increasing temperature, due to (1) a greater decrease in the size of these predators versus their 1616 

prey, and/or (2) predators selecting for larger prey as temperature increases.  1617 

 1618 

Figure 4.1: Map of the study region displaying the locations of myctophid (black crosses) and 1619 

zooplankton (purple triangles) sampling stations. The interannual average position of key 1620 

oceanic fronts are also displayed (PF = Polar front; SACCF = Southern Antarctic 1621 

Circumpolar Current front). Temperature data represents the mean value from 15th March – 1622 

15th April 2009 from the Copernicus Global Ocean Physics Reanalysis (GLORYS12) (Jean-1623 

Michel et al. 2021). Map projection is WGS84/Antarctic Polar Stereographic.Black fill 1624 

represents missing temperature data. Map produced using QGIS 3.28 Firenze. 1625 
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4.2 Materials and methods 1626 

All data used in this study were collected following standard protocols and ethic approval 1627 

from the British Antarctic Survey and the Environmental Protocol (1991) of the Antarctic 1628 

Treaty. 1629 

4.2.1 Fish sampling 1630 

Myctophids were collected during three research surveys conducted in austral spring (JR161, 1631 

Oct-Dec 2006), summer (JR177, Jan-Feb 2008) and autumn (JR200, Mar-Apr 2009) in the 1632 

Scotia Sea in the Atlantic sector of the Southern Ocean. Fish were sampled at stations across 1633 

a transect spanning the entire Scotia Sea, from the Antarctic Polar Front to the sea ice zone. 1634 

The exact location of these stations varied between cruises but was similar across years, with 1635 

a broad latitudinal range sampled during each cruise (Figure C1-C2). Sampling was 1636 

conducted using a depth-stratified 25 m2 rectangular mid-water trawl net (RMT25), deployed 1637 

at depth ranges of 0-200, 200-400, 400-700, and 700-1000 m (Figure 4.1). The nets had a cod 1638 

end mesh size of 5 mm. Hauls were conducted during both light and dark conditions in spring 1639 

and summer, but only darkness during autumn, due to a reduced daylight period.  1640 

Fish were processed on-board and identified to species level where possible, with standard 1641 

length (SL) measured to the nearest millimetre. A random subsample of 25 fish per species 1642 

(or all individuals in the case of small catches) were set aside for stomach dissection. These 1643 

stomach samples were then frozen at -20 °C for later laboratory analysis, where the stomach 1644 

contents were thawed and identified to the lowest taxonomic level possible. For each 1645 

stomach, the number of individuals and average weight of each prey taxon was recorded 1646 

using a motion compensated balance. The resulting datasets can be accessed via the UK Polar 1647 

Data Centre (Collins et al. 2020; Belcher et al. 2019).  1648 

For this study, fish SL was converted to mass in grams using species-specific length-weight 1649 

equations from the British Antarctic Survey’s long-term records (Table C1) for those 1650 

individuals which did not have empty stomachs. This was done for ten species (see Table 1651 

C1), while data for a further two species were omitted due to very low sample sizes (n = 7 for 1652 

Gymnoscopelus opisthopterus, n = 1 for G. piabilis). The final datasets used in this study 1653 

consisted of 3,707 prey records from 1,576 fish stomachs (Table C2), in addition to a larger 1654 

set of fish body size estimates from 6,143 individuals (the majority without stomach content 1655 

data; Table C3) and species-specific abundance estimates for each sampling location. 1656 
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4.2.2 Zooplankton sampling 1657 

Macrozooplankton samples were collected from RMT25 nets, while mesozooplankton were 1658 

sampled using paired Bongo nets (mesh size 50 µm), which were deployed to a depth of 400 1659 

m during daylight hours (Ward et al. 2012; Tarling et al. 2012a; Tarling et al. 2012b). 1660 

Zooplankton samples were preserved in 4% formalin with seawater and analysed in the 1661 

laboratory, with taxa identified to the lowest possible taxonomic resolution. The total wet 1662 

weight (g) was calculated for each macrozooplankton taxon using a motion compensated 1663 

balance and divided by the number of individuals to estimate the mean body mass for each 1664 

taxon. Mesozooplankton taxa were assigned an average dry mass (DM, mg) from published 1665 

sources, which were converted to wet mass (WM, g) using general DM to WM conversion 1666 

factors in Atkinson et al. (2012). Abundance values for macro- and mesozooplankton 1667 

(standardised to individuals m-2) were calculated using the estimated area sampled by the 1668 

nets. Copepods dominated the zooplankton community by abundance, constituting over 70% 1669 

of total density on average across hauls, followed by polychaetes and chaetognaths and, to a 1670 

lesser extent, pteropods and ostracods (Table C4). The original zooplankton data are as 1671 

presented in (Tarling et al. 2012a) and can be accessed from the UK Polar Data Centre (Ward 1672 

et al. 2020). 1673 

4.2.3 Environmental covariates 1674 

We extracted daily sea-surface temperature (SST) values for the coordinates of each station 1675 

from the 1/12° gridded Copernicus Global Ocean Physics Reanalysis product GLORYS12V1 1676 

(Jean-Michel et al. 2021). To investigate the consistency of results at depth, we also extracted 1677 

modelled temperature data from the GLORYS12V1 ~1062m depth bin, which is the closest 1678 

match to the lower depth limit of the trawls. Temperature data were averaged for the 30 days 1679 

prior to and including the day of sampling. To identify the potential influence of local 1680 

productivity on myctophid feeding relationships, we also extracted surface chlorophyll-a 1681 

(Chl-a) values from the Copernicus-GlobColour dataset, which has a spatial resolution of 4x4 1682 

km (Garnesson et al. 2019). As with the temperature data, daily Chl-a values at each station 1683 

were averaged for the 30 days prior to and including the day of sampling. See Figure C3 for 1684 

an overview of the relationship between temperature and latitude. The remaining methods 1685 

refer to analyses involving SST but see Supplementary Information for an overview of the 1686 

results of modelling with temperature at depth. We did not consider the effects of spatial 1687 

heterogeneity in fishing effort as there is currently no targeted myctophid fishery in the 1688 

Southern Ocean. Fish constitute the majority of bycatch by the winter krill fishery in the 1689 
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Scotia Sea but appear to consist predominantly of members of the Channichthyidae and 1690 

Nototheniidae (Krafft et al. 2023). Overall annual average bycatch weights across all bycatch 1691 

taxa (0.1-51.3 tonnes) are low compared to the estimated biomass of mesopelagic fish in the 1692 

Scotia Sea (~4.5 million tonnes) and would therefore be expected to have negligible impact 1693 

on community structure (Krafft et al. 2023). 1694 

4.2.4 Statistical analyses  1695 

Linear mixed models (LMMs) were used to investigate the relationship between the 1696 

environmental variables and multiple metrics related to myctophids and their prey, using the 1697 

predator-prey body size dataset. PPMR was calculated as the body mass of each fish predator 1698 

(g) divided by the abundance-weighted average prey mass (g) in its stomach. LMMs were 1699 

fitted using the function ‘lme’ in the package ‘nlme’ (Pinheiro et al. 2023) with either PPMR, 1700 

predator body mass, or abundance-weighted mean prey body mass as response variables 1701 

(each subject to log10 transformation to meet the assumptions of normality, homogeneity, and 1702 

independence of residuals). No strong collinearity was identified between SST and chl-a 1703 

(Spearman’s rho: -0.077, p = 0.002), therefore these were both entered as explanatory 1704 

variables in the same model, including their interaction term. Model selection was then 1705 

conducted to identify the best specification of fixed effects (SST and Chl-a) and random 1706 

effects (nesting the variables ‘year’ and ‘predator species’). The use of weighted variance 1707 

structures to account for heterogeneity in residual variance by year or species was also 1708 

investigated during model selection. The absence of spatial autocorrelation in model residuals 1709 

was confirmed using Moran’s I, therefore autocorrelation structures were not included in the 1710 

models. The best model was determined by AIC comparison and visual diagnostics 1711 

(heteroscedasticity and normality of residuals). All models incorporated a combined constant 1712 

variance structure to account for heteroscedasticity in the errors within both year and predator 1713 

species. The final selected models all included a random intercept for year and a random 1714 

slope for SST by predator species. Chl-a had no significant main or interactive effects on the 1715 

response variables and was therefore omitted from further analyses. See Table C5-C11 for an 1716 

overview of the model selection process and Moran’s I results for these models.  1717 

The selectivity of predators for different prey sizes was estimated by fitting kernel density 1718 

distributions to the prey body masses identified in predator stomachs (realised distribution) 1719 

and to the comparable range of prey body masses sampled from the environment 1720 

(environmental distribution) (Gauzens et al. 2024). The environmental distribution represents 1721 

the expected predator diet if feeding is based solely on density-dependent foraging, while the 1722 
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realised distribution generally represents the combination of such neutral processes and the 1723 

active selection for specific prey sizes (Gauzens et al. 2024). This approach assumes that the 1724 

diets of these predators are generalist and primarily size-constrained, which is supported by 1725 

previous studies of Southern Ocean myctophid diets (Cherel et al. 2010; Saunders et al. 1726 

2019). Using the ratio of the realised and environmental distributions, a preference 1727 

distribution can be calculated, representing the selectivity of predators for different prey 1728 

sizes. To link the predator diets to the distribution of potential prey sizes in the environment, 1729 

we grouped predators and zooplankton samples which were collected in the same area and 1730 

within a few days of one-another, resulting in a total of 24 separate sampling locations 1731 

spanning the study region. Within these groups, we then aggregated predators from the same 1732 

species into size-classes of 100.05 g to ensure that enough prey were present in the combined 1733 

diets to reliably estimate a density distribution, whilst ensuring there were enough data points 1734 

for later analysis (n = 164). The final size classes ranged from 10-0.525 = 0.30 g to 101.575 = 1735 

37.58 g. For each aggregation, an average temperature was estimated from the constituent 1736 

stations. We used the mean value of the preference distribution for each size class to represent 1737 

the average preferred prey size of predators at each temperature. We then used a LMM to 1738 

investigate the relationship between preferred prey size and the interaction between 1739 

temperature and predator size-class, following the same approach to model specification and 1740 

selection as described above. The final model included random intercepts for year and 1741 

predator species, and a combined variance structure for year and predator species (see Table 1742 

C12-C13 for an overview of the model selection process). 1743 

To differentiate the potential individual-level and community-level mechanisms underlying 1744 

trends in body size with temperature, we also conducted analyses of predator body size and 1745 

community composition using a larger dataset of individual body sizes and species 1746 

abundance estimates (n = 6,143). We fitted a Generalised Least Squares (GLS) regression 1747 

model of species diversity (Shannon–Wiener (log e) diversity index) as a function of SST and 1748 

Chl-a to investigate whether there was any change in community structure with 1749 

environmental conditions. For this analysis, densities of each species caught during each haul 1750 

were estimated by multiplying counts by the product of the distance towed multiplied by the 1751 

nominal net mouth area (25 m2), and then standardised to values of individuals per 1,000 m-3. 1752 

A square-root transformation was then applied to the density estimates to reduce the 1753 

weighting of dominant species. An LMM was fitted to the relationship between body mass 1754 

and the interaction between SST and Chl-a at the community level, before linear models of 1755 
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body size and SST were fitted for each predator species individually, to identify whether 1756 

community-level trends in size with temperature were present at the population level. The 1757 

optimal model structure for each species-level analysis varied, and very low but statistically 1758 

significant levels of spatial autocorrelation were identified for a small number of species and 1759 

dealt with by incorporating spatial autocorrelation functions. See Table C14-C22 for model 1760 

selection of the optimal variance weighting, random and fixed effects structures, Moran’s I 1761 

test results and implemented autocorrelation structures, and model outputs.   1762 

4.3 Results and discussion 1763 

PPMR declined by ~11% per °C increase in sea surface temperature (SST), associated with a 1764 

significant decline in predator body size at a rate of ~6% per °C and no coherent trend in the 1765 

mean body size of prey in the diet (Figure 4.2; Table 4.1). Chlorophyll a was initially used as 1766 

a further explanatory variable but it was not significant in any model and was therefore 1767 

excluded during model selection (Table C5-C11). The same general results were found when 1768 

temperature at ~1000m (the estimated maximum of myctophid depth distributions) was 1769 

considered instead of SST (Figure C4, Table C23Table C30). A similar decline in predator 1770 

body size was also found when using a larger dataset of fish body masses (n = 6,143, the 1771 

majority without stomach content data; Figure C5, Table C14-C16). In all, seven of the ten 1772 

myctophid species also displayed significant declines in size with increasing temperature 1773 

(Figure C6, Table C17-C19). Together, these results suggest that the decline in PPMR is 1774 

associated with a greater decrease in the size of these predators relative to their prey as 1775 

temperature increases.  1776 

The effect of declining PPMR on interaction strengths will depend on the interactive effects 1777 

of temperature and body mass on metabolism and consumption (Kratina et al. 2022), making 1778 

it difficult to predict the consequences for ecosystem stability. It has previously been found 1779 

that temperature alters the directionality and shape of the relationship between PPMR and 1780 

predator attack rate and prey handling time, with low PPMR destabilising community 1781 

dynamics under warming due to elevated predation rates at low prey density (Kratina et al. 1782 

2022). Additionally, when declines in body mass under warming are restricted to isolated 1783 

trophic levels, community stability is expected to be reduced (Sentis et al. 2017), possibly 1784 

due to lower top-down control of prey populations (Shackell et al. 2010). However, while the 1785 

reduced ingestion efficiencies and higher metabolic costs associated with higher temperatures 1786 

are expected to make predator populations increasingly vulnerable to starvation, this effect is 1787 

exacerbated under high PPMRs (Rall et al. 2009), therefore the observed decline in predator 1788 
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size with warming may in fact provide a buffer against population crashes. Ultimately, the 1789 

effects of warming and PPMR on the strength of interactions will depend on factors including 1790 

predator and prey identity, predator body size, and thermal tolerance. Further investigations 1791 

of the combined effects of temperature and PPMR on interaction strengths will be important 1792 

for determining the possible consequences of altered size-structuring of predator-prey 1793 

interactions for the stability of ecological communities. This could be facilitated through the 1794 

application of ecosystem flux or dynamical population models (Gauzens et al. 2019; 1795 

Sohlström et al. 2021). 1796 

 1797 

Figure 4.2: Effects of temperature on predator and prey body mass. (a) partial residual plot 1798 

from a linear mixed model of the effect of sea-surface temperature (SST) on prey-averaged 1799 

predator-prey mass ratio (PPMR); (b) partial residual plot from a linear mixed model of the 1800 

effect of SST on predator body mass; (c) scatterplot of the relationship between SST and 1801 

abundance-weighted average prey mass in predator stomachs. Y-axis values are in log10 g. 1802 

Lines represent predicted values at each SST. Shading represents 95% confidence intervals.   1803 
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Table 4.1: Model statistics for the effect of temperature on predator and prey body masses. 1804 

Output from linear mixed models with predator-prey mass ratio (PPMR), predator body mass 1805 

and abundance-weighted average prey body mass in predator stomachs as response variables 1806 

(all log10). SST represents sea-surface temperature. R2m and R2c represent the Nakagawa’s 1807 

marginal and conditional model R2 values, respectively. 1808 

 1809 

The observed decline in predator size with increasing temperature fits the wider expectation 1810 

that a primary response of ectotherm vertebrates, including Southern Ocean myctophids, to 1811 

warming should involve a reduction in individual body size and shifts in overall community 1812 

size structure (Deutsch et al. 2022; Rubalcaba et al. 2020). Declines in size at the individual 1813 

level are thought to facilitate continued persistence with warming by minimising the extent to 1814 

which metabolic rate must increase to match the greater energetic demands of the 1815 

environment (Riemer et al. 2018). Changes in community size structure may also be the 1816 

result of a combination of physiological and competitive processes which result in species of 1817 

a certain size range becoming dominant (Gjoni et al. 2023).  There was a significant increase 1818 

in Shannon diversity of the myctophid community with increasing SST, associated with a 1819 

shift in species abundances from communities dominated by a few large-bodied species (e.g. 1820 

Electrona antarctica) at cold high latitudes to a more even distribution of abundances in the 1821 

more northerly warmer regions (Figure C7, Table C20-C22), as previously documented 1822 

(Collins et al. 2012). This indicates that the link between temperature and body size at the 1823 

community level may be driven in part by community assembly processes which select for 1824 

species of different sizes as it becomes warmer, e.g. smaller predators are able to outcompete 1825 

larger ones under the altered prey size distribution and relatively lower metabolic demands. 1826 

However, our analyses of the relationship between body mass and SST at the population level 1827 

Model Coefficient Estimate SE DF t-value p-value 

PPMR Intercept 2.988 0.085 1550 35.251 <0.000

1 

 SST -0.053 0.015 1550 -3.601 0.0003 

R2m = 0.049, R2c = 0.493 

Predator body mass Intercept 0.552 0.087 1550 6.346 <0.000

1 

 SST -0.027 0.011 1550 -2.482 0.0132 

R2m = 0.024, R2c = 0.978 

Mean prey body mass Intercept -2.371 0.069 1551 -34.249 <0.000

1 

R2m < 0.001, R2c = 0.455 



75 

 

also revealed significant declines in size with increasing temperature for many of the 1828 

myctophid species, both for large-bodied taxa such as E. antarctica and for small species like 1829 

Krefftichthys. anderssoni (Figure C6, Table C17-C19). The observed trends at the community 1830 

level therefore are not explained by community assembly processes alone, but also by 1831 

temperature effects on populations, likely mediated by physiological responses to warming.  1832 

Under both moderate and high emissions scenarios, Antarctic waters are expected to become 1833 

increasingly favourable for smaller, sub-Antarctic myctophid species, likely altering 1834 

community diversity and size structure (Freer et al. 2019). Such changes may reduce their 1835 

suitability as prey for predators such as penguins and seals, with knock-on effects on these 1836 

higher predator populations and food web dynamics (Murphy et al. 2007). Additionally, many 1837 

myctophid species display size-selective feeding, with a switch from euphausiids and fish to 1838 

smaller copepods as their body size decreases (Saunders et al. 2019). Thus, a reduction in the 1839 

average size of myctophids may alter the diversity and size distribution of the prey 1840 

community as predation rates on different species change (Rudolf 2012; Ives et al. 2004). 1841 

Furthermore, smaller species are generally expected to have fewer feeding interactions across 1842 

a more restricted range of trophic levels, which could alter the distribution of energy flow by 1843 

reducing network complexity and trophic redundancy (Brose et al. 2017).  1844 

To investigate the evidence for size-selective feeding behaviour that could further underlie 1845 

the decline in PPMR with temperature, we conducted an analysis of dietary size preferences 1846 

for prey in the environment in relation to predator body size class and temperature (see 1847 

Methods). Predator size and SST had a significant interactive effect on preferred prey size, 1848 

with small predators feeding on relatively larger prey and large predators feeding on 1849 

relatively smaller prey in warmer regions (Figure 4.3a; Table 4.2). This partially supports 1850 

hypothesis 2, that predators will select for larger prey in warmer environments, but not for the 1851 

largest fish. This result may be explained by an increase in the relative abundance of 1852 

intermediate prey sizes within the range of body masses commonly consumed by the fish 1853 

(Figure 4.3b).  1854 
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 1855 

Figure 4.3: Predicted interactive effect of SST and fish size class on myctophid average 1856 

preferred prey size. Lines represent predicted values at each SST, for the largest and smallest 1857 

predator size classes. Shading represents 95% confidence intervals. Points are coloured 1858 

according to size class, jittered slightly for clarity. (b) Density plots of zooplankton body mass 1859 

distribution in the environment within size range commonly consumed by the myctophids, 1860 

grouped into 1 °C temperature bins. Dashed lines represent abundance-weighted average body 1861 

mass. Y-axis indicates central temperature value for each bin. Values in brackets indicate 1862 

number of hauls. Note: in panel b, large prey sizes (above approx. −2 log10 g) are present at all 1863 

temperatures but extremely low abundance relative to smaller organisms prevents them from 1864 

being visible. 1865 

Table 4.2: Model statistics for the effect of temperature on predatory size preferences. Output 1866 

from a linear mixed effects model with mean preferred prey size (log10) as the response 1867 

variable and sea-surface temperature (SST) and predator size class (log10) as explanatory 1868 

variables. R2m and R2c represent the marginal and conditional model R2 values, respectively. 1869 

Coefficient Estimate SE DF t-value p 

Intercept -2.460 0.194 139 -12.673 <0.0001 

SST 0.006 0.021 139 0.295 0.7681 

Size class 0.848 0.109 139 7.795 <0.0001 

SST*Size class -0.110 0.031 139 -3.483 0.00071 

R2m = 0.298, R2c = 0.801 

 1870 
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Our results suggest that temperature influences the size-structuring of feeding relationships 1871 

within the Southern Ocean mid-trophic community through a combination of density-1872 

dependence and active selection. Under colder conditions, large predators appear to select for 1873 

relatively abundant, large, energetically valuable prey while small predators feed on small 1874 

prey. Under warmer conditions, the shift in the distribution of suitable prey sizes towards 1875 

intermediate body masses restricts the feeding behaviour of large predators and forces them 1876 

to feed sub-optimally on smaller prey while small predators actively select for these abundant 1877 

intermediate prey sizes, possibly because they provide greater per capita energy intake. This 1878 

reduction in prey size diversity could constrain the foraging niches of smaller and larger 1879 

predators, increasing competition and, under the general expectation that food web 1880 

complexity promotes predator population stability (Petchey 2000), potentially destabilising 1881 

predator-prey dynamics. Larger predators may also be forced to feed on prey that are smaller 1882 

than their optimal foraging niche, thus preventing them from meeting their higher energetic 1883 

demands under warmer conditions. These changes in size-selectivity may also explain the 1884 

increasing prevalence of smaller myctophid species in warmer regions (Figure C7), as they 1885 

can capitalise on the available prey field and outcompete their larger counterparts. The 1886 

increasing dominance of smaller myctophids, which feed preferentially on larger prey in 1887 

warmer regions, is likely to drive the observed decline in overall PPMR across the predator 1888 

community. Thus, we suggest that the observed patterns in myctophid size and foraging with 1889 

temperature are likely to be the result of a combination of interacting processes acting at both 1890 

the population and community levels, and we encourage further efforts to disentangle them. 1891 

Overall, our results highlight the importance of considering the size structuring of biotic 1892 

interactions and plasticity of size-based foraging behaviour when investigating the possible 1893 

consequences of environmental change for community structure and composition. 1894 

We investigated a temperature gradient across a large spatial scale (>10° of latitude) rather 1895 

than directly testing the effects of temperature change over time. Such temporal changes are 1896 

difficult to investigate in-situ, but mesocosm experiments could provide insight into how 1897 

rapid warming affects species body sizes and biotic interactions. However, the results of such 1898 

studies primarily relate to the plastic responses of individuals over the short-term, which may 1899 

differ from the adaptive responses of populations to sustained gradual warming over the 1900 

multi-decadal timescales that are relevant to ongoing climate change. In contrast, given the 1901 

historically stable temperatures of the Southern Ocean (Morley et al. 2020), our space-for-1902 

time substitution represents the long-term eco-evolutionary adaptation of predator and prey 1903 
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communities. One potential caveat of our approach was the use of sea-surface temperatures to 1904 

represent the environmental conditions experienced by the myctophids, as temperatures at 1905 

depth may differ from those at the surface. Indeed, while a positive relationship between 1906 

latitude and temperature is still apparent at approximately 1,000m depth, the trend is weaker 1907 

than at the surface (Figure C5). When substituting SST with the temperature at depth in our 1908 

analyses, however, the results are consistent (Figure C4, Table C23-C30), suggesting that the 1909 

observed relationships hold across the depth range that myctophids are thought to inhabit.  1910 

As our oceans continue to warm, significant changes to the size structuring of marine 1911 

communities are likely to occur in many regions, and the use of dietary preference analyses 1912 

such as this will be useful for disentangling the interactive effects of behaviour and 1913 

physiology on the feeding ecology of key species and functional groups. Myctophids are one 1914 

of the most abundant fish families globally and a major component of many pelagic food 1915 

webs, from the poles to the tropics (Morley et al. 2020; Chaudhary et al. 2021). The insights 1916 

gained in this study therefore have relevance for other open ocean systems, including those 1917 

near the equator where warming is expected to drive strong declines in body size and changes 1918 

to the distribution of many mesopelagic species (Chaudhary et al. 2021; Lefort et al. 2015). 1919 

Changes in species composition with temperature may also alter community PPMR in 1920 

unexpected ways, as it has previously been found that the relationship between individual 1921 

body mass and PPMR varies between taxa, due to factors such as morphology and feeding 1922 

strategy (Reum et al. 2019). It will therefore be important to expand these analyses to other 1923 

regions and taxa to provide an overview of the generality of the observed relationships.  1924 

Rising metabolic costs and oxygen limitation resulting from ocean warming are expected to 1925 

drive declines in the body size distribution of many marine ectotherms (Deutsch et al. 2022; 1926 

Forster et al. 2012), and we sought here to investigate the potential consequences for the size-1927 

structuring of species interactions. Using an extensive dataset spanning a large latitudinal 1928 

range, we have shown that increasing temperature is associated with changes in body mass 1929 

and dietary size-selectivity across Southern Ocean myctophids, a key component of pelagic 1930 

food webs, resulting in predator communities that are closer in size to their prey. As a result, 1931 

warming might alter prey population dynamics and reduce top-down control, potentially 1932 

reducing community stability. The shift in predator-prey size relationships could also drive a 1933 

reduction in the diversity of predator-prey interactions and a loss of redundancy within 1934 

ecological networks, which may reduce their resistance to perturbations. The trends identified 1935 

in this study provide a basis for mechanistic models to investigate the potential consequences 1936 
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of warming scenarios for the structure of biotic interactions and the stability of ecosystems. 1937 

Efforts to investigate these relationships in other regions and for other taxa will aid the search 1938 

for macroecological patterns that can be used to predict ecosystem responses to climate 1939 

change.  1940 

  1941 
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5 Trade-offs between the recovery of Southern Ocean 1942 

baleen whales and conservation of their competitors 1943 

In preparation for PNAS 1944 

Abstract 1945 

The historical over-exploitation of Southern Ocean baleen whales is thought to have resulted 1946 

in the reorganization of food webs and the expansion of competitor populations such as seals 1947 

and penguins. Many whale populations are now recovering, leading to uncertainty for the 1948 

impact this will have on their krill-feeding competitors, which are themselves a focus of 1949 

conservation efforts. We used a circumpolar suite of standardized regional Ecopath models to 1950 

explore the potential ecological trade-offs associated with increases in baleen whale 1951 

populations. There was variation in the capacity of ecosystems to support increases in whale 1952 

consumption while also sustaining competitor populations at close to their contemporary 1953 

estimates. Under median estimates of daily krill consumption by baleen whales, only limited 1954 

increases in whale biomass were possible without major reductions in competitor 1955 

populations, although the impacts of whale population recovery would be mitigated under 1956 

plausible future increases in primary production. We identified that the level of unexploited 1957 

production by whale prey, alongside the degree of dietary overlap between whales and their 1958 

competitors, are associated with the ecosystem capacity to support whale population 1959 

increases and could be used to guide decision-making in relation to the implementation of 1960 

regional conservation actions. Ultimately, it must be recognized that contemporary and future 1961 

Southern Ocean ecosystems may have reduced capacity to sustain higher trophic levels, 1962 

resulting in strong trade-offs between conservation objectives. 1963 

5.1 Introduction 1964 

Southern Ocean ecosystems are complex and diverse, supporting a variety of vital services 1965 

including provisioning, biogeochemical processes and nutrient cycling (Cavanagh et al. 1966 

2021). Many species there are unique and endemic, with large populations of marine 1967 

mammals and seabirds sustained by a variety of mid-trophic taxa ranging from copepods to 1968 

Antarctic krill (Euphausia superba) and highly abundant demersal and pelagic fish (Queirós 1969 

et al. 2024). Over the past two centuries, however, Southern Ocean ecosystems have been 1970 

considerably impacted by anthropogenic activities including the exploitation of seals and 1971 

whales and the more recent harvesting of finfish and Antarctic krill (Miller 1991; Kock et al. 1972 
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2007). Climate change is also affecting the Southern Ocean, with regional warming and shifts 1973 

in sea ice extent and duration, which could negatively impact the distributions and population 1974 

dynamics of species such as krill and emperor penguins (Aptenodytes forsteri) (Auger et al. 1975 

2021; Meredith et al. 2019; Fretwell et al. 2023). Widespread increases in productivity are 1976 

also predicted for various regions, but shifts in the phytoplankton community size structure 1977 

may have negative consequences for ecosystem function by driving changes in the 1978 

composition of zooplankton communities, with a dominance of salps resulting in reduced 1979 

efficiency of energy transfer to higher predators (Kawaguchi et al. 2024; Pinkerton et al. 1980 

2021; Queirós et al. 2024). If we are to implement effective management strategies, it is 1981 

imperative that we understand the implications of past and future ecological shifts and the 1982 

possible trade-offs that may be required to achieve conservation goals. 1983 

The exploitation of baleen whales during the 20th century represents possibly the most 1984 

extensive human impact on Southern Ocean ecosystems to date, resulting in the severe 1985 

depletion of many species including blue (Balaenoptera musculus), humpback (Megaptera 1986 

novaeangliae), fin (B. physalus) and sei (B. borealis) whales (Christensen 2006; Mori and 1987 

Butterworth 2006). These predators exert significant top-down control over Antarctic krill, 1988 

zooplankton and fish populations (Tulloch et al. 2019; Bury et al. 2024), and the rapid decline 1989 

of the whales will almost certainly have altered energy flow through regional food webs. For 1990 

example, the release of Antarctic krill from whale predation is hypothesised to have resulted 1991 

in a krill biomass ‘surplus’ which was then rapidly consumed by other predators including 1992 

seals and penguins, increasing their populations (Laws 1977). Ecological modelling has 1993 

provided some limited support for this hypothesis, although this is dependent on relatively 1994 

high and stable levels of primary productivity (Surma et al. 2014). The contemporary average 1995 

total Antarctic krill biomass in the Southern Ocean is estimated to be below 400 million 1996 

tonnes (Atkinson et al. 2009; Kawaguchi et al. 2024), far lower than the 600-900 million 1997 

tonnes estimated to be required to sustain unexploited baleen whale populations (Smetacek 1998 

and Duarte 2008; Surma et al. 2014). Such high Antarctic krill biomass may historically have 1999 

been sustained by elevated primary production driven by biological nutrient cycling, as 2000 

whales fertilized surface waters with limiting elements such as iron and thereby promoted 2001 

krill population growth (Nicol et al. 2010; Ratnarajah et al. 2016). The viability of such 2002 

whale-driven surface fertilization for sustaining Antarctic krill populations is, however, 2003 

unclear (Maldonado et al. 2016), and observed regional declines in the biomass of Antarctic 2004 
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krill over the 20th century may have been driven more by temperature-related changes in 2005 

spawning habitat quality (Yang et al. 2020; Atkinson et al. 2022).  2006 

Since the ongoing moratorium on commercial whaling began in 1985, some whale 2007 

populations have begun to recover but many remain well below their estimated pre-2008 

exploitation levels and there is a widespread desire to see further whale biomass recovery 2009 

(Zerbini et al. 2019; Tulloch et al. 2019; Calderan et al. 2020; IWC 2024). It is unclear, 2010 

however, whether contemporary Southern Ocean ecosystems can support large increases in 2011 

baleen whale populations. A key uncertainty is the extent to which population recovery might 2012 

come at the expense of competitor groups for krill such as seals, penguins and fish, which 2013 

may have experienced competitive release as a result of whaling. Newly revised estimates of 2014 

baleen whale daily consumption rates, which may in fact be up to three times greater than 2015 

previously thought (Savoca et al. 2021), suggest that the extent of this potential release may 2016 

also have been greater than previously assumed. Such high consumption rates mean the 2017 

influence that these whales exert over key prey such as Antarctic krill is also very high, and, 2018 

under limited prey availability, their population recovery may therefore require particularly 2019 

large compensatory decreases in competitor populations. Two core objectives of the 2020 

international convention governing conservation in the Southern Ocean are to maintain the 2021 

ecological relationships between species and restore depleted populations (Constable 2011). 2022 

Given the likely competitive relationships between higher trophic level groups, these 2023 

objectives may well be in conflict if the goal is to conserve Southern Ocean ecosystems as 2024 

they are now whilst also restoring whale populations. It is therefore important that we explore 2025 

the possible implications of baleen whale population recovery for the dynamics of their 2026 

competitors. This will provide insight into the likely conservation outcomes that are feasible 2027 

under future conditions and could help guide regional management actions. 2028 

Food web models provide a tool for understanding how the structure and dynamics of 2029 

regional ecosystems might respond to press perturbations such as sustained changes in the 2030 

abundance of certain taxa (Montoya et al. 2009). In particular, the Ecopath framework is 2031 

often used to model the structure of trophic interactions and energy flow in aquatic food 2032 

webs, which can be used to test management scenarios or explore the effects of 2033 

environmental changes (Christensen and Walters 2004; Heymans et al. 2016). Ecopath 2034 

models have been developed for a variety of locations around the Southern Ocean, ranging 2035 

from subantarctic areas such as South Georgia and the Prince Edward Islands to high latitude 2036 

regions like the Antarctic Peninsula and Ross Sea (McCormack et al. 2021a). This suite of 2037 
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models represents a powerful resource for exploring regional similarities and contrasts in 2038 

ecosystem structure and function (Hill et al. 2021).  In this study, we use six regional Ecopath 2039 

food web models in conjunction with a novel objective balancing approach to explore the 2040 

potential ecological trade-offs resulting from the recovery of Southern Ocean baleen whale 2041 

populations. Our analysis incorporates the full range of plausible whale prey consumption 2042 

rates, and assesses the compensatory changes in system productivity required, which might 2043 

result from a combination of climate change and whale-mediated nutrient recycling. Using 2044 

the Ecopath framework allows us to explore some of the possible mechanisms underlying the 2045 

capacity of different models to support increased whale populations. A key parameter in 2046 

Ecopath models is the ecotrophic efficiency (EE) of each group, which ranges from zero to 2047 

one and represents the extent to which their biomass production is consumed within the 2048 

system, with lower values indicating greater ‘spare’ production which could potentially 2049 

support increases in consumption. As a result, models with generally low EEs for baleen 2050 

whale prey groups might be expected to have a greater capacity to support increases in baleen 2051 

whale consumption without affecting other functional groups, when compared with models 2052 

that have generally high EEs. Additionally, the degree of overlap in the consumption of prey 2053 

groups by baleen whales and their competitors could also determine the capacity of the model 2054 

to support increases in whale consumption. If the competitive overlap in prey consumption is 2055 

high, we expect to see a greater degree of negative coupling between populations of whales 2056 

and their competitor groups, as increases in consumption by whales require relatively larger 2057 

compensatory changes in competitor biomasses.  2058 

In this study, we implemented two scenarios to investigate the possible consequences of 2059 

baleen whale population recovery. Firstly, we explored the capacity of contemporary food 2060 

webs to support increasing whale populations by estimating the consequences for competitors 2061 

in the absence of compensatory changes in system productivity. This also included an 2062 

investigation of the influence of different whale prey consumption estimates on the rates of 2063 

competitor biomass change. Secondly, we explored the levels of system productivity that are 2064 

necessary to support increased whale populations while maintaining contemporary 2065 

competitor populations.  2066 
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5.2 Materials and methods 2067 

5.2.1 Modelling framework 2068 

This study makes use of the Ecopath modelling framework, which is used to construct food 2069 

web models that meet the assumption of mass-balance, whereby the energy outputs of a 2070 

group do not exceed their inputs (Christensen and Walters 2004). As discussed in chapter 1, 2071 

Ecopath models represent a specific time period (often a year), with nodes in the food web 2072 

representing single life stages, species or, more commonly, aggregated functional groups. The 2073 

key parameters required are the biomass (B), diet composition by weight (DC), production 2074 

per unit biomass (P/B), consumption per unit biomass (Q/B), and assimilation efficiency (AE) 2075 

of each group, although parameters representing biomass accumulation rates, fishery catches 2076 

and discards, and migration rates can also be supplied (Christensen and Walters 2004). These 2077 

form the basis of linear equations describing the production of each group in terms of their 2078 

other parameters and those of their consumers. A key parameter which is often an output of 2079 

Ecopath models is the ecotrophic efficiency (EE), representing the proportion of the 2080 

production of each group that is used in the system. Values range from zero (limited to top 2081 

predators that are not fished) to one (100% of production is consumed by other groups in the 2082 

model).  2083 

The initial parameterisation often results in an unbalanced model, and EE values greater than 2084 

one can be used to identify problematic groups with mortality rates that cannot be sustained 2085 

by production rates. The most common method of balancing an Ecopath model involves an 2086 

iterative process of manual adjustments to group parameters, focussed on unbalanced groups 2087 

and their consumers, until balance is achieved (Heymans et al. 2016). Often, the main 2088 

parameter that is adjusted is the diet composition as this is often the most uncertain, followed 2089 

by biomass and energetic rates (P/B and Q/B). This process can be time-consuming with 2090 

many unbalanced groups and may be subjective as the choice of groups and parameters to 2091 

adjust, and the magnitude and direction of those adjustments ultimately depend on the 2092 

ecological understanding and decisions of the modeller. The balancing process must therefore 2093 

be extremely well documented if the results are to be reproducible, and can be aided by 2094 

following thermodynamic principles such as ensuring that the growth efficiencies (GE) of 2095 

groups fall within expected values (Heymans et al. 2016). To reduce the subjectivity of the 2096 

balancing process and facilitate the generation of multiple versions of the same model to 2097 

account for parameter uncertainties, efforts have been made to develop various automated 2098 

balancing algorithms. These range from using the built-in Ecopath Monte-Carlo routine to 2099 
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randomly generate alternative balanced parameter sets from a single balanced input model 2100 

(Steenbeek et al. 2018), conducting an exhaustive random search of possible parameter 2101 

combinations that generate a thermodynamically viable (but not necessarily balanced) model 2102 

(Aydin et al. 2005), and making targeted adjustments to unbalanced groups to ‘push’ the 2103 

model into balance (though this method was removed after Ecopath version 5.1) (Kavanagh 2104 

et al. 2004). These methods all rely on a data ‘pedigree’ approach, whereby the uncertainties 2105 

around parameter estimates are quantified and used to put bounds on the range of possible 2106 

values (Heymans et al. 2016).  2107 

In this study, we needed to generate a large ensemble of balanced models from a set of initial 2108 

unbalanced input models. This meant that the approaches of Steenbeck et al. (2018) (which 2109 

uses a balanced input model) and Aydin et al. (2005) (which generates thermodynamically 2110 

viable, but not necessarily balanced parameters sets) were not suitable. However, the 2111 

approach of Kavanagh et al. (2004), whereby targeted adjustments are made solely to groups 2112 

out of balance, was also undesirable as it fails to incorporate uncertainty around the 2113 

parameters for balanced groups. As a result, we developed a bespoke balancing algorithm and 2114 

used this to generate 1000 versions of each regional model, to explore the effects of 2115 

perturbation across a range of plausible alternative model parameterisations (see Model 2116 

balancing). 2117 

Our analytical approach in this study involved a number of sequential steps, from the 2118 

standardisation and balancing of a set of published models to the implementation of 2119 

perturbation scenarios. The major steps are conceptualised in Figure 5.1 and detailed below. 2120 
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 2121 

Figure 5.1: Conceptual diagram illustrating the main steps that make up the methods and 2122 

analyses in this study.   2123 

5.2.2 Regional Ecopath models 2124 

We selected six published Ecopath-type food web models, each developed independently by a 2125 

different group of researchers and representing a different region of the Southern Ocean: The 2126 

South Georgia shelf (SG; Hill et al. 2012); Ross Sea (RS; Pinkerton and Bradford-Grieve 2127 

2010); Prince Edward Islands (PE; Gurney et al. 2014); Kerguelen Plateau (KP; 2128 

Subramaniam et al. 2019); Prydz Bay (PB; McCormack et al. 2020); and West Antarctic 2129 

Peninsula (AP; Dahood et al. 2019). The model locations are mapped in Figure 5.2 and an 2130 
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overview of the key characteristics of each model is provided in Table 5.1. Each of these 2131 

models represents the feeding interactions between a set of functional groups (either 2132 

individual species or aggregates based on taxonomy, size or other aspects of their ecology), 2133 

and provides the key parameters necessary to estimate energy flows within the system.  2134 

Table 5.1: Key characteristics of each of the six published Ecopath models used in this study. 2135 

Region South Georgia 

(SG) 

West Antarctic 

Peninsula (AP) 

Ross Sea 

(RS) 

Prince Edward 

Islands (PE) 

Kerguelen 

Plateau (KP) 

Prydz Bay 

(PB) 

Ocean basin South Atlantic South Atlantic Pacific Indian Indian Indian 

Latitudinal 

group 

Subantarctic Antarctic Antarctic Subantarctic Subantarctic Antarctic 

Ecosystem type Island shelf Continental shelf Continental 

shelf 

Island shelf Island shelf Continental 

shelf 

Extent Shelf area between 

coastline and 

1000m depth 

contour. 

Approximately 

55°S, 36°W 

CCAMLR 

Statistical Subarea 

48.1 

(approximately 

60-70°S and 50-

70°W) 

Shelf area 

between  

160°W and 

170°E, from 

3000m depth 

contour to 

permanent ice 

shelf  

200NM radius 

with centre at 

46°46′S, 37°51′E 

Between 45-

56°S and 60-

80°E 

From 60°S to 

the Antarctic 

continent, and 

60-90°E 

Area (km2) 45,530 630,279 637,000 431,014 1,720,348 1,433,028 

Biomass units Grams wet mass 

km-2 y-1 

Grams wet mass 

km-2 y-1 

Grams carbon 

m-2 y-1 

Grams wet mass 

km-2 y-1 

Grams wet 

mass km-2 y-1 

Grams wet 

mass km-2 y-1 

Modelling 

purpose 

Identify data 

inconsistencies. 

 

Investigate the 

trophic roles of krill 

and copepods. 

 

Explore future 

scenarios of reduced 

krill abundance. 

Describe 

dynamics of 

monitored and 

declining species. 

 

Evaluate how sea-

ice cover explains 

variations in 

species 

biomasses. 

Describe food 

web structure 

excluding 

current 

commercial 

fisheries. 

Guide decision-

making around 

ecosystem 

management. 

 

Separate models 

generated to 

represent 

ecosystem state in 

1960s, 1908s and 

2000s 

Expansion of 

existing 

model 

(Subramania

m et al. 2019) 

to include 

Heard and 

McDonald 

Islands. 

 

Provide an 

overview of 

ecosystem 

structure for 

the entire 

plateau 

including 

fisheries. 

Identify energy 

pathways 

through 

mesopelagic 

groups (fish, 

krill, squid). 

 

Identify 

keystone 

species. 

 

Explore the 

ecosystem 

implications of 

future climate 

scenarios. 

Modelling 

period 

2000-2010 Nominally 1996, 

with biomass data 

from 1992-2002 

1990-2000 Various, but 

2000s model used 

here 

1990s-2000s Period around 

2016 

N functional 

groups 

31 35 38 37 28 28 

N baleen whale 

groups 

1 4 2 0 1 2 

Published 

model versions 

Parameters: 

Balanced and 

unbalanced 

Diets: Balanced and 

unbalanced 

Parameters: 

Balanced 

Diets: Balanced 

and unbalanced 

Parameters: 

Balanced and 

unbalanced 

Diets: 

Balanced and 

unbalanced 

Parameters: 

unbalanced 

Diets: Balanced 

and unbalanced 

Parameters: 

Balanced and 

unbalanced 

Diets: 

Balanced 

Parameters: 

Balanced and 

unbalanced 

Diets: Balanced 

and unbalanced 

Degree of 

system closure 

External feeding by 

some predators 

represented by 

additional 

functional groups 

Closed system  Export of 

production 

represented 

for migratory 

mammals 

Closed system Closed 

system  

Closed system  
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5.2.3 Model standardisation 2136 

A key issue when using multiple models from disparate sources is that many of the 2137 

assumptions and decisions made when compiling the associated data and structuring the 2138 

models are dependent on the objectives of the study and preferences of the authors. This 2139 

means that models are not necessarily directly comparable, as they may include differences in 2140 

the number of functional groups and levels of functional group aggregation and in the 2141 

approach taken to estimate energetic parameters, which may influence their outputs (Pinnegar 2142 

et al. 2005; Heymans et al. 2016). Standardising the energetic parameters and the number and 2143 

identity of functional groups between models is therefore a key step in comparing different 2144 

models (Hill et al. 2021). The following subsections describe how model standardisation was 2145 

conducted in this study. 2146 

Standardisation of units 2147 

Five of the selected models expressed biomass in units of wet mass (gWM m-2y-1) while one 2148 

(RS) used units of organic carbon (gC m-2y-1). To standardize the model units, we converted 2149 

the RS model to gWM m-2y-1 using literature-derived conversion factors for the major 2150 

functional groups (Table D1). The biomass of each group was scaled using the relevant 2151 

conversion factor, while P/B is unitless and therefore does not need conversion. Q/B was 2152 

converted following the equation: 2153 

𝑄

𝐵𝑊,𝑖
=  

∑ 𝑄𝐶,𝑖,𝑧
𝑛
𝑧=1 /𝐶𝐹𝑧

𝐵𝐶,𝑖/𝐶𝐹𝑖
 2154 

where Q/BW,i represents the Q/B of group i in wet mass, 𝑄𝐶,𝑖,𝑧 represents the consumption of 2155 

prey 𝑧 by predator 𝑖 in carbon mass, 𝐵𝐶,𝑖 represents the biomass of predator 𝑖 in carbon mass, 2156 

and 𝐶𝐹𝑖 and 𝐶𝐹𝑧 are the conversion factors for the predator and prey, respectively.  2157 

The diet composition of each predator was converted from proportion carbon to proportion 2158 

wet weight of each prey consumed using the equation: 2159 

𝐷𝑊,𝑖,𝑧 =  
𝑄𝐶,𝑖,𝑧/𝐶𝐹𝑧

∑ 𝑄𝐶,𝑖,𝑧
𝑛
𝑧=1 /𝐶𝐹𝑧

 2160 

whereby 𝐷𝑊,𝑖,𝑧 is the proportional contribution in wet weight units of prey 𝑧 to the diet of 2161 

predator 𝑖. The diet of each predator is expressed in terms of consumption (𝑄𝑊,𝑖,𝑧) by 2162 

multiplying the diet matrix (𝐷𝑊,𝑖,𝑧) by the consumption parameter 𝑄 of the predator: 2163 
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𝑄𝑊,𝑖,𝑧 =  𝐷𝑊,𝑖,𝑧  ×  
𝑄

𝐵𝑊,𝑖
×  𝐵𝑊,𝑖 2164 

Re-aggregation of functional groups 2165 

Where possible, we combined existing groups in each model to generate a subset of 2166 

comparable groups, but in some cases, groups were disaggregated to ensure that our new set 2167 

of models all explicitly represented the same key groups (see Appendix D1 for a detailed 2168 

description of the reaggregation steps applied to each functional group). Our final 2169 

aggregation scheme included 21 functional groups overall, though not all of these were 2170 

included in each model (Table D2). We retained a few regional contrasts representing genuine 2171 

ecological differences in the groups present between models (e.g. presence of sea ice algae in 2172 

high-latitude models, absence of Antarctic krill in low-latitude eastern Antarctic models). 2173 

Four of the original models explicitly included bacterial groups and we retained these but did 2174 

not add bacterial groups to models which did not already include them, to avoid introducing 2175 

further subjectivity through our decisions surrounding the parameterisation of this group. 2176 

Diets were reaggregated following Hill et al. (2021) by expressing the diet of each consumer 2177 

in terms of their reaggregated prey groups, calculating a consumption-weighted average for 2178 

each prey item across the constituent consumers, and then rescaling the resulting values to 2179 

sum to one. We opted to use the balanced diet matrices for this as, in some cases, the 2180 

unbalanced matrices were missing important prey groups from the diets of some consumers, 2181 

which caused unwanted behaviour during the later balancing process. The SG model 2182 

incorporated off-shelf (beyond the model boundary) feeding by some groups, which we 2183 

removed to improve standardisation between models. To do so, we redistributed the diet 2184 

composition of affected consumers across their relevant on-shelf prey groups. We also 2185 

reduced the biomass of these consumers appropriately to reflect the reduction in available 2186 

energy from solely on-shelf feeding. As a result, our model for SG represents the ecosystem 2187 

structure, including top predator populations, that can be supported by on-shelf feeding alone. 2188 

The published RS model incorporates export of migratory mammal production, representing 2189 

emigration of individuals, but for the purposes of consistency with the other models we 2190 

omitted these export parameters to model this as a closed system.  2191 

Representation of baleen whales 2192 

We modelled baleen whales as three functional groups: humpback whales, minke whales and 2193 

“other baleen whales”. These groups were determined primarily based on their diets as, 2194 
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across models, humpbacks and minkes consumed a greater proportion of fish compared to the 2195 

remaining whales which are more dependent on krill and other zooplankton. Humpback and 2196 

minke whales also display some ecological differences in foraging, the former preferring 2197 

open-ocean regions and the latter often feeding in the sea-ice zone (Bombosch et al. 2014), 2198 

therefore these groups were kept separate. One model (PE) did not include any baleen 2199 

whales, and another (KP) only included southern right whales and fin whales. In both cases, 2200 

the exclusion of other whale species was due to their low contemporary occurrence in the 2201 

model regions (Gurney et al. 2014; Subramaniam et al. 2020). The missing whale groups 2202 

were added to these models but represented initially with negligible biomass to minimise the 2203 

impact of this addition on the structure of the initial models. The addition of new whale 2204 

groups to these models required the estimation of relevant diet matrices. To ensure that the 2205 

initial consumptive impact of whale groups was comparable between models, we averaged 2206 

the diets of each baleen whale group across models where such diet information was 2207 

available and used the resulting averages as inputs across all models. The only exception to 2208 

this was our treatment of krill. Antarctic krill were absent from two models (PE and KP – 2209 

these only included ‘other krill’), which meant that simply applying an average whale diet 2210 

across models was not appropriate. Instead, to apply a consistent approach to diet 2211 

standardisation which accounted for fundamental differences in prey distributions, we 2212 

combined Antarctic krill and ‘other krill’ into a single group in each model, conducted our 2213 

averaging, and then split these groups apart in proportion to their relative biomass in each 2214 

model. This meant that the overall proportion of krill in whale diets was the same across 2215 

models, but the relative proportion of each krill group varied based on their underlying 2216 

biomass estimates for the relevant model regions (Table D3). 2217 

Three of the original models included fishery takes: the KP model incorporated icefish and 2218 

toothfish catches, the PE model included toothfish fishery, and the AP model incorporated 2219 

krill fishery landings. The SG model does not incorporate fishery removals despite there 2220 

being commercial catches of fish and krill around the shelf, as these removals are estimated 2221 

to represent only 1% and 7% of input production estimates for these groups (Hill et al. 2012). 2222 

For consistency, we excluded all fisheries catches and by-catch from models.  2223 

Standardisation of rate parameters 2224 

To standardise the input energetic parameters (P/B and Q/B) of each aggregate group, we 2225 

averaged the values for each relevant reaggregated functional group across all models for 2226 
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which an independent estimate was available. Where possible, we used the unbalanced 2227 

parameter estimates for these calculations, to minimise the potential influence of changes to 2228 

these input parameters made by the respective model authors during the balancing process. 2229 

The exception to this was the AP model for which only balanced biomass and rate parameter 2230 

estimates were available. 2231 

5.2.4 Catch-derived estimates of plausible whale biomass  2232 

We used catch records from the International Whaling Commission (IWC) to generate 2233 

region-specific upper estimates of plausible biomass for each whale group (henceforth ‘limit 2234 

biomass’). These data provide information on species and length of whales caught during the 2235 

20th century, at spatial resolutions ranging from the nearest degree to the nearest minute or 2236 

only approximate to the nearest 5- or 10-degree grid cell, depending on the expedition.  2237 

To estimate an upper limit to the total biomass of whales in each model, we aggregated 2238 

catches for each whale group within a 1000km buffer around each study region (Figure D1). 2239 

This assumes that all individuals within this buffer are capable of spending time in the model 2240 

area, which is a reasonable assumption for such wide-ranging animals. To estimate the 2241 

biomass of each whale group, we first converted length records to mass using published 2242 

length-weight relationships for each species (Lockyer 1976). We assumed that each whale 2243 

group spends only part of the year feeding in each region, given their migratory nature. Some 2244 

models (RS, PB and KP) already provide estimates of residence time, while for the others we 2245 

assumed a 90-day feeding period in the region which, according to Savoca et al. (2021), 2246 

represents the lower limit of the most likely annual feeding period for individuals. By 2247 

combining the total biomass, residence time and the spatial area of the model regions, we 2248 

estimated the annual biomass per unit area for each whale group in each model. By adding 2249 

the contemporary values from the models, we identified an upper estimate of plausible pre-2250 

exploitation whale biomass for each model region. These steps are illustrated in the following 2251 

equation: 2252 

𝐵𝑝𝑟𝑒,𝑖 =
∑ 𝐵𝑐𝑎𝑡𝑐ℎ,𝑖

𝑛
𝑖=1  × 𝑡𝑖

𝑎𝑟𝑒𝑎
+ 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖   2253 

Where Bpre,i is the upper estimate of plausible pre-exploitation annual biomass density 2254 

(tonnes) for baleen whale group i, Bcatch,i is the biomass (tonnes) of group i caught in the 2255 

1000km buffer, ti is the proportion of the year that whale group i spends in the model region, 2256 
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area is the area of the model in km2, and Bcurrent,i is the biomass (tonnes) per unit area of 2257 

whale group i already estimated for the published model. 2258 

5.2.5 Estimates of baleen whale Q/B 2259 

We calculated a range of Q/B estimates for each whale group using the information contained 2260 

in Savoca et al. (2021). For the minimum estimates, we used the constants and metabolic 2261 

exponents from previous studies, provided in Savoca et al. (2021) (Table D4), combined with 2262 

average body masses for each whale group from Greenspoon et al. (2023) to calculate an 2263 

average Q/B for each whale group, assuming a 90-day feeding period (applied to all model 2264 

regions for consistency) (Table D5). We opted to estimate these using the ‘prior’ parameter 2265 

values in Savoca et al. (2021) because they represent a consistent approach which establishes 2266 

a lower bound on whale consumption rates. These Q/B values will henceforth be referred to 2267 

as the ‘baseline’ Q/B values.  2268 

We then used the lower, median and upper estimates of daily rations estimated by Savoca et 2269 

al. (2021) combined with the average whale body masses, again assuming a 90-day feeding 2270 

period, to calculate higher Q/B values for later perturbation analyses (Table D5).  2271 

5.2.6 Model balancing 2272 

To standardise the balancing process across regional models and to explore the effects of 2273 

perturbation across a range of plausible alternative model parameterisations, we developed a 2274 

bespoke balancing algorithm and used this to generate 1000 versions of each regional model. 2275 

The algorithm employs an automated iterative stepwise approach to optimise the set of 2276 

parameter values to achieve balance, and the method is explained in detail in Appendix D1, 2277 

with a general overview provided here. The algorithm randomly varies B, P/B, Q/B, GE and 2278 

DC to search the parameter space for parameter combinations that satisfy balance criteria (all 2279 

EEs equal to or below 1), while ensuring that values remain within defined confidence 2280 

intervals (Table D6). One exception is that the whale Q/B values were fixed to the baseline 2281 

estimates calculated for each group, to ensure that the initial consumptive impact of whales 2282 

per unit biomass was standardised across models. Assimilation efficiencies were fixed for all 2283 

groups, using values obtained from Pinkerton and Bradford-Grieve (2010). At each step, the 2284 

new parameter set is evaluated using an objective function (the sum of EE for all groups out 2285 

of balance). A record of the ‘best’ model (lowest objective function) is updated throughout, 2286 

until either a balanced parameter set is identified, or the algorithm has reached a specified 2287 

number of steps (we set this to 2000 but more can be used, although this increases runtime). 2288 
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In the latter case, the algorithm then switches to targeted, generally small, adjustments to 2289 

biomasses and diets to nudge the model towards balance, much like the approach of 2290 

Kavanagh et al. (2004). These adjustments are focussed on the group most out of balance, 2291 

and their most influential predator (i.e. the one with the greatest consumption of the prey 2292 

group). Once a balanced model is found, the biomass values for each group are checked, and 2293 

the model is rejected if any biomass values fall outside their specified confidence intervals.  2294 

In some cases, the balancing process resulted in skews in the distribution of some balanced 2295 

parameters across model runs, particularly for P/B (often right-skewed) and Q/B (often left-2296 

skewed) (Figure D2-D7). These skews were generally consistent between regional models, 2297 

suggesting no obvious model bias. There were also some differences in the distribution of EE 2298 

values across groups, but these were not consistent between models (Figure D8-D9).  2299 

5.2.7 Perturbation scenarios  2300 

Our perturbation scenarios explored the effects of increasing whale prey consumption (Q) on 2301 

either competitor biomasses or on system-level primary productivity demand. As Q is simply 2302 

the combination of B and Q/B, it was possible to set an upper plausible limit on Q by 2303 

combining the whale limit biomass with the upper Q/B estimate from Savoca et al. (2021). 2304 

This range of Q values encompasses all plausible scenarios of increased biomass and revised 2305 

understanding of consumption rates. This also meant that we could convert any given Q into 2306 

a different B based on the relevant Q/B estimate we wanted to apply, allowing us to determine 2307 

the effect of the revised daily consumption rate estimates on the capacity to support more 2308 

whales.  2309 

Scenario 1: Compensatory changes in competitor populations 2310 

In this scenario, we explored the compensatory decreases in the aggregate biomass of key 2311 

higher-trophic competitors (marine mammals, birds, fish, and squid) required to facilitate 2312 

increases in baleen whale Q up to the plausible limit without changes to lower trophic levels.  2313 

We also identified the Q that could be supported by each model at a specific threshold of total 2314 

competitor biomass. For this we used a threshold of 75% of initial competitor biomass, as this 2315 

has previously been identified as a suitable boundary for the ecosystem-based management of 2316 

the Southern Ocean (Watters et al. 2013). To implement this scenario, we increased the whale 2317 

Q in each model version in a stepwise manner for a range of values up to the maximum 2318 

suggested by the relevant regional limit biomass and the upper Q/B estimates. At each step in 2319 

the process, any prey groups that were pushed out of balance (EE > 1) were identified. The 2320 
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biomasses of the competitor groups that fed on these prey groups were then reduced by small 2321 

amounts in proportion to their predatory impact until balance was achieved. This process 2322 

continued until the plausible limit on baleen whale Q was reached or until the biomass of all 2323 

competitor groups had been reduced to below one percent of their starting values.  2324 

To investigate the possible drivers of any variation in the capacity of regional models to 2325 

sustain increases in whale Q, we calculated two different metrics. The first was the 2326 

production-weighted average EE across all whale prey groups, which describes the spare 2327 

capacity that each model has to support further consumption by whales without requiring 2328 

compensatory changes to competitor biomasses. The second was a modified version of the 2329 

Schoener dietary overlap index (Schoener 1970), using the normalised summed consumption 2330 

of each prey group by baleen whales compared to that of their competitors, to capture the 2331 

degree of competition between baleen whales and their competitors:  2332 

𝐶 = 1 −
1

2
(∑|𝑃𝑥,𝑖 − 𝑃𝑦,𝑖|) 2333 

where C is the Schoener index, Pxi is the consumption of diet item i as a proportion of total 2334 

prey consumption by group x (all baleen whales), and Py,i is the consumption of diet item i as 2335 

a proportion of total prey consumption by group y (all whale competitors). 2336 

To identify how these metrics indicate the capacity of models to sustain increases in whale Q, 2337 

we estimated the slope of the average relationship between competitor biomass proportion 2338 

and whale Q across the 1000 runs within each regional model ensemble. For consistency 2339 

between models and to capture the most linear part of the relationship we used the section 2340 

between 80% and 20% of competitor biomass. We used a Pearson’s correlation to identify the 2341 

association between the slope of each model average and the average EE or Schoener index 2342 

across each of the regional model ensembles.  2343 

Scenario 2: Lower-trophic changes required to support baleen whale recovery and 2344 

competitor populations 2345 

This scenario followed a similar approach to the previous one, but this time the biomasses of 2346 

higher trophic level competitors (marine mammals and birds) were fixed, and the biomasses 2347 

of baleen whale prey and other lower trophic level groups were increased if their EE rose 2348 

above 1, to compensate for higher predation. We focussed on the relative change in primary 2349 

production required, as a measure of the total system productivity needed to support these 2350 

potential future ecosystems.   2351 
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5.3 Results 2352 

5.3.1 Initial balanced model ensembles 2353 

There was some regional variation in the average consumptive flows for the baleen whale 2354 

prey and competitor groups. Krill made up a large proportion of total flows in the SG, AP, PB 2355 

and RS models, while other zooplankton contributed more to total consumptive flows in the 2356 

PE and KP models (Figure 5.2). The sources of consumptive flows to higher predators 2357 

(marine mammals and seabirds) were quite varied in the SG, AP, PB and RS models, but 2358 

were dominated by flows from squid and fish in the PE and KP models (Figure 5.2).  2359 
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 2360 

Figure 5.2: Spatial distribution of the models. Inset network diagrams display the log-2361 

transformed consumptive flows between whales, their prey groups and their main 2362 

competitors, averaged across model ensembles. Node and link size are proportional to 2363 

biomass and consumption, respectively (not comparable between panels). Nodes are arranged 2364 

evenly aong the vertical axis by rank order of their trophic level, coloured by the main 2365 

groupings (red: baleen whales, orange: marine mammals and seabirds, purple: fish and squid, 2366 

pink: krill, green: zooplankton). TW = toothed whales; HW = humpback whales; MW = 2367 

minke whales; OW = other baleen whales; SE = seals; PE = penguins; FB = flying birds; PF 2368 

= pelagic fish; DF = demersal fish; CE = cephalopods; KR = krill; ZO = zooplankton. 2369 
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When comparing the models based on the combination of their production-weighted average 2370 

EEs and Schoener index, there appeared to be three primary groupings of models: Group 1 2371 

(PB, PE and RS) had low Schoener index and high EE; Group 2 (SG and KP) had high 2372 

Schoener index and low EE; Group 3 (AP) had a low Schoener index and low EE (Figure 5.3; 2373 

Table D5).  2374 

 2375 

Figure 5.3: Relationship between production-weighted average ecotrophic efficiency (EE) of 2376 

all baleen whale prey groups and the overall dietary overlap between baleen whales and their 2377 

competitors. Points are coloured by model region, with small points indicating the position of 2378 

individual model runs and larger points representing their average. Ellipses represent one 2379 

standard deviation around the three qualitative groupings, identified by numbers on the plot. 2380 

The initial balanced PE model included no whale biomass therefore the dietary overlap was 2381 

calculated by adding a negligible biomass to the model.  2382 

5.3.2 Catch-derived total whale biomass  2383 

There was considerable variation in the upper bound on plausible biomass for baleen whales 2384 

in each model region. The SG model had the largest value (75.45 t km-2 y-1), more than 2385 

twenty times higher than that of the other models, which ranged between 1.04 and 3.62 t km-2 2386 

y-1 (Table D6). This also represented the greatest proportional increase compared to initial 2387 

whale biomass amongst the six models (262 times compared to between 18 and 80 times in 2388 
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the other models) (Table D7). There were also changes in the group composition of baleen 2389 

whale biomass between the initial unbalanced published model inputs and in the catch-2390 

derived limit biomass for the corresponding regions. In particular, humpback and minke 2391 

whales made up the majority of baleen whale biomass in the initial inputs of the AP, PB and 2392 

RS models, but ‘Other baleen whales’ dominated the catch in all models (Figure D10). 2393 

5.3.3 Perturbation scenarios 2394 

Scenario 1: Compensatory changes in competitor populations 2395 

There were large differences in the capacity of each regional model to support increased 2396 

whale consumption (Q). The model groupings identified based on the combination of their 2397 

averaged EE and Schoener index (Figure 5.3) were clearly linked to differences in the 2398 

average slopes of the relationship between competitor biomass and whale Q. The models with 2399 

low Schoener index and high EE (PB, RS, PE) experienced the most rapid decrease in 2400 

relative competitor biomass with increasing whale Q, followed by those with high Schoener 2401 

index and low EE (KP, SG), while the AP (low Schoener index, low EE) was able to support 2402 

large whale Q increases while also retaining competitor biomass (Figure 5.4a). Of these two 2403 

parameters, there was a stronger correlation between EE and the slope of competitor biomass 2404 

(r = -0.61) than for the Schoener index (r = -0.16) (Figure 5.4b & c). It should be noted that 2405 

neither of these correlations were significant (p>0.05), likely due to the small sample size (n 2406 

= 6 models). 2407 
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 2408 

Figure 5.4: a) Average relationship between competitor biomass proportion and whale 2409 

consumption (Q t km2y-1) for each of the model ensembles. Solid lines indicate model 2410 

averages, shading indicates standard deviation. Vertical dashed lines identify the upper whale 2411 

Q identified for each of the model regions (not shown for the SG model because this was 2412 

beyond the x axis scale). Numbers in brackets represent the groupings of the models by the 2413 

combination of their production-weighted ecotrophic efficiency (EE) and Schoener index; b) 2414 

association between the slope of each model average in panel a) and the production-weighted 2415 

mean EE of baleen whale prey; c) association between the slope of each model average in 2416 

panel a) and the Schoener diet overlap index between baleen whales and their competitors.  2417 

Across models, the use of different Q/B estimates had a large impact on the increases in 2418 

whale biomass that were possible. Under the baseline Q/B estimates, and while conserving 2419 

the majority (99%) of competitor biomass, baleen whale biomass could be increased between 2420 

1.52x (PB) and 159.35x (KP) (Figure D11, Table D8). If conserving only 75% of competitor 2421 

biomass, the average increases in baleen whale biomass were substantially higher, ranging 2422 

from 12.40x in the PB model to 865.62x in the KP model (Figure D11, Table D8). Using the 2423 

median Q/B estimates based on Savoca et al. (2021), on average only two of the models (KP 2424 

and RS) were capable of supporting any additional whale biomass while maintaining 2425 

competitor biomass at above 99% of initial values (Figure D11, Table D9). At the competitor 2426 
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biomass threshold of 75% of starting values, the relative increases in baleen whale biomass 2427 

were far more conserved than under the baseline Q/B estimates, ranging from 1.17x (PB) to 2428 

79.92x (KP) on average (Figure D11, Table D9). Using the upper Q/B estimates, the 2429 

possibility for baleen whale biomass increases was even more restricted (Table D9). Within 2430 

each model ensemble, there was high variability in competitor responses across model runs 2431 

(Figure D12).  2432 

Increases in whale Q had different impacts on the biomasses of individual competitor groups 2433 

in each model. Of the higher trophic competitors, seals experienced particularly rapid 2434 

biomass declines in the AP and PB models, while penguins were especially impacted in the 2435 

SG and RS models (Figure D12). Within the lower trophic competitors, the biomass of 2436 

demersal fish declined particularly rapidly in the SG, PB, RS and AP models, while, in 2437 

contrast, pelagic fish were the most strongly affected across all competitor groups in the PE 2438 

and KP models (Figure D12). 2439 

Scenario 2: Lower-trophic changes required to support baleen whale recovery and 2440 

competitor populations 2441 

The relative increases in primary productivity required to support the limit baleen whale 2442 

consumption were relatively modest in the AP and KP models (0.32% and 0.39%, 2443 

respectively; Figure 5.5a & b), but considerably larger in the RS, PB and PE models (ranging 2444 

from 11.08% to 18.61%) (Figure 5.5c-e; Table D10). The SG model required extremely large 2445 

increases in primary production (575.97%; Figure 5.5f). Based on a linear estimation of the 2446 

slope of the average relationship between whale Q and primary production in each model, we 2447 

estimated that a unit increase in whale Q (t km2 y-1) required relative increases in primary 2448 

production ranging from 0.005% (AP) to 0.565% (RS) (Table D11).  2449 



101 

 

 2450 

Figure 5.5: Relative changes in annual primary production (t km2 y-1) required to support 2451 

increases in total whale consumption (Q t km2 y-1) if lower trophic level biomasses are 2452 

increased to support increases in whale Q while competitor biomasses are fixed. Solid lines 2453 

indicate model averages, shading indicates standard deviation. The maximum value on the x-2454 

axis represents the upper bound on plausible baleen whale consumption (Q). Note varying 2455 

axis scales.  2456 

5.4 Discussion 2457 

Commercial whaling during the 19th and 20th centuries drove massive declines in baleen 2458 

whale populations within the Southern Ocean, and thus impacted wider ecosystem structure 2459 

(Christensen 2006; Mori and Butterworth 2006). The recovery of these populations could 2460 

     

          

          

     



102 

 

therefore have major impacts on the population trajectories of other important competitors 2461 

such as seals, penguins and fish. In this study we identified the compensatory changes to 2462 

competitor populations that would be necessary to support increases in whale consumption 2463 

rates under contemporary conditions, and the bottom-up changes necessary to simultaneously 2464 

achieve baleen whale population recovery and conservation of current competitor biomass. 2465 

Our results highlight the importance of taking a holistic approach to the management and 2466 

conservation of different competing populations. 2467 

Scenario 1: compensatory changes to competitor populations 2468 

We found that contemporary regional Southern Ocean food webs have some capacity to 2469 

support increased baleen whale populations, but this was dependent on daily prey 2470 

consumption estimates and may come at the expense of competitor populations. Previous 2471 

modelling has also found increases in global baleen whale populations to have strong indirect 2472 

impacts on populations of other higher trophic groups including seals and seabirds (Ruzicka 2473 

et al. 2013). Five-fold increases in consumption by baleen whales were found to cause 2474 

declines in top predator production of up to 29%, and twenty-fold increases in baleen whale 2475 

consumption required significant (up to 73%) reductions in production by competitor 2476 

populations (Ruzicka et al. 2013). Under more recent estimates of higher baleen whale daily 2477 

consumption rates (Savoca et al. 2021), the competitive impact of whales may be elevated. 2478 

This is because values of Q/B (the annual prey consumption per unit biomass) determine the 2479 

relationship between Q (consumption) and B (biomass), with a given Q value representing 2480 

ever smaller B as Q/B increases. In consequence, at high Q/B values, the whale Q thresholds 2481 

at which competitor populations begin to decline will be reached at comparatively lower 2482 

whale B than at low Q/B values. We found that, when using revised Q/B values based on 2483 

median daily consumption estimates in Savoca et al. (2021) and conserving 75% of total 2484 

competitor biomass (representing changes that are potentially reversible within two or three 2485 

decades; CCAMLR 2008; Watters et al. 2013), increases in whale biomass were highly 2486 

constrained (only around 9% of the values possible under baseline Q/B estimates; Table D9). 2487 

In four of the six models this represented only a fraction (from 2.5% to 26%) of the plausible 2488 

limit biomass, although the remaining two models (AP and KP) could still sustain the full 2489 

upper bound on whale biomass. Under higher prey consumption estimates the capacity of 2490 

food webs to support larger whale populations was even more constrained (Table D9). 2491 

Overall, these results support the conclusions of Ruzicka et al. (2013) that whale recovery 2492 

will have large impacts on competitor populations. It should be noted that there are various 2493 
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other factors that might modify these relationships, such as the degree of flexibility in 2494 

competitor diets and the competitive hierarchies between competitors and whales, which are 2495 

discussed further in a later section. 2496 

While our use of ensemble averages suggests a smooth and relatively consistent relationship 2497 

between whale Q and competitor biomass, individual model runs displayed much more 2498 

sudden inflection points along the Q scale, leading to rapid competitor biomass declines 2499 

(Figure D12). Most models exhibited a phase of no change in competitor biomass, likely due 2500 

to spare consumptive capacity of prey groups (i.e. low EE) which provided an initial buffer 2501 

against the increases in whale Q. This was generally followed by a phase of gradual 2502 

competitor biomass decline as the spare consumptive capacity of whale prey is used up and 2503 

biomass adjustments are spread across multiple competitor groups based on their relative Q/B 2504 

and degree of dietary overlap with whales. Finally, most model runs displayed a sudden 2505 

changepoint after which competitor biomasses rapidly declined to zero. As the individual 2506 

competitor populations are reduced, their overall consumptive impact on a given prey relative 2507 

to the total consumption of that prey by other groups becomes smaller, and therefore 2508 

relatively greater reductions in biomass are required to counteract the increased consumption 2509 

by baleen whales. Individual competitor populations will eventually become so small they 2510 

cannot be further adjusted, and the remaining competitor groups then must be subject to 2511 

relatively greater biomass adjustments to account for this. This is compounded by the fact 2512 

that the last remaining competitor groups are likely to be those with relatively low Q/B (as 2513 

they will have had the least impact on whale prey groups and will therefore have been 2514 

reduced the least in the previous phase), and therefore each unit of Q removed to balance the 2515 

impact of more whales will represent a relatively greater biomass. It would be worth 2516 

investigating whether the drivers of these abrupt transitions in the models actually exist in 2517 

nature. It is also likely that other factors such as competitive hierarchies, dietary flexibility 2518 

and population depensation would modify these relationships by determining the relative 2519 

impacts of increased consumption by whales on each competitor group (Barlow et al. 2002; 2520 

Abrams 2010; Liermann and Hilborn 2001), and their effects should be investigated. 2521 

Scenario 2: Bottom-up changes to support baleen whales and competitors 2522 

There was considerable variation in the total primary production required to support the limit 2523 

whale biomass and contemporary competitor populations in each model. In particular, the SG 2524 

model needed extremely large increases in primary production (>500%), likely because the 2525 
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extensive whale catches that occurred within the 1000km buffer, coupled with the small 2526 

modelled spatial area, generated very high estimates of biomass per unit area (Figure D1). 2527 

The shelf waters around South Georgia are highly productive and considered a biodiversity 2528 

hotspot (Hogg et al. 2011), which may have driven some of the highest densities of baleen 2529 

whales on the planet (Richardson et al. 2012). However, some of the models with 2530 

comparatively small plausible upper whale biomass estimates (e.g. RS, PB and PE) also 2531 

needed a substantial rise in primary production (up to 19%) to support whale population 2532 

increases without adverse effects on competitors. These models also displayed the steepest 2533 

competitor biomass declines in Scenario 1, highlighting the link between apparent sensitivity 2534 

to whale recovery and the magnitude of changes in bottom-up forcing needed to mitigate 2535 

negative impacts.  2536 

The role of baleen whales in nutrient cycling in the ocean is still poorly understood, and 2537 

likely to vary by geographical location, ecosystem productivity and whale community 2538 

composition (Gilbert et al. 2023). In nutrient-limited sub-tropical calving grounds, 2539 

unexploited blue whale populations increased primary productivity by up to 15% compared 2540 

to the average for subtropical waters (Roman et al. 2014). In the Southern Ocean, where trace 2541 

metals such as iron are the primary limiting factor for phytoplankton growth the iron excreted 2542 

by unexploited whale populations could represent around 12% of the average contemporary 2543 

iron content in Southern Ocean surface waters (Ratnarajah et al. 2014; Nicol et al. 2010). 2544 

This could have stimulated higher levels of primary productivity, possibly up to 11% greater 2545 

across the Southern Ocean under high whale consumption rate estimates (Savoca et al. 2021). 2546 

This value is at the lower end of the increases we estimated to be required to support the 2547 

upper plausible bound on whale consumption in the three models that were most sensitive to 2548 

baleen whale population recovery (PB, RS and PE), and far below the values required by the 2549 

SG model. Our results therefore suggest that, across the Southern Ocean, whale-driven 2550 

nutrient cycling alone is unlikely to be sufficient to fully mitigate impacts of whale recovery 2551 

on other higher trophic levels.  2552 

Predicted future changes in primary production are highly uncertain, and there will likely be 2553 

considerable regional variation in trends. Overall, increases in temperature and irradiance, 2554 

combined with shallowing of mixed layer depths, are expected to drive increased primary 2555 

productivity across the Southern Ocean (Henley et al. 2020; Kaufman et al. 2017). Increases 2556 

in net primary production may be 50% or more in some high latitude regions by the end of 2557 

the century, with more modest increases (up to 30%) elsewhere (Steinacher et al. 2010; Fu et 2558 
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al. 2016; Fisher et al. 2024), although a study on the Ross Sea predicted more limited 2559 

increases in primary productivity of 5% by 2050, and up to 14% by 2100 (Kaufman et al. 2560 

2017). Overall, it seems plausible that future increases in primary production will be 2561 

sufficient to mitigate at least some of the negative impacts of baleen whale population 2562 

recovery identified in our models (except SG), particularly if there is an additive effect of 2563 

elevated whale nutrient-cycling. This will, however, also depend on the nature of potential 2564 

changes in primary producer composition as this will determine their suitability for sustaining 2565 

whale prey populations (discussed further below). 2566 

Regional differences  2567 

There were regional differences in model capacity to support increases in baleen whale Q. 2568 

These distinctions could result from both arbitrary differences between models  (so-called 2569 

model ‘personality’) and true ecological differences (Hill et al. 2021). While it is beyond the 2570 

scope of this study to definitively distinguish the relative influence of each of these factors, 2571 

we made significant efforts to ensure the comparability of the models used. By standardising 2572 

functional group composition and energetic parameters, we removed some of the possible 2573 

inter-model variation that might result from decisions made during the original model 2574 

construction process. Additionally, our use of a novel automated balancing algorithm 2575 

facilitated the construction of model sets encompassing a range of plausible balanced 2576 

parameter sets for each regional model, thus allowing us to explore uncertainty around model 2577 

structure. By analysing a suite of runs from a variety of regional models, we were able to 2578 

explore a broad set of ecologically viable scenarios representing the multitude of potential 2579 

responses that Southern Ocean ecosystems might display in future.  2580 

Models were grouped based on their combination of average whale prey EE and whale-2581 

competitor diet overlap (Schoener’s index), and these groupings matched the general order of 2582 

steepness of the model average slopes of competitor biomass decline with increasing whale Q 2583 

(Scenario 1). A group’s EE inversely relates to the spare production available for additional 2584 

consumption, therefore low values suggest a greater capacity for increasing consumption 2585 

without pushing the prey group out of balance, and vice-versa (Christensen and Walters 2586 

2004). As a consequence, the model runs with higher average prey EE generally had less 2587 

capacity to support additional whale Q without compensation by competitors. This is because 2588 

increases in Q promptly drive prey groups out of balance, resulting in compensatory declines 2589 

in competitor biomass. Since a large proportion of model runs start with high prey EEs, the 2590 
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inflection points at which competitor biomasses decline generally take place over a small 2591 

range of whale Q values, leading to steeper average slopes.  2592 

Whilst the EEs are dependent on the combination of model parameters adjusted during the 2593 

balancing process, some of the differences in the distribution of EE values between regions 2594 

could represent genuine ecological contrasts. The efficiencies of lower- and mid-trophic 2595 

groups are often assumed to be close to one, suggesting that most of their production is 2596 

directly utilized within the modelled ecosystem (Heymans et al. 2016). However, while 2597 

predation mortality is a major driver of lower-trophic population dynamics, other sources of 2598 

mortality (e.g. environmental conditions and food availability) can be considerable for 2599 

organisms such as zooplankton, and advection by currents could reduce the proportion of 2600 

production that is consumed by predators within the system (Tang et al. 2014; Hirst and 2601 

Kiørboe 2002). It is therefore plausible for lower EE values to exist for these groups, and 2602 

differences between models could reflect the influence of these local processes. Additionally, 2603 

model parameters are based on data collected over multiple years and forced to meet 2604 

equilibrium assumptions and may encompass considerable variability in production at lower 2605 

trophic levels (Plagányi and Butterworth 2004). Temporal variability in local abundances 2606 

generally declines with trophic level (Siqueira et al. 2024), so populations of higher trophic 2607 

consumers with relatively low-fecundity, such as marine mammals and birds, are unlikely to 2608 

respond rapidly enough to changes in lower-trophic biomass to fully exploit any temporary 2609 

surpluses in production. As a result, EEs for some prey groups may display inter-annual 2610 

variation which could differ significantly between regions.  2611 

Given the strong correlation between EE and the apparent capacity of models to cope with 2612 

sustained press perturbations like whale population increases (Figure 4b & c), an improved 2613 

understanding of the processes underlying the local sources of mortality of key prey groups 2614 

would aid managers in targeting management and conservation actions. Gaining this 2615 

understanding will require the integration of biological and physical data across relatively 2616 

fine spatial but broad temporal scales. Identifying the processes driving natural mortality will 2617 

also be key to predicting possible climate-driven changes in population dynamics and would 2618 

aid our understanding of how ecosystems will change in future (Plagányi et al. 2022).  2619 

The distinction between two model groupings (SG and KP vs AP) was largely due to the 2620 

degree of dietary overlap between whales and their competitors. We adjusted competitor 2621 

biomasses in proportion to their relative importance as consumers of each unbalanced prey 2622 
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group until balance was achieved and, as a result, in models where prey consumption by 2623 

whales and competitors is more similar (high overlap), a unit increase in whale Q will need to 2624 

be compensated for by relatively greater reductions in competitor biomass.  Differences in 2625 

dietary overlap may be due to genuine ecological contrasts, as the relative importance of krill, 2626 

other euphausiids and pelagic fish in the diets of higher predators varies geographically 2627 

(McCormack et al. 2021b), and we observed contrasts in the distribution of consumptive 2628 

flows across our balanced suite of models which appear to broadly match these trends. In 2629 

consequence, different competitor groups were most impacted by increases in whale Q, with 2630 

seals and penguins declining most rapidly in regions with high reliance on Antarctic krill and 2631 

pelagic fish strongly impacted in regions which are more heavily dependent on other groups 2632 

such as Thysanoessa macrura (Wallis et al. 2019). Further studies of regional similarities and 2633 

differences in diets will better resolve the degree of dietary overlap between baleen whales 2634 

and other higher-trophic groups, thereby providing greater insight into the likely capacity of 2635 

ecosystems to cope with future population changes.  2636 

It would be valuable to further explore the relative effects of EE, dietary overlap and other 2637 

potential factors (e.g. competitor group identity, biomass distribution and Q/B) on model 2638 

capacity, to develop robust metrics which can be used to predict model responses to change. 2639 

This could be explored further using suites of smaller (simpler) models with systematic 2640 

differences in their parameters, with the shapes of competitor biomass responses to whale Q 2641 

increases investigated on an individual group and model basis rather than as an aggregate. 2642 

Doing so might reveal interactive effects of different parameters on the overall model 2643 

capacity to support whale population increases. 2644 

Further considerations: 2645 

Our study represents an initial effort to explore the potential impacts of baleen whale 2646 

population recoveries on ecosystem structure. There are several additional factors which 2647 

could influence the relationship between the population trajectories of whales and their 2648 

competitors.  2649 

The expansion of krill fisheries and establishment of new fisheries for groups like 2650 

mesopelagic fishes could reduce their availability for predators (Meyer et al. 2020; Fjeld et al. 2651 

2023).  Environmental changes such as warming, sea ice loss, and changes to the production 2652 

and composition of phytoplankton communities, could also alter the production of key prey 2653 

(e.g. krill) and modify energy flow to higher trophic levels (Kawaguchi et al. 2024; Swadling 2654 
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et al. 2023; Thomalla et al. 2023). Behavioural changes in groups such as Antarctic krill 2655 

might alter the density and distribution of swarms (Kawaguchi et al. 2024), reducing feeding 2656 

opportunities and elevating competition between whales and other groups. These 2657 

anthropogenic and environmental changes could therefore impact the capacity of regional 2658 

ecosystems to sustain whale population increases with minimal effects on competitors. 2659 

Some competitor groups may have more flexible diets than others, making them better able to 2660 

mitigate the impacts associated with greater competitive pressure from larger whale 2661 

populations. For example, groups such as crabeater seals and chinstrap penguins are highly 2662 

dependent on krill while others such as Weddell seals, fur seals and gentoo penguins have 2663 

quite generalist and flexible diets according to the available prey field (Wege et al. 2021; 2664 

McMahon et al. 2019; Reisinger et al. 2018).  2665 

Differences in the competitive ability of whales and competitor groups may also influence the 2666 

trade-offs between whale consumption and competitor biomass. Groups that are higher in the 2667 

competitive hierarchy, perhaps due to greater foraging ability (Barlow et al. 2002), may be 2668 

less impacted by increasing baleen whale populations because they will be able to 2669 

outcompete other groups and maintain necessary energy intake, while their competitors may 2670 

experience rapid declines. Additionally, while we explored the effects of increased whale 2671 

biomasses on other groups, competition can also have strong effects on whales themselves 2672 

(Ruzicka et al. 2013). Previous modelling suggests that increased competition for Antarctic 2673 

krill (between baleen whales and other groups, and between whale species themselves) could 2674 

strongly limit whale population recoveries (Tulloch et al. 2019).  2675 

It is also important to consider whether changes in primary production are associated with 2676 

shifts in the composition of phytoplankton communities, as these may influence the capacity 2677 

for future primary productivity to mitigate the ecosystem effects of whale recovery. Sea ice 2678 

changes, warming, and increases in stratification and irradiation, may result in large diatoms 2679 

being replaced by smaller flagellates and other groups in regions such as the sea ice zone, 2680 

while more open ocean regions could experience the opposite trend due to increasing iron 2681 

flux and atmospheric cloudiness (Henley et al. 2020; Krumhardt et al. 2022). In regions 2682 

which experience declining diatom abundance and concurrent increases in populations of 2683 

smaller phytoplankton, the efficiency of energy flow to higher trophic levels may be reduced 2684 

(Krumhardt et al. 2022; Hunt et al. 2021). Additionally, some of the drivers of increased 2685 

primary productivity (loss of sea ice, increases in temperature) are expected to negatively 2686 
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impact groups such as Antarctic krill (Flores et al. 2012). The combination of warming and 2687 

shifts in phytoplankton community composition towards smaller, less energetically valuable 2688 

species may also increase the abundance of salps (Salpa thompsoni) which can outcompete 2689 

krill, resulting in fundamental changes to food web structure that could negatively impact 2690 

energy supply to higher trophic levels (Pauli et al. 2021; Pietzsch et al. 2023).  2691 

Overall, the capacity of Southern Ocean food webs to support both increased whale 2692 

populations and contemporary competitor biomass will depend on a variety of interacting 2693 

factors, and it would be valuable to include these in future modelling studies to explore the 2694 

full suite of uncertainty around the potential for, and consequences of, baleen whale 2695 

population recovery. 2696 

Implications for management 2697 

Anthropogenic and environmental changes have altered Southern Ocean ecosystems, creating 2698 

challenges for certain management and conservation goals. Here, we have shown that the full 2699 

recovery of baleen whale populations in the Southern Ocean is likely to result in strong trade-2700 

offs between conservation objectives. The absolute magnitude of compensatory changes in 2701 

competitor populations, and the points along the pathway of whale recovery at which they 2702 

will occur remain uncertain and are probably region-specific. We identified that the levels of 2703 

unexploited production by whale prey and the degree of dietary overlap between whales and 2704 

their competitors may play an important role in the capacity of food webs to sustain whale 2705 

population increases with minimal wider ecosystem impacts. Additionally, baleen whale 2706 

consumption rates strongly influence the relative impact of whale population increases on 2707 

food webs. Future changes in primary productivity due to environmental drivers and whale-2708 

driven nutrient cycling, could potentially mitigate the ecosystem impacts of whale recovery. 2709 

Future efforts to better resolve these factors will improve our understanding of likely regional 2710 

ecosystem responses and aid management decisions. Ultimately, policymakers seeking to 2711 

implement management and conservation strategies (e.g. fishery catch limits and marine 2712 

protected areas) will need to integrate information regarding both the inherent capacity of 2713 

ecosystems to support whale population increases (i.e. model structure) and the likelihood of 2714 

beneficial environmental changes (e.g. production and composition of phytoplankton 2715 

communities). 2716 

  2717 
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6 General discussion 2718 

Food webs are the framework upon which much of modern ecological research is built, 2719 

providing insight into many aspects of ecology ranging from the drivers of individual 2720 

population dynamics to the broader patterning of biodiversity and the impacts of global 2721 

change on ecosystem functioning (Layman et al. 2015). The Antarctic is a particularly 2722 

important focus of food web research, as the historically stable conditions and the 2723 

physiological adaptations and high stenothermy of many species make Southern Ocean 2724 

ecosystems especially vulnerable to changes such as warming and sea ice loss (Queirós et al. 2725 

2024). Given the central role that the Southern Ocean plays within the wider earth system, it 2726 

is important that we improve our understanding of the structural properties of regional food 2727 

webs and how these influence their resilience to environmental and ecological change 2728 

(Murphy et al. 2012). This thesis explored some key aspects of the structure of Southern 2729 

Ocean food webs and their responses to change. Chapters 2 and 3 used functional traits to 2730 

explain trophic structure at different scales, from the distribution of feeding links at the 2731 

community level to the organisation of a key stabilising substructure, modularity, at the level 2732 

of entire food webs. Chapter 4 then investigated how temperature alters the size-structuring 2733 

of trophic interactions, which is a key aspect of marine food webs. Finally, chapter 5 explored 2734 

the range of possible responses of Southern Ocean ecosystems to a key ecological 2735 

perturbation, the recovery of baleen whales. Below, I discuss the primary contributions of 2736 

each chapter to our knowledge of food webs in the Southern Ocean and beyond and explore 2737 

some of the further avenues which could be taken to improve our understanding of each 2738 

topic. I then finish by summarising some of the major future directions that I see for food web 2739 

research in general, based on the themes covered in this thesis. 2740 

6.1 Chapter contributions  2741 

6.1.1 Chapter 2: Morphological traits distinguish feeding guilds in a Southern Ocean fish 2742 

community. 2743 

Chapter 2 determined the ecomorphology of demersal fish around South Georgia by first 2744 

classifying species and size classes into feeding guilds using stomach contents data and then 2745 

using morphological traits to predict feeding guild membership. This approach is well-2746 

established, having been used to study a number of fish communities in freshwater and 2747 

marine systems across temperate and tropical regions, particularly reefs (e.g. Ramírez et al. 2748 

2015; Winkler et al. 2017; Podder et al. 2021; Albouy et al. 2011). Within the Southern 2749 
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Ocean, however, only one study has combined morphological analyses with direct dietary 2750 

observations in this manner, focussing on ten species of the family Artedidraconidae in the 2751 

Weddell Sea and identifying links between their ecological niches and their sensory 2752 

capability and mouth morphology (Lombarte et al. 2003). 2753 

My investigation of the South Georgia demersal fish community encompassed three 2754 

taxonomic families (Channichthyidae, Nototheniidae and Bathydraconidae) and a large 2755 

sample size, thereby providing a substantial contribution to our understanding of the 2756 

associations between functional traits and ecology in Southern Ocean communities. I showed 2757 

that a small number of simple, easily measurable traits can successfully capture most of the 2758 

broad dietary niches present across much of the community, providing insight into the drivers 2759 

of trophic interactions. This is an approach that could be applied to other Southern Ocean 2760 

communities to improve our understanding of the drivers of food web structure. The ecology 2761 

of demersal fish has been comprehensively studied around many regions of the Southern 2762 

Ocean encompassing a diversity of bioregions (e.g. Wang et al. 2024; Cousins and Priede 2763 

2012; Baena et al. 2023) but the influence of functional traits has not yet been explored for 2764 

these communities. It would be interesting to investigate how spatial contrasts in factors such 2765 

as prey species assemblages, benthopelagic coupling or abiotic forcing (such as between low 2766 

and high latitudes or east and west- Antarctic regions) relate to differences in the association 2767 

between morphological traits and trophic niches. This could be facilitated by the routine 2768 

sampling of diets and associated standard morphological traits such as mouth size and shape, 2769 

fin morphology, body shape and gill structure across ecological communities during scientific 2770 

and fishery expeditions.  2771 

Chapter 2 also highlights the possibility to identify broad dietary niches based on 2772 

morphology, which could be useful for combining species into functional groups to develop 2773 

better-resolved ecosystem models in data-poor environments (Ladds et al. 2018; Albouy et al. 2774 

2011). A focus on traits rather than taxonomy also provides a framework for determining how 2775 

environmental and biotic filtering drive functional diversity (Green et al. 2022). Within 2776 

marine taxa, body size is the most commonly measured trait, likely due to its major role in 2777 

structuring marine food webs and the relative ease with which it can be measured (Green et 2778 

al. 2022; Potapov et al. 2019). However, as shown in this chapter, other morphological traits 2779 

reflecting feeding mode and mobility can also provide insight into the drivers of niche 2780 

partitioning and should therefore be included in trait-based studies. It must also be recognized 2781 

that, while morphological traits provide an extremely useful basis for investigating 2782 
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community ecology, their use alone may not be sufficient to fully explain trophic structure. 2783 

For example, the widespread distribution of krill feeders across morphological niche space 2784 

could reflect a degree of trophic plasticity which is not linked obviously to morphology, and 2785 

it will be important to consider further context such as general prey availability and abiotic 2786 

factors. The wide range of morphologies exhibited by krill feeders could also suggest that 2787 

krill possess certain traits which allow fish to feed outside their evolutionary morphological 2788 

niches. These traits might include their high energy content and often widespread distribution 2789 

across pelagic and benthic habitats, which make them an accessible and energetically 2790 

efficient prey item for predators displaying a range of feeding modes, habitats and mobilities. 2791 

This emphasizes the importance of considering both predator and prey characteristics when 2792 

exploring the functional trait basis of trophic interactions (Wootton et al. 2023; Laigle et al. 2793 

2017). Within the Southern Ocean, trait-based approaches are still rare (McCormack et al. 2794 

2021a) and it will be important to determine the distribution of functional traits across more 2795 

components of the ecosystem, as this would allow us to compare the positions of different 2796 

species in multi-dimensional trait space and could help elucidate key differences which map 2797 

onto their roles within food webs.  2798 

It is possible that ongoing environmental change around South Georgia will drive shifts in the 2799 

distribution of species and broader community composition, particularly under the loss of key 2800 

groups such as Antarctic krill (Kawaguchi et al. 2024; Whitehouse et al. 2008). There are still 2801 

several unanswered questions regarding the structure of the South Georgia food web, most 2802 

crucial being the distribution of feeding interactions in response to interannual variation in 2803 

the local abundance of krill, as this could provide insight into possible future ecosystem 2804 

states. Chapter 2 therefore represents a baseline study of the position of the demersal fish 2805 

community among ecological niche space which further work can build upon to describe how 2806 

interannual changes in prey availability influence ecomorphological niche partitioning. In 2807 

particular, it would be interesting to investigate how changes in the relative abundance of 2808 

different prey and demersal fish species affect the abundance-weighted diversity of traits 2809 

within multivariate space (e.g. Liu et al. 2019), as this would provide insight into the 2810 

potential impacts of future ecological change for functional diversity.  2811 

6.1.2 Chapter 3: Trophic structuring of modularity alters energy flow through marine food 2812 

webs 2813 

The presence of modules within ecological networks is well established but investigations of 2814 

this structure and links to functional traits remain quite limited, with previous studies 2815 
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generally using a small set of traits (e.g. body size, foraging habitat and interaction type) to 2816 

explain module membership (Kortsch et al. 2015; Rezende et al. 2009; Montoya et al. 2015). 2817 

Within the Southern Ocean, there has been comparatively little effort to explore the basic 2818 

food web theory which has dominated research in other regions, including the presence of 2819 

modules and relevance of species traits (McCormack et al. 2021a). My work in chapter 3 2820 

therefore provides much needed insight into how functional traits underly the structure of 2821 

Southern Ocean food webs. I conducted an extensive review of a broad range of both 2822 

predator and prey characteristics for each species within multiple food webs, encompassing 2823 

size, foraging behaviour, motility and defensive traits, amongst others. This dataset represents 2824 

a valuable resource for further studies wishing to use these food webs to investigate how 2825 

functional traits relate to network structure. Many of the traits could also be transferred to 2826 

similar species in other regions, making this dataset useful beyond the focal models for 2827 

investigating topics such as environmental filtering and the drivers of niche partitioning.  2828 

Modules can be structured by trophic level, whereby modules encompass relatively distinct 2829 

groupings of trophic levels and form a hierarchy from the base of the food web to higher 2830 

predators (Kortsch et al. 2019; Rezende et al. 2009; Guimera et al. 2010), or by energy 2831 

channel, whereby modules partition food webs into trophic chains running from low to high 2832 

trophic levels, often encompassing discrete basal resources (Gauzens et al. 2015; Zhao et al. 2833 

2017; Rodriguez et al. 2022). Previous studies have analysed individual networks exhibiting 2834 

varying levels of taxonomic aggregation and have used a variety of methods to determine 2835 

modularity, making it difficult to determine whether differences in module structure between 2836 

studies are due to genuine ecological contrasts or methodological factors (Gauzens et al. 2837 

2013). In contrast, I used four food webs selected specifically for their high taxonomic 2838 

resolution and employed a consistent method for determining modularity, making direct 2839 

comparisons possible. A key finding was that module structuring is not consistent, with the 2840 

‘trophic level’ structure identified in two food webs while the remainder displayed the 2841 

‘energy channel’ structure. The relative importance of functional traits for predicting module 2842 

membership also differed, with body mass found to be key in the food webs with structuring 2843 

by trophic level, and feeding strategy important for the energy channel structure, while 2844 

mobility and habitat were important across all networks. I explained these differences in 2845 

terms of the levels of environmental heterogeneity inherent in each of the modelled systems, 2846 

as this can strongly modify network structure including modularity (Kortsch et al. 2019). I 2847 

proposed that networks in more homogenous ocean environments have reduced niche 2848 
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diversity at lower basal levels, being centered primarily on phytoplankton, and are therefore 2849 

structured largely by body mass, which is thought to be a primary driver of marine food web 2850 

structure in general (Petchey et al. 2008; Rall et al. 2012; Potapov et al. 2019). In systems 2851 

subject to stronger environmental gradients and variability, the heterogeneity of available 2852 

habitat and basal resources could drive a diversity of trophic niches resulting in more 2853 

specialized modules encompassing energy channels. These results are analogous to the 2854 

habitat heterogeneity hypothesis (Thompson and Townsend 2005), whereby more varied 2855 

habitats provide a greater diversity of niches and resources, supporting a greater diversity of 2856 

species (or in this case, energy channels).  2857 

This research highlights key aspects regarding the use of functional traits and investigations 2858 

of modularity that require further consideration. Firstly, underlying abiotic factors may 2859 

modify the relative importance of different functional traits for determining network 2860 

organisation. This means that a set of traits that provides good predictions of network 2861 

structure in one region may not be so useful in another, and the environmental gradients 2862 

influencing trait distributions will need to be considered before one can use traits to make 2863 

generalised predictions of ecosystem structure. This calls for more investigation of the links 2864 

between functional trait diversity (and identity) and environmental factors. If generalisable 2865 

rules can be established (e.g. greater basal resource heterogeneity results in greater 2866 

differentiation in feeding behaviours and therefore a stronger effect of feeding mode on 2867 

network structure), then it will be possible to tailor trait-based approaches to specific 2868 

ecosystems, improving predictive accuracy.  2869 

Secondly, rather than focusing solely on the absolute value of modularity, researchers should 2870 

also investigate the structuring of modules in relation to trophic levels, as this could be 2871 

particularly important for stability. Modularity reduces the overall connectivity within the 2872 

network, thereby limiting the propagation of extinctions (Stouffer and Bascompte 2011), but 2873 

in cases where modules are arranged largely by trophic level, perturbations within lower 2874 

modules might still cascade up to higher modules. Two networks with similar values of 2875 

modularity but different modular arrangement may therefore have quite different capacity to 2876 

cope with species loss. This could be evaluated with formal stability analyses using 2877 

theoretical food webs with standardized characteristics such as network size and complexity. 2878 

Expanding these analyses to more real food webs will require the development of a greater 2879 

number of highly resolved networks across a suite of environmental gradients. A systematic 2880 

effort to sample and describe the structure of food webs to the highest taxonomic resolution 2881 
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possible across a variety of habitats and environmental conditions would therefore be 2882 

extremely valuable. This would aid in the search for generalisable network structures and 2883 

could highlight regions of the Southern Ocean which may be more susceptible to 2884 

environmental and ecological perturbations. It would also be useful to extend such food web 2885 

analyses to quantitative networks, as the inclusion of interaction weights can greatly alter 2886 

structural inferences (Banašek-Richter et al. 2009). The construction of quantitative networks 2887 

is data-intensive, but recent developments make it possible to determine interaction strengths 2888 

and energy fluxes based on relatively straightforward information such as body size, foraging 2889 

behaviour and metabolic type (Marina et al. 2024; Gauzens et al. 2019), which should 2890 

facilitate their adoption more widely within the Southern Ocean modelling community. It will 2891 

still however be important to ground truth these estimates of energy flow with direct 2892 

measurements of parameters such as consumer dietary preferences, metabolic rates and 2893 

assimilation efficiencies (Jochum et al. 2021), as factors such as the distribution of 2894 

interactions and the plasticity of metabolic rates can greatly alter the efficiency of energy 2895 

flow and the magnitude of predicted energy fluxes (Kordas et al. 2022; Jochum and 2896 

Eisenhauer 2022).  2897 

6.1.3 Chapter 4: Temperature alters the predator-prey size relationships and size-selectivity 2898 

of Southern Ocean fish 2899 

Chapter 4 targeted our lack of knowledge regarding how predator-prey mass ratios (PPMR) 2900 

change with temperature, by investigating how the relative sizes of mesopelagic myctophid 2901 

fish and their zooplankton prey vary across a large latitudinal temperature gradient in the 2902 

Southern Ocean. This is of particular interest as marine ecosystems are strongly size-2903 

structured and the relative size of predators to their prey has been used to successfully predict 2904 

the distribution and even the strength of trophic interactions (Petchey et al. 2008; Bideault et 2905 

al. 2019; Emmerson and Raffaelli 2004). Changes in the distribution of body sizes across 2906 

trophic levels could therefore alter the flows of energy within food webs, with implications 2907 

for ecosystem functioning. 2908 

By combining dietary and environmental prey size distributions it was possible to estimate 2909 

the ‘preferred PPMR’, which distinguishes density-dependent and active prey selection by the 2910 

fish (Tsai et al. 2016). This revealed some of the mechanisms underlying foraging by these 2911 

fish under different temperatures. In particular, decreases in the average body size of fish (due 2912 

to compositional changes and intra-specific declines in size) and shifts in the size distribution 2913 

of zooplankton towards intermediate individuals acted together to reduce community-level 2914 
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PPMR. These results could be used to better inform the parameterization of predictive size-2915 

based models of food web dynamics, which often assume a fixed PPMR when assigning 2916 

trophic interactions and may therefore fail to account for environmentally-driven shifts in 2917 

prey selection (Andersen et al. 2016; Tsai et al. 2016). 2918 

As illustrated by Gauzens et al. (2024), shifts in foraging behaviour and size-selectivity can 2919 

be maladaptive, with important consequences for the persistence of communities under 2920 

perturbations. It is therefore vital that we continue to investigate how environmental and 2921 

ecological changes alter feeding preferences across taxa. It would also be interesting to 2922 

further investigate the mechanisms that could be underlying the shifts in size selection by 2923 

these myctophids from an energetic perspective. Previous research has shown that, in 2924 

sardines, energy expenditure is influenced not only by warming but also by the size of prey 2925 

available; if prey are small, sardines feed by continuous filtration which is more energy 2926 

intensive than the particle feeding method employed when prey are larger, resulting in much 2927 

higher energy expenditure (Queiros et al. 2024). Feeding trials of myctophids under different 2928 

prey size treatments might reveal similar changes in foraging behaviour, providing further 2929 

insight into the factors driving prey selection and energetics within this community.  2930 

As discussed in chapter 1, the impacts of climate change on populations may be driven as 2931 

much by changes to species interactions as by direct environmental effects on organisms 2932 

themselves (Ockendon et al. 2014). Chapter 4 only focussed on one (albeit important) 2933 

component of Southern Ocean ecosystems, and the investigation of the impact of temperature 2934 

on trophic interactions should be extended to other groups including zooplankton. 2935 

Experiments have been conducted on groups such as Antarctic krill and amphipods to 2936 

identify the effects of temperature on metabolic rates, growth, feeding rates and mortality 2937 

(Michael et al. 2021; Saba et al. 2021; Schram et al. 2016), and it would be worthwhile to 2938 

extend such experiments to include investigations of how temperature influences their prey 2939 

selection (both in terms of species identity and size). Gaining this understanding for a wide 2940 

range of functional groups within the Southern Ocean will greatly improve our capacity to 2941 

predict how climate change may reorganize ecosystems. 2942 

Given the link between PPMR and interaction strengths (Bideault et al. 2019; Emmerson and 2943 

Raffaelli 2004), the community-level decline in PPMR identified in chapter 4 might represent 2944 

a change in community stability. The relationship between PPMR and interaction strength in 2945 

this community could be tested by measuring the densities of prey under different predator 2946 
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conditions in mesocosms (as in O’Gorman et al. 2010 and Emmerson and Raffaelli 2004), 2947 

with different combinations of predator and prey size across multiple components of the food 2948 

web. This information could then be used to parameterise population dynamics models (e.g. 2949 

Gauzens et al. 2024; Bideault et al. 2019) to formally test the implications of changes in size 2950 

structure (i.e. interaction strengths) for different facets of stability such as population 2951 

variability and robustness.  2952 

6.1.4 Chapter 5: Trade-offs between the recovery of Southern Ocean baleen whales and 2953 

conservation of their competitors 2954 

Chapter 5 provides important insights into how whale population recovery may impact 2955 

Southern Ocean ecosystems, which will be a key issue for policymakers wanting to 2956 

implement appropriate conservation measures under climate change. Various studies have 2957 

concluded that whaling had major effects on prey and competitor abundances and overall 2958 

food web dynamics (Laws 1977; Surma et al. 2014), but less attention has been drawn to the 2959 

possible ecological consequences of whale population recoveries. By generating a broad suite 2960 

of regional model structures, it was possible to identify some structural metrics which might 2961 

be important indicators of the capacity for ecosystems to support increased whale biomass. 2962 

Such indicator metrics are a key management tool for monitoring ecosystem health and 2963 

resilience (Keramidas et al. 2023; Flensborg et al. 2023), and will aid the management and 2964 

conservation of Southern Ocean ecosystems (Ruckelshaus et al. 2008). The analyses in this 2965 

chapter focused primarily on broad responses averaged across competitor groups and model 2966 

runs. There is therefore scope to further explore how the relationship between the focal 2967 

metrics and model capacity varies at the individual model and functional group level and in 2968 

relation to other factors (e.g. the distribution of biomass and Q/B values across competitor 2969 

groups, or the EE distributions across whale prey groups). This would improve our 2970 

understanding of the drivers of regional differences in ecosystem responses to whale 2971 

population increases and provide greater insight into the reliability of different indicators of 2972 

ecosystem resilience.  2973 

There is also scope to further investigate the factors determining regional ecosystem 2974 

responses to whale recovery. Regular monitoring of the composition and diets of a range of 2975 

functional groups across different regions and environmental conditions would increase our 2976 

understanding of the spatial and temporal variability of trophic interactions. This would 2977 

improve our ability to accurately model regional contrasts in ecosystem structure and 2978 

incorporate the influence of dietary flexibility into predictions. Techniques such as DNA 2979 
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metabarcoding of environmental samples and stomach contents or scats could prove 2980 

extremely useful for monitoring food web structure and exploring spatial differences, as they 2981 

provide a relatively cost-effective way of identifying marine community composition and 2982 

monitoring trophic interactions across time and space (Canals et al. 2024). This could be 2983 

facilitated through the routine collection of samples from fishing vessels, which has been 2984 

found to be a very effective way of reconstructing food webs in exploited areas (Cicala et al. 2985 

2024). Tourist cruise vessels, which make extensive journeys across much of the Southern 2986 

Ocean every year (McCarthy et al. 2022), are also a useful platform for conducting routine 2987 

sampling of communities. Even the simple collection of surface water samples, such as 2988 

through continuous plankton recorders (CPRs), would improve the monitoring of 2989 

zooplankton and phytoplankton community composition across environmental gradients. The 2990 

widespread adoption of CPR devices on tourist cruise vessels would greatly increase the 2991 

coverage of existing datasets such as the SCAR Southern Ocean Continuous Plankton 2992 

Recorder (SO-CPR) Survey, which is currently based primarily on samples from research and 2993 

fishing vessels (Hosie et al. 2003). This would provide insight into questions such as the 2994 

likelihood of regional changes in phytoplankton composition and production which mitigate 2995 

baleen whale population increases in different regions.  2996 

The balancing algorithm developed for this chapter helps address a primary limitation of the 2997 

Ecopath with Ecosim (EwE) framework, which has been the lack of capabilities to 2998 

incorporate parameter uncertainty during the modelling process (Steenbeek et al. 2018). The 2999 

ability to generate plausible balanced parameter sets from an initial highly unbalanced model 3000 

is valuable, as current existing EwE uncertainty plugins (e.g. ‘Ecosampler’) work with input 3001 

models that are at, or close to, balance (Steenbeek et al. 2018), while other methods generate 3002 

unbalanced models which then need testing to ensure they are thermodynamically viable 3003 

(Whitehouse and Aydin 2020). The issue of model standardization, which was addressed in 3004 

this chapter, applies more broadly to all comparative modeling studies across the Southern 3005 

Ocean and beyond, as many network metrics are sensitive to model structure (Heymans et al. 3006 

2016). Efforts to identify further indicators of ecosystem resilience must therefore ensure that 3007 

models are directly comparable. The approach to model standardization and balancing taken 3008 

in chapter 5 could be applied to many other comparative questions within the Southern Ocean 3009 

including the effects of species loss or environmental regime shifts, aiding our ability to 3010 

identify regional contrasts in food web structure and responses to change.  3011 
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This chapter made heavy use of Rpath, the R implementation of EwE (Lucey et al. 2020). 3012 

The development of this package is exciting as it introduces a whole range of flexibility for 3013 

modellers to ask questions that perhaps are not fully suited to the original EwE framework. 3014 

For example, Rpath has been used to implement feedback mechanisms between an operating 3015 

model and external assessment model to evaluate fishery management strategies (Lucey et al. 3016 

2021). The package has also facilitated the incorporation of temperature-dependent energetic 3017 

demands and metabolic costs into mass-balance models, which is a big step towards the 3018 

development of robust predictions of the impacts of warming on species and ecosystem 3019 

processes (Heinichen et al. 2022). These applications of Rpath will be extremely valuable for 3020 

exploring management and conservation strategies in the Southern Ocean, where the EwE 3021 

framework is relied on heavily (McCormack et al. 2021a). 3022 

6.2 Future Directions  3023 

This thesis touched upon a broad range of themes relating to different aspects of the 3024 

organization and dynamics of Southern Ocean food webs, at a variety of spatial and 3025 

ecological scales. However, there are some common threads regarding the future directions in 3026 

which I see the research field heading, both within the Southern Ocean and more generally.  3027 

6.2.1 Using functional traits to explain and predict food web structure 3028 

Functional traits clearly represent a valuable framework for explaining and predicting the 3029 

current structure of food webs and will likely become increasingly popular for predicting the 3030 

future effects of environmental change and shifting community compositions. Recent 3031 

developments will aid the application of the trait-based approach; in particular, machine 3032 

learning tools can be a powerful method for reconstructing changes in ecosystem properties 3033 

from past records and predicting the structure of past and future networks from functional 3034 

traits (Brown et al. 2023; Pichler et al. 2020; Fricke et al. 2022). Additionally, the 3035 

development of AI-driven algorithms to extract ecological information from literature (e.g. 3036 

Gougherty and Clipp 2024) will greatly aid trait-based food web research. I imagine that 3037 

similar tools could also be developed to predict the occurrence of certain traits based on 3038 

taxonomy by disentangling the relative effects of environmental variables and phylogeny on 3039 

trait expression (Sanchez‐Martinez et al. 2024), which would make it easier to compile trait 3040 

information for poorly studied species and regions. It is also important to recognise that 3041 

trophic interactions are highly multidimensional, made up of multiple component steps (e.g. 3042 

prey identification, capture, consumption) during which the probability of success is 3043 
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determined by a variety of different traits and abiotic factors (Wootton et al. 2023). 3044 

Considering the matching between interactions and functional traits in a more fine-scale, 3045 

modular manner will facilitate the quantification and comparison of the relative influence of 3046 

different traits, component steps and abiotic factors, and improve the prediction of network 3047 

structure and dynamics (Wootton et al. 2023).  3048 

Overall, only a minority of studies have used functional traits to make predictions of the 3049 

impacts of global change on ecological communities (Green et al. 2022). As this becomes 3050 

more of a research focus, it is likely that the demand for extensive and well-resolved trait data 3051 

will increase. As previously discussed, body size is a key trait which is easily measurable and 3052 

has been used to successfully predict trophic interactions (Petchey et al. 2008). However, as 3053 

shown in this thesis and in previous studies (e.g. Brose et al. 2019; Morales-Castilla et al. 3054 

2015; Laigle et al. 2017; Rezende et al. 2009; Jacob et al. 2011), a variety of other traits 3055 

including habitat association, mobility, feeding mode, and other behavioural and 3056 

physiological characteristics can also play major roles in determining whether organisms 3057 

interact. A key recommendation is therefore that we further develop datasets of functional 3058 

traits, expanding them to encompass more species and aspects of organismal ecology, and to 3059 

explicitly consider the various component steps involved in trophic interactions. Trait 3060 

databases already exist for many regions and taxonomic groups (for example this thesis made 3061 

heavy use of resources such as Brun et al. 2017, Degen and Faulwetter 2019 and MarLIN 3062 

2006) but many data gaps remain, particularly for Southern Ocean taxa (Degen et al. 2018). I 3063 

would therefore encourage researchers to consider what traits they can easily measure for 3064 

their study organisms to further add value and support trait-based research. Doing so will 3065 

allow us to build upon existing tools such as the Allometric Diet Breadth Model (Petchey et 3066 

al. 2008), improving our ability to predict food web structure. A danger here is that, without 3067 

some degree of standardization and coordination between researchers, the resulting suite of 3068 

trait databases may not be fully comparable or compatible between studies, limiting their 3069 

utility. This subject is neatly summarized in Keller et al. (2023), along with relevant 3070 

guidelines to avoid these issues. I would add that it is also worth considering which traits 3071 

should be prioritized (e.g. those which provide the most explanatory power for predicting 3072 

trophic interactions or those which are most strongly tied to important ecosystem functions, 3073 

rather than simply being the easiest to measure) as this will avoid wasting research effort and 3074 

resources on identifying traits which have little practical use. Of course, the identification of 3075 

priority traits will require significant effort itself, but could be initially achieved by 3076 
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theoretical modelling and small-scale experimental or mesocosm studies before being applied 3077 

more widely.  3078 

6.2.2 Understanding temporal and spatial variability in food web structure 3079 

A common theme amongst my chapters, and indeed from much of my wider reading, has 3080 

been the need to identify how trophic interactions and network structure differ over space and 3081 

time. This will provide insight into the drivers of variation in community assembly, including 3082 

environmental filtering and coexistence mechanisms (Pellissier et al. 2018), and will help 3083 

predict the consequences of environmental and ecological change. An increasing number of 3084 

studies have focused on how food web structure differs geographically (e.g. Pellissier et al. 3085 

2018; Frelat et al. 2022; Kortsch et al. 2019; Gauzens et al. 2020), and temporally (e.g. 3086 

Griffith et al. 2019; Olivier et al. 2019; Kortsch et al. 2021; Frelat et al. 2022), but this aspect 3087 

of food web research remains understudied, particularly in the Southern Ocean where 3088 

sampling is logistically limited by its overall remoteness and the inhospitableness of winter 3089 

months (Van De Putte et al. 2021). The Southern Ocean has a variety of strong environmental 3090 

gradients, including sea temperature, sea ice concentration and productivity (Deppeler and 3091 

Davidson 2017; Morley et al. 2010; Pinkerton et al. 2021), and the impact of these factors on 3092 

community structure and dynamics should be explored. Additionally, in highly seasonal 3093 

environments such as polar regions, winter processes can have a strong influence on summer 3094 

ecosystem dynamics, and indirect interactions between seasonally migrant and resident 3095 

species can be important (Hutchison et al. 2020). Within Antarctic benthic communities in 3096 

particular, seasonal sea ice break-up has been found to strongly alter food web structure, 3097 

resulting in simpler, more vulnerable networks (Rossi et al. 2019; Caputi et al. 2020). This 3098 

suggests that temporal changes may be a particularly fruitful topic of food web research 3099 

within the Southern Ocean. 3100 

I would recommend that efforts are made to construct a greater number of highly resolved 3101 

and comparable food web models in a systematic manner across different global regions, and 3102 

to put in place appropriate monitoring plans to facilitate the investigation of temporal changes 3103 

in structure. Given the logistical constraints that apply in the Southern Ocean, it may be 3104 

necessary to select a small number of sampling sites encompassing different bioregions 3105 

which can be sampled regularly enough to develop time series of community composition 3106 

and associated network structure and dynamics. These could target some key CCAMLR 3107 

Marine Protected Area (MPA) planning domains (Teschke et al. 2021), thereby providing 3108 

important baselines for ongoing monitoring of the effectiveness of current and future MPAs. 3109 
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As shown by (Frelat et al. 2022), spatio-temporal monitoring of food web structure can be 3110 

facilitated through the generation of a ‘metaweb’ of potential trophic interactions, which can 3111 

then be resampled based on species abundances to generate spatial and temporal snapshots of 3112 

network structure in a relatively straightforward manner. I would also argue that, in addition 3113 

to simply describing how the distribution of trophic interactions differs across environmental 3114 

gradients and over time, it is important that we move past mere correlative studies and begin 3115 

to model the mechanisms linking changing network structure to its drivers. This is discussed 3116 

further below. 3117 

6.2.3 Using bioenergetics to gain mechanistic understanding of food web dynamics  3118 

To accurately forecast the impacts of environmental change for ecological communities and 3119 

ecosystem functioning, we will need to understand the mechanisms linking biotic and abiotic 3120 

factors to population dynamics, communities and overall ecosystem processes. This could be 3121 

addressed through the bioenergetics approach, which explicitly considers the physiological 3122 

and behavioural responses of organisms and accounts for the variety of indirect effects and 3123 

non-linear responses which will result from changing environmental and ecological 3124 

conditions (Rose et al. 2024). Energy is a relevant currency across all scales of spatial, 3125 

temporal and ecological organisation, from individual cells to entire ecosystems, therefore 3126 

focussing on energy flow provides a tractable basis for investigating links between different 3127 

levels of biological organisation (Carlisle 2000). In particular, methods such as Dynamic 3128 

Energy Budget (DEB) modelling can be used to predict both inter- and intra-specific 3129 

variation in energy and mass fluxes in response to changing environments (Rose et al. 2024; 3130 

Nisbet et al. 2012). DEB modelling is a highly generalisable approach which can be applied 3131 

to any animal to predict its intake and utilisation of energy and relate metabolic processes to 3132 

physiological performance and thus wider population dynamics and ecosystem processes 3133 

(Nisbet et al. 2012). This allows researchers to investigate how abiotic conditions and food 3134 

availability affect organismal growth, feeding and reproduction (Pouvreau et al. 2006; Agüera 3135 

et al. 2017; van der Meer et al. 2020; Teixeira et al. 2014). This approach can be scaled up to 3136 

entire ecosystems (van der Meer et al. 2022), and integrating it into broader food web 3137 

modelling will allow us to mechanistically understand and predict how communities respond 3138 

to change.  3139 

The field of food web ecology is increasingly recognising the value of bioenergetic 3140 

approaches for tracking energy flux and studying the dynamics of multi-species assemblages. 3141 

A number of tools based upon bioenergetics and metabolic theory have been developed for 3142 
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different platforms (e.g. Gauzens et al. 2019; Gauzens et al. 2023; Delmas et al. 2017), and 3143 

used to ask questions such as how environmental change impacts ecosystem function and 3144 

stability (Polazzo et al. 2023), how physiological plasticity influences ecosystem impacts of 3145 

warming (Kordas et al. 2022), and what the interactive effects of multiple stressors are on 3146 

patterns of energy flux (Wang et al. 2023). As previously discussed, the inclusion of 3147 

temperature-dependent bioenergetics within the EwE framework has provided further insight 3148 

into the potential effects of warming on biomass production within marine ecosystems 3149 

(Heinichen et al. 2022). The flux-based approach has also revealed how trophic redundancy 3150 

can mitigate the impacts of warming on total energy flow within food webs (Nelson et al. 3151 

2020). As these bioenergetic approaches are largely based on theory and generalisable 3152 

relationships, they could be well suited to locations such as the Southern Ocean where the 3153 

observational and experimental data required to parameterise more complex dynamic models 3154 

are scarce (McCormack et al. 2021a; Murphy et al. 2012). It will, however, be important to 3155 

consider whether some of the characteristics of many Southern Ocean taxa, e.g. stenothermy, 3156 

mean they do not adhere to theoretical relationships. This emphasises the need to further 3157 

investigate the fundamental rates of different Southern Ocean taxa and how they respond to 3158 

environmental changes such as warming. Given that the rate of physiological process can 3159 

vary between individuals and there may be intra-specific variability in physiological and 3160 

behavioural responses to different stressors (Gårdmark and Huss 2020), bioenergetic 3161 

approaches may be best suited to individual-based food webs which explicitly consider 3162 

populations and size-classes rather than simply aggregating at the species or functional group 3163 

level (Woodward et al. 2010; Gårdmark and Huss 2020).  3164 

6.2.4 Summary 3165 

The results of this thesis contribute to our growing understanding of the drivers of food web 3166 

structure and the impacts of environmental change. While the focus of my chapters was 3167 

primarily on the Southern Ocean, many of my conclusions are also relevant to the food web 3168 

modelling field more broadly. In particular, I have provided insight into some of the core 3169 

aspects of food web theory, namely the relationship between functional traits and the 3170 

distribution of trophic interactions, the organisation of stabilising substructures, and the 3171 

influence of the environment on size-based interactions. I see various avenues of research 3172 

through which the food web field will advance in future. On the one hand, ‘more of the same’ 3173 

(continued characterisation of diets and traits, and construction of networks across temporal 3174 

and spatial scales and environmental gradients) will allow us to more robustly test the effects 3175 
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of abiotic and biotic factors on food web structure and dynamics. On the other hand, I foresee 3176 

that a shift towards flux-based approaches, and a focus on individual-based food webs and 3177 

explicit consideration of dynamic consumers with flexible diets, offers the chance to gain 3178 

more mechanistic understanding of the processes underlying the formation and maintenance 3179 

of natural communities. I’m sure that cutting-edge developments such as super-computing, 3180 

machine-learning and AI will open up further possibilities for modelling ecosystems – what a 3181 

time to be a food web researcher! 3182 

  3183 
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Appendix A: Supplementary material for chapter 2 4540 

A1: Supplementary figures 4541 

 4542 

Figure A1: Panels a, c, and e are boxplots of the distribution of mouth gape area, caudal fin 4543 

aspect ratio (AR) and pectoral fin AR, respectively, in 9 South Georgia demersal fish species. 4544 

Boxplots are ordered by decreasing median value, with letters indicating groupings assigned 4545 

by a Dunn’s test with Bonferroni correction (groups with a letter in common are not 4546 

significantly different). Panels b, d, and f display the relationship between total length and 4547 

mouth gape area, caudal fin aspect ratio (AR) and pectoral fin AR, respectively. Regression 4548 

lines represent first-order (panel b) and second-order (panels d and f) polynomial fits from 4549 

linear regression models for each species. Species codes are: ANI, Champsocephalus 4550 

gunnari; SSI, Chaenocephalus aceratus; SGI, Pseudochaenichthys georgianus; NOR, 4551 

Notothenia rossii; TRH, Trematomus hansoni; NOS, Lepidonotothen squamifrons; NOL, 4552 

Lepidonotothen larseni; NOG, Gobionotothen gibberifrons; PGE, Parachaenichthys 4553 

georgianus. 4554 
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 4555 

Figure A2: Barplot comparing the total percentage Index of Relative Importance (%IRI) of 4556 

krill (all Euphausiidae) in the stomachs of Mackerel icefish (Champsocephalus gunnari) 4557 

during each survey since 2004, including the values calculated from the 2023 data (SG23). 4558 

A2: Supplementary tables 4559 

Table A1: Packages and functions used during analyses: 4560 

Package Reference Usage 

stats R Core Team (2023) Cluster analysis and PCA 

factoextra Kassambara & Mundt (2020) PCA visualisation 

vegan Oksanen et al. (2022) SIMPER analysis 

nlme Pinheiro et al. (2023) Linear mixed effects 

modelling 

FSA Ogle, et al. (2023) Dunn’s tests 

party Hothorn et al. (2005) Random Forest modelling 

ggplot2 Wickham (2016) Plotting 

RColorBrewer Neuwirth (2022) Plotting 

tidyverse Wickham et al. (2019) Data handling 

 4561 

 4562 

 4563 

 4564 

 4565 
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Table A2: Outputs of SIMPER analysis with 99 permutations indicating the contribution of 4566 

each prey group to the overall dissimilarities in diet composition (based on Index of Relative 4567 

Importance, %IRI) between feeding guilds. ‘Average’ represents the contribution to average 4568 

between-group dissimilarity, and ‘SD’ indicates the standard deviation of this contribution. 4569 

The p-value indicates the probability of getting a larger or equal average contribution across 4570 

the random permutations. 4571 

Krill feeders - Benthos feeders 

 Average SD p-value 

Krill 0.1749 0.07372 0.84 

Isopod 0.1008 0.06872 0.01 

Misc. benthos 0.09615 0.01213 0.01 

Fish 0.04096 0.06526 1 

Themisto 0.03667 0.03613 0.99 

Other 

amphipods 0.03464 0.02752 0.37 

Mysid 0.00275 0.00329 1 

Benthic shrimps 0 0 1 

Krill feeders - Fish feeders 

 Average SD p-value 

Krill 0.3945 0.07424 0.01 

Fish 0.296 0.10198 0.01 

Other 

amphipods 0.0556 0.0822 0.04 

Themisto 0.0495 0.02517 1 

Mysid 0.0268 0.04226 0.95 

Isopod 0.0034 0.00416 1 

Benthic shrimps 0.0006 0.00075 0.99 

Misc. benthos 0.0001 0.00024 1 

Krill feeders - Themisto & krill feeders 

 Average SD p-value 

Krill 0.1966 0.07348 0.55 

Themisto 0.1492 0.06747 0.01 

Fish 0.0677 0.0739 1 

Other 

amphipods 0.01775 0.03051 0.93 

Misc. benthos 0.01188 0.0201 0.88 

Isopod 0.00817 0.01385 0.84 

Mysid 0.00311 0.00324 1 

Benthic shrimps 0.00044 0.00076 0.99 

Krill feeders - Benthic shrimp feeders 

 Average SD p-value 

Krill 0.3911 0.07511 0.01 

Benthic shrimps 0.2566 0.10619 0.01 

Mysid 0.2018 0.07327 0.01 

Fish 0.043 0.06098 1 
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Themisto 0.0317 0.04903 0.99 

Other 

amphipods 0.0002 0.00023 1 

Isopod 0 0.00003 1 

Misc. benthos 0 0 1 

Misc. benthos feeders - Fish feeders 

 Average SD p-value 

Fish 0.3365 0.07915 0.01 

Krill 0.2196 0.04635 0.29 

Isopod 0.0974 0.0691 0.01 

Misc. benthos 0.096 0.01217 0.01 

Other 

amphipods 0.0625 0.06394 0.19 

Themisto 0.03 0.02343 0.99 

Mysid 0.0267 0.04271 0.79 

Benthic shrimps 0.0006 0.00076 0.85 

Misc. benthos feeders - Themisto & krill feeders 

 Average SD p-value 

Themisto 0.16459 0.04883 0.01 

Isopod 0.09264 0.0706 0.01 

Misc. benthos 0.08427 0.02371 0.01 

Fish 0.05016 0.07652 0.99 

Krill 0.04143 0.02743 1 

Other 

amphipods 0.03479 0.02771 0.46 

Mysid 0.00205 0.00166 0.99 

Benthic shrimps 0.00044 0.00077 0.86 

Misc. benthos feeders - Benthic shrimp feeders 

 Average SD p-value 

Benthic shrimps 0.25663 0.10869 0.01 

Krill 0.21624 0.04803 0.28 

Mysid 0.20207 0.0749 0.01 

Isopod 0.10081 0.07034 0.01 

Misc. benthos 0.09615 0.01241 0.01 

Other 

amphipods 0.03444 0.02816 0.37 

Themisto 0.01584 0.00382 0.98 

Fish 0.00478 0.0015 1 

Fish feeders - Themisto & krill feeders 

 Average SD p-value 

Fish 0.28654 0.1093 0.01 

Krill 0.1979 0.04622 0.61 

Themisto 0.13458 0.05342 0.01 

Other 

amphipods 0.0595 0.07484 0.06 

Mysid 0.02678 0.0421 0.89 

Misc. benthos 0.01184 0.02009 0.83 

Isopod 0.00971 0.01173 0.78 
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Benthic shrimps 0.00074 0.00079 0.93 

Fish feeders - Benthic shrimp feeders 

 Average SD p-value 

Fish 0.3318 0.07917 0.01 

Benthic shrimps 0.256 0.10658 0.01 

Mysid 0.1771 0.08545 0.01 

Other 

amphipods 0.0556 0.08279 0.21 

Themisto 0.0459 0.02313 0.91 

Krill 0.0398 0.02724 1 

Isopod 0.0034 0.0042 0.94 

Misc. benthos 0.0001 0.00024 0.99 

Themisto & krill feeders - Benthic shrimp feeders 

 Average SD p-value 

Benthic shrimps 0.2562 0.10692 0.01 

Mysid 0.20156 0.07369 0.01 

Krill 0.19455 0.04741 0.48 

Themisto 0.18043 0.04869 0.01 

Fish 0.04998 0.07353 0.99 

Other 

amphipods 0.01773 0.03076 0.78 

Misc. benthos 0.01188 0.02033 0.79 

Isopod 0.00817 0.01401 0.77 

 4572 

 4573 

 4574 

 4575 

 4576 

 4577 

 4578 

 4579 

 4580 

 4581 

 4582 

 4583 
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Table A3: Model selection for optimum random effects and variance weighting structure for 4584 

the linear mixed effects model describing the relationship between prey body mass (log10 g) 4585 

and the predictors predator body mass (log10 g) and predator feeding guild plus their 4586 

interaction. The final model structure selected based on Bayesian Information Criterion (BIC) 4587 

and level of parsimony is highlighted in bold. 4588 
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Table A4: Model selection for optimum fixed effects structure for the linear mixed effects 4597 

model describing the relationship between prey body mass (log10 g) and the predictors 4598 

predator body mass (log10 g) and predator feeding guild. Each model includes the optimal 4599 

random effects and variance weighting structure identified in Table A3. The most 4600 

parsimonious model structure based on Bayesian Information Criterion (BIC) and retaining 4601 

only significant fixed effects is highlighted in bold. 4602 

Fixed effects structure BIC 

Predator mass * Feeding guild 1054.76 

Predator mass + Feeding guild 1029.92 

Predator mass 1037.52 

Feeding guild 1157.13 

Null 1144.12 

 4603 

Table A5: Linear mixed effects model estimates of the relationship between prey mass and 4604 

the additive combination of predator mass and feeding guild. The reference level is the krill-4605 

feeding guild. 4606 

Coefficient Estimate SE df t-value p-value 

Intercept -1.245 0.215 599 -5.777   <0.001 

Predator mass (log10 g) 0.562 0.045 599 12.471 <0.001 

Benthos -0.260 0.066 599 -3.921   <0.001 

Fish -0.414 0.080 599 -5.144   <0.001 

Themisto and krill -0.267 0.061 599 -4.389   <0.001 

Benthic shrimps -0.123 0.141 599 -0.868  0.386 

 4607 

Table A6: Results of Kruskal-Wallis tests of differences in the distribution of trait values 4608 

between feeding guilds. 4609 

Trait chi-squared df p-value 

Gape area 224.47 4 <0.001 

Caudal AR 171.54 4 <0.001 

Pectoral AR 262.96 4 <0.001 

 4610 

 4611 

 4612 

 4613 
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Table A7: Results of pairwise Dunns tests with Bonferroni correction for differences in the 4614 

distribution of traits between feeding guilds. 4615 

 Gape_area Caudal AR Pectoral AR 

Feeding guild pairing Z P.adj Z P.adj Z P.adj 

Krill - Benthos -8.486 <0.001 -4.994 <0.001 -4.631 <0.001 

Krill - Fish 7.174 <0.001 2.184 0.289 -0.966 1 

Krill – Themisto & krill 4.282 <0.001 3.897 <0.001 10.744 <0.001 

Krill - Benthic shrimps -0.311 1 -10.753 <0.001 -12.968 <0.001 

Benthos - Fish -13.138 <0.001 -6.174 <0.001 -3.370 0.008 

Benthos - Themisto & krill -4.334 <0.001 -1.493 1 4.340 <0.001 

Benthos - Benthic shrimps 6.314 <0.001 -5.042 <0.001 -7.299 <0.001 

Fish - Themisto & krill 9.947 <0.001 5.290 <0.001 8.486 <0.001 

Fish - Benthic shrimps -5.472 <0.001 -11.412 <0.001 -11.021 <0.001 

Themisto & krill - Benthic shrimps 2.814 0.049 -6.926 <0.001 -3.743 0.002 

 4616 

Table A8: Axis loadings for a Principle Components Analysis (PCA) of the trait values for 4617 

each individual fish. 4618 

Dimension Eigenvalue % variance Cumulative % variance 

PC1 1.660 55.327 55.327 

PC2 0.778 25.928 81.256 

PC3 0.562 18.745 100 

 4619 

Table A9: Variable loadings for a Principle Components Analysis (PCA) of the trait values for 4620 

each individual fish. 4621 

Trait PC1 PC2 PC3 

 Gape area 0.624 -0.218 -0.750 

Caudal AR 0.510 0.842 0.179 

Pectoral 

AR 

0.592 -0.494 0.636 

 4622 

 4623 

 4624 

 4625 

 4626 

 4627 

 4628 

 4629 

 4630 
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Appendix B: Supplementary material for chapter 3 4659 

B1: Supplementary methods and results 4660 

 4661 

Supplementary methods 4662 

Overview of functional traits. 4663 

Here we detail the functional traits compiled for this study, including a description of their 4664 

ecological relevance and an overview of how they were coded for analyses. 4665 

Body mass data were already available for each food web, having been compiled through a 4666 

combination of direct measurement in the field and the compilation of values from the literature 4667 

(Brose et al. 2019 ; López-López et al. 2021). Upon inspection of the body mass data, a small 4668 

number of discrepancies within and between the food webs were identified, and for consistency 4669 

these were corrected using published mass data sources (see Supplementary Data). Values were 4670 

then subject to log10 transformation for analyses. 4671 

Foraging habitat represents the physical space in which the organisms are primarily found, and 4672 

therefore plays a role in determining which trophic interactions are feasible due to species 4673 

overlap. Broad habitat categories were identified for each food web, and species were assigned 4674 

to these based on literature review, with those found across multiple habitats assigned to a 4675 

combined habitat category. For the Scotia Sea food web, three pelagic habitat categories 4676 

(“epipelagic”, “mesopelagic” and “benthopelagic”) plus possible combinations of these (“epi-4677 

mesopelagic”, “epi-meso-bathypelagic”, “meso-bathypelagic”) were taken from the original 4678 

publication (López-López et al. 2021). In the Weddell Sea, habitats were assigned as “benthic”, 4679 

“lower pelagic” and “upper pelagic”, in addition to the combinations of “upper and lower 4680 

pelagic”, “upper and lower pelagic and benthic”, and “lower pelagic and benthic”. For Lough 4681 

Hyne and Kongsfjorden, habitats were assigned as “benthic”, “intertidal” and “pelagic”, in 4682 

addition to “benthic and intertidal”, “benthic and pelagic”, “pelagic and intertidal”, and 4683 

“benthic, intertidal and pelagic”, to reflect possible habitat overlaps. 4684 

Mobility represents the primary propulsive method used by each species, which will influence 4685 

how likely predators and prey are to come into contact, and how easily consumers can capture 4686 

resources or resources can evade their consumers. We assigned a scale of increasing mobility: 4687 
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0 (sessile, attached); 1 (passive drifter, no substantial self-locomotion); 2 (crawler); 3 4688 

(swimming by cilia/flagella or appendages); 4 (jet propulsion); 5 (lift-based swimming). 4689 

Prey-capture strategy represents how active the predator is in capturing prey. The method 4690 

employed will influence how likely different consumers and resources are to come into contact, 4691 

and which types of resource can be consumed. We assigned a scale of increasing activity: 0 4692 

(Producer, no resource capture involved); 1 (Passive, no action by the consumer until after 4693 

contact with resource has been made); 2 (Ambush, consumer is relatively inactive but selects 4694 

and actively captures resources when in range); 3 (Active suspension/detritus feeder, displays 4695 

limited activity such as pumping of water or sifting through sediment which may involve some 4696 

locomotion, but prey selection occurs after contact); 4 (Active search, consumer moves actively 4697 

searching for resources either as a browsing herbivore or hunting predator). In some cases, the 4698 

primary capture strategy was not documented in the literature, in which case it was inferred 4699 

from diet where possible (e.g., consumers of sessile prey must employ an active searching 4700 

strategy). 4701 

Capture appendages represent any external appendage (i.e. tentacles/arms, legs) which could 4702 

reasonably be considered to play a role in grasping and manipulating prey. Organisms which 4703 

lack such appendages must engulf their prey to capture them. Cilia and flagella were not 4704 

considered capture appendages due to their primary role in locomotion and producing simple 4705 

feeding currents. 4706 

Body robustness represents the general body type of the organism, which will influence which 4707 

consumers it has. We assigned a scale of increasing robustness: 0 (gelatinous); 1 (soft-bodied, 4708 

no internal skeleton/shell); 2 (soft-bodied with internal skeleton/shell); 3 (external skeleton); 4 4709 

(external hard shell). 4710 

Spines are expected to deter certain consumers as they can cause physical damage and may 4711 

make consumption difficult. The presence or absence of spines was determined based on image 4712 

assessment. Spines were only considered present if their role could be confidently assigned to 4713 

defence (e.g., rostral/dorsal spines in copepods and amphipods). 4714 

The translucency trait represents how visible organisms are within the water column and is 4715 

expected to play a role in both prey capture and predator avoidance. This trait was assigned 4716 

based on assessment of images. 4717 
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Traits were assigned to all nodes except for difficult to define basal groups (detritus and 4718 

sediment). 4719 

Robustness of module assignments 4720 

The stochastic element to the Simulated Annealing algorithm used to identify food web 4721 

modules means the final results of different runs can vary both in terms of the number of 4722 

modules identified and the partitioning of nodes between modules (i.e. the identity of species 4723 

assigned to the same module could differ between runs). It was therefore important to ensure 4724 

that the final modularity partition reported for each network was representative of the spread 4725 

of results obtained across different runs of the algorithm. To select an appropriate result for 4726 

each food web we first identified the number of modules in each Simulated Annealing output 4727 

and then randomly selected a result displaying the most representative number of modules 4728 

across the runs. 4729 

88% of runs for the Scotia Sea web identified three modules while the remaining 12% identified 4730 

two modules, and 95% of runs for the Weddell Sea identified three modules while 5% identified 4731 

four modules. A result with three modules was therefore randomly selected for these two webs. 4732 

For Lough Hyne, 81% of runs identified five modules, and the remaining 19% found four, 4733 

while for Kongsfjorden 83% of runs identified five, 16% identified four, and 1% identified six 4734 

modules. A result with five modules was randomly selected for both networks. 4735 

The next step was to identify how consistent the partitioning of species into different modules 4736 

in the selected result was across the remaining Simulated Annealing runs. We followed the 4737 

methods of Rezende et al. (2009) in focusing on the distribution of interactions within modules. 4738 

For each interacting species pair assigned to the same module in the chosen Simulated 4739 

Annealing run, we calculated the number of times that pair co-occurred in a module across all 4740 

the remaining runs. The results suggest that there is extremely low total variability in the 4741 

module membership of interacting pairs, as the overwhelming majority of within-module 4742 

interactions were consistent across runs: 96.6% in the Scotia Sea; 95.3% in the Weddell Sea; 4743 

99.2% in Lough Hyne; 99.5% in Kongsfjorden. These results support the robustness of the 4744 

partitioning of the focal food webs by the Simulated Annealing algorithm. 4745 

Finally, we investigated the variability in trophic level (TL) and log10 body mass of each 4746 

module for each network, across Simulated Annealing runs. For each run, we investigated the 4747 

proportion of pairwise differences in the distribution of TL and body masses between modules 4748 
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that were significant. The results of our randomly selected outputs were generally consistent 4749 

with those of the remaining Simulated Annealing runs. In the Scotia Sea, the average proportion 4750 

of significant pairwise differences was 94.0% (± 1.3% standard error) for TL, and 88.0% (± 4751 

2.6%) for body mass. In the Weddell Sea, these proportions were 99.0% (± 0.4%) for TL and 4752 

98.0% (± 0.7%) for mass. In Lough Hyne, the average proportion of significant pairwise 4753 

differences was 72.0% (± 0.5%) for TL, and 31.0% (± 0.2%) for mass. For comparison, in the 4754 

randomly chosen run, 70.0% of pairwise comparisons were significantly different for TL, while 4755 

30.0% were significantly different for mass. In Kongsfjorden, the values were 34.5% (± 1.0%) 4756 

for TL and 45.1% (± 1.1%) for mass. In the randomly chosen run for this network, 30.0% of 4757 

pairwise comparisons were significantly different for TL, while 40.0% were significantly 4758 

different for mass. When plotting the average TL and body mass in each module for all the 4759 

runs, the distribution of values in the randomly chosen run was generally consistent with the 4760 

distribution of values from the other runs, though in a minority of cases, differences in the total 4761 

number of modules or changes to the distribution of species across modules resulted in outliers 4762 

(Figure B1 & B2.). These changes would be unlikely to alter the key findings of this study, as 4763 

the overall pattern of modules in each network is maintained (modules in the Scotia Sea and 4764 

Weddell Sea encompass distinct trophic clusters and body mass distributions while many of 4765 

those in Lough Hyne and Kongsfjorden are not significantly different). 4766 

Supplementary results 4767 

Differences in trophic level variance within and between modules 4768 

A potential issue with comparing the mean difference in trophic level between modules in each 4769 

network is that this metric could be sensitive to both the maximum trophic level of a given 4770 

network and the number of modules identified. We therefore calculated two metrics; the 4771 

variance in trophic level for all pairwise combinations of species from the same module 4772 

(within-variance), and the variance in trophic level for all pairwise combinations of species 4773 

from separate modules (between-variance). The ratio of the within-variance and between-4774 

variance provides a metric that is independent of network size and maximum trophic level and 4775 

describes the organisation of modules: larger values indicate that modules encompass a wide 4776 

range of trophic levels but have a large overlap with one-another; smaller values indicate that 4777 

modules have less overlap in trophic levels. The results using this metric support the 4778 

conclusions drawn using the mean trophic level differences: modules in the Scotia Sea and 4779 
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Weddell Sea food webs have lower values than those in Lough Hyne and Kongsfjorden (0.49, 4780 

SE = 0.001 and 0.58, SE = 0.001 versus 0.90, SE = 0.001 and 1.26, SE = 0.001, respectively). 4781 

Distribution of node metrics across modules 4782 

There is a significant decline in average vulnerability from modules 1 to 3 in both the Scotia 4783 

Sea and Weddell Sea food webs (Figure B3). This likely results from the organisation of 4784 

modules by trophic level, as organisms occupying the highest trophic levels (i.e. those in 4785 

module 3) are the least vulnerable as they have relatively few predators. Similarly, the 4786 

increase in omnivory with trophic level in both networks also fits with the organisation of 4787 

modules by trophic level, as species found higher in the feeding hierarchy have a greater 4788 

variety of organisms of different trophic levels available to feed upon (Thompson et al. 4789 

(2007; Figure B4). The contrast in the change in generality across modules in these two 4790 

networks (an increase in the Scotia Sea and a decrease in the Weddell Sea; Figure B5) 4791 

suggests that top predators in the Scotia Sea feed on a greater number of prey species than 4792 

those lower in the food web, while the inverse is true of top predators in the Weddell Sea. It is 4793 

not clear what the underlying driver(s) of this difference in the level of dietary specialisation 4794 

of higher predators in the two networks might be, but it is interesting that despite these 4795 

contrasts both food webs display very similar structuring of modularity by trophic levels. In 4796 

the Lough Hyne and Kongsfjorden food webs there is a lack of consistent differences in these 4797 

node-level metrics across modules. This fits the description of modules in these networks as 4798 

semi-isolated energy channels, as most modules contain an assemblage of species centred 4799 

around distinct basal resources and therefore are not structured by trophic level in the same 4800 

way as those in the Scotia Sea and Weddell Sea.  4801 

 4802 

 4803 
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B2: Supplementary figures 4804 

 4805 

Figure B1: The distribution of mean trophic level of each module across all runs of the 4806 

Simulated Annealing algorithm for each network. Red stars indicate the values for the 4807 

randomly selected outputs used in later analyses. Note that the Weddell Sea had 4 modules in 4808 

only 5% of runs, whilst Kongsfjorden had 6 modules in only 1% of runs 4809 
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 4810 

Figure B2: The distribution of mean body mass of each module across all runs of the Simulated 4811 

Annealing algorithm for each network. Red stars indicate the values for the randomly selected 4812 

outputs used in later analyses. Note that the Weddell Sea had 4 modules in only 5% of runs, 4813 

whilst Kongsfjorden had 6 modules in only 1% of runs 4814 



177 

 

 4815 
Figure B3: Boxplots of node normalised vulnerability across compartments within each food 4816 

web. Large black points indicate the mean, thick horizontal lines represent the median, boxes 4817 

indicate the 25th – 75th percentile range, whiskers are 1.5 × the interquartile range, and 4818 

outliers beyond this range are indicated as small black points. Boxes not sharing a common 4819 

letter are significantly different from one another (Dunn’s test, p < 0.05). 4820 
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 4821 
Figure B4: Boxplots of node omnivory index values across modules within each food web. 4822 

Large black points indicate the mean, thick horizontal lines represent the median, boxes 4823 

indicate the 25th – 75th percentile range, whiskers are 1.5 × the interquartile range, and 4824 

outliers beyond this range are indicated as small black points. Boxes not sharing a common 4825 

letter are significantly different from one another (Dunn’s test, p < 0.05). Note varying axis 4826 

scales. 4827 
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 4828 
Figure B5: Boxplots of node normalised generality across modules within each food web. 4829 

Large black points indicate the mean, thick horizontal lines represent the median, boxes 4830 

indicate the 25th – 75th percentile range, whiskers are 1.5 × the interquartile range, and 4831 

outliers beyond this range are indicated as small black points. Boxes not sharing a common 4832 

letter are significantly different from one another (Dunn’s test, p < 0.05). No significant 4833 

differences were found for Kongsfjorden. Note varying axis scales. 4834 
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 4835 
Figure B6: Bar plots displaying the proportion of species within each food web module which 4836 

were assigned to each foraging habitat. In a), “bathy” represents bathypelagic, “epi” 4837 

represents epipelagic and “meso” represents mesopelagic. In all plots, habitats joined by “_” 4838 

indicate that the species forage across multiple habitats. 4839 

 4840 

Figure B7: Bar plots displaying the proportion of species within each food web module which 4841 

were assigned to each prey-capture strategy. 4842 

 4843 
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 4844 

Figure B8: Bar plots displaying the proportion of species within each food web module which 4845 

were assigned to each movement method. 4846 

 4847 

Figure B9: Bar plots displaying the proportion of species within each food web module which 4848 

were assigned to each body robustness category. 4849 

 4850 
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 4851 
Figure B10: Bar plots displaying the proportion of species within each food web module 4852 

which were considered to have feeding appendages capable of grasping and manipulating 4853 

prey. 4854 

 4855 
Figure B11: Bar plots displaying the proportion of species within each food web module 4856 

which were considered to have defensive spines. 4857 

 4858 
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 4859 

Figure B12: Bar plots displaying the proportion of species within each food web module 4860 

which were considered to be largely translucent. 4861 
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Appendix C: Supplementary material for chapter 4 4877 

C1: Supplementary figures 4878 

 4879 

Figure C1: Distribution of myctophid sampling stations from each cruise. 4880 

  4881 



185 

 

 4882 

Figure C2: Distribution of zooplankton sampling stations from each cruise. 4883 

 4884 
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 4885 

Figure C3: Comparison of temperatures at different depths across the sampling sites. 4886 

Relationship between temperature (both at the surface and at 1,062m depth) and latitude at 4887 

each haul location, split by sampling year (n = 27, 25, and 18 sites in 2006, 2008 and 2009, 4888 

respectively). Lines represent model predicted values and shading represents 95% confidence 4889 

intervals. 4890 

 4891 

 4892 

Figure C4: Effects of temperature at 1,062 m depth on predator and prey body mass (n = 4893 

1576 fish). (a) partial residual plot from a linear mixed model of the effect of temperature (at 4894 

1,062m depth) on prey-averaged predator-prey mass ratio (PPMR); (b) partial residual plot 4895 

from a linear mixed model of the effect of temperature on predator body mass; (c) scatterplot 4896 

of the relationship between temperature and abundance-weighted average prey mass in 4897 

predator stomachs. Y-axis values are in log10 g. Lines represent predicted values at each SST. 4898 

Shading represents 95% confidence intervals.  4899 

 4900 
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 4901 

 4902 

Figure C5: Effects of temperature on predator body mass from a larger dataset. Partial 4903 

residual plot from a linear mixed model of the effect of sea-surface temperature (SST) on 4904 

predator body mass using a larger dataset of myctophid body sizes (n = 6,143). Y-axis values 4905 

are in log10 g. Line represents predicted values of predator mass at each temperature. Shading 4906 

represents 95% confidence intervals. 4907 
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 4908 

Figure C6: Relationship between predator mass and sea surface temperature (SST) for each 4909 

species. Panels ELN, GYF, GYR, PRE and PRM are partial residuals plots, the remainder are 4910 

scatterplots of the raw data with regression lines indicating predicted values from a 4911 

Generalised Least Squares model. Y-axis values are in log10 g. Panels with no regression lines 4912 

indicate species for which no significant trend in size with SST was identified. Shading 4913 

represents 95% confidence intervals. ELC = E. carlsbergi (n = 486 fish), ELN = E. antarctica 4914 

(n = 2,101), GYF = G. fraseri (n = 143), GYN = G. nicholsi (n = 68), GYR = G. braueri (n = 4915 

1448), KRA = K. anderssoni (n = 944), LAC = N. achirus (n = 76), PRE = P. tension (n = 4916 

217), PRM = P. bolini (n = 596), PRY = P. choriodon (n = 64). 4917 
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 4918 

Figure C7: Effects of temperature on myctophid community diversity and the relative 4919 

abundance of each species. a) Generalised Least Squares regression model predicted values 4920 

of species diversity (Shannon-Wiener index) versus sea-surface temperature (SST). Shading 4921 

represents 95% confidence interval. b) stacked bar plot showing the change in proportional 4922 

sqrt-transformed abundance of each species across SST. Species codes are ELC = E. 4923 

carlsbergi (n = 26 individual abundance estimates), ELN = E. antarctica (n = 101), GYF = G. 4924 

fraseri (n = 27), GYN = G. nicholsi (n = 36), GYR = G. braueri (n = 91), KRA = K. 4925 

anderssoni (n = 64), LAC = N. achirus (n = 32), PRE = P. tension (n = 16), PRM = P. bolini 4926 

(n = 52), PRY = P. choriodon (n = 15). A clear shift in species composition can be seen with 4927 

increasing temperature, from communities dominated by the relatively large-bodied E. 4928 

antarctica at low temperatures to ones with a greater proportion of smaller species like K. 4929 

anderssoni under warmer conditions. Note the discrete x-axis scale for panel b. 4930 

  4931 
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C2: Supplementary tables 4932 

Table C1: Length-Mass relationships used to estimate body mass of each individual 4933 

myctophid species. The regressions used to convert standard length (SL, mm) to wet mass 4934 

(WM, g) follow the equation WM = a * SLb. Lower and upper 95% confidence intervals are 4935 

provided for each coefficient, along with the overall R2 for the relationship. 4936 

Species a Lower Upper b Lower Upper R2 

E. carlsbergi 2.09 x10-05 9.51 x10-06 4.59 x10-05 2.90 2.72 3.08 0.7214 

E. antarctica 3.72 x10-06 3.22 x10-06 4.30X10-06 3.27 3.24 3.31 0.9599 

G. fraseri 3.53 x10-06 1.31 x10-06 9.51 x10-06 3.24 3.00 3.47 0.8811 

G. nicholsi 2.87 x10-06 2.02 x10-06 4.08 x10-06 3.25 3.18 3.33 0.9936 

G. braueri 4.58 x10-06 3.60 x10-06 5.82 x10-06 3.11 3.06 3.17 0.9326 

K. anderssoni 9.05 x10-06 7.49 x10-06 1.09 x10-05 3.02 2.97 3.07 0.9599 

N. achirus 8.14 x10-06 5.17x 10-07 1.28 x10-02 2.49 1.45 3.54 0.4259 

P. tenisoni 1.39 x10-05 9.74x 10-06 1.97 x10-05 2.94 2.84 3.03 0.9589 

P. bolini 1.98 x10-05 1.34 x10-05 2.92 x10-05 2.88 2.77 2.98 0.8926 

P. choriodon 1.27 x10-05 3.24 x10-06 4.94 x10-05 2.98 2.66 3.30 0.8779 

 4937 

Table C2: Number of stomachs collected for each myctophid species during each cruise. 4938 

Species JR161 JR177 JR200 TOTAL 

Electrona carlsbergi 80 34 27 141 

Electrona antarctica 152 178 112 442 

Gymnoscopelus fraseri 11 60 27 98 

Gymnoscopelus nicholsi 22 11 7 40 

Gymnoscopelus braueri 143 94 109 346 

Krefftichthys anderssoni 132 44 22 198 

Nannobranchium achirus 23 0 0 23 

Protomyctophum tenisoni 27 17 0 44 

Protomyctophum bolini 106 76 26 208 

Protomyctophum choriodon 0 36 0 36 

TOTAL 696  550 330 1576 

 4939 

 4940 

 4941 

 4942 

 4943 

 4944 

 4945 
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Table C3: Number of individual body mass measurements for each myctophid species during 4946 

each cruise, from a larger dataset of myctophid sizes (from which only a subset were kept for 4947 

stomach contents analyses). 4948 

Species JR161 JR177 JR200 TOTAL 

E. carlsbergi 195 248 43 486 

E. antarctica 568 1023 510 2101 

G. fraseri 12 90 41 143 

G. nicholsi 30 30 8 68 

G. braueri 443 576 429 1448 

K. anderssoni 590 162 192 944 

N. achirus 43 9 24 76 

P. tenisoni 79 98 40 217 

P. bolini 261 177 158 596 

P. choriodon 0 50 14 64 

TOTAL 2221 2463 1459 6143 

 4949 

Table C4: Mean abundances for each broad zooplankton taxon, averaged across sampling 4950 

sites. 4951 

Taxon Mean density (ind./m2) Proportion of total density  

Copepoda 13,822.938 0.743 

Polychaeta & Chaetognatha 2,645.003 0.142 

Pteropoda 1,076.652 0.058 

Ostracoda 780.023 0.042 

Euphausidae 109.152 0.006 

Cnidaria 107.666 0.006 

Tunicata 41.255 0.002 

Amphipoda 7.266 <0.001 

Decapoda 3.692 <0.001 

Cephalopoda 0.013 <0.001 

Isopoda 0.003 <0.001 

Mysidae 0.001 <0.001 

 4952 

 4953 

 4954 

 4955 

 4956 

   4957 

 4958 

 4959 
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Table C5: Identification of the optimal random effects and variance weighting structure for 4960 

the models involving predator-prey mass ratio (PPMR). The table displays the various 4961 

random effects and variance weighting structures for the linear mixed effects models 4962 

describing the relationship between PPMR and the predictors sea-surface temperature (SST) 4963 

and surface chlorophyl-a concentration (Chl-a), plus their interaction. The most parsimonious 4964 

model structure based on Akaike’s Information Criterion (AIC) is highlighted in grey. NC 4965 

indicates models with no convergence. 4966 

Random effects structure Variance structure AIC 
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 x    x         3158.10 
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x x   x          NC 
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x x   x x         NC 

x x x            2852.11 

x x  x           2856.31 

x x x x           3000.85 

x x  x x          NC 

x x  x  x         NC 

x x x  x          NC 

x x x   x         2856.11 

x x x            2852.11 

x x x    x        2746.44 

x x x     x       2837.77 

x x x    x x       2734.96 

x x x      x      3413.57 

x x x       x     2823.82 

x x x        x    2849.13 

x x x         x   2825.19 

x x x          x  NC 

x x x           x 2815.18 

 4967 

4968 
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Table C6: The results of a Moran’s I test on the residuals from each selected linear mixed 4969 

effects model with sea-surface temperature (SST). 4970 

Response Moran’s I P value 

Predator-prey mass ratio 0.003 0.339 

Predator mass -0.002 0.656 

Prey mass in the diet -0.001 0.061 

 4971 

Table C7: Identification of the optimal fixed effects structure for the models involving 4972 

predator-prey mass ratio (PPMR). The table shows the various fixed effects structures for the 4973 

linear mixed effects models describing the relationship between PPMR and the predictors 4974 

sea-surface temperature (SST) and surface chlorophyl-a concentration (Chl-a). Each model 4975 

includes the optimal random effects and variance weighting structure identified in Table C5. 4976 

The most parsimonious model structure based on Akaike’s Information Criterion (AIC) and 4977 

retaining only significant fixed effects is highlighted in grey. 4978 

Fixed effects structure AIC 

SST*Chl-a 2719.88 

SST+Chl-a 2718.18 

Chl-a 2726.46 

SST 2717.16 

Null 2725.11 

 4979 

  4980 
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Table C8: Identification of the optimal random effects and variance weighting structure for 4981 

the models involving predator body mass. The table shows the random effects and variance 4982 

weighting structures for the linear mixed effects models describing the relationship between 4983 

predator mass and the predictors sea-surface temperature (SST) and surface chlorophyl-a 4984 

concentration (Chl-a), plus their interaction. The most parsimonious model structure based on 4985 

Akaike’s Information Criterion (AIC) is highlighted in grey. 4986 

Random effects structure Variance structure AIC 
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x x x            709.89 
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x x x     x       650.81 

x x x    x x       126.01 

x x x      x      864.08 

x x x       x     729.57 

x x x        x    693.14 

x x x         x   706.43 

x x x          x  NC 

x x x           x 700.55 

 4987 

  4988 
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Table C9: Identification of the optimal fixed effects structure for the models involving 4989 

predator mass. The table displays the fixed effects structures for the linear mixed effects 4990 

models describing the relationship between predator mass and the predictors sea-surface 4991 

temperature (SST) and surface chlorophyl-a concentration (Chl-a). Each model includes the 4992 

optimal random effects and variance weighting structure identified in Table C8. The most 4993 

parsimonious model structure based on Akaike’s Information Criterion (AIC) and retaining 4994 

only significant fixed effects is highlighted in grey. 4995 

Fixed effects structure AIC 

SST*Chl-a 105.79 

SST+Chl-a 103.83 

Chl-a 108.06 

SST 102.39 

Null 106.49 

 4996 

 4997 

 4998 

 4999 

 5000 

 5001 

 5002 

 5003 

 5004 
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 5007 

 5008 

 5009 
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 5011 
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  5013 

 5014 
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Table C10: Identification of the optimal random effects and variance weighting structure for 5015 

the models involving dietary prey body mass. The table shows the random effects and 5016 

variance weighting structures for linear mixed effects models describing the relationship 5017 

between abundance-weighted prey mass in predator diets and the predictors sea-surface 5018 

temperature (SST) and surface chlorophyl-a concentration (Chl-a), plus their interaction. The 5019 

most parsimonious model structure based on Akaike’s Information Criterion (AIC) is 5020 

highlighted in grey. NC indicates models with no convergence. 5021 

Random effects structure Variance structure AIC 
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x x x           x 2851.97 
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Table C11: Identification of the optimal fixed effects structure for the models involving 5024 

dietary prey body mass. The table displays the fixed effects structures for the linear mixed 5025 

effects models describing the relationship between abundance-weighted prey mass in 5026 

predator diets and the predictors sea-surface temperature (SST) and surface chlorophyl-a 5027 

concentration (Chl-a). Each model includes the optimal random effects and variance 5028 

weighting structure identified in Table C10. The most parsimonious model structure based on 5029 

Akaike’s Information Criterion (AIC) and excluding non-significant fixed effects is 5030 

highlighted in grey. 5031 

Fixed effects structure AIC 

SST*Chl-a 2717.49 

SST+Chl-a 2715.61 

Chl-a 2714.59 

SST 2713.76 

Null 2712.70 

 5032 

 5033 

 5034 

 5035 

 5036 

 5037 

 5038 

 5039 

 5040 

 5041 

 5042 

 5043 

 5044 

 5045 

 5046 

 5047 

  5048 

  5049 



198 

 

Table C12: Identification of the optimal random effects and variance weighting structure for 5050 

the models involving predator dietary prey size selectivity. The table shows the random 5051 

effects and variance weighting structures for linear mixed effects models describing the 5052 

relationship between predator dietary size preference and the interaction between sea-surface 5053 

temperature (SST) and predator body mass. The most parsimonious model structure based on 5054 

Akaike’s Information Criterion (AIC) is highlighted in grey. NC indicates models with no 5055 

convergence. 5056 

 5057 

  5058 

Random effect structure Variance structure AIC 

~
1

|S
p

ec
ie

s 

~
1

|S
it

e 

~
1

|Y
ea

r 

~
S

S
T

|S
p

ec
ie

s 

~
S

S
T

|Y
ea

r 

v
ar

Id
en

t(
~

1
|S

p
ec

ie
s)

 

v
ar

Id
en

t(
~

1
|Y

ea
r)

 

v
ar

F
ix

ed
(~

S
S

T
) 

v
ar

E
x

p
(~

S
S

T
) 

v
ar

C
o

n
st

(~
S

S
T

) 

 

          288.76 

x          263.06 

 x         268.13 

  x        275.76 

x x         243.02 

x  x        238.30 

 x x        266.08 

x x x        243.80 

x   x       264.69 

x    x      269.55 

 x  x       NC 

 x   x      274.13 

x x x x       244.75 

x x x  x      NC 

x x x x x      NC 

x  x        238.30 

x  x   x     213.95 

x  x    x    216.12 

x  x   x x    208.60 

x  x     x   226.08 

x  x      x  231.49 
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Table C13: Identification of the optimal fixed effects structure for the models involving 5059 

dietary prey size selectivity.  The table displays the fixed effects structures for the linear 5060 

mixed effects models describing the relationship between predator dietary size preference and 5061 

the interaction between sea-surface temperature (SST) and predator body mass. Each model 5062 

includes the optimal random effects and variance weighting structure identified in Table C12. 5063 

The most parsimonious model structure based on Akaike’s Information Criterion (AIC) and 5064 

retaining only significant fixed effects is highlighted in grey. 5065 

Fixed effects structure AIC Moran’s I P value 

SST*predator mass 192.34 -0.025 0.515 

SST+predator mass 200.35   

Predator mass 201.51   

SST 232.45   

Null 236.86   

 5066 

 5067 

 5068 

 5069 

 5070 

 5071 

 5072 

 5073 

 5074 

 5075 

 5076 

 5077 

 5078 

 5079 

 5080 

 5081 

 5082 

 5083 

 5084 

 5085 
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Table C14: Identification of the optimal random effects and variance weighting structure for 5086 

the models involving predator mass and a larger dataset of myctophid body sizes (n = 6,143). 5087 

The table shows the random effects and variance weighting structures for linear mixed effects 5088 

models describing the relationship between predator mass and the predictors sea-surface 5089 

temperature (SST) and chlorophyll-a concentration (Chl-a), plus their interaction, using the 5090 

larger dataset of myctophid body sizes. The most parsimonious model structure based on 5091 

Akaike’s Information Criterion (AIC) is highlighted in grey. NC indicates models with no 5092 

convergence. 5093 

Random effects structure Variance structure AIC 
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           x   4184.524 

            x  4106.948 

             x 4186.680 

 5094 

Table C15: Identification of the optimal fixed effects structure for the models involving 5095 

predator mass and a larger dataset of myctophid body sizes (n = 6,143). The table displays the 5096 

fixed effects structures for the linear mixed effects model describing the relationship between 5097 

predator size and the predictors sea-surface temperature (SST) and surface chlorophyll-a 5098 

concentration (Chl-a), plus their interaction, using the larger dataset of myctophid body sizes. 5099 

Each model includes the optimal random effects and variance weighting structure identified 5100 

in Table C14. The most parsimonious model structure based on Akaike’s Information 5101 

Criterion (AIC) and retaining only significant fixed effects is highlighted in grey. The result 5102 

of a Moran’s I test for spatial autocorrelation for the optimal model is also provided. 5103 

Fixed effects structure AIC Moran’s I P-value 

SST*Chl-a 2330.480   

SST+Chl-a 2328.769   

Chl-a 2426.262   

SST 2326.877 0.001 0.161 

Null 2424.297   

 5104 

Table C16: Model statistics for the optimal linear mixed effects model identified in Tables 5105 

C14-C15 describing the relationship between sea-surface temperature (SST) and predator 5106 

body mass using a larger dataset of myctophid body sizes (n = 6,143). 5107 

Coefficient Estimate SE DF t-value p-value 

Intercept 0.456 0.072 6113 6.351     <0.0001 

SST -0.026 0.002 6113 -10.397        <0.0001 

 5108 

 5109 

 5110 

 5111 

 5112 

 5113 

 5114 

 5115 
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Table C17: Identification of the optimal random effects and variance weighting structure for 5116 

the models involving predator mass for each myctophid species. The table shows the random 5117 

effects and variance weighting structures for linear mixed effects models describing the 5118 

relationship between predator mass and sea-surface temperature (SST) for each species, using 5119 

a larger dataset of myctophid body sizes (n = 6,143). The most parsimonious model based on 5120 

Akaike’s Information Criterion (AIC) is highlighted in grey. NC indicates models with no 5121 

convergence. 5122 

Species Random 

effect 

structure 

Variance structure AIC 
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E. carlsbergi 

      - 1288.456 

x      - 1287.623 

x x     NC 

  x    - 1318.993 

   x   -1096.769 

    x  -1309.503 

     x -1308.141 

E. antarctica 

      1620.508 

x      1615.725 

x x     1619.725 

x  x    1617.816 

x   x   2093.591 

x    x  1590.430 

x     x 1557.973 

G. fraseri 

      51.531 

x      44.042 

x x     NC 

x  x    42.658 

x   x   50.821 

x    x  45.530 

x     x 45.833 

G. nicholsi 

      119.246 

x      120.740 

x x     NC 

  x    118.141 

   x   94.101 

    x  67.816   

     x 90.010 

G. braueri       1457.564 
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x      1405.256 

x x     1407.795 

x  x    1396.838 

x   x   1670.105 

x    x  1365.444 

x     x 1370.079 

K. anderssoni 

      942.875 

x      944.619 

x x     NC 

  x    840.444 

   x   915.442 

    x  866.609 

     x 880.390 

N. achirus 

      -47.476 

x      -45.476 

x x     -41.476 

  x    -47.247 

   x   -2.504    

    x  -57.541 

     x -55.363 

P. tenisoni 

      -136.615 

x      -428.244 

x x     NC 

  x    -443.422 

   x   -427.005 

    x  -443.606 

     x -459.302 

P. bolini 

      -44.103 

x      -55.174 

x x     NC 

x  x    -63.431 

x   x   -21.393   

x    x  -64.357 

x     x -70.513 

P. choriodon 

      -77.654 

x      -75.654 

x x     NC 

  x    -75.660 

   x   -81.037 

    x  -79.060 

     x NC 

 5123 

  5124 
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Table C18: Identification of the optimal fixed effects structure for the models involving 5125 

predator mass for each myctophid species. The table shows the fixed effects structures for the 5126 

linear mixed effects models of the relationship between predator size and sea-surface 5127 

temperature (SST) for each species, using a larger dataset of myctophid body sizes (n = 5128 

6,143). Each model includes the optimal random effects and variance weighting structure 5129 

identified in Table C17. The results of a Moran’s I test for spatial autocorrelation are provided 5130 

for the optimal models, along with the optimal correlation structure implemented based on 5131 

AIC for any models with significant autocorrelation. No adjustments were made for multiple 5132 

comparisons. 5133 

Species  Fixed effects 

structure 

AIC Moran’s I Moran’s I  

p-value 

Autocorrelation 

structure 

E. carlsbergi 
SST -1340.507    

Null -1342.335 <0.001 0.7174  

E. antarctica 
SST 1542.642 0.026 <0.0001 Rational 

Null 1569.967    

G. fraseri 
SST 34.019 0.060 0.0038 Exponential 

Null 68.081    

G. nicholsi 
SST 55.946 0.004 0.6894  

Null 71.849    

G. braueri 
SST 1356.068 0.009 0.0175 Exponential 

Null 1366.125    

K. anderssoni 
SST 824.964   -0.010 0.0342 Spherical 

Null 1001.208    

N. achirus 
SST -72.145    

Null -73.502 -0.104 0.0914  

P. tenisoni 
SST -469.989 -0.004 0.9498  

Null -442.164    

P. bolini 
SST -83.925 -0.013 0.0937  

Null -76.457    

P. choriodon 
SST -93.411 -0.021 0.9246  

Null -78.834    

 5134 

  5135 
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Table C19: Outputs of the optimal linear mixed effects models identified in Tables C17-C18, 5136 

describing the relationship between predator mass and sea-surface temperature (SST) for each                      5137 

species, using a larger dataset of myctophid body sizes (n = 6,143).   5138 

Species Coefficient Estimate SE DF t-value p-value 

E. carlsbergi Intercept 0.790 0.003 486 298.685        <0.0001 

E. antarctica 
Intercept 0.579 0.021 2097 27.425   <0.0001 

SST -0.022 0.009 2097 -2.479   0.0148 

G. fraseri 
Intercept 0.887 0.121 139 7.353   <0.0001 

SST -0.100 0.028 139 -3.536   0.0011 

G. nicholsi 
Intercept 1.390 0.030 68 45.721       <0.0001 

SST -0.083 0.019 68 -4.478        <0.0001 

G. braueri 
Intercept 0.754 0.079 1444 9.578  <0.0001 

SST -0.083 0.007 1444 -11.213 <0.0001 

K. anderssoni 
Intercept 0.154 0.019  944 8.287 <0.0001 

SST -0.085 0.006 944 -14.086  <0.0001 

N. achirus Intercept 0.153 0.015 76 9.965        <0.0001 

P. tenisoni 
Intercept -0.294 0.153 213 -1.925    0.0555 

SST 0.030 0.005 213 6.484    <0.0001 

P. bolini 
Intercept 0.069 0.038 592 1.835   0.0670 

SST -0.017 0.005 592 -3.406   0.0007 

P. choriodon 
Intercept 0.800 0.035 64 22.598        <0.0001 

SST -0.050 0.009 64 -5.464        <0.0001 

 5139 

 5140 

 5141 

 5142 

 5143 

 5144 

 5145 

 5146 

 5147 

 5148 

 5149 

 5150 

 5151 

 5152 

 5153 
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Table C20: Identification of the optimal random effects and variance weighting structure for 5154 

the models involving myctophid species diversity. The table shows the random effects and 5155 

variance weighting structures for the linear mixed effects models describing the relationship 5156 

between myctophid species diversity (Shannon-Wiener index) and the interaction between 5157 

sea-surface temperature (SST) and surface chlorophyll-a concentration (Chl-a). The most 5158 

parsimonious model structure based on Akaike’s Information Criterion (AIC) is highlighted 5159 

in grey. NC indicates models with no convergence. 5160 
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      x    132.8421 

       x   132.0601 

        x  137.1728 

         x 129.3736 
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Table C21: Identification of the optimal fixed effects structure for the models involving 5170 

myctophid species diversity. The table displays the fixed effects structures for the linear 5171 

mixed effects models of the relationship between Shannon-Wiener diversity and the 5172 

interaction between sea-surface temperature (SST) and surface chlorophyll-a concentration 5173 

(Chl-a). Each model includes the optimal random effects and variance weighting structure 5174 

identified in Table C20. The most parsimonious model structure based on Akaike’s 5175 

Information Criterion (AIC) and retaining only significant fixed effects is highlighted in grey. 5176 

The results of a Moran’s I test for spatial autocorrelation is provided for the optimal model. 5177 

Fixed effects structure AIC Moran’s I P-value 

SST*Chl-a 114.7948   

SST+Chl-a 115.1217   

Chl-a 148.1829   

SST 114.1337 0.071 0.103 

Null 146.3198   

 5178 

Table C22: Model statistics for the optimal linear mixed effects model identified in Tables 5179 

C20-C21 describing the relationship between myctophid species diversity and sea-surface 5180 

temperature (SST). 5181 

Coefficient Estimate SE DF t-value p-value 

Intercept 0.962 0.045 115 21.545        <0.0001 

SST 0.090 0.015   115 6.080        <0.0001 

 5182 

 5183 

  5184 
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Table C23: Identification of the optimal random effects and variance weighting structure for 5185 

the models involving predator-prey mass ratio (PPMR) and temperature at 1,062 m depth. 5186 

The table shows the random effects and variance weighting structures for the linear mixed 5187 

effects models describing the relationship between PPMR and the predictors temperature at 5188 

1,062m depth (TAD) and surface chlorophyl-a concentration (Chl-a), plus their interaction. 5189 

The most parsimonious model structure based on Akaike’s Information Criterion (AIC) is 5190 

highlighted in grey. NC indicates models with no convergence. 5191 

Random effects structure Variance structure AIC 
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x              2942.28 

 x             3173.63 

x x             2883.36 

x  x            2945.36 

x   x           2943.27 

x  x x           2945.37 

 x   x          3161.19 

 x    x         3161.62 

 x   x x         3153.99 

x x   x          NC 

x x    x         NC 

x x   x x         NC 

x x x            2865.27 

x x  x           2877.08 

x x x x           2994.12 

x x  x x          NC 

x x  x  x         NC 

x x x  x          NC 

x x x   x         NC 

x x x            2865.27 

x x x    x        2762.27 

x x x     x       2852.23 

x x x    x x       2751.60 

x x x      x      6959.02 

x x x       x     2836.48 

x x x        x    2811.59 

x x x         x   2839.16 

x x x          x  2833.85 

x x x           x 2828.41 
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Table C24: Identification of the optimal fixed effects structure for the models involving 5194 

predator-prey mass ratio (PPMR) and temperature at 1,062 m depth. The table displays the 5195 

fixed effects structures for the linear mixed effects models describing the relationship 5196 

between PPMR and the predictors temperature at 1,062m depth (TAD) and surface 5197 

chlorophyl-a concentration (Chl-a). Each model includes the optimal random effects and 5198 

variance weighting structure identified in Table C23. The most parsimonious model structure 5199 

based on Akaike’s Information Criterion (AIC) and retaining only significant fixed effects is 5200 

highlighted in grey. 5201 

Fixed effects structure AIC 

TAD*Chl-a 2740.15 

TAD+Chl-a 2738.21 

Chl-a 2740.84 

TAD 2739.64 

Null 2741.57 

 5202 

 5203 

 5204 

 5205 

 5206 

 5207 

 5208 

 5209 

 5210 

 5211 

 5212 

 5213 

 5214 

 5215 

 5216 

 5217 

 5218 

 5219 

 5220 
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Table C25: Identification of the optimal random effects and variance weighting structure for 5221 

the models involving predator body mass and temperature at 1,062 m depth. The table shows 5222 

the random effects and variance weighting structures for the linear mixed effects models 5223 

describing the relationship between predator mass and the predictors temperature at 1,062m 5224 

depth (TAD) and surface chlorophyl-a concentration (Chl-a), plus their interaction. The most 5225 

parsimonious model structure based on Akaike’s Information Criterion (AIC) is highlighted 5226 

in grey. NC indicates models with no convergence. 5227 

Random effects structure Variance structure AIC 
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x              822.32 

 x             1671.09 

x x             734.48 

x  x            780.53 

x   x           NC 

x  x x           780.29 

 x   x          NC 

 x    x         1659.41 

 x   x x         NC 

x x   x          NC 

x x    x         NC 

x x   x x         NC 

x x x            691.51 

x x  x           712.97 

x x x x           NC 

x x  x x          NC 

x x  x  x         NC 

x x x  x          NC 

x x x   x         NC 

x x x            691.51 

x x x    x        155.92 

x x x     x       636.45 

x x x    x x       113.34 

x x x      x      3278.38 

x x x       x     703.20 

x x x        x    677.66 

x x x         x   686.63 

x x x          x  679.64 

x x x           x 661.70 
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Table C26: Identification of the optimal fixed effects structure for the models involving 5230 

predator mass and temperature at 1,062 m depth. The table displays the fixed effects 5231 

structures for the linear mixed effects models describing the relationship between predator 5232 

mass and the predictors temperature at 1,062m depth (TAD) and surface chlorophyl-a 5233 

concentration (Chl-a). Each model includes the optimal random effects and variance 5234 

weighting structure identified in Table C25. The most parsimonious model structure based on 5235 

Akaike’s Information Criterion (AIC) and retaining only significant fixed effects is 5236 

highlighted in grey. 5237 

Fixed effects structure AIC 

TAD*Chl-a 96.84 

TAD+Chl-a 95.57 

Chl-a 100.62 

TAD 95.07 

Null 99.88 

 5238 

  5239 
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Table C27: Identification of the optimal random effects and variance weighting structure for 5240 

the models involving dietary prey body mass and temperature at 1,062 m depth. The table 5241 

shows the random effects and variance weighting structures for linear mixed effects models 5242 

describing the relationship between abundance-weighted prey mass in predator diets and the 5243 

predictors temperature at 1,062m depth (TAD) and surface chlorophyl-a concentration (Chl-5244 

a), plus their interaction. The most parsimonious model structure based on Akaike’s 5245 

Information Criterion (AIC) is highlighted in grey. NC indicates models with no 5246 

convergence. 5247 

Random effects structure Variance structure AIC 
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x              3057.92 

 x             3187.10 

x x             2912.83 

x  x            3053.89 

x   x           NC 

x  x x           NC 

 x   x          3149.94 

 x    x         3162.89 

 x   x x         3146.42 

x x   x          NC 

x x    x         NC 

x x   x x         NC 

x x x            2881.77 

x x  x           2913.04 

x x x x           NC 

x x  x x          NC 

x x  x  x         NC 

x x x  x          NC 

x x x   x         2885.77 

x x x            2881.77 

x x x    x        2741.32 

x x x     x       2861.62 

x x x    x x       2728.55 

x x x      x      7247.49 

x x x       x     2855.30 

x x x        x    2782.81 

x x x         x   2855.72 

x x x          x  2818.68 

x x x           x 2845.75 
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Table C28: Identification of the optimal fixed effects structure for the models involving 5251 

dietary prey mass and temperature at 1,062 m depth. The table shows the fixed effects 5252 

structures for the linear mixed effects models describing the relationship between abundance-5253 

weighted prey mass in predator diets and the predictors temperature at 1,062m depth (TAD) 5254 

and surface chlorophyl-a concentration (Chl-a). Each model includes the optimal random 5255 

effects and variance weighting structure identified in Table C27. The most parsimonious 5256 

model structure based on Akaike’s Information Criterion (AIC) and excluding non-significant 5257 

fixed effects is highlighted in grey. 5258 

Fixed effects structure AIC 

TAD*Chl-a 2717.22 

TAD +Chl-a 2715.43 

Chl-a 2713.89 

TAD 2713.79 

Null 2712.36 

 5259 

Table C29: Model statistics for the effects of temperature at 1,062 m depth on predator and 5260 

prey body masses. Output from linear mixed effects models with predator-prey mass ratio 5261 

(PPMR), predator body mass and abundance-weighted average prey body mass in predator 5262 

stomachs as response variables. The temperature variable represents temperature at ~1,062m 5263 

depth (TAD), while R2m and R2c are the Nakagawa’s marginal and conditional model R2 5264 

values, respectively. 5265 

Model Coefficient Estimate SE DF t-value p-value 

PPMR Intercept 3.017 0.109 1550 27.717 <0.0001 

 TAD -0.131 0.050 1550 -2.596 0.0095 

R2m = 0.025, R2c = 0.489 

Predator body mass Intercept 0.566 0.108 1550 5.257 <0.0001 

 TAD -0.071 0.036 1550 -1.984 0.0475 

R2m = 0.012, R2c = 0.980 

Mean prey body mass Intercept -2.357 0.072 1551 -32.600 <0.0001 

R2m < 0.001, R2c = 0.476 

 5266 

Table C30: The results of a Moran’s I test on the residuals from each selected linear mixed 5267 

effects model with the temperature at 1,062m depth as the predictor variable. 5268 

Response Moran’s I p value 

Predator-prey mass ratio 0.003 0.359 

Predator mass 0.001 0.693 

Prey mass in diet 0.003 0.312 

 5269 
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Appendix D: Supplementary material for chapter 5 5270 

D1: Supplementary methods 5271 

6.2.5 Re-aggregation of functional groups 5272 

Groups were reaggregated using information on biomass and rate parameters available in the 5273 

supplementary materials for each model. When aggregating groups, the new group biomass 5274 

was determined by a simple sum of the biomasses of the groups being combined. The final 5275 

aggregated rate parameters (P/B and Q/B) were averages of the original group-specific 5276 

parameters, calculated using the group biomasses as weightings. In cases where groups were 5277 

split to form multiple new groups, the appropriate biomass was assigned to each new group 5278 

using biomass information in the relevant supplementary material for the published model or 5279 

wider literature for that region. Unique rate parameters were assigned to the new groups 5280 

where available in the published supporting information, otherwise the new groups retained 5281 

the rate estimates from their parent group. Below, we provide an overview of the steps taken 5282 

to reaggregate each functional group in each regional model. 5283 

Whales: 5284 

In each model, we reaggregated whale groups to form four functional groups: Toothed 5285 

whales, humpback whales, minke whales and “other baleen whales”.  5286 

In the Prydz Bay model, minke whales were already separated and the humpback whale 5287 

group was extracted from the “baleen whale” group and parameterized using species-level 5288 

biomass and Q/B information from the supplementary, while retaining the P/B value 5289 

specified for the original “baleen whale” group. Orca and sperm whales were aggregated into 5290 

a single toothed whale group. 5291 

The Ross Sea model had very similar whale groups to the Prydz Bay model with an 5292 

additional “toothed whales” group representing two beaked whale species. The same 5293 

reaggregation steps were taken as for the Prydz Bay model, while “toothed whales”, sperm 5294 

whales and orcas were combined into a single new “toothed whales” group. In this model, 5295 

P/B and Q/B estimates were available for each species and were used in the reaggregation. 5296 

The Prince Edward Islands model represented only orca with no other whale species 5297 

included, due to their extremely low abundance in the model region. To ensure comparability 5298 
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with other models, we added minke whale, humpback whale and ‘other baleen whale’ groups 5299 

but kept their initial biomasses at zero. 5300 

The Kerguelen Plateau model included a toothed whale group (representing southern 5301 

bottlenose whales and hourglass dolphins), orcas, sperm whales and a baleen whale group 5302 

representing fin and southern right whales.  The only change made to this model was to add 5303 

the humpback and minke whale groups, again with a negligible biomass to reflect their 5304 

extremely low current abundance in the model region, and to combine the orcas, sperm 5305 

whales and ‘toothed whales’ into a single group.  5306 

The South Georgia model included two whale groups: toothed and baleen. Humpback and 5307 

minke whale groups were extracted from the baleen whale group using biomass and Q/B 5308 

estimates for each species available in the supplementary, while they retained the P/B 5309 

estimate from the baleen whale group. 5310 

The Antarctic Peninsula model represented each whale species as a separate group. Orca and 5311 

sperm whales were aggregated into the toothed whale group while baleen whales excluding 5312 

humpbacks and minkes were aggregated into the “Other baleen whales” group. 5313 

Seals and penguins: 5314 

In most models, seals and penguins were represented as individual species. These were 5315 

aggregated into a single seal or penguin group in each model. The exception was the 5316 

Kerguelen Plateau model, which already aggregated penguins into a single group and 5317 

therefore required no changes. 5318 

Flying birds: 5319 

Flying birds were represented to a varying degree of taxonomic resolution across models, 5320 

ranging from a single functional group to multiple groups representing different feeding 5321 

guilds, taxonomic distinctions (e.g. albatrosses versus other birds) or even individual species. 5322 

Models which included multiple flying bird groups were reaggregated to have a single 5323 

“Flying birds” group. 5324 

Fish: 5325 

All models included multiple fish groups specified to varying levels of taxonomic resolution. 5326 

In each model, the groups were combined based on their habitat association to generate two 5327 

broad functional groups representing demersal and pelagic fish. 5328 
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Squid: 5329 

Squid are known to be poorly represented in most Southern Ocean ecosystem models, due to 5330 

a lack of information regarding their regional biomass and ecology (REFS). All models 5331 

included a squid group, with the Prince Edward Islands model distinguishing this group by 5332 

size. In this latter model the two size classes were aggregated into a single squid group, while 5333 

no changes were required for the other models. 5334 

Zooplankton: 5335 

We sought to distinguish between Antarctic krill and all other krill. The Prydz Bay, Ross Sea 5336 

and Antarctic Peninsula models already provided separate Antarctic krill and other euphausiid 5337 

groups, though the species represented by the latter differed between models. The Kerguelen 5338 

Plateau model included a single krill group representing euphausiids other than Euphausia 5339 

superba, as this group is not found in any meaningful numbers in the model region (Yang et 5340 

al. 2022; Yang et al. 2020). The Prince Edward Islands model did not explicitly model any 5341 

krill group but according to Hill et al. (2021) the model authors identified that euphausiids 5342 

make up 88% of the “large crustacean zooplankton” and 20% of the “small crustacean 5343 

zooplankton” groups. As with the Kerguelen Plateau model, E. superba are not present in the 5344 

model region (Yang et al. 2022; Yang et al. 2020), therefore we redistributed the biomass of 5345 

the relevant zooplankton groups to produce a single “other krill” group using the above 5346 

proportions. The South Georgia model included an Antarctic krill group but included other 5347 

euphausiids in the “Carnivorous macrozooplankton”. We estimated the average relative 5348 

biomass of other euphausiid species in the macrozooplankton from zooplankton samples 5349 

taken near South Georgia in 2006, 2008 and 2009 during the Discovery cruises (Tarling et al. 5350 

2012a). The average proportion of macrozooplankton that was euphausiids was 6.9%, and we 5351 

extracted the relevant biomass from the “Carnivorous macrozooplankton” group in the South 5352 

Georgia model and assigned it to a new “Other krill” group.  5353 

Three models explicitly included salps and therefore required no further reaggregation to 5354 

represent this group. In the Prince Edward Islands model, salps represent 5% of the “other 5355 

zooplankton” group, while in the Ross Sea, salps are estimated to make up 2.6% of 5356 

macrozooplankton biomass (Hill et al. 2021). The proportion of salps in the zooplankton 5357 

groups in the Kerguelen Plateau model was not clear, but the source used by the authors to 5358 

estimate macrozooplankton biomass identifies that salps display extremely patchy 5359 

distributions in the region, representing between 0.1% and 7% of total macrozooplankton 5360 
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biomass (Hunt et al. 2011). In the absence of better estimates, we assumed that 7% of 5361 

macrozooplankton biomass was salps. Salp relative abundance is unlikely to be equivalent to 5362 

relative biomass as salps are heavier than many other macrozooplankton taxa, but given their 5363 

patchy distribution we determined that setting their relative biomass to be the maximum 5364 

estimate of their relative abundance would reasonably capture their approximate biomass in 5365 

the study region, though with high associated uncertainty. In each of these models, we 5366 

extracted the relevant biomass from the original groups and assigned these to a new salp 5367 

group. 5368 

We grouped all remaining zooplankton into three size-based functional groups: 5369 

macrozooplankton, mesozooplankton and microzooplankton. Three models already had this 5370 

aggregation scheme, and the only adjustments needed were to subtract the estimated salp 5371 

biomass from the Kerguelen Plateau model. The Ross Sea model included macro- and 5372 

mesozooplankton groups, but further distinguished flagellates and ice metazoa and protozoa. 5373 

We merged the mesozooplankton and ice metazoan groups into an aggregate 5374 

mesozooplankton group, and combined the flagellates and ice protozoa with the heterotrophic 5375 

microplankton to form a single microzooplankton group. We spit the zooplankton groups in 5376 

the Prince Edward Islands model following (Hill et al. 2021): macrozooplankton are 12% 5377 

large crustacean zooplankton, 20% small crustacean zooplankton, 48% other zooplankton; 5378 

mesozooplankton are 49% small crustacean zooplankton, 43% other zooplankton; 5379 

microzooplankton are 11% small crustacean zooplankton, 4% other zooplankton. The South 5380 

Georgia model already incorporated macrozooplankton (carnivorous macrozooplankton 5381 

minus the biomass representing other krill) and microzooplankton (heterotrophic 5382 

microzooplankton), and we aggregated the two remaining zooplankton groups (“herbivorous 5383 

mesozooplankton” and “herbivorous and detritivorous copepods”) into a single 5384 

mesozooplankton group.  5385 

Benthos: 5386 

All models included at least one benthic functional group. In models that include more than 5387 

one such group (Ross Sea – megabenthos, macrobenthos and meiobenthos; Prince Edward 5388 

Islands – benthos and benthic decapods) these were combined into a single benthos group. 5389 

Bacteria: 5390 

Three models (PB, SG, KP) explicitly modelled bacteria as a single functional group. 5391 

Another (RS) further split bacteria into ice, water-column and sediment-associated bacterial 5392 
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groups, which we aggregated into a single group. We did not add bacterial groups to the two 5393 

remaining models (AP and PE). 5394 

Primary producers: 5395 

We continued to distinguish between the sea ice algae and other producers in the RS and AP 5396 

models. All other producer groups were aggregated into a single primary producer group. 5397 

Detritus: 5398 

All detrital and carcass groups were aggregated into a single detritus group in each model. 5399 

6.2.6 Automated balancing routine: 5400 

The primary input parameters for the automated balancing algorithm were B, P/B and Q/B 5401 

and DC. Additionally, the assimilation efficiencies of each group were obtained from 5402 

(Pinkerton and Bradford-Grieve 2010) and held constant across model regions and 5403 

throughout the balancing process. The balancing algorithm first determines the relative 5404 

change to each group’s B by a random draw from a normal distribution with mean = 0 and 5405 

SD = 0.05. Changes to B are therefore small and within a local region around the values at 5406 

the current step. The final biomass values of each group must remain within the bounds of 5407 

their pedigree, which was set using the standard Ecopath data pedigree approach (see Table 5408 

S4). This information was already provided for some of the models (RS, PE, SG), while for 5409 

the remaining models we assigned pedigrees based on a review of the supplementary 5410 

information accompanying each published model. The exception to this is the primary 5411 

producers, for which we set the EE values to 0.5 and therefore B is calculated based on 5412 

consumer demand. 5413 

Next, a growth efficiency (GE) value is drawn from a uniform distribution between a 5414 

minimum and maximum value determined by group type, based on values in Townsend et al. 5415 

(2008): endotherm vertebrate (0.001 – 0.05); ectotherm vertebrate (0.05 – 0.2); invertebrate 5416 

(0.1 – 0.4); bacteria (0.2 – 0.5). This step is included to ensure that energetic parameters 5417 

comply with general expected ecological relationships. By randomly varying this parameter, 5418 

rather than fixing it at some predetermined value, we provide further exploration of the range 5419 

of possible model parameterisations. P/B and Q/B values are varied within a range of 50% on 5420 

either side of the model-averaged input values. Because GE is determined by the combination 5421 

of P/B and Q/B it is only possible to set one of these energetic parameters directly, with the 5422 

other estimated from the combination with GE. To avoid potential bias by only varying one 5423 
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of these parameters throughout, our algorithm randomly determines, for each group, which of 5424 

these energetic parameters is randomly sampled at that step. The relevant P/B or Q/B values 5425 

are then sampled randomly from a uniform distribution within their specified bounds and 5426 

used in combination with GE to estimate the missing parameters. The exception to this was 5427 

whale Q/B, which was fixed at the lower values calculated from prior estimates of whale 5428 

consumption to ensure consistency in starting whale consumption across model versions and 5429 

regions for later analyses.  5430 

Random adjustments to the diet composition of each group are then also made. These are 5431 

achieved by resampling their input balanced diets from a Dirilichet distribution, which 5432 

ensures that the resulting diet compositions sum to one. A further constraint on the diet 5433 

resampling is the inclusion of a scaling parameter which restricts the changes to each dietary 5434 

component, such that diets do not become completely scrambled (i.e. common prey remain 5435 

common and rare prey remain rare). We found a scaling factor of 50 to provide a good 5436 

balance between allowing sufficient variation to explore a broad range of plausible prey 5437 

compositions and preventing excessive reshuffling of diets. For example, for a prey 5438 

representing 50% of a consumer’s diet, a scaling factor of 50 generates values which 5439 

generally lie within 20% of the original input, with minimum and maximum tails of around 5440 

40%. Higher values of the scaling factor increasingly restrict the possible dietary changes 5441 

(Figure D14). 5442 

Once the algorithm has generated a new set of suitable parameter values, the model is 5443 

evaluated by calculating an objective function, set as the sum of EE for all out of balance at 5444 

that step. This model is accepted if the objective function is lower than that of the previous 5445 

step. In this case, the biomass values are carried over and used as the basis for determining 5446 

biomasses at the next step (all other parameters are varied from scratch at each step and 5447 

therefore do not need to be updated). If the objective function for the new parameter set is 5448 

higher than that of the previous set, the changes are rejected and the biomass values reset to 5449 

those of the previous step. To prevent the algorithm from becoming stuck in local optima, 5450 

steps with higher (worse) objective functions are accepted with a specific probability (P), 5451 

which is kept constant throughout. The algorithm runs for a specified number of steps (or 5452 

until a balanced model is found), and a record of the best model (lowest objective function) is 5453 

kept and updated at each step.  5454 
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If no balanced model is identified after the specified number of steps, the algorithm switches 5455 

to targeted, primarily small, adjustments to biomasses and diets to achieve balance. The 5456 

biomass of the group most out of balance is increased by a small amount and the biomass of 5457 

the maximal predator of that group is reduced slightly. The diet matrix of the maximal 5458 

predator is adjusted to slightly reduce the contribution of the focal prey group, with the 5459 

missing diet contribution randomly redistributed across other prey groups (excluding 5460 

cannibalistic interactions). The biomass values for the final balanced model are then checked, 5461 

and the model is rejected if any biomass values fall outside the acceptable bounds set by the 5462 

pedigree CV. The full balancing process was repeated until a suite of 1000 versions of each 5463 

regional input model had been generated. 5464 
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D2: Supplementary figures 5465 

 5466 

 5467 

Figure D1: Map of all baleen whale catches (number of individuals) within each of the model 5468 

regions (solid polygons) and their 1000km buffers (dashed lines). Catches are on a log scale. 5469 

Hex tiles are 100km2. 5470 
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 5471 

Figure D2: Distribution of biomasses in the balanced versions of each model (n=1000), for 5472 

PB, RS and SG. Vertical dashed lines display the original value for each parameter in the 5473 

standardised, reaggregated but unbalanced version of each model. 5474 

 5475 
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 5476 

Figure D3: Distribution of biomasses in the balanced versions of each model (n=1000), for 5477 

KP, PE and AP. Vertical dashed lines display the original value for each parameter in the 5478 

standardised, reaggregated but unbalanced version of each model. 5479 

 5480 
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 5481 

Figure D4: Distribution of production over biomass (P/B) in the balanced versions of each 5482 

model (n=1000), for SG, PB and RS. Vertical dashed lines display the original value for each 5483 

parameter in the standardised, reaggregated but unbalanced version of each model. 5484 

 5485 

 5486 
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 5487 

Figure D5: Distribution of production over biomass (P/B) in the balanced versions of each 5488 

model (n=1000), for KP, PE and AP. Vertical dashed lines display the original value for each 5489 

parameter in the standardised, reaggregated but unbalanced version of each model. 5490 

 5491 
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 5492 

Figure D6: Distribution of consumption over biomass (Q/B) in the balanced versions of each 5493 

model (n=1000), for SG, PB, RS. Vertical dashed lines display the original value for each 5494 

parameter in the standardised, reaggregated but unbalanced version of each model. 5495 

 5496 

 5497 
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 5498 

Figure D7: Distribution of consumption over biomass (Q/B) in the balanced versions of each 5499 

model (n=1000), for KP, PE and AP. Vertical dashed lines display the original value for each 5500 

parameter in the standardised, reaggregated but unbalanced version of each model. 5501 
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 5502 

Figure D8: Distribution of ecotrophic efficiency (EE) in the balanced versions of each model 5503 

(n=1000), for SG, PB and RS. 5504 

 5505 
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 5506 

Figure D9: Distribution of ecotrophic efficiency (EE) in the balanced versions of each model 5507 

(n=1000), for KP, PE and AP. 5508 
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 5509 

Figure D10: Relative biomass proportion of each baleen whale group for the unbalanced 5510 

model inputs and for the IWC total catch-derived biomass estimates from the 1000km buffers 5511 

around each model region. 5512 
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 5513 

Figure D11: Relationship between competitor biomass proportion and whale consumption 5514 

(Q). Solid black line indicates the ensemble average, and shading indicates standard 5515 

deviation. Vertical lines indicate the whale Q values which represent combinations of catch-5516 

derived total whale biomass and estimated Q/B values: black dotted = baseline estimates; red 5517 

dashed = median estimates from Savoca et al. (2021); red dotted = lower and upper estimates 5518 

from Savoca et al. (2021). 5519 
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 5520 

Figure D12: Relationship between competitor biomass proportion and whale consumption 5521 

(Q) for each of the model ensembles. Black lines represent individual model runs (n=1000), 5522 

while red lines represent the ensemble average. Note varying x axis scales. 5523 
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 5524 

Figure D13: Relationship between total whale consumption (Q) and the proportion of 5525 

competitor biomass that can be sustained in each model, split by competitor group.  5526 

 5527 

 5528 
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 5529 

Figure D14: Histograms of the distribution of values generated by resampling the diet of a 5530 

predator feeding on two prey in equal proportions, under different scaling factors. Each plot 5531 

displays the values generated for one of the prey. 5532 

 5533 

 5534 

 5535 

 5536 
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D3: Supplementary tables 5537 

Table D1: Conversion factors used to convert model parameters from to wet weight (gWM m-5538 

2y-1) to carbon (gC m-2y-1). 5539 

Functional 

group 

WM:C 

conversion 

factor 

References and notes 

Whales 0.105 Sheehy et al. 2022 

Seals 0.162 Horn and de la Vega 2016 

Birds 0.181 Horn and de la Vega 2016 

Cephalopods 0.087 Ikeda 2016. 

Demersal fish 0.105 Horn and de la Vega 2016. Average of benthivorous and 

piscivorous demersal fish 

Pelagic fish 0.170 Horn and de la Vega 2016. Average of planktivorous and 

piscivorous pelagic fish 

Krill 0.107 Kiørboe 2013 

Zooplankton 0.049 Kiørboe 2013. Average of ctenophores, tunicates, cnidarians, 

chaetognaths, gastropods, copepods, euphausids and 

amphipods  

Benthos 0.075 Gogina et al. 2022; Pinkerton and Bradford-Grieve 2010. 

Based on biomass composition of typical Antarctic benthic 

communities (Gutt et al. 2016; Pineda Metz 2019). 

Bacteria 0.024 Bratbak and Dundas 1984; Finlay and Uhlig 1981 

Phytoplankton 0.100 Ullah et al. 2018; Hatton et al. 2021 

Macrophyte 0.460 Hill et al. 2021 

Detritus 0.450 Hill et al. 2021 

Protozoa 0.154 Kiørboe 2013 

Salps 0.007 Kiørboe 2013 

 5540 

 5541 

 5542 

 5543 

 5544 

 5545 

 5546 

 5547 

 5548 
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Table D2: Reaggregated functional groups included in each of the regional models (X 5549 

indicates that the group is included in the model, • indicates the group is absent from the 5550 

model). 5551 

Functional group SG RS PE KP PB AP 

Toothed whales X X X X X X 

Humpback whales X X X X X X 

Minke whales X X X X X X 

Other baleen whales X X X X X X 

Seals X X X X X X 

Penguins X X X X X X 

Flying birds X X X X X X 

Demersal fish X X X X X X 

Pelagic fish X X X X X X 

Cephalopods X X X X X X 

Antarctic krill X X • • X X 

Other krill X X X X X X 

Salps X X X X X X 

Macrozooplankton X X X X X X 

Mesozooplankton X X X X X X 

Microzooplankton X X X X X X 

Benthos X X X X X X 

Bacteria X X • X X • 

Phytoplankton X X X X X X 

Ice algae • X • • • X 

Detritus X X X X X X 

 5552 

 5553 

 5554 

 5555 

 5556 

 5557 

 5558 

 5559 

 5560 

 5561 
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Table D3: Standardised diet composition for each whale group in each model. Separate 5562 

compositions are provided for krill groups as certain krill groups were absent in some 5563 

models. Abbreviations are: MW = Minke whales; HW = Humpback whales; OBW = Other 5564 

baleen whales; SG = South Georgia; PB = Prydz Bay; RS = Ross Sea; AP = Antarctic 5565 

Peninsula; KP = Kerguelen Plateau; PE = Prince Edward Islands. 5566 

 MW HW OBW 

Demersal fish 0.029 0.055 0.003 

Pelagic_fish 0.128 0.165 0.003 

Cephalopods  0.047  

Salps 0.004 0.001 0.003 

Macrozooplankton 0.081 0.058 0.083 

Mesozooplankton 0.007 0.030 0.160 

SG    

Antarctic_krill 0.739 0.634 0.736 

Other_krill 0.013 0.011 0.013 

PB    

Antarctic_krill 0.479 0.411 0.477 

Other_krill 0.272 0.234 0.271 

RS    

Antarctic_krill 0.521 0.447 0.519 

Other_krill 0.231 0.198 0.230 

AP    

Antarctic_krill 0.663 0.569 0.663 

Other_krill 0.089 0.076 0.089 

KP    

Antarctic_krill 0.000 0.000 0.000 

Other_krill 0.752 0.645 0.749 

PE    

Antarctic_krill 0.000 0.000 0.000 

Other_krill 0.752 0.645 0.749 

 5567 

Table D4: Constants (a) and metabolic scaling exponents (b) used to calculate the average 5568 

baseline estimates of whale consumption, obtained from Savoca et al. (2021).  5569 

a b 
0.1 0.8 
0.42 0.67 
0.035 1 
1.66 0.559 
0.123 0.8 
0.17 0.773 
0.06 0.75 

 5570 
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Table D5: Overview of the values used to estimate the Q/B for each whale group. Average 5571 

body masses are taken from Greenspoon et al. (2023). Daily rations are from Savoca et al. 5572 

(2021), multiplied by 90 to estimate annual rations assuming a 90-day feeding period.  The 5573 

median Q/B for each group in the original published models is also shown. 5574 

Group Median 

Q/B 

from 

publish-

ed 

models  

Mean 

mass 

(kg) 

Baseline 

daily 

ration 

(kg) 

Baseline 

Q/B  

Lower 

daily 

ration 

(kg) 

Lower 

Q/B 

Median 

daily 

ration 

(kg) 

Median 

Q/B  

Upper 

daily 

ration 

(kg)  

Upper 

Q/B 

Minke 10.43 6,566 150.78 2.07 362 4.96 

 

 
 

685 9.39 1,085 

  

14.87 

Humpback 3.50 30,408 502.13 1.49 1,813 5.37 3,151 9.32 4,926 14.58 

Other 3.24 79163 1093.75 1.24 7,765.

50 

 

8.69 
 

12,048 13.60 17,057 

 

19.46 

 5575 

Table D6: Pedigree scheme used to identify confidence intervals for the biomass parameters 5576 

for each functional group. 5577 

Code Source Confidence 

interval  

(± %) 

1 Estimated by Ecopath 80 

2 From other model 80 

3 Guesstimate 80 

4 Approximate/indirect 

method 

50 

5 Local sample, low 

precision 

40 

6 Local sample, high 

precision 

10 

 5578 

 5579 

 5580 

 5581 

 5582 
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Table D7: Characteristics of the models. Values represent averages, with brackets indicating 5583 

the standard deviation. 5584 

 PB SG RS AP KP PE 

Production-

weighted 

mean EE of 

whale prey 

0.658 

(0.108) 

0.526 

(0.132) 

0.781 

(0.108) 

0.584 

(0.070) 

0.636 

(0.125) 

0.741 (0.108) 

Schoener’s 

dietary 

overlap 

0.554 

(0.060) 

0.642 

(0.075) 

0.573 

(0.048) 

0.250 

(0.042) 

0.717 

(0.067) 

0.458 (0.059)* 

*Based on setting whale biomass to an arbritrarily low value 5585 

 5586 

 5587 

 5588 

 5589 

 5590 

 5591 

 5592 

 5593 

 5594 

 5595 

 5596 

 5597 

 5598 

 5599 

 5600 

 5601 

 5602 

 5603 

 5604 

 5605 

 5606 
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Table D8: Average total baleen whale biomass (t/km2) across the balanced model ensemble 5607 

for each region, and total baleen whale catch biomass estimated from the 1000km buffer 5608 

around each model region and applied to the model’s spatial area. Also shown are the whale 5609 

consumption (Q) values estimated from these biomass values when combined with different 5610 

consumption per unit biomass (Q/B) values: Minimum values derived from prior studies 5611 

(used as the inputs for balancing the models); the lower estimates from Savoca et al. (2021); 5612 

the upper estimates from Savoca et al. (2021). 5613 

 PB SG RS AP KP PE 

Mean balanced 

total biomass 

0.133 0.288 0.013 0.173 0.026 NA 

Total catch 

biomass 

2.44 75.45 1.04 3.62 1.10 1.55 

Baseline Q/B 

with balanced 

biomass 

0.195 0.406 0.023 0.271 0.033 NA 

Baseline Q/B 

with catch 

biomass 

3.132 94.052 1.333 4.586 1.378 1.937 

Lower Savoca 

Q/B with 

balanced 

biomass 

1.130 2.496 0.110 1.486 0.224 NA 

Lower Savoca 

Q/B with catch 

biomass 

20.397 652.781 8.619 30.846 9.458 13.434 

Median savoca 

Q/B with 

balanced 

biomass 

1.776 3.908 0.173 2.331 0.351 NA 

Median savoca 

Q/B with catch 

biomass 

32.184 1022.304 13.612 48.482 14.831 21.040 

Upper Savoca 

Q/B with 

balanced 

biomass 

2.552 5.595 0.249 3.343 0.504 NA 

Upper Savoca 

Q/B with catch 

biomass 

46.362 1464.142 19.622 69.621 21.266 30.137 

 5614 
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Table D9: Conversion of average total whale Q into biomass at different reference points of 5615 

competitor biomass, using multiple estimates of whale Q/B. 5616 

Model Mean 

initial 

whale 

biomass 

Catch-

derived 

total 

whale 

biomass 

Remaining 

competitor 

biomass 

Total 

whale 

Q 

Whale 

biomass 

with 

baseline 

Q/B 

Whale 

biomass 

with 

lower 

Q/B 

Whale 

biomass 

with 

median 

Q/B 

Whale 

biomass 

with 

upper 

Q/B 

PB 0.133 2.44 99% 0.256 0.202 0.030 0.019 0.013 

   75% 2.087 1.649 0.246 0.156 0.109 

RS 0.013 1.04 99% 1.159 0.914 0.137 0.087 0.061 

   75% 3.652 2.880 0.431 0.274 0.191 

KP 0.026 1.10 99% 5.172 4.143 0.599 0.383 0.267 

   75% 28.095 22.506 3.256 2.078 1.450 

PE 0.000 1.55 99% 0.841 0.675 0.097 0.062 0.043 

   75% 5.043 4.049 0.582 0.372 0.260 

AP 0.173 3.62 99% 2.103 1.675 0.245 0.156 0.109 

   75% 70.255 55.956 8.177 5.213 3.636 

SG 0.288 75.45 99% 3.091 2.482 0.357 0.228 0.159 

   75% 25.943 20.832 2.994 1.912 1.335 

 5617 

Table D10: Primary production required to support the whale consumption (Q) values that 5618 

can be achieved by reducing total competitor biomass to either 50% or 10% of starting 5619 

values, as identified in Scenario 1. Values are averages across each model ensemble 5620 

(n=1000), with standard deviations in brackets. 5621 

 AP PB SG RS KP PE 

Mean starting 

primary 

production 

19,871.53 

(4,246.13) 

2,251.10 

(669.51) 

4,372.09 

(926.56) 

1,073.45 

(318.65) 

4,094.98 

(933.84) 

1,075.23 

(216.67) 

Mean 

primary 

production at 

75% 

competitor 

biomass 

19,931.07 

(4,240.89) 

2,258.79 

(669.52) 

4,563.84 

(974.81) 

1,075.19 

(318.55) 

4,110.01 

(935.06) 

1,081.85 

(217.45) 

Mean 

primary 

production at 

maximum 

whale Q 

19,931.07 

(4,240.89) 

2,633.83 

(716.51) 

28,931.76 

(9,626.08) 

1,183.00 

(332.04) 

4,110.00 

(935.06) 

1,241.15 

(267.18) 

 5622 

 5623 



242 

 

Table D11: Details of the relationship between whale consumption (Q) and the proportion of 5624 

extra primary production required to support this increase, for each model. 5625 

Model Max whale Q  Slope 

Kerguelen Plateau 21.266 0.000183 

Antarctic Peninsula  69.621 0.000046 

Prydz Bay 46.362 0.004013 

Ross Sea 19.622 0.005649 

Prince Edward 

Islands 

30.137 0.005264 

South Georgia 1464.142 0.000519 

 5626 

 5627 

 5628 


