
From Concept to Reality: QoS-Based RAN
Slicing in Next Generation O-RAN Networks

Amjed H. Mohammed†, Syed Tariq Shah∗, Yusuf Sambo†, and Muhammad Imran†
†James Watt School of Engineering, University of Glasgow, Glasgow, UK

Emails: {a.mohammed.3@research.gla.ac.uk, Yusuf.Sambo@glasgow.ac.uk, Muhammad.Imran@glasgow.ac.uk}
∗School of Computer Science & Electronic Engineering, University of Essex, Colchester, UK

Email: Syed.Shah@essex.ac.uk

Abstract—Service-oriented networks are gaining sig-
nificant attention recently, giving rise to concepts such as
network slicing within the research community. Network
slicing involves partitioning the network into distinct and
logically isolated segments, each customised to cater to
specific services or use cases. The concept of slicing
became more feasible with the emergence of the Open
Radio Access Network (O-RAN), which aims to reduce
RAN complexity by facilitating programmability and
employing an automated control system via the RAN
Intelligent Controller (RIC). This paper presents a near
real time application (xApp) that runs on the RIC,
designed to implement a Quality of Service (QoS)-based
dynamic RAN slicing module for real-world scenarios.
This slicing module assigns a downlink target throughput
to each slice. It then dynamically adjusts the share
of Physical Resource Blocks allocated to each slice,
ensuring efficient resource utilisation and meeting Service
Level Agreement requirements. The obtained results
indicate that the instantiated slices can readily meet their
designated target throughput in accordance with their
predetermined priority.

Index Terms—O-RAN, Network Slicing, Near-RT-RIC,
5G and SLA

I. INTRODUCTION

Network slicing offers a solution for provision-
ing specific types of services and addressing a wide
range of Quality of Service (QoS) requirements across
various sectors such as smart grids, the Internet of
Things (IoT), healthcare, and automotive. It involves
creating multiple virtual networks on a shared physical
infrastructure, categorising them based on attributes
[1] like performance (data rates, latency, mobility),
functionality (priority, policy control), and user types
(public safety, roamers, Multimedia Priority Service
(MPS) users), enabling tailored services for diverse
applications and user groups within the same net-
work infrastructure. The efficient achievement of these
attributes and prevention of possible violations are
crucial, necessitating mechanisms to meet the essen-
tial requirements of slices’ Service Level Agreements
(SLAs). Challenges of managing the scarce network

resources arise due to diverse service requirements and
the dynamic behaviour of the Radio Access Network
(RAN), including varying channel conditions and traf-
fic demands of mobile users, requiring an adaptive
resource provisioning scheme.

The Open Radio Access Network (O-RAN) has
emerged as a viable solution in recent years to facil-
itate the efficient openness, intelligence, disaggrega-
tion, programmability, and visualisation, which can be
flexibly configured to achieve various service require-
ments. This contrasts with the traditional monolithic
RAN, which comprises vendor-specific hardware with
embedded software components. That limits network
operators from integrating new components from dif-
ferent vendors, and coordinating between RAN nodes
for crucial joint control and optimisation of RAN
components [2].

The management and optimization of network func-
tions within the O-RAN architecture [3] have been
facilitated by leveraging open-closed loops enabled by
two types of logical controllers: Non Real-Time RIC
(Non-RT RIC), operating on a timeframe greater than
1 second, and Near Real-Time RIC (Near-RT RIC),
functioning within a 10 ms to 1-second timeframe.
These RICs serve as a platform for deploying RAN
optimization applications called rApps (for non-RT)
and xApps (for near-RT), with rApps offering policy
guidance to xApps, such as managing ML models. In
this architecture, the E2 interface plays a crucial role
as an open interface between the Near-RT RIC and
the E2 Node. The E2 Node encompasses eNBs in 4G
and O-RAN Distributed Units (O-DU), as well as O-
RAN Central Units (O-CU) in 5G. It facilitates the
configuration of E2 nodes based on policies established
by the xApps.

3GPP introduced the concept of network slicing in
Release 15 [1] to manage different service require-
ments effectively. Building on this foundation, network
slicing presents an opportunity for mobile operators to



Fig. 1. A schematic representation of the experimental O-RAN framework, highlighting the main components of the near-RT RIC, along
with the E2 Node, which is created by integrating the E2 Agent with srsLTE

generate additional revenue by offering tailored net-
works to application customers based on their specific
needs. For instance, Polese et al. [3] implemented
AI/ML xApps to manage RAN slicing and schedulers,
utilising the Open RAN Gym platform. In [4], FlexRIC
includes a slicing control xApp responsible for manag-
ing per-slice user scheduling and allocating inter-slice
resources. This module sets adapted share value for
each slice, ensuring efficient Physical Resource Blocks
(PRBs) utilisation among slices. The SD-RAN project
[5] introduced its slicing xApp, capable of assigning
intra-slice schedulers and static shares of time frame
rates for each created slice. Additionally, the OAIC
framework [6] incorporated the NexRAN slicing xApp
[7], enabling implementation on a single computing
machine, offering dynamic allocation policies like Bal-
anced Slice Throughput and Slice Throttling. These
initiatives collectively represent valuable resources for
the O-RAN research community, providing practical
insights into the O-RAN ecosystem, xApp design, and
implementation. While O-RAN research is still in its
early stages, the designed xApps serve as use cases to
validate the O-RAN architecture.

In this paper, we develop an xApp that can be
tailored for real-world scenarios, expanding beyond
exploratory purposes. In this scenario, the mobile op-
erator, acting as the Network Slice Provider (NSP),
has established an SLA with a Network Slice Cus-
tomer (NSC). This SLA requires continuously avail-
able downlink capacity to meet the customer require-
ments, such as emergency services that demand guar-
anteed QoS, represented by downlink throughput per
slice. Meanwhile, the NSP must ensure the efficient
usage of resources while avoiding SLA violations.
The xApp is validated on an experimental platform
and the results show that it efficiently meets the QoS
requirements, represented by the target throughput,

and ensures efficient usage of PRBs. The rest of this
paper is organised as follows: Section II discusses the
adopted system model; Section III presents the pro-
posed RAN slicing algorithm implemented in the O-
RAN xApp; Section IV is dedicated to result analysis;
and Section V provides the conclusion.

II. SYSTEM MODEL

The system model presented herein is anchored on
the Open AI Cellular (OAIC) framework [8]. Within
this framework, the OAIC has integrated the RAN
slicing xApp (NexRAN xApp) into its testbed, as
mentioned earlier in Section I. Our model extends
the functionality of this xApp to implement the pro-
posed dynamic RAN slicing module in the downlink
direction. All framework components are deployed on
a single computing machine operating with Ubuntu
20.04 LTS. As illustrated in Fig. 1, the system design
comprises two primary components:

A. Near-RT RIC

Based on the O-RAN Software Community (OSC)1

near-RT RIC compliant with the E-release, the RIC
is developed on Kubernetes, an open-source system
for automating the deployment and management of
containerised applications across various hosts. In this
setup, Pods serve as the deployment units, encapsulat-
ing the RIC components that support xApp function-
ality. These components include the Routing Manager,
Subscription Manager, Shared Data Layer (SDL), E2
Manager, and the Radio-Network Information Base
(R-NIB) database. The mentioned components are
responsible for a range of functions such as inter-
nal message routing, subscription management, data
storage, registration and monitoring of E2 nodes, and
the maintenance and monitoring of information like

1https://wiki.o-ran-sc.org/display/ORAN



the list of connected E2 nodes and User Equipment
(UEs) within the R-NIB database. Moreover, the RIC
architecture incorporates an internal messaging infras-
tructure supported by the RMR library.

• Slicing xApp: E2 nodes reveal their supported
RAN functions to the Near-RT RIC via integrated
Service Models (SMs), including report, insert,
control, and policy services, with the ”query”
service as a recent addition [9]. These SMs,
transmitted via E2 application protocol (E2AP)
messages, are vital for effective RAN analysis
and control. The slicing xApp is based on E2AP-
V1.0, E2SM-KPM v1.0, and the RMR library
from OSC, implements an extended control SM
(Slicing-SM). Additionally, it is equipped with
a RESTful Northbound Interface API, catering
to multiple tasks such as the creation, binding,
updating, and deletion of slices. The E2SM-KPM
facilitates the reception of periodic E2 indication
messages from the E2 Node through the report
service, encompassing downlink and uplink mea-
surements for each slice and UE within each
report timeframe, including the amount of trans-
mitted traffic data and PRB usage, among others.
We have expanded this SM to include a new
metric: the count of allocated subframes for each
report timeframe. Originating from [7], Slicing-
SM features a control service that interprets in-
structions from the API northbound interface and
dynamically adjusts slice allocation shares follow-
ing the proposed slicing policy.

B. E2 Node

The platform implements 4G RAN using srsLTE
with an integrated E2 agent, establishing an E2 node.
Virtual radios utilise the ZeroMQ library, and the
system connects to a 4G core network. The E2 agent
manages E2AP callback messages and is equipped with
KPM-SM and Slicing-SM, which enable interaction
with available RAN functions and the creation of KPM
indication messages to be sent to the xApp.

• Extension of Packet Scheduler: The Medium Ac-
cess Control (MAC) layer of E2 Node hosts a
slice-aware scheduler, which includes an extended
class for interfacing with the E2 agent and re-
ceiving real-time updates of slice configurations.
Upon receiving the xApp control message via
Slicing-SM, containing the share values for each
slice indicating the percentage of subframe per
allocation round, the class determines the alloca-
tion round by computing the Greatest Common
Divisor (GCD) of the slices’ shares. For instance,
with two slices having shares of (60:40), the

GCD(60:40) = 20, which leads to an efficient dis-
tribution across a round of 5 subframes, adjusting
the shares to 3:2. Subsequently, the extended class
interacts with the E2 Node to retrieve the bounded
UE Radio Network Temporary Identifier (RNTI)
of each slice. Finally, the class report the list of
RNTIs to be serviced in each subframe to the
downlink packet scheduler.

• Downlink Packet Scheduler: The E2 Node MAC
scheduler adopts the Round Robin (RR) scheduler
algorithm to allocate Physical Resource Blocks
(PRBs) to the UEs in each Transmission Time In-
terval (TTI), which also represents one subframe
duration. During each TTI, the scheduler esti-
mates the number of Physical Resource Groups
(PRGs) required to be allocated to each user based
on factors such as available bandwidth, signal
power, Modulation Coding Scheme (MCS), and
Transport Block Size (TBS) [10]. By enabling
RAN slicing, the scheduler determines which UEs
to schedule in each TTI based on the reported
Radio Network Temporary Identifiers (RNTIs)
from the extended slicing class.

III. THE PROPOSED QOS-BASED SLICING POLICY

Our proposed slicing policy aims to allocate target
throughput to all slices except for the General slice,
which is akin to a primary bank account for radio
resources, facilitating borrowing or lending resources,
among other slices. During the slice creation process,
each slice is identified by its name along with the
specified target throughput, both of which are trans-
mitted via the slicing xApp’s northbound interface.
This target throughput signifies the maximum data
transfer per second designated for the slice. The xApp
is responsible for ensuring an adequate supply of
PRBs to fulfil this target whenever necessary. When
a slice necessitates additional PRBs to achieve its
target throughput, these resources are reallocated from
the General slice. In contrast, if the demand within
a slice falls short of its target throughput, the xApp
evaluates the availability of free (unscheduled) PRBs
and, if available, reallocates them to the General slice
to enhance its capacity.

Due to a limited number of PRBs within the RAN,
achieving targeted throughput for all slices may pose
challenges. The overall capacity of the radio cell is
finite, imposing constraints on the sum rate. While an
NSP can allocate target throughputs to slices based
on an understanding of cell capacity, fluctuations in
channel conditions lead to variable spectral efficiency
of the PRBs, which lead to variable cell sum rates
over time, introducing uncertainty into this allocation



process. To tackle these challenges, we propose an
adaptive solution, which is a flexible strategy that
prioritises the distribution of required PRBs among
slices. This approach involves assigning a percentage
share of PRBs to each slice, customised to achieve the
target throughput according to priority classification
when slices compete for PRBs.

A. Slice Handling Algorithm
As the process of donating PRBs to the General

slice has priority over the borrowing process. Upon
receiving the KPM report that containing information
about the created slices, denoted as S = {S1, . . . , SI},
i represents the index of each created slice in the
E2 Node, where i ranges from 1 to I , the xApp is
triggered to categorize these slices into three distinct
sets based on their current reported throughput (T i

cur)
and the percentage of their free PRBs (Pi

free), which
can be obtained from (6) in Section B. The first set
includes slices that have exceeded their target through-
put (T i

tar) and donate PRBs to the General slice (Sg)
so they can meet their target, this set is denoted by
Sh = {S1h, . . . ,SJh }, j represents the index of each
slice that has been added to this set, where j ranges
from 1 to J . The second set comprises slices that did
not exceed the target throughput and possess more than
10% of their total allocated PRBs (Pi

total) as free. This
10% margin contributes to preventing throttling in case
more traffic demand is requested during the next report
time frame, this set also donates PRBs to Sg , and it
is denoted by Sf = {S1f , . . . ,SNf }, n represents the
index of each slice that has been added to this set,
where n ranges from 1 to N . The third set includes
slices that have free PRBs less than 10%, they borrow
PRBs from Sg or other slices based on their priority
values. This set is denoted by Sl = {S1l , . . . ,SMl }, m
represents the index of each slice that has been added
to this set, where m ranges from 1 to M . Algorithm
1 describes the slice categorization process.

B. Computation of Slice Share Values
After slice categorisation, the next step involves de-

riving updated share values for each network slice and
communicating them to the E2 Node via the Slicing-
SM. These messages encapsulate the slice names and
their corresponding adjusted share values.

In our adapted model, PRB allocation is subframe-
based, with each subframe entirely allocated to a single
slice, and each slice is assigned a percentage share
value. The E2 Node establishes an allocation round
based on these shared values, as described in Section
II. This round is defined by the number of subframes,
where the duration of the round is equal to the sum
of these subframes, each lasting 1 ms. Consequently,

Algorithm 1 Slice Classification Algorithm
Input: Parameters of Si (T i

tar, T i
cur, Pi

free, Pi
total)

Output: Sh, Sf , Sl
Initialization:

1: Initialize empty sets Sh, Sf , Sl
Loop Process: {Iterate over slices}

2: for i = 1 to I do
3: if T i

tar > T i
cur then

4: Add Si to Sh
5: end if
6: if T i

cur < T i
tar and (Pi

free/Pi
total) > 10% then

7: Add Si to Sf
8: end if
9: if T i

cur < T i
tar and (Pi

free/Pi
total) < 10% then

10: Add Si to Sl
11: end if
12: end for

slices receive a proportion of subframes correspond-
ing to their allocated share values, representing their
subframes allocation within the allocation round.

It’s important to maintain the total shares of all
slices to be 100 at all times, distributed among the
established slices. This constant total share is essential
for several reasons. Firstly, it relates to the allocation
round, where each slice receives a share of subframes.
The slices will sequentially consume their allocated
share of subframes within this round. With unlimited
total share, slices could potentially receive an unlimited
share value. This scenario would lead to a proportional
increase in the number of subframes per allocation
round, potentially prolonging the allocation round du-
ration and introducing higher latency as slices wait
longer to receive their share of subframes. For instance,
if two slices are assigned shares of 511 each, as there
is no GCD between them, the allocation round will
extend to 1022, necessitating a wait of 511 ms for each
slice to be served. On the other hand, an excessively
small total share could result in fewer subframes being
distributed among slices, potentially undermining pre-
cise throughput control due to the limited amount of
shared values. Moreover, maintaining a constant total
share simplifies monitoring, as percentage values are
more straightforward to evaluate.

Upon segregating the slices into distinct sets, the
xApp logic iterates over the created sets, starting with
Sh, followed by Sf , and concluding with Sl. This
sequencing is deliberate so that the algorithm priori-
tizes the distribution of resources before any borrowing
occurs. The iteration over the Sh focuses on adjusting
the share values by introducing a Share Factor (SF)
mechanism while ensuring that the minimum share



is 5% to reserve resources for accommodating new
UEs. The reduced resources from the adjusted shares
are subsequently allocated to the Sg . In this context,
the SF j for each slice j of this set is computed.
Subsequently, the new share value (Vj

new) is derived
based on the current share (Vj

cur) :

SF j =
T j
tar − T j

cur

T j
cur

, (1)

Vj
new = max(Vj

cur + Vj
cur × SF

j , 5). (2)

Then, new share value (Vg
new) for Sg is calculated

based on changing of the share value of slice j, denoted
as (Dj):

Dj = Vj
new − Vj

cur, (3)

Vg
new = Vg

cur −Dj . (4)

The iteration over the Sf aims to optimize PRB
allocation when it exceeds the slice’s requirements by
calculating the SFn for each slice n based on the free
available PRBs (Pn

free).

Pn
Total =

Vn
cur

Vtotal
× 2×U × Pava, (5)

Pn
free = Pn

total − Pn
used, (6)

SFn = −
Pn
free

Pn
total

, (7)

where Pn
total represents the total number of PRBs

allocated to slice n during the report time frame based
on its allocated share value. Vtotal represents the sum
of shares of all slices

∑I
i=1 Vi = 100 . U denotes the

number of subframes per report time frame, while Pava

signifies the number of available PRBs in each LTE
slot. The value ’2’ indicates that there are two slots per
subframe in the LTE configuration. Pn

used represents
the number of PRBs used by slice n. Finally, the new
share of slice n is calculated as in (2), while the change
in share value Dn and the share value for the Sg are
calculated as outlined in (3) and (4), respectively.

The iteration over Sl in Algorithm 2 addresses
allocating PRBs to meet a slice’s throughput demand
when it’s below the assigned target. This is crucial
when slices don’t exceed target throughput and con-
sume most allocated PRBs (less than 10% are free).
Determining throughput demand and allocating PRBs
is challenging without traffic prediction. In such cases,
the algorithm ensures efficient resource utilization by
providing a tailored PRBs share to meet only required
throughput. The algorithm adjusts slice share periodi-
cally by borrowing 1% from Sg while monitoring PRB
utilization and throughput. If no shares are available in
Sg , it iterates over other slices, starting from the least

Algorithm 2 Iteration over the Sl
Input: Sl (Vm

cur, Vg
cur, slicePriority)

Output: Vm
new

1: for m = 1 to M do
2: if Vg

cur > 5% then
3: Vm

new ← Vm
cur + 1

4: Vg
new ← Vg

cur − 1
5: else if Vg

cur = 5% then
6: Arrange the slices in ascending order of their

priority
7: for i = 1 to I do
8: if Sm ̸= Si and Vi

cur > 5% then
9: Vm

new ← Vm
cur + 1

10: Vi
cur ← Vi

cur − 1
11: end if
12: end for
13: end if
14: end for

priority slice and moving up, ensuring prioritization
based on slice priority levels.

IV. RESULT

The framework setup includes one E2 Node, two
UEs, and an EPC core network. Each UE is associated
with a particular slice. The E2 Node operates on a 10
MHz of spectrum (ie, 50 PRBs). Two slices have been
established. The first slice, named Health, is tailored
for an NSC that requires a guaranteed amount of
throughput at all times whenever it is required, fitting
its critical requirements. This is particularly vital in the
health sector, which often includes emergency services
that need to be prioritized on the network. The second
slice, named General as previousely denoted by Sg , is
designed to cover general services that do not require
such prioritization, offering a standard level of service.
The Health slice is targeted to achieve a 10 Mbps
throughput. As the trigger for the KPM indication
message is set to occur every 5.12 seconds, the time
steps are multiples of this interval. The downlink data
is generated using Iperf. For the Sg , Iperf is always run
without a set throughput limit. However, for the Health
slice, Iperf is run with various maximum throughput
limits to test the slice with different traffic profiles.

Initially, the Iperf test of the Health slice is set to be
unlimited. Fig. 2 illustrates the slicing policy process.
When the xApp detects traffic exceeding 10 Mbps,
it enforces a reduction by decreasing its share value,
appending the slice to the Sh, and applying its rules.
The xApp continues to monitor the traffic, and once
it falls below 10 Mbps, it reassigns the slice to the
Sl (as there are no free PRBs due to the unlimited
downlink data), increases its share by 1%, and repeats



Fig. 2. Two slices with dynamic share allocation

this process as needed. During this process, the share
of the Sg varies inversely. Whenever the Health slice
requires resources, they are taken from the Sg , and
vice versa. Next, when the Iperf test of the Health
slice is stopped in time step 125, its share drops down
to the minimum, specifically 5%. In this case, the
xApp binds the slice to the Sf , as the allocation of
downlink PRBs is almost zero due to the absence
of data to be sent, resulting in a high availability of
free PRBs. The rules of the Sf are then applied to
reduce the share of the Health slice, while the Sg

receives a larger share of resources, thereby increasing
its throughput accordingly. This procedure is crucial
to prevent wastage of resources without violating the
SLA. Later, at approximately the same time, the Iperf
test of the Health slice is set to 5 Mbps, which is less
than the target throughput. As the slice consumes all of
its available resources to reach the required throughput,
it is bound to the Sl. The share continuously increases
by 1% as the xApp monitors the throughput. Whenever
there are free PRBs available, indicating that the slice
is receiving more share than required, the xApp will
bind it to the Sf to reduce its share according to the
availability of free PRBs, and so on.

The period between time steps 160 and 180 wit-
nesses a throughput increase beyond the set 5 Mbps
limit, is due to the Iperf test sometimes needing time to
settle to its determined throughput limit. This variation
in traffic is actually beneficial for the test, as it allows
for consideration of different traffic patterns. During
this period, we can observe that the share of resources
allocated to the slice is increasing as it tries to reach
its desired throughput since it has not yet reached
its target throughput. Overall, the results demonstrate
that the SLA is consistently met, as the slice receives
all the required PRBs limited by its target throughput

Fig. 3. Three slices with different priority

whenever it needs them. Additionally, when the slice
consumes less traffic than the target value, its share is
reduced accordingly.

Additionally, Fig. 3 illustrates the behaviour of the
slicing policy when there are no available resources in
the Sg . A new slice was created and added through
the xApp northbound interface (NSC2) with target
throughput equal to 7 Mbps and priority 2, while
Health slice was set with target throughput 9 Mbps and
priority 1. The Iperf of both NSC2 and Sg were set
with no bandwidth boundary, allowing NSC2 to obtain
its required share to achieve its target throughput. At
the time, in step 50, the Iperf of Health slice is run
with unlimited bandwidth. As observed, it initially
starts consuming the share of the Sg gradually without
affecting the share of NSC2. Until time step 85,
when the share of Sg reaches its minimum, it starts
consuming the share of the less priority slice (NSC2)
until it reaches its target throughput in time step 120.

The observed fluctuations in traffic, as depicted in
Fig. 2 and Fig. 3, result from the unreliable pro-
cessing of base station data, which lacks temporal
constraints or synchronization. This issue leads to a
degradation in system throughput, especially noticeable
when accommodating additional users, as processing
times increase, resulting in a decrease in the number of
processed subframes per report time frame. Conversely,
Fig. 4 illustrates variations in the number of processed
subframes per report time frame, influenced by the
speed of handling the MAC packet scheduler when two
slices are created. These variations cause fluctuations
in cell-level traffic. The optimal number of subframes
during the report time frame is determined to be 5120,
as each subframe ideally requires 1 ms for processing
within a report time frame of 5120 ms.



Fig. 4. The evaluation of base station performance reveals variations
in the processing time of subframes over time

V. CONCLUSION

We have proposed a network slicing algorithm
within the O-RAN ecosystem and then validated
it experimentally, demonstrating its effectiveness in
achieving the SLA objectives while optimizing re-
source utilisation. By dynamically adjusting resource
allocation based on real-time traffic conditions and
target throughput, the slicing policy ensures efficient
utilisation of PRBs and prevents violations of SLAs.
The closed control loop facilitated by the E2 interface
enables seamless integration of the xApp slicing logic,
allowing for dynamic control over throughput and
PRBs allocation. On another hand, implementing the
policy with a 5G E2 Node is potentially feasible, as
the share could be mapped to the slicing-enabled MAC
layer of 5G network.

REFERENCES

[1] 3GPP, “Technical specification group services and sys-
tem aspects; service requirements for the 5g system;
stage 1 (release 15),” Technical Specification (TS) 22.261,
https://www.3gpp.org/specifications.

[2] M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia,
“Understanding O-RAN: Architecture, interfaces, algorithms,
security, and research challenges,” IEEE Communications Sur-
veys & Tutorials, vol. 25, no. 2, pp. 1376–1411, 2023.

[3] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia,
“ColO-RAN: Developing machine learning-based xApps for
open RAN closed-loop control on programmable experimental
platforms,” IEEE Transactions on Mobile Computing, 2022.

[4] R. Schmidt, M. Irazabal, and N. Nikaein, “FlexRIC: an SDK
for next-generation SD-RANs,” in Proceedings of the 17th In-
ternational Conference on emerging Networking EXperiments
and Technologies, 2021, pp. 411–425.

[5] O. Sunay, S. Ansari, S. Condon, J. Halterman, W. Kim,
R. Milkey, G. Parulkar, L. Peterson, A. Rastegarnia, and
T. Vachuska, “ONF’s software-defined RAN platform consis-
tent with the O-RAN architecture,” OpenNetworkingFounda-
tion, Whitepaper, August 2020.

[6] P. S. Upadhyaya, A. S. Abdalla, V. Marojevic, J. H. Reed,
and V. K. Shah, “Prototyping next-generation O-RAN research
testbeds with SDRs,” arXiv preprint arXiv:2205.13178, 2022.

[7] D. Johnson, D. Maas, and J. Van Der Merwe, “NexRAN:
Closed-loop RAN slicing in POWDER-A top-to-bottom open-
source open-RAN use case,” in Proceedings of the 15th ACM
Workshop on Wireless Network Testbeds, Experimental evalu-
ation & CHaracterization, 2022, pp. 17–23.

[8] OpenAI Cellular, “OpenAI Cellular Documentation,”
https://openaicellular.github.io/oaic, accessed: March 14,
2024.

[9] O-RAN Working Group 3, “O-RAN E2 Service Model
(E2SM), RAN Control 3.0 ,” O-RAN.WG3.E2SM-RC-R003-
v03.00, Technical Specification, June 2023.

[10] A. Maghrabi, W. Hardjawana, P. L. Yeoh, and B. Vucetic, “An
Experimental Inter-Slice RAN Controller for 4G/5G Cellular
Networks,” in 2021 International Symposium on Networks,
Computers and Communications (ISNCC). IEEE, 2021, pp.
1–6.


