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1 The Delta Method: An Alternative to Bootstrapping

1.1 Applying the Method

One clear alternative method to our bootstrapping techniques discussed in the main

manuscript is to create a prediction and confidence intervals (or standard errors) us-

ing the delta method approximation, which can be used for a nonlinear combination

of regression estimates. In other words, it will provide both an expectation (the ex-

pected value of σ̂2
t , conditional on the estimates from the regression model, as well as

whatever we set the value of our regressors to in the volatility equation) as well as an

uncertainty measure around this.

Starting with our vector of estimated parameters from our GARCH model, γ̂γγ, our

goal is transformation g(γ̂γγ)—the expected conditional error variance using our sim-

ulation approach—which has a corresponding estimated variance covariance matrix

V̂ar[g(γ̂γγ)]. The latter is a function of both the estimated variance covariance matrix of

γ̂γγ as well as the estimated partial derivatives with respect to the parameters in g(γ̂γγ)

(Greene 2018). From this, upper and lower confidence intervals can be created using√
V̂ar[g(γ̂γγ)] along with the appropriate quantile of the t-distribution.

In terms of actually using the delta method step-by-step, the process is quite similar

to the bootstrap techniques outlined in the main paper, although a single calculation

is being performed at each simulation time rather than a set of calculations across all

bootstraps that are then averaged over. The process consists of the following steps:

1. Estimate the ARCH-GARCH model.

2. Generate the the expected conditional error variance. Since ARCH-GARCH models

often include the lagged variance, we need a stable estimate of that variance be-

fore the counterfactual shock as well as the changes to that variance after the

shock.

• Set the covariates to the values of interest.
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• Conduct a “burn in” process to estimate the conditional error variance in the first

period m = 1. Initialize a draw of E[σ̃2], then use this value to update the

prediction at the next time point, and so on, across a sufficient number (our

experience was 30) or so burn in periods to get a stable prediction that does

not change from period to period. This final stable prediction becomes our

first scenario prediction, E[σ̃2
1], for time m = 1.

• Simulate the conditional error variance in the remainder of the pre-shock period.

Use the delta method to create expected values (and record the confidence

intervals) up until the period just before a counterfactual shock, m= 1,2, · · · ,m=

s−1.

• Simulate the impact of the covariate shock on the conditional error variance. At m=

s, implement a counterfactual change in one of the covariates and calculate

E[σ̃2
m=s] and its confidence intervals.

• Simulate the future evolution on the conditional error variance. Continue simu-

lating the future evolution until the final simulation time M.

3. Graph the predictions.

One issue with using the delta method is that while the expected value of the het-

eroskedastic conditional variance will be strictly positive, the associated confidence

intervals might not be, which of course is nonsensical since error variances must be

positive. A similar issue arose for the bootstrapping techniques as well when using

the standard error approach. On the other hand, the delta method is far faster than the

bootstrapping techniques that require estimation of B or B+1 (maximum entropy and

residual, respectively) ARCH-GARCH models; in our experience it takes only slightly

longer than the parametric bootstrap, as the delta method must be used recursively

(e.g., after getting a burn-in estimate of E[σ̃2
1], this is needed because it enters into the

equation as the GARCH term to estimate E[σ̃2
2], and so on).
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1.2 Results Using the Delta Method

Below we replicate our results from the main manuscript, now using the delta method

instead of bootstrapping. Figure SM.1 replicates Figure 2 in the main manuscript, and

shows a positive +4 increase in trade for a single period, under the different UK prime

ministers. The left column shows the expected conditional error variance in its original

metric, while the right column rescales the expected conditional error variance as a

percentage of the pre-shock variance. Figure SM.2 is similar, but shows a negative

decline in trade of the same magnitude. The substantive conclusions using the delta

method are exactly the same as the bootstrapping techniques discussed in the main

manuscript; while volatility increases (decreases) in response to a positive (negative)

trade shock, these changes are not statistically significant and persist only temporarily.
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Figure SM. 1: Replication of +4 trade shock using delta method (from Hellwig example,
Figure 2 in main manuscript)

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
delta method (unscaled), delta method (rescaled). Black line shows expected conditional error variance,
with 95% confidence intervals shown.
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Figure SM. 2: Replication of -4 trade shock using delta method (from Hellwig example,
Figure 2 in main manuscript)

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
delta method (unscaled), delta method (rescaled). Black line shows expected conditional error variance,
with 95% confidence intervals shown.
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2 Comparison of Bootstrapping Techniques

In this section we further compare some of the features of the different bootstrapping

techniques described in the main paper.

2.1 General Considerations

• The parametric bootstrap takes far less time to create and simulate predictions

than the other two techniques since the latter is creating B synthetic replicates of

the dependent variable, while the former is creating posterior draws of param-

eters, given the (single) GARCH model estimated. An example of the creation

of several synthetic series for the dependent variable in Hellwig’s example—UK

government support—are shown in Figure SM.3, for the residual bootstrap (Fig-

ure SM.3a) and maximum entropy bootstrap (Figure SM.3b). There are of course

no synthetic series created with the parametric bootstrap. The original series is

shown in blue, while synthetic replicates are in light gray.

-20
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40

1960m1 1965m1 1970m1 1975m1 1980m1 1985m1
timevar

(a) Residual bootstrap

-10

0

10

20

30

0 100 200 300
time

(b) Maximum entropy bootstrap

Figure SM. 3: Synthetic UK government support series created through the bootstrap-
ping techniques

Note: Original series shown in blue, replicates in gray.

• GARCH models are notorious for not converging. Therefore, while we only

needed to estimate a single model for the parametric bootstrap draws, both the
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residual and maximum entropy bootstrapping techniques involve estimating B

individual GARCH models to obtain B parameter estimates. Not only is such

a process time-intensive, but estimates do not always converge. Our solution

was to simply create enough bootstrapped series until we obtained the desired

number of B estimates (we set B = 1000).

• While the simulation figures did not differ drastically across techniques, we also

examined the bootstrapped parameter estimates from our substantive examples

to see whether they differed across our bootstrapping methods. Of course, this is

only an applied example; below we investigate differences in performances more

systematically.

– In Figure SM.4 we show the distribution of bootstrapped estimates of the

GARCH parameter from the Schneider and Troeger example. On this figure

we overlay the original GARCH estimate (solid black line) and 95% confi-

dence intervals (dashed lines). While both the parametric and maximum en-

tropy bootstrap distributions are centered on the original estimate of around

0.7, the residual based technique appears to be consistently underestimat-

ing the magnitude of the GARCH parameter. Moreover, the distributions

are much more widely dispersed than the other two techniques. If any-

thing, the parametric and maximum entropy techniques appear to have a

very small—perhaps too small—distribution around the original estimate.

– In Figure SM.5 we present the distributions for the FTSE parameter, and

in Figure SM.6 we show the distributions for the Palestinian-Israeli conflict

severity coefficient. Once again the residual bootstrap appears to have at-

tenuated parameters, on average, although the overall variance of the coef-

ficients is similar to that of the parametric bootstrap. Here it is also clear that

the maximum entropy technique is probably far too confident; its parameter

distributions in both figures are extremely concentrated, which would likely

lead to confidence intervals that are too small.
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Figure SM. 4: Comparison of bootstrapping techniques, GARCH parameter from
Schneider and Troeger’s example

Note: Original estimated parameter shown (black solid vertical line) along with associated 95% confi-
dence intervals (black dashed vertical lines).
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Figure SM. 5: Comparison of bootstrapping techniques, FTSE parameter from Schnei-
der and Troeger’s example

Note: Original estimated parameter shown (black solid vertical line) along with associated 95% confi-
dence intervals (black dashed vertical lines).
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Figure SM. 6: Comparison of bootstrapping techniques, Palestinian-Israeli conflict
severity parameter from Schneider and Troeger’s example

Note: Original estimated parameter shown (black solid vertical line) along with associated 95% confi-
dence intervals (black dashed vertical lines).

2.2 Monte Carlo Evidence

In order to create a more general set of suggestions on which bootstrapping method

might be preferred for most applications, we also created a series of Monte Carlo ex-

periments, using the following data-generating process (DGP):

yt = β0 +φyt−1 +βxxt +βzzt +
√

σ2νt (1)

i.e., an autoregressive process with two regressors and, since
√

σ2νt = εt , a GARCH(1,1)

process given as:

σ
2
t = ω1(ν

2
t−1σ

2
t−1)+ασ

2
t−1 + exp(β0 +βxxt +βzzt) (2)

where the GARCH(1,1) process itself is also a function of the same regressors in the

mean equation. Across each simulation we consider the following:

• ω1 = 0.1 (the ARCH(1) term)
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• α = 0.5 (the GARCH(1) term)

• xt ∼ N(0,5), where βx = 0.5

• zt ∼ B(1,0.5), where βz =−1

• β0 = 0.5, the constant appearing in both the conditional mean and conditional

variance equation

• φ = 0.25, the autoregressive term in the equation for yt

We then consider the following four scenarios, which vary both the number of time

points as well as the type of error process under consideration:

1. T = 250, and νt ∼ N(0,1) (Experiment I)

2. T = 1000, and νt ∼ N(0,1) (Experiment II)

3. T = 250, and νt are random draws from a Student’s t-distribution with two de-

grees of freedom (Experiment III)

4. T = 1000, and νt are random draws from a Student’s t-distribution with two de-

grees of freedom (Experiment IV)

The latter two scenarios are designed to evaluate the performance of the parametric

bootstrap exactly when we fail to meet the assumption that residuals are normally dis-

tributed. It is not a priori clear how this will affect the other bootstrapping techniques.

Moreover, by construction all scenarios have time-varying heteroskedasticity in the

residuals since εt =
√

σ2νt .

The processes below are identical for each of the scenarios and consists of first doing

the following:

1. Generate M = 500 series yt and σ2
t using the DGP above.

2. Estimate a GARCH(1,1) model using the same specification as shown in Equa-

tions 1 and 2 on each series m. Store these estimated parameters.

10



3. Across each m, create an expected σ̂2
t value using the estimated parameters from

Step 2, setting zt = 1,xt = 1, assuming no ARCH effects, and using a 100-period

burn-in to get a stable expected value. Store this value.

4. Calculate and save the following values from the M σ̂2
t values created in Step

3: median, standard deviation, and upper and lower 95 percentiles. We refer to

these values as truth, since they represent summary measures of the 500 draws

from the underlying DGP. In other words, we will compare all of the bootstrap-

ping predictions to these values.1

5. Perform the three bootstrapping procedures. For each procedure, do the follow-

ing for each of the original m series created back in Step 1:

(a) Create B = 500 bootstrap replications/parameters. Thus, each m will go on

to generate 500 bootstrapped values.

(b) Create expected σ̂2
t for b bootstraps, using the same values from Step 3,

and store the following values: median, standard deviation, and upper and

lower 95 percentiles.

To summarize, our approach compares the expected conditional variance from 500

draws from the underlying DGP (our “truth” case) to each of our three bootstrapping

techniques. Each of the bootstrapping techniques consists of 500 bootstraps for each of

the (original 500) series.2

We also assess the performance using the delta method to calculate both the esti-

mate value of σ̂2
t as well as the corresponding standard error and 95 percent confidence

intervals. The procedure for this is largely the same as above, although there are no

bootstrap replicates needed, just a delta method approximation after estimating the

GARCH model.
1Unlike standard Monte Carlo analyses where we might know the parameter value to assess (e.g.,

compare estimators A and B to true fixed parameter value β), here we have a conditional expected value,
which depends on the GARCH component. Thus, by averaging over M = 500 simulations we see both
the “on average” value of conditional variance as well as—perhaps even more importantly—the spread
of uncertainty around it. This uncertainty is what we want to avoid over- or under-predicting using our
bootstrapping techniques.

2The 500 bootstrapped GARCH models did not always converge, especially in Scenarios 3 and 4.
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As a preliminary examination, we show box plots of each technique from Experi-

ment I relative to the actual prediction in Figure SM. 7 for each quantity of interest (the

median expected value, standard deviation, upper and lower 95% confidence inter-

vals).3 For instance the vertical line in Figure SM. 7a shows that the median expected

value of σ̂2
t across the 500 Monte Carlo simulations was a little less than two. Each of

the box plots shows the distribution of median expected values across the 500 Monte

Carlo simulations, where (for the bootstrapping techniques) 500 bootstraps were used

to construct the median expected value (the delta method just provided the expected

value for each of the 500 Monte Carlo simulations. The delta method and paramet-

ric bootstrap also have median predictions centered around two, in contrast to the

residual bootstrap (which appears to underpredict) and maximum entropy (overpre-

diction). However, the residual bootstrap appears to have smaller variation across the

500 simulations, which is also preferable.

Figure SM.7b depicts the standard deviation around the original 500 GARCH me-

dian expected values from the data generating process. Thus, each of our bootstrap-

ping techniques should—ideally—have a similar standard deviation each time we run

a GARCH model and take 500 bootstraps.4 Across the four techniques, the residual

bootstrap appears to have the standard deviation that is closest to the correct value,

although the other two bootstrapping techniques are close (though have larger vari-

ability). In contrast, the delta method appears to systematically underestimate the true

standard deviation. Relatedly, in Figures SM.7c and SM.7d we show the upper and

lower 95 percent confidence intervals. The residual bootstrap, followed by the para-

metric, appear to be the best performers, again having confidence intervals that are

close the the true 95% confidence intervals from the data generating process. This

means that these in applied examples these techniques are likely to better reflect the

correct amount of uncertainty when making predictions.

3Our simulations sometimes resulted in extremely large values; we omit these for clarity from the
box plots although they are included in the RMSE and R(Med)SE calculations in Table SM. 1 below.

4Of course, the delta method is not bootstrapping but instead approximating the standard error,
which is shown here.
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Figure SM. 7: Experiment I: T = 250, and νt ∼ N(0,1)

Note: Vertical lines show the actual 500 calculated median expected values, standard deviations, upper
and lower 95% confidence intervals, from the underlying data-generating process. Each boxplot shows
the distribution of median expected values, standard deviations, upper and lower 95% confidence inter-
vals, where each observation was from constructed one draw (and then bootstrapping/delta method)
of the underlying data-generating process. Extreme values omitted for clarity.
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In Figure SM.8 we show the same box plots, but for the second experiment, where

we increase T to 1000. In this scenario, the best performer in terms of median expected

values appears to be the parametric bootstrap and delta method, although the residual

bootstrap has smaller variance in standard errors. Upper and lower confidence inter-

vals are perhaps most correctly estimated by the parametric bootstrap, although the

residual bootstrap looks like the next best performer.
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Note: Vertical line is calculated actual median prediction. Extreme values omitted for clarity.

Dist. of 500 Bootstrap Predicted Median Expected Values

Parametric Residual Maximum Entropy Delta

(a) Predicted Values
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Note: Vertical line is calculated actual standard deviation. Extreme values omitted for clarity.
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(b) Standard Deviation
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Note: Vertical line is calculated actual upper 95% CI. Extreme values omitted for clarity.
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Figure SM. 8: Experiment II: T = 1000, and νt ∼ N(0,1)

Note: Vertical lines show the actual 500 calculated median expected values, standard deviations, upper
and lower 95% confidence intervals, from the underlying data-generating process. Each boxplot shows
the distribution of median expected values, standard deviations, upper and lower 95% confidence inter-
vals, where each observation was from constructed one draw (and then bootstrapping/delta method)
of the underlying data-generating process. Extreme values omitted for clarity.

In Figures SM.9 (T = 250) and SM.10 (T = 1000) we change the distribution of νt—

part of the error component—from a standard normal to a Student-t distribution with

two degrees of freedom, which should produce much heavier tails than in the standard
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normal. Here it is clear our techniques struggle much more, especially with construct-

ing measures of uncertainty; estimated standard deviations tend to be much smaller

than those in the underlying data generating process. Across both experiments, the up-

per confidence level tends to be underestimated (much too small) while the lower con-

fidence interval is slightly overestimated (although this looks least bad for the resid-

ual bootstrap). In terms of expected values, the residual bootstrap has the smallest

variation although median predictions of both the parametric and delta method are

correctly centered on the underlying true median.
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Note: Vertical line is calculated actual median prediction. Extreme values omitted for clarity.
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Note: Vertical line is calculated actual standard deviation. Extreme values omitted for clarity.
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Note: Vertical line is calculated actual upper 95% CI. Extreme values omitted for clarity.
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Note: Vertical line is calculated actual lower 95% CI. Extreme values omitted for clarity.

Dist. of 500 Bootstrap Lower 95% CI
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(d) Lower 95% Confidence Interval

Figure SM. 9: Experiment III: T = 250, and νt ∼ t(2)

Note: Vertical lines show the actual 500 calculated median expected values, standard deviations, upper
and lower 95% confidence intervals, from the underlying data-generating process. Each boxplot shows
the distribution of median expected values, standard deviations, upper and lower 95% confidence inter-
vals, where each observation was from constructed one draw (and then bootstrapping/delta method)
of the underlying data-generating process. Extreme values omitted for clarity.

In Table SM. 1, we summarize these same findings for each bootstrapping tech-
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Note: Vertical line is calculated actual lower 95% CI. Extreme values omitted for clarity.
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(d) Lower 95% Confidence Interval

Figure SM. 10: Experiment IV: T = 1000, and νt ∼ t(2)

Note: Vertical lines show the actual 500 calculated median expected values, standard deviations, upper
and lower 95% confidence intervals, from the underlying data-generating process. Each boxplot shows
the distribution of median expected values, standard deviations, upper and lower 95% confidence inter-
vals, where each observation was from constructed one draw (and then bootstrapping/delta method)
of the underlying data-generating process. Extreme values omitted for clarity.
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nique using two quantities of interest in order to provide more clear suggestions about

the best performing technique across quantities of interest as well as the different ex-

periments. Root mean squared error (RMSE) measures both bias and efficiency of a

quantity of interest, and is calculated as (Hopkins et al. 2024):

RMSE[θ̂] =

√
1
M

M

∑
m=1

[(θ̂m−θ)2] (3)

Where θ is the quantity originally obtained in Step 4 (for example, the standard error

or upper 95% confidence interval calculated from the expected values simulated from

the original 500 GARCH models), and θ̂m is the quantity of interest obtained from

B bootstraps for a single one of the m series. Lower values are more preferred; for

instance, if looking at the RMSE of the upper 95% confidence interval, an RMSE of

zero for a bootstrapping technique would suggest that the bootstrapping technique

exactly recovers the correct upper 95% confidence interval (i.e., not too small or too

large).

In addition to RMSE, we also calculate root median square error, or R(Med)SE, which

is useful when we suspect the quantity of interest is not normally distributed (Hopkins

et al. 2024); this is likely the case for our experiments, since quantities like standard

deviation or the GARCH expected values tend to be right skewed since they cannot be

zero. R(Med)SE should be less sensitive to outliers as well (again, these are likely to be

very large positive values).

The columns of Table SM. 1 display RMSE and R(Med)SE for each bootstrapping

technique, while the rows are the different quantities of interest from each bootstrap-

ping procedure (median prediction, standard deviation, upper and lower 95% confi-

dence intervals) for each experiment. We highlight the “best performer” bootstrapping

technique for each quantity in each experiment, either by bolding (for RMSE) or ital-

icizing (for R(Med)SE) the smallest value. Table SM. 1 has several important findings

worth noting:

• In terms of RMSE, the residual bootstrap is often the best performer, and, if using
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Table SM. 1: Monte Carlo Results

Parametric Delta Residual Maximum Entropy
RMSE R(Med)SE RMSE R(Med)SE RMSE R(Med)SE RMSE R(Med)SE

Experiment I: T = 250, and νt ∼ N(0,1)
Prediction 0.683 0.460 0.671 0.466 0.639 0.475 0.860 0.533

Std. Dev. 0.260 0.159 0.347 0.339 0.322 0.150 5.518 0.221

Upper 95% CI 1.342 0.829 1.125 0.861 1.04 0.735 21.861 0.946

Lower 95% CI 0.401 0.272 0.664 0.401 0.345 0.256 0.799 0.517
Experiment II: T = 1000, and νt ∼ N(0,1)

Prediction 0.316 0.226 0.314 0.225 0.341 0.246 0.395 0.261

Std. Dev. 0.050 0.035 0.154 0.154 0.045 0.033 0.313 0.076

Upper 95% CI 0.416 0.285 0.460 0.337 0.394 0.276 0.921 0.407

Lower 95% CI 0.245 0.169 0.378 0.256 0.266 0.191 0.421 0.289
Experiment III: T = 250, and νt ∼ t(2)

Prediction 341.373 4.786 340.848 4.863 115.735 4.546 515.377 5.179

Std. Dev. 7.498e16 320.226 318.883 321.985 1.291e7 304.082 691.493 309.729

Upper 95% CI 6.809e9 311.272 463.886 317.919 3.865e5 281.079 2087.655 295.022

Lower 95% CI 291.61 2.402 299.063 2.846 1.748 0.060 34.651 1.214
Experiment IV: T = 1000, and νt ∼ t(2)

Prediction 92.086 5.763 90.618 5.610 55.918 5.625 55.568 5.792

Std. Dev. 93.48 93.914 93.938 94.504 8.711e8 83.764 144.317 88.642

Upper 95% CI 180.418 172.148 181.261 173.852 304.507 149.189 319.292 156.083

Lower 95% CI 87.994 6.146 87.946 6.935 5.421 0.559 16.374 3.589

Note: Root mean squared error (RMSE) and root median square error (R(Med)SE) shown for each boot-
strapping procedure across each quantity of interest and each experiment. Best performer for each
experiment highlighted in bold (for RMSE) and italics (for R(Med)SE.
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R(Med)SE, is nearly always the best (in terms of minimizing RMSE/R(Med)SE).

Some important exceptions to this are the uncertainty calculations (SD and con-

fidence intervals) when εt is not normally distributed, although this appears to

improve as T increases.

• The maximum entropy technique is always outperformed by some other boot-

strapping technique for every scenario across all quantities of interest. Given

the length of time it takes to compute the maximum entropy bootstrap GARCH

models, it therefore seems wiser to either use parametric or delta—and thus save

substantially on computing time—or wait slightly longer for the residual boot-

strap results which tend to perform best.

• All bootstrapping techniques perform well when εt is normally distributed, and

improve as T grows longer. If computing time is not an issue, using the resid-

ual based bootstrap seems advisable, although the quick methods (parametric,

delta) can be used without major drops in performance. However, the poor per-

formance for virtually all bootstrapping procedures when calculating uncertainty

measures when εt is t-distributed indicates that users should proceed with cau-

tion if this part of the error is not normal. However, it is easy to check for normal-

ity using common tests such as Shapiro-Wilk or Shapiro-Francia, or examining

quantile plots.5

• The delta method and parametric bootstrap are nearly identical in terms of per-

formance. Still, one would likely prefer the latter, since, if using the percentile

method to construct confidence intervals, by construction it cannot lead to nega-

tive (and thus, nonsensical) values, in contrast with the former, which will never

result in a negative prediction, but could easily construct a negative lower 95%

confidence interval. For instance, see the negative lower 95% confidence intervals

that sometimes occurred across our simulations with the delta method in Figure

SM.10d.
5Recall that the total residual component is

√
σ2νt , so users wishing to test for normality could also

divide the residual by σt to isolate ν and proceed to test the latter.
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• Outliers appear to be a clear issue in Experiments III and IV, as evidenced by the

extremely high RMSE (and slightly lower R(Med)SE) values. While this largely

does not affect the prediction, it does affect the estimated measures of uncertainty.

This might be mitigated somewhat in real-world applications by increasing the

number of bootstrap replications (the Monte Carlos here only used 500), plac-

ing better defined starting/priming values when estimating the GARCH models

(we simply used Stata’s default in our experiments), or perhaps throwing out

bootstraps that create non-sensical results (e.g., a GARCH model that technically

converges and provides estimates but does not show standard errors because

they were estimated to be infinite could be dropped). Still, as discussed above

we encourage careful model specification in order to ensure predicted residual

components are approximately normal.
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3 Additional Results

In this section we present several additional results.

3.1 Hellwig

• In Figure SM.11 we replicate the +4 point trade shock and its effect on the condi-

tional error variance of governing party support in the UK (the Hellwig example

shown in Figure 2 in the main manuscript), but now do not perform the rescal-

ing procedure as done in the main manuscript. In other words, the vertical axis

shows the actual value of the conditional error variance.

• In Figure SM.12 we show the same trade shock as in Figure SM.11 but now use

our standard deviation approach to calculating confidence intervals.

• In Figure SM.13 we present an alternative plotting strategy where we show both

the “short-run” change between the expected conditional error variance in the

period in which the counterfactual shock occurs, and the expected conditional

error variance in the period just before the shock. We also include the “long-run”

change between the expected conditional error variance in the final simulation

period and the expected conditional error variance in the period just before the

shock (i.e., after 9 periods). Such an approach has been used before in political

science in order to show “cumulative” or “total” effects after a certain amount

of time has elapsed (Breunig and Busemeyer 2012; Adolph, Breunig and Koski

2020).6 This alternative strategy has the advantage of being able to easily com-

pare both short- and long-run changes in volatility as a consequence of a shock;

the former describes immediate movements in conditional error variance in re-

sponse to a change in a covariate, while the latter shows the total, permanent shift

that has occurred as a result of the shock after a longer period of time. Moreover,

it can be performed for both the bootstrapping and delta method techniques, and
6Neither of these articles examine contemporaneous effects in addition to a longer-period change, as

we do.
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more easily allows us to discern whether effects are statistically significantly dif-

ferent from the pre-shock expected conditional error variance.

• In Figure SM.14 we replicate the −4 point trade shock and its effect on the con-

ditional error variance of governing party support in the UK (Hellwig example

from Figure 3 in the main manuscript), but do not rescale the conditional error

variance.

• In Figure SM.15 we show the negative trade shock, but now use our standard

deviation approach to calculating confidence intervals.

• In Figure SM.16 we replicate our short- and long-run plotting strategy, but now

for the −4 point trade shock.
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Figure SM. 11: Replication of Figure 2 (in main manuscript), no rescaling

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
parametric bootstrap, maximum entropy bootstrap, residual bootstrap. Black line shows median ex-
pected conditional error variance. Grey: 75% confidence interval, medium blue: 90% confidence inter-
val, light blue: 95% confidence interval.
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Figure SM. 12: Replication of Figure 2 (in main manuscript), using the standard devia-
tion approach to confidence intervals

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
parametric bootstrap, maximum entropy bootstrap, residual bootstrap. Black line shows expected con-
ditional error variance, with 95% confidence intervals calculated using the standard error approach
shown.
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Figure SM. 13: Replication of Figure 2 (in main manuscript) but showing only the
short- and long-run effect

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
parametric bootstrap, maximum entropy bootstrap, residual bootstrap, delta method. Black line shows
expected short-run (contemporaneous shock period) and long run (after 9 periods) change in conditional
error variance from the expected conditional error variance in the pre-shock period, with 95% confidence
intervals calculated using the percentile approach.
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Figure SM. 14: Replication of Figure 3 (in main manuscript), no rescaling

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
parametric bootstrap, maximum entropy bootstrap, residual bootstrap. Black line shows median ex-
pected conditional error variance. Grey: 75% confidence interval, medium blue: 90% confidence inter-
val, light blue: 95% confidence interval.
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Figure SM. 15: Replication of Figure 3 (in main manuscript), using the standard devia-
tion approach to confidence intervals

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
parametric bootstrap, maximum entropy bootstrap, residual bootstrap. Black line shows expected con-
ditional error variance with 95% confidence intervals shown calculated using the standard deviation
approach.
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Figure SM. 16: Replication of Figure 3 (in main manuscript) but showing only the
short- and long-run effect

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
parametric bootstrap, maximum entropy bootstrap, residual bootstrap, delta method. Black line shows
expected short-run (contemporaneous shock period) and long run (after 9 periods) change in conditional
error variance from the expected conditional error variance in the pre-shock period, with 95% confidence
intervals calculated using the percentile approach.
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3.2 Schneider-Troeger

• In Figure SM.17 we recreate Figure 4 from the main manuscript, which shows

the effect of one day of Palestinian/Israeli conflict severity, but do not use the

rescaling method.

• In Figure SM.18 we replicated Figure 4 from the main manuscript but now use

our standard deviation approach to calculating confidence intervals.

• In Figure SM.19 we show the alternative short- and long-run changes plotting

approach, replicating Figure 4 from the main manuscript.

• In Figure SM.20 we recreate Figure 5 from the main manuscript, but do not per-

form the rescaling procedure.

• In Figure SM.21 we replicate Figure 5 but use the standard deviation approach to

calculating confidence intervals.

• Last, in Figure SM.22 we replicate Figure 5, but instead depict it as short- and

long-run changes.
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Figure SM. 17: Replication of Figure 4 (in main manuscript), without rescaling

Note: Black line shows median expected conditional error variance. Grey: 75% confidence interval,
medium blue: 90% confidence interval, light blue: 95% confidence interval.
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Figure SM. 18: Replication of Figure 4 (in main manuscript), using the standard devia-
tion approach to confidence intervals

Note: Black line shows median expected conditional error variance with 95% confidence intervals cal-
culated using the standard deviation approach.
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Figure SM. 19: Replication of Figure 4 (in main manuscript), but showing only the
short- and long-run effect

Note: Black line shows expected short-run (contemporaneous shock period) and long run (after 9 peri-
ods) change in conditional error variance from the expected conditional error variance in the pre-shock
period, with 95% confidence intervals calculated using the percentile approach.
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Figure SM. 20: Replication of Figure 5 (in main manuscript), without rescaling

Note: Black line shows median expected conditional error variance. Grey: 75% confidence interval,
medium blue: 90% confidence interval, light blue: 95% confidence interval.
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Figure SM. 21: Replication of Figure 5 (in main manuscript), without rescaling

Note: Black line shows expected conditional error variance with 95% confidence intervals calculated
using the standard deviation approach.
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Figure SM. 22: Replication of Figure 5 (in main manuscript), but showing only the
short- and long-run effect

Note: Black line shows expected short-run (contemporaneous shock period) and long run (after 9 peri-
ods) change in conditional error variance from the expected conditional error variance in the pre-shock
period, with 95% confidence intervals calculated using the percentile approach.
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