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Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized ARCH (GARCH)
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a time series process. While simulation methods exist to disaggregate the short- and
long-run effects of covariate shocks to the conditional mean, scholars’ inferences about
the conditional error variance are currently limited to tabular interpretation. We pro-
pose a novel method of interpretation that moves beyond these tabular inferences.
First, we show how changes in ARCH-GARCH processes are conditional on starting
values, other covariates, and dynamics, which has led to incomplete or even incorrect
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Volatility is everywhere. While the bulk of time series work in political science has

focused on modeling the average value of a series, many concepts central to the dis-

cipline exhibit considerable and explainable variance in their average value. Political

economy data—such as economic indicators (i.e., inflation rates, oil prices, trade flows)

and financial market data (i.e., stock market returns, sovereign bond premiums, and

currency prices)—are well-known for this (e.g., Bernhard and Leblang 2006b; Füss and

Bechtel 2008; Schneider and Troeger 2006). A myriad of political indicators—such as

partisan identification, party polarization, government approval, vote intention, and

electoral support (e.g., Bechtel 2012; Box-Steffensmeier and Smith 1996; Boef 2000;

Hellwig 2007) and governmental budgets, revenues and spending, fiscal policy, and

financing needs and costs (e.g., Brooks, Cunha and Mosley 2022; Wibbels 2000)—also

exhibit considerable variance over time. Politicians care deeply about the stability of

key linkages to the public, especially sudden shifts in approval or party support (c.f.,

Kriner 2006). Theories of budgeting, such as punctuated equilibrium theory, recognize

that the variance around an average expenditure is of equal or greater political interest

to policymakers than the average value itself, which is assumed to be in equilibrium

and relatively stable (Flink 2017). Research investigating volatility has thus made fun-

damental contributions to the discipline, especially in the fields of comparative poli-

tics and political economy. Consider how expectations about the relationship between

government ideology and election processes matter to portfolio investors and finan-

cial market behavior. This area of study has generated thousands of citations, many of

which revolve around research on volatility by Bernhard and Leblang (2006b).

Standard tools exist to model such time-varying phenomena. Engle’s (1982) Au-

toregressive Conditional Heteroskedasticity (ARCH) model and Bollerslev’s (1986) Gen-

eralized ARCH (GARCH) extension allow examination of “conditionally heteroskedas-

tic” time series processes. Such data are characterized by alternating short-run periods

of high and low volatility (Enders 2015). ARCH-GARCH models consist of two equa-

tions: a conventional time series equation estimating the conditional mean of a time

series process and another estimating its conditional variance. This allows examina-
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tion of whether, how much, and how long covariates affect the conditional mean as

well as the volatility around it. ARCH-GARCH models have been a powerful addition

to the time series toolkit, prompting extensions to accommodate different conditional

error variance structures (c.f., Enders 2015).

Yet despite the availability of these tools, and even with a variety of phenomena

to explore, political scientists rarely deploy ARCH-GARCH models. Among articles

published in the top 125 political science journals (2000–2020)—ranked by the Jour-

nal Citation Reports, Social Sciences Edition, Clarivate Analytics (2018)—we found only 31

that used this approach. We believe the disconnect between the potential for the study

of volatility and the actual utilization of ARCH-GARCH tools stems from a dearth of

practical advice, tailored to political scientists, on the estimation and interpretation of

ARCH-GARCH models. Most econometric texts focus on the uses of ARCH-GARCH

models for economic forecasting rather than hypothesis testing, with most attention

given to identifying optimal lag and error variance structures (e.g., Enders 2015; En-

gle 2001). There is little guidance on how to draw statistical and substantive infer-

ences from ARCH-GARCH conditional error variance equation results, especially for

any covariates essential for hypothesis testing. This has left ARCH-GARCH users—

especially in political science—to draw inferences about the impact of covariates on

the conditional error variance from tables of parameter estimates that capture only

short-run effects. We argue this leads to incomplete or even incorrect inferences.

In this study, we seek to raise interest in ARCH-GARCH models in political science

by facilitating their interpretation. We do two things. First, we review the ARCH-

GARCH approach, emphasizing differences between how these models are described

in econometric texts and how they are estimated statistically. In the process, we show

why tabular ARCH-GARCH conditional error variance equation results are insuffi-

cient for statistical and substantive inference. Second, we argue that ARCH-GARCH

conditional error variance results should be interpreted using graphical visualizations.

We present three techniques for this purpose. The first formalizes existing paramet-

ric bootstrapping methods—currently used for interpreting conditional mean equa-
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tions (e.g., Williams and Whitten 2011, 2012; Philips, Rutherford and Whitten 2016;

Gandrud, Williams and Whitten 2016; Jordan and Philips 2018a,b, 2020)—to ARCH-

GARCH conditional error variance equations, an approach first utilized by Benton and

Philips (2020). The second and third introduce two novel bootstrap-based techniques—

one residual based and the other maximum entropy based—for simulating expected

values of the conditional error variance and associated measures of uncertainty.

To demonstrate the usefulness of our techniques, we conduct replications of two

prominent studies. This exercise reveals the limitations of inferences drawn from tab-

ular ARCH-GARCH conditional error variance equation results. It also demonstrates

how stochastic simulation uncovers additional information about the expected con-

ditional error variance, how it differs across substantively interesting scenarios, how

exogenous shocks to these scenarios change expected volatility, and by how much and

for how long this volatility would be expected to persist. Our aim is to show how time-

series scholars can gain better substantive insights into the volatility of their series.

ARCH-GARCH Models in Theory and Practice

Engle’s (1982) ARCH model and Bollerslev’s (1986) GARCH extension consist of the si-

multaneous estimation of two equations: a mean equation describing the evolution of

the conditional mean of yt and a variance equation describing the evolution of the con-

ditional variance of yt , which is equivalent to the conditional error variance. Despite

this straightforward intuition, ARCH-GARCH models are less straightforward in their

implementation. This complicates model interpretation for reasons we describe below.

For Engle (1982) and Bollerslev (1986), the conditional mean equation is usually

expressed as a simple (conventional) time series model, such as (but not limited to) a

first-order autoregressive (i.e., AR(1)) process (Enders 2015):

yt = β0 +φyt−1 +xtβββ+ εt (1)
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where the stationary dependent variable y observed at time t is modeled by a constant

β0, its lag yt−1, a vector of exogenous covariates xt , and an error term εt . The con-

ditional mean of yt refers to the mean value of yt conditional on all current and past

information, that is, on all past values of yt (yt−1,yt−2, ...), current and past values of

εt (εt ,εt−1,εt−2, ...), and current and past values of xtβββ (xtβββ,xt−1βββ,xt−2βββ, ...). The condi-

tional variance of yt is Var[yt |Mt−1,xt ] = E[(yt−β0−φyt−1−xtβββ)
2] = E[εt ]

2 (Enders 2015,

p.124)1 and equal to the conditional error variance σ2
t , since Var[εt ] = E[(εt −E[εt ])

2] =

E[(εt−0)2] = E[εt ]
2. When the conditional error variance is constant at σ2 (with no sub-

script t), the conditional variance of yt will be constant at ε2. In this case, the error

term is mean-zero and its variance is independent of past history (therefore uncondi-

tional and constant (homoskedastic) such that εt ∼ i.i.d. N(0,σ2)), and Equation 1 can

be estimated using Ordinary Least Squares (OLS) regression (Enders 2015).2

However, when the error term εt is mean-zero and its variance σ2
t is dependent

on past history (as indicated by the subscript t), and therefore conditional and non-

constant (heteroskedastic) such that εt ∼ i.i.d. N(0,σ2
t ), OLS estimation of Equation 1

may produce biased standard errors (Enders 2015, p.124). In this case, Engle (1982)

and Bollerslev (1986) recommend modeling the conditional mean of yt (Equation 1)

alongside the conditional variance of yt , which is equivalent to the conditional error

variance σ2
t . The simplest approach is to model the conditional error variance σ2

t as

a first-order autoregressive AR(1) process, using squares of the estimated residuals,

such that ε̂2
t = ω0 +ω1ε̂2

t−1 +νt , where νt is a white-noise error term (Enders 2015). The

expected conditional error variance at t is E[ε2
t | εt−1] = ω0 +ω1ε2

t−1 and is rewritten as:

σ
2
t = ω0 +ω1ε

2
t−1 (2)

where the error variance σ2 at time t is a function of a constant ω0 and the previous

error squared ε2
t−1. The ω1 parameter represents the ARCH(1) term and captures how

1This is distinct from the unconditional variance of yt , the long-run variance of y regardless of current
or past values of yt and xt , Var[yt ] =

σ2

1−φ2 , where σ2 is the error-term variance. See Enders (2015, p.124).
2This i.i.d. assumption also assumes no autocorrelation in εt .
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unanticipated shocks in the prior period t−1 affect the subsequent error variance σ2
t .

Because the conditional variance of yt , and thus the conditional error variance σ2
t ,

cannot be negative, ω0 is restricted to ω0 > 0, while ω1 is restricted to 0≤ω1 < 1 (Enders

2015, p.126).3 If ω1 = 0, no ARCH effects are present and σ2
t = ω0 (a constant). In the

presence of ARCH effects, the closer the ARCH term is to one, the greater the impact of

past unanticipated shocks on the conditional error variance. The closer the ARCH term

is to zero, the smaller the impact of past unanticipated shocks on the conditional error

variance.4 Additional lags capturing previous unanticipated shocks can be added to

create an ARCH process up to order q:

σ
2
t = ω0 +ω1ε

2
t−1 +ω2ε

2
t−2 + ...+ωqε

2
t−q (3)

where ω0 > 0, 0≤ ωi < 1 ∀i, and ∑
q
i=1 ωi < 1 (to ensure stationarity) (Engle 1982, p.993).

The difficulty in identifying the optimal lag length of the ARCH(q) model led Boller-

slev (1986) to generalize it through the addition of the lagged error variance σ2
t−1 (En-

ders 2015). Today, Bollerslev’s (1986) parsimonious generalized ARCH—or GARCH—

model is the most widely used, with its most common specification the GARCH(1,1)

model (with one ARCH term and one GARCH term):

σ
2
t = ω0 +ω1ε

2
t−1 +ασ

2
t−1 (4)

where the conditional error variance σ2
t is modelled as a function of a constant ω0,

the previous error term squared ε2
t−1, and the lagged error variance σ2

t−1. Continuous

recursive substitution reveals that the GARCH(1,1) model is equivalent to an infinite-

order ARCH(q) model: σ2
t = ω̂0 +∑

∞
i=0 ω̂iε

2
t−i. As above, ω0 > 0 and 0 ≤ ω1 < 1, while

0≤ α < 1 and 0≤ (ω1 +α)< 1 to ensure stationarity (Bollerslev 1986).

The advantage of the GARCH approach lies in its fewer terms and coefficient re-

3This is not to say volatility only increases, as the left-hand side of Equation 2 is also strictly positive.
If the combination of previous-period error ε2

t−1 and its persistence ω1 are less than the previous-period
volatility σ2

t−1, volatility will fall.
4And, ω1 < 1 to ensure stationarity (Engle 1982, p.993).
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strictions (Enders 2015, p.129). As above, the ARCH term ω1 captures how previous

unanticipated shocks affect subsequent error variance. The GARCH term α captures

the level of persistence in volatility across t. The greater the GARCH term, the more

persistent any change in the conditional error variance. The lower the GARCH term,

the less persistent any change in the conditional error variance. Similar to the ARCH(1)

model above, the GARCH(1,1) model can be expanded to include GARCH(p,q) lags:

σ
2
t = ω0 +

q

∑
i=1

ωiε
2
t−i +

p

∑
j=1

α jσ
2
t− j (5)

where ω0 > 0, 0 ≤ ωi < 1 ∀i, 0 ≤ α j < 1 ∀ j, ∑
q
i=1ωi < 1, ∑

p
j=1α j < 1, and (∑

q
i=1 ωi +

∑
p
j=1 α j) < 1. These restrictions ensure σ2

t is positive and remains stationary (Boller-

slev 1986). We focus on the GARCH(1,1) below, as it prevails in political science.

Adding (Conditional) Covariate Shocks

One crucial feature of ARCH-GARCH models for political scientists is that additional

covariates can be added to the conditional mean and conditional error variance equa-

tions. The conditional mean equation with covariates xt is shown in Equation 1 and

operates as in any conventional time series model. Because yt can take negative or pos-

itive values, the vector of coefficients βββ can include positive and negative estimates.

The augmented GARCH(1,1) conditional error variance equation including covari-

ates zt is usually expressed in econometric texts as:

σ
2
t = ω0 +ω1ε

2
t−1 +ασ

2
t−1 +ztγγγ (6)

where zt is a vector of covariates which may or may not be the same as xt .5 However,

while some covariates might raise the conditional error variance σ2
t , others might lower

it, such that γγγ might include positive or negative values. This means that covariates in

the conditional mean equation cannot be modelled as typically expressed in economet-

5Covariates could also include interactions with time, if a time-varying effect were suspected, or
period dummies (c.f., Hellwig 2007; Benton and Philips 2020).
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ric texts and must be transformed to ensure that they can take negative values, since

the conditional error variance σ2
t must remain strictly positive. The simplest way to

allow negative values in γγγ is by including both ω0 and any covariate shocks zt through

an exponential link function, with this applied GARCH(1,1) model specified as:6

σ
2
t = ω1ε

2
t−1 +ασ

2
t−1 +exp(ω0 +ztγγγ) (7)

Most statistical packages automatically apply this link function (e.g., Stata) or rec-

ommend it (e.g., EViews). However, because most econometric texts do not discuss

this transformation, we think scholars may have sometimes misinterpreted the tabular

coefficient results. Even for those aware of this transformation, it is difficult to draw

conclusions about the impact of covariate shocks on the conditional error variance from

tabular results alone. Thanks to the exponential link function, their statistical and sub-

stantive impact depends on their starting values and those of other covariates, as well

as on the GARCH α parameter defining their temporal persistence.

A synthetic example illustrates the conditionality of covariate effects on the condi-

tional error variance and the difficulty of drawing inferences from tabular results. We

generated data for a GARCH(1,1) process following Equation 7 with two standard nor-

mal variables X and Z, varying the GARCH parameter α from 0.2 (small persistence in

the error variance) to 0.8 (large persistence in the error variance).7 We are interested in

the response of the series to a one standard deviation (“SD”) “shock” to the X series

at different baseline levels of X and at different levels of the other covariate Z. These

effects are shown in Figure 1.

In Figure 1, each row represents a different level of the GARCH parameter α, each

column represents a different shock to X holding Z at different values (mean or one

SD above/below), each line color represents the effect of holding X at different val-

6The GARCH(p,q) model would be specified as: σ2
t = ∑

q
i=1 ωiε

2
t−i +∑

p
i=1 αiσ

2
t−i +exp(ω0 +ztγγγ).

7The constant ω0 = 0.5 and the vector of covariates zt include two standard normal variables, X and
Z, where T = 400 for both series, and where the ARCH parameter ω1 = 0.2 in all simulations. This
follows a 100-period burn in process, described below. The effect of both X and Z on the conditional
volatility (that is, their value of γ in Equation 7) is 1.
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Figure 1: Synthetic GARCH data responding to simulated shocks to X in the condi-
tional error variance (Equation 7)

Note: Dependent variable follows a GARCH(1,1) process; both X and Z are standard normal variables.

ues (mean, one SD above/below), and each type of line represents a positive/negative

shock to X (solid a one-SD increase in X , dashed a one-SD decrease in X). The asymme-

tries are stark. Because of the exponential link in Equation 7, even seemingly marginal

changes in the value of any additional control variables in the conditional error vari-

ance equation (Z across the columns) can produce large differences in the observed

effect of X . For instance, a one-SD increase in X when Z is held at one SD below its

mean (the top-left panel) produces a five-unit increase in the conditional error vari-

ance. When Z is held at one SD above its mean, the same shock (the top-right panel)

produces a 15-unit increase in the conditional error variance, three times the original

effect. This asymmetry grows as the magnitude of the GARCH coefficient increases as

one moves down the rows. The figure also illustrates the asymmetry between positive

and negative shocks to X as well as across different values at which X can be held.
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Finally, Figure 1 shows the asymmetric effect of the GARCH parameter α on the

impact of X on the conditional error variance. Similar to the coefficient on a lagged

dependent variable in an autoregressive distributed lag model, α determines the tem-

poral persistence in the effect of an increase in X on the conditional error variance.

When α is relatively low (the top row), shocks to X produce changes in the conditional

error variance, but these effects do not persist. Note the top-right panel: when Z is held

at its mean and X is held at one SD above its mean (the black line), a one SD shock to X

(the solid line) at t = 3 produces a 15-unit increase in the conditional error variance of

y in the next time period. However, this effect fully dissipates by t = 6. When α = 0.8,

the same shock to X does not dissipate until t = 10.

These dynamics would be obscured by relying solely on a table of coefficients.

However, that is exactly how GARCH models are typically interpreted in political

science. Despite the conditionality of covariate effects in the conditional error vari-

ance equation, most scholars rely on tabular results to interpret their statistical and

substantive impact. Among the articles mentioned including covariates in the condi-

tional error variance equation, 78 percent interpret their impact by only referencing

the sign and statistical significance of tabular coefficients. The remaining 22 percent

calculate the predicted marginal effects of their main covariates on the conditional er-

ror variance. Reference to the persistence of effects is based on separate discussion of

the magnitude of the GARCH term. There is no examination of whether volatility re-

mains statistically and substantively significant across different baseline values of key

covariates or any controls (if included) or over time. While this approach is not wrong,

it is incomplete; it only allows for understanding the short-term change in volatility

for one isolated predictor, without accounting for the previous level of volatility or

the levels of other predictors. Yet, Figure 1 demonstrates that this is essential.8 We

found only two articles—Bernhard and Leblang (2006a) and Bechtel (2012)—which re-

port associated estimates of uncertainty. In calculating marginal effects, both consider

the baseline values at which they set their main covariates and control covariates. But

8The GARCH model’s exponentiated link function gives more weight to increases in X at higher
values. This distorts inferences from other typical quantities of interest, like average marginal effects.
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neither article examines the marginal effects of their main covariates over time. To

the extent that temporal dynamics are discussed, the authors note whether GARCH

parameter estimates are close to one. They do not use GARCH parameter estimates

to adjust aggregate covariate marginal effects calculations to show how they evolve

or whether remain statistically significant over time. Far more interesting dynamics

remain to be explored. De Boef and Keele (2008) taught us to “take time seriously,”

which we argue should include volatility over time.

Our Approach

We advocate that scholars move beyond tabular results by creating expected values of

the conditional variance—along with associated measures of uncertainty—to improve

statistical inference and take full advantage of the ARCH-GARCH model.9 We present

three different bootstrapping techniques for generating graphical visualizations of the

expected conditional error variance, as well as its temporal evolution in response to

hypothetical changes to a covariate(s). These techniques differ in their computational

complexity and assumptions underlying measures of uncertainty. We show the feasi-

bility of our approach using the delta method as an alternative technique to bootstrap-

ping when approximating standard errors in the Supplemental Materials (SM).

Our techniques provide five benefits for ARCH-GARCH model interpretation. First,

they can be used to produce estimates and graphical depictions of the expected con-

ditional error variance under different substantively interesting covariate scenarios,

along with measures of uncertainty to show whether these scenarios produce estimates

that are statistically significantly different from one another, whether they undergo any

statistically significant changes over time, and whether the rates of decay (due to the

GARCH term) are fast or slow. Second, our techniques can be used to produce es-

9In the following, basic time series requirements apply during model estimation, such as that the con-
ditional mean and conditional error variance models are correctly specified, stationarity conditions are
met, and the errors εt are not autoregressive and assumed normally distributed, although non-constant
variance is assumed since we are working with GARCH models. We explore consequences of violating
these assumptions in the Supplemental Materials (SM).
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timates and graphical depictions of the impact of covariate shocks on the expected

conditional error variance, along with confidence intervals that demonstrate whether

the effects of these shocks are statistically significant in magnitude, whether they are

statistically significantly different over time, and whether their rates of decay are fast

or slow. Third, they can be used to compare the relative impact of positive vs. neg-

ative covariate shocks and any asymmetries in their effects, including whether their

magnitudes and temporal evolutions are significantly different from each other, across

different periods, and with different rates of decay. Fourth, they can be used to help

interpret any interactions in the model; “best practices” recommend graphical repre-

sentations for interpreting interaction effects (e.g., Brambor, Clark and Golder 2006;

Kam and Franzese 2007). Fifth, they can be used to estimate the impact of covariates

(across levels, positive/negative values, and/or interactions), while considering these

effects at different substantively interesting levels of any additional covariate controls

(in the conditional error variance equation). This allows scholars to vary the “all else

equal” setting and probe the effects of a chosen covariate, while setting controls at

their means or alternatives (medians, modes, or hypothetical levels of interest). In fact,

we suggest that GARCH model users generate these graphic visualizations at differ-

ent levels of their covariate of interest, different shock values (especially positive and

negative) to the covariate of interest,10 and different combinations of values of other

predictors to help explore asymmetries in estimated effects, so that they are not simply

understanding the “average case” (Hanmer and Kalkan 2013).

Our bootstrapping techniques also improve upon existing ARCH-GARCH post-

estimation tools available in most statistical software. In Stata, for instance, users

can generate expected values of the conditional mean, the conditional error variance,

and the multiplicative heteroskedasticity component (the exp(ω0 +ztγγγ) term), but they

cannot calculate the level of uncertainty around these estimates, limiting their useful-

10Our baseline “shock value” typically changes a covariate by one standard deviation, which is stan-
dard in the counterfactual simulation literature (e.g. Jordan and Philips 2018a; Adolph, Breunig and
Koski 2020). Scholars are free to choose whatever counterfactual shock value they prefer, although
they should ensure that it is observed in the empirical data, being attentive to realized period-to-period
changes in the series (for instance, Lipsmeyer, Philips and Whitten 2023).
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ness for inference (which King, Tomz and Wittenberg (2000) note is a general prob-

lem plaguing similar estimates). In contrast, our bootstrapping techniques allow re-

searchers to probe ARCH-GARCH results by automating the estimation of the pre-

dicted conditional error variance and measures of uncertainty around it over time,

across different main covariate values of interest, across different control covariate val-

ues, after different main covariate shocks, and under different combinations or interac-

tions of each. They are also an improvement over current practice and available post-

estimation tools in another way: they explicitly account for temporal dynamics. They

estimate the impact of chosen covariates (under any of the different scenarios above)

on the conditional error variance, not just in the contemporaneous period but—by tak-

ing into account lagged values of the conditional error variance—dynamically as well.

Parametric-Based Bootstrap

The simplest of our techniques is a parametric bootstrap, first introduced in the context

of ARCH-GARCH by Benton and Philips (2020). While it is by far the least computa-

tionally intensive of the techniques we present, it comes at a cost of restrictive assump-

tions about ARCH-GARCH models (discussed below). Parametric bootstrapping cre-

ates a distribution of parameter values centered around the original ARCH-GARCH

parameter estimates and uses it to generate a large number of expected conditional

error variances for each time period. Due to the nature of ARCH-GARCH models, this

is a recursive process which takes into account the lagged error variance and the val-

ues of any covariates, the latter of which may be changed to substantively interesting

values at different points in time. This process consists of the following steps:

1. Estimate the ARCH-GARCH model. Obtain the parameter estimates, γ̂γγ, and corre-

sponding estimated variance-covariance matrix, V̂(γ̂γγ).

2. Generate the parametric bootstrap of the parameter estimates. Generate a sufficiently

large number B of bootstrapped parameters in the ARCH-GARCH equation, γ̃γγb,

for each parameter estimate in γ̂γγ, drawn from a multivariate normal distribution
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with mean equal to the original parameter estimates and variance taken from the

estimated variance-covariance matrix: γ̃γγb ∼MV N(γ̂γγ,V̂(γ̂γγ)).11

3. Generate the expected conditional error variance. For each bootstrap replicate b, gen-

erate E[σ̃2
b,m] for the number of desired time points m = 1,2, · · · ,M, including a

time m = s in which a counterfactual “shock” is given to a covariate of interest.

This is done in the following steps:

(a) Determine the pre-shock baseline values of the covariates in the model. A usual

choice is means (for continuous series) or modes (for categorical series).

(b) Conduct a “burn in” process for m = 1. The value of the expected conditional

error variance at time m = 1 in a GARCH(1,1) requires E[σ̃2
b,0], which is un-

known. However, using the baseline values from the above step, assuming

no ARCH effect (i.e., ε2
m−1 = 0) or GARCH effect (i.e., σ2

b,m−1 = 0), we can cal-

culate b expected values for the conditional error variance, put this expected

value into the GARCH term, calculate a new conditional error variance, and

so on, across a number of burn-in periods until the value is stable. The final

conditional error variance at m = 1 (calculated across all boostrapped esti-

mates, although the value will vary across the bootstraps given uncertainty

created by the bootstrapping draws) is σ̃2
b,1.

(c) Simulate the conditional error variance in the pre-shock period. For m= 1,2, · · ·m=

s−1, continue to hold all covariates in the GARCH equation at their baseline

values, including the the ARCH term ε2
b,m−1 which should remain at zero.12

The exception is the GARCH term, σ̃2
b,m−1, which we set to E[σ̃2

b,m−1] by us-

ing the mean of the conditional error variances calculated in the prior time

period. Combine these values with bootstrapped parameter estimates γ̃γγb in

order to obtain σ̃2
b,m.

11These simulated parameters should remain consistent with the underlying ARCH-GARCH model
and require no additional assumptions beyond those needed to estimate it (see King, Tomz and Witten-
berg 2000). A “sufficiently large” number of b is somewhat arbitrary, but B = 1000 is conventional.

12We assume ε2
b,m−1 = 0 since we are interested in the effect of covariates in the GARCH equation, not

the effect of unanticipated past shocks, although our approach could easily be adapted to the latter.
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(d) Simulate the impact of the covariate shock on the conditional error variance. At

m = s, set the covariate of interest to the value of substantive interest—for in-

stance its mean ± one standard deviation—keeping all other variables con-

stant as noted above except the GARCH term which should be incorporated

as E[σ̃2
b,s−1]. Generate b expected values of the conditional error variance

σ̃2
b,s using the b simulated parameter estimates. In dynamic simulations, this

is argued to be the easiest way of observing a counterfactual “shock” in a

variable while keeping close to the “all else equal” interpretation as done in

standard regression (c.f., Williams and Whitten 2011, 2012; Philips, Ruther-

ford and Whitten 2016; Gandrud, Williams and Whitten 2016; Jordan and

Philips 2018a,b, 2020); the only thing being changed is one of the covariates,

which allows us to view the corresponding response in the conditional error

variance across both contemporaneous as well as future time periods.

(e) Simulate the future evolution on the conditional error variance. For all future pe-

riods (e.g., m = s+ 1, s+ 2,· · · ,M) predict future conditional error variances

across all b. Note that depending on the context, two future period scenar-

ios may be of interest: either returning the shock to its baseline value (anal-

ogous to a temporary “impulse”) or keeping it at its new value (akin to a

permanent “shift”). We provide examples of both below. Regardless, given

the autoregressive nature of the conditional error variance, any movement

in response to a counterfactual shock will continue to persist across time (as

determined by the magnitude of the GARCH term).

4. Graph the predictions. Having calculated σ̃2
b,m, plot the predictions. This can be

done two ways:

• Percentile Method: At each point m in time, plot the median value of σ̃2
b,m and

take percentiles of σ̃2
b,m to create upper and lower confidence intervals (e.g.,

90, 95%).13 We prefer the median as opposed to the mean given the asym-

13In the SM we also show an alternative plot of the short- and long-run change in the conditional error
variance, relative to the pre-shock value.
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metric nature of σ̃2
b,m which tends to skew away from zero (since variance

cannot be negative). The predictions can be further expressed as a percent-

age of the “pre-shock” conditional error variance. This provides a much

more intuitive interpretation than the original variance metric; for instance,

a value of 130% would indicate that volatility has increased by 30 percent.

• Standard Deviations: At each point in time, plot σ̂2
m, which comes from the

original estimates γ̂γγ (and user-defined values of covariates). Corresponding

95% confidence intervals are given by σ̂2
m±1.96×SD(σ̃2

b,m), where SD(σ̃2
b,m)

is the standard deviation of the B bootstrapped conditional error variances

calculated at each time point m.

Which to choose? The percentile method has the advantage of showing the skewed

nature of the expected conditional error variance. In contrast, the standard deviation

approach has the advantage of showing the actual expected conditional error variance

calculated from the underlying model, although its confidence intervals might at times

overlap with or fall below zero, which is impossible given the nature of error variance.

Residual-Based Bootstrap

Building on a procedure developed by Pascual, Romo and Ruiz (2006) for forecasting

prediction intervals for expected future volatility, we also propose a residual-based

bootstrap, which constructs bootstrapped conditional mean series on which we esti-

mate ARCH-GARCH models. This process consists of the following steps:

1. Estimate the ARCH-GARCH model.

2. Calculate and rescale residuals. We first rewrite the residuals as a composite, εt =

σtνt , where νt ∼ N(0,1), and σt (where σt > 0), which allows for time-varying

heteroskedasticity in εt . Next, isolate the white-noise error process from the

heteroskedastic variance component by rescaling the estimated residuals, ν̂t =
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yt−xt β̂ββ
σ̂t

= ε̂t
σ̂t

.14 These now variance-one estimated residuals are then recentered in

order to make them mean-zero: ν̃t = (ν̂t − 1
T−P ∑

T
t=P+1 ν̂t), where P is the highest

order of ARCH-GARCH terms (c.f., Chen et al. 2011) and T is the total number

of time periods. ν̃t now forms the empirical distribution F̂ .

3. Draw B sets of bootstrap errors. From F̂ , draw a sufficiently large number B sets of

bootstrap errors ν̃t over length T −P.

4. Recursively create the bootstrap time series. Using ν̃t , recreate the bootstrap series ỹt

and bootstrap variance σ̃2
t . This is done in two steps:

(a) Initialize the series at t = 1. The value of both the variance and rescaled resid-

uals are unknown at t = 0, but are necessary for creating σ̃2
1. We therefore

initialize the series at t = 1 by taking a single bootstrap draw of both the

rescaled residuals as well as the residual variance (call these ν̃b,0 and σ̃b,0,

respectively) in order to create the heteroskedastic variance at time t = 1, for

each bootstrap series b:15

σ̃
2
b,1 = ω̂1(ν̃

2
b,0σ̃

2
b,0)+ α̂σ̃

2
b,0 + exp(ω̂0 +z1γ̂γγ) (8)

where ω̂1, α̂, ω̂0, and γ̂γγ are estimated parameters from Step 1, z1 are actual

values of the regressors observed at t = 1, and ν̃2
b,0 and σ̃2

b,0 are from a boot-

strap draw as discussed above.

(b) Recursively create the bootstrap time series for t = 2, · · · ,T −P (where T −P is

the total length of the original time series after taking into account lagged

terms) as follows:

σ̃
2
b,t = ω̂1(ν̃

2
b,t−1σ̃

2
b,t−1)+ α̂σ̃

2
b,t−1 + exp(ω̂0 +zt γ̂γγ) (9)

14To obtain σ̂t we alter the variance equation, i.e., σ̂t =
√

ω̂1ε̂2
t−1 + α̂σ̂2

t−1 + exp(ω̂0 +zt γ̂γγ).
15If a lagged dependent variable is included in the mean equation, a similar bootstrap draw must be

made for yb,0.
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ỹb,t = xt β̂ββ+ ν̃b,t σ̃b,t (10)

Keeping all regressors (zt ,xt) fixed at their observed values, recursively cre-

ate σ̃2
b,t and ỹb,t , respectively (since σ̃b,t is needed in the latter equation). Note

that ν̃2
b,t are the bootstrapped residuals created in Step 3 above.

5. Re-estimate the GARCH model, now using the B new series ỹb,t , and keeping zt and

xt fixed across b. Save the estimated parameters from the variance equation for

each b. Once B sets of parameter estimates are obtained, the whole simulation

and plotting process works exactly the same as described under the parametric

bootstrapping technique, Steps 3-4.

Maximum Entropy Bootstrap

Last, we propose using a maximum entropy bootstrap for creating synthetic ỹt . Build-

ing on a procedure introduced by Vinod and Lopez-de Lacalle (2009) for drawing infer-

ences from time series models, our maximum entropy bootstrap technique resamples

the mean series yt instead of its errors. This process consists of the following steps:

1. Create random realizations of the mean series. Create a sufficiently large number B

random realizations of the yt series, following the process described by Vinod

(2006) and Vinod and Lopez-de Lacalle (2009):

(a) Create y∗t by ordering yt from its lowest to highest values. Order the original

time indicator as well to identify where these newly ordered values fall in

the original time series.

(b) Compute the T −1 intermediate points in the newly ordered data y∗t . Inter-

mediate points are the means of each value and its subsequent value in the

newly ordered y∗t series, specifically, zt = (y∗t + y∗t+1)/2.

(c) Construct point intervals It from the newly ordered y∗t series. First, identify

plausible lower and upper bound limits of the newly ordered y∗t series. To
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do this, compute the mean z̄t of the intermediate point series zt . Vinod and

Lopez-de Lacalle (2009) suggests trimming this mean, say, by 10% to reduce

the impact of extreme values. Subtract the trimmed mean z̄t trim from the

lowest value of the newly ordered y∗t series to get z0 = y∗1− z̄t trim. Add the

trimmed mean from the highest value of the newly ordered y∗t series to get

zT = y∗T + z̄t trim. Second, identify the intervals It . To do this, use the lower

bound z0, upper bound zT , and the intermediate points zt . The first interval

I1 lies between the lower-bound z0 and the first observation in the z1 series,

the second lies between the first z1 and second observations in the z2 series,

and so forth until the final interval IT has upper bound zT . There will be T

intervals in total.

(d) Compute means for the maximum entropy density for each of the interme-

diate point intervals It . For each of the T intervals, compute the means mt

for the uniform density. For the lowest interval I1, m1 = 0.75y∗1 +0.25y∗2. For

the highest interval IT , mT = 0.25y∗T−1 +0.75y∗T . For each of the intermediate

intervals, mt = 0.25y∗t−1 +0.50y∗t +0.25y∗t+1.

(e) Draw T pseudorandom numbers pt from the [0,1] uniform interval. Define

the range in which each pt falls, relative to

Rt =

(
t
T
,
t +1

T

]
, t = 1, · · · ,T −1 (11)

(f) Match Rt to It and use these to compute the maximum entropy density.

These are the quantiles from the inverse CDF of the maximum entropy den-

sity, where the mean of the tth uniform density equals the correct mean. This

is the key element of the bootstrap: for each draw of pseudorandom num-

bers, different elements of It will be assigned to different weights from the

ME density, allowing variation in the movement between observations.

(g) Reorder the sorted sample. Reorder the sample to its original time series se-

quence using the original ordering index above. This recovers the temporal
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dependence of the original data.

2. Estimate the ARCH-GARCH model. Using these ỹb,t series, estimate B ARCH-

GARCH models (note that zt and xt are not bootstrapped). Save the estimated

parameters from each variance equation each time. Follow the plotting process

as described under the parametric bootstrapping technique, Steps 3-4.

Comparing the Techniques

Table 1 summarizes the three bootstrapping techniques, which we further compare in

the SM. The parametric bootstrap is the computationally fastest, requiring the estima-

tion of a single ARCH-GARCH model. However, the sampling distribution of ARCH-

GARCH parameters (and the error term) may face greater curvature, heavier tails,

and/or greater skew than that underlying the standard normal distribution (Hall and

Yao 2003), potentially violating the distributional assumptions behind the parametric

bootstrap. In contrast, neither the residual nor the maximum entropy bootstrap require

distributional assumptions. Advocates of the maximum entropy bootstrap note its su-

perior performance over other types of time series bootstrap techniques. Unlike the

block bootstrap, for example, it can be used to resample time series data with strong

temporal dependence, non-stationarity, and residual heteroskedasticity (Yalta 2016).16

However, the residual bootstrap should be able to handle data with such characteris-

tics, provided that the ARCH-GARCH model is adequately specified; recall that this

technique requires recursively creating the dependent variable, conditional on the es-

timated model. In contrast, the maximum entropy bootstrap resamples yt using only

the maximum entropy density (i.e., no underlying ARCH-GARCH model is required).

In addition to differences in distributions and computational speeds, we evalu-

ate the performance of each of our bootstrapping techniques using a defined data-

generating process in the SM. Monte Carlo simulations show that when the residuals

are normally distributed (but time-varying heteroskedastic due to the ARCH-GARCH

16But see Bergamelli, Novotný and Urga (2015) for a critique.
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Table 1: Comparison of Boostrapping Techniques

Maximum
Parametric Residual Entropy

Approach to Simulate Recreate y Recreate y
variation coefficients series series

Location of Distribution of Distribution of Maximum
bootstrap resampling coefficients rescaled and recentered entropy

γ̃γγb ∼MV N(γ̂γγ,V̂(γ̂γγ)) residuals F̂ density of y

Number of 1 B+1 B
models estimated

Distributional Yes No No
assumption

features), the residual bootstrap technique typically outperforms the others in creating

correctly sized (i.e., not too small, not too large) standard deviations and confidence

intervals (around the simulated expected conditional error variance) in both small

(T = 250) and large (T = 1000) series. All techniques improve as T grows larger. How-

ever, when the residual component is Student-t distributed, we find that all techniques

perform poorly. We thus stress the importance of carefully specifying the model and

testing that the residuals are approximately normal. Last, while the residual bootstrap

outperforms the the parametric bootstrap, our simulations suggest that the parametric

bootstrap performs only slightly worse. This means that the parametric bootstrap’s

gains in computational speed may make it the preferred choice for some users.

One alternative to bootstrapping is to calculate the conditional error variance and

use the delta method approximation to construct the surrounding confidence inter-

vals, which is required since a non-linear combination of regression parameter esti-

mates are being used to calculate the error variance. Such a technique, like the para-

metric bootstrap, is less computationally intensive, since it only involves estimating

a single ARCH-GARCH model. Our Monte Carlo experiments in the SM show that

the delta method performs similarly to the parametric bootstrap in terms of producing

correctly-sized confidence intervals.17 However, one disadvantage of the delta method

17It is also typically performs best in the Student-t distributed error scenarios.
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is the potential to produce negative confidence intervals (similar to the “Standard De-

viations” approach when using the bootstrapping techniques discussed above), which

is impossible given that conditional error variances are strictly positive. Nevertheless,

we discuss the delta method and provide applied examples in the SM.

Replications

To demonstrate the benefits of our proposed bootstrapping techniques as well as their

relative performance in an applied setting, we replicate two articles published in top

political science journals. Our replications reveal key additional inferences that could

have been made had our bootstrapping techniques been used.

Hellwig (2007)

Hellwig (2007) examines how globalization affects support for national governments.

He argues that, because globalization raises the exposure of governments to interna-

tional market dynamics—resulting in a diffusion of policy control away from them and

toward private national and international actors—the capacity of voters to evaluate

government responsibility for the economy will decline. As a result, rising exposure

to the world economy will raise variance in evaluations of government popularity (p.

775). Hellwig tests his argument using quarterly data on trade exposure, capital flows,

and government approval across four countries: Denmark, France, the UK, and the

US. Since he is interested in explaining variance in government support, Hellwig de-

ploys GARCH models, where the conditional error variance model follows Equation 7

above. His main covariates of interest are the level of trade exposure or capital flows

(in separate models), as well as key political covariates specific to each country. Af-

ter considering covariate coefficients, Hellwig concludes that rising market exposure

raises volatility in government support. To the extent that he discusses the temporal

dynamics of covariate effects, he notes that the sum of the ARCH and GARCH term

results was less than one and thus that the “conditional variance is mean-reverting and
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not long-memoried” (p. 780).

While the results provide support for his argument, additional inferences are possi-

ble using our proposed approach. Take, for example, the results for the impact of trade

exposure (Trade) in the UK in Hellwig’s Model 1, Table 3, which we replicate in Table

2.18 Based on the sign and significance of the covariate for Trade in the conditional error

variance equation, he concludes that rising trade exposure is associated with greater

volatility in governing party support across all prime ministers. Even so, he notes

that there appears to be greater volatility during earlier UK governments (Harold Wil-

son/James Callaghan, Margaret Thatcher) than the John Major (the omitted category)

or Tony Blair periods.

Table 2: Trade Exposure and UK Government Support, Hellwig (2007)

Coefficient Standard Error
Mean Equation
Unemploymentt 0.351 (0.278)
Inflationt 0.118 (0.134)
Prospective Evaluationst 0.056∗∗∗ (0.017)
Political Events 2.167∗∗∗ (0.371)
Tradet 0.058 (0.040)
Wilson/Callaghan 1.648 (1.334)
Thatcher 0.526 (0.670)
Blair -0.752 (0.640)
Constant -1.794 (1.567)
Variance Equation
ARCH(1) 0.263∗∗ (0.119)
GARCH(1) 0.333∗∗ (0.143)
Tradet 0.058∗ (0.034)
Wilson/Callaghan 2.661∗∗∗ (0.992)
Thatcher 1.634∗∗ (0.697)
Blair -0.219 (0.690)
Constant -1.765 (1.388)
N 303
Log Lik. -698.854

Note: Dependent variable is governing party support in the UK. GARCH model with robust standard
errors in parentheses, replicating Hellwig (2007), Table 3, Model 1. T = 303. Additional control variables
included in the mean equation but not shown. Two-tailed tests. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Given different volatility effects observed across governments, we were also cu-

18These are almost identical to Hellwig’s original results, with small discrepancies due to estimating
GARCH models across operating systems (see Benton and Philips 2020, replication files).
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rious to see how a shock to Trade might affect each. We extend Hellwig’s results by

examining the impact of a four point increase in Trade—a substantively plausible trade

exposure shock given that it represents the single largest year-to-year change observed

in the data—on the expected conditional error variance of governing party support for

each prime minister.19 To do this, we hold Trade at its mean for days 1-2, raise it four

points on day 3, and return it to its mean thereafter, for each prime minister.

We present the results for each of our bootstrap procedures using the percentile

methods in Figure 2, expressing expected volatility relative to the pre-shock value

of volatility (e.g., 100 means that volatility remains the same as the pre-shock value,

120 would represent a 20 percent increase over the pre-shock value, and so on). Each

row shows the results of a trade shock under a given Prime Minister, and each col-

umn (from left to right) shows the predictions calculated using our parametric, max-

imum entropy, and residual bootstrap procedures. We present alternative visualiza-

tions (such as using standard deviations for confidence intervals, the delta method,

and unscaled results) in the SM. As shown in Figure 2, even though the coefficient for

Trade was statistically significant in Table 2, there appears to be no meaningful increase

in the conditional error variance of government support in response to a positive shock

to mean trade exposure, no matter the prime minister. Moreover, negative shocks to

mean trade exposure do not lead to statistically significant reductions in the condi-

tional error variance of government support either, as shown in Figure 3, which shows

a negative four-point shock to Trade.

Although Hellwig’s tabular results suggests that Trade has a (weakly) statistically

significant positive effect on the conditional error variance in government support in

the UK example, our approach reveals something different: realistic four-point trade

exposure shocks do not produce substantively significant effects on the conditional er-

ror variance in government support for any of the UK prime ministers.20 Moreover, we

reach this same substantive conclusion no matter the bootstrapping method utilized. It

19We chose a four point rise because a one standard deviation change in trade exposure is over three
times the size of any year-to-year change in trade that occurred in the sample (13.62 vs. 3.93).

20Nor does this result change if we set the pre-shock value of trade to values other than the mean.
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Figure 2: A positive four-point trade shock has little effect on governing party support
in the UK

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
parametric bootstrap, maximum entropy bootstrap, residual bootstrap. Black line shows median ex-
pected conditional error variance as a percentage of the pre-shock variance. Grey: 75% confidence
interval, medium blue: 90% confidence interval, light blue: 95% confidence interval.
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Figure 3: A negative four-point trade shock has little effect on governing party support
in the UK

Note: For each prime minister, all other prime minister dummy variables set to 0. From left to right:
parametric bootstrap, maximum entropy bootstrap, residual bootstrap. Black line shows median ex-
pected conditional error variance as a percentage of the pre-shock variance. Grey: 75% confidence
interval, medium blue: 90% confidence interval, light blue: 95% confidence interval.
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thus appears that perhaps only very atypical shocks to trade exposure would produce

substantively significant effects on volatility in government support.

Schneider and Troeger (2006)

Our second replication shows how our technique travels to ARCH-GARCH exten-

sions. In their influential article, Schneider and Troeger (2006, henceforth ST) exam-

ine how international conflict affects financial markets. They argue that international

conflicts are characterized by both conflictive and cooperative events, with conflic-

tive events having a greater impact on stock market prices—lowering prices, raising

volatility—than cooperative ones. To test their argument, ST examine events during

three militarized conflicts over the 1990-2000 period—the conflict between Iraq and

several United Nations member states, the conflict between Israel and Palestine, and

the Ex-Yugoslavian civil wars—on daily stock market prices in three stock markets:

the Dow Jones in New York, the CAC in Paris, and the FTSE in London. To measure

these effects, ST use the Goldstein (1992) transformation of the World Event Interaction

Survey (WEIS), where numeric values are assigned to conflictive (-10 being the most

conflictive) and cooperative (8.3 being the most cooperative) events. Three series are

created: a continuous measure of the daily sum of the positive event codings, a con-

tinuous measure of the daily sum of negative event codings (absolute value), and a

dummy measure noting days with an event coded at the most negative point on the

Goldstein transformation of the WEIS scale. Positive (negative) coefficients indicate a

positive (negative) impact of cooperative or conflictive events on the stock market.

ST examine their data using an extension of the GARCH approach known as the

threshold-GARCH (T-GARCH) model (Zakoian 1994) of the following form:

σ
2
t = ω1ε

2
t−1 +ω2ε

2
t−1Dt−1 +ασ

2
t−1 + exp(ztγγγ) (12)

where Dt−1 is a dichotomous indicator equal to one if εt−1 > 0, and zero otherwise. In

this specification, if the previous day’s error is negative, the ARCH effect is given by
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ω1. If it is positive, the ARCH effect is ω1 +ω2. This allows for asymmetric effects on

volatility based on whether unexpected shocks are positive or negative. After examin-

ing their results for such asymmetric ARCH effects, ST conclude that “negative shocks

have a greater impact on volatility than positive events,” as “indicated by a positive

and significant γ in the T-GARCH case” and by the fact that “[p]ositive shocks are not

even significant in the T-GARCH models” (p.639). “Thus, even though the predictions

are not that clear for the expected values, we can detect a significant and stable pattern

for the volatility of the three stocks” (p. 639).

We reproduce the results of the T-GARCH model from ST’s Table 1 for the first-

difference of the daily value of the Dow Jones Industrial Average (DJIA) and report

it in Table 3.21 For the variance equation, severity of the Gulf war (Gulf Severity) did

not appear to increase volatility in the DJIA. In contrast, increased severity in both the

Israeli-Palestinian (Israel-Palestine Severity) conflict and Ex-Yugoslavian (Ex-Yugolslavia

Severity) civil wars tend to raise DJIA volatility. Also, many of the year dummy vari-

ables included in the variance equation are statistically significant, and smaller in mag-

nitude at the beginning of the series and larger in magnitude towards the end of the se-

ries. This indicates that DJIA volatility increased between 1990 and 2000. The GARCH

term is positive and statistically significant, indicating that increased volatility tends

to be persistent across trading days. Both the ARCH and T-ARCH terms are positive

and statistically significant—albeit in opposite directions. This suggests that when the

previous error is negative, ARCH effects are present and volatility persists. In contrast,

when the previous error is positive, ARCH effects are effectively zero.

The results in Table 3 also suggest that regional conflicts—especially Israel-Palestine

Severity—increase volatility in the DJIA. However, it is difficult to picture how severe

conflict events affect volatility, especially over time. Our proposed procedure can help

visualize how this covariate in the error variance equation affects volatility. In Figure 4,

we show the effect of a conflict (coded as most severe on the Goldstein transformation

21Results differ slightly due to estimation differences between the program they used (EViews) and
Stata, although the log-likelihoods are near-identical.
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Table 3: International Conflict and Stock Market Returns, Schneider and Troeger (2006)

Coefficient Standard Error
Mean Equation
Gulf Severity -2.584 (4.143)
Gulf Sum of Daily Cooperation -0.301 (0.223)
Gulf Sum of Daily Conflict 0.261∗∗ (0.109)
Israel-Palestine Severity 2.034 (2.144)
Israel-Palestine Sum of Daily Cooperation 0.065 (0.141)
Israel-Palestine Sum of Daily Conflict 0.015 (0.130)
Ex-Yugoslavia Severity -3.620∗ (1.997)
Ex-Yugoslavia Sum of Daily Cooperation -0.143 (0.096)
Ex-Yugoslavia Sum of Daily Conflict -0.006 (0.096)
Differenced Dow Jones-1 -0.019 (0.020)
Differenced CAC 0.203∗∗∗ (0.028)
Differenced FTSE 0.307∗∗∗ (0.026)
Constant 1.403∗ (0.751)
Variance Equation
ARCH(1) 0.165∗∗∗ (0.021)
T-ARCH(1) -0.192∗∗∗ (0.022)
GARCH(1) 0.696∗∗∗ (0.040)
Gulf Severity 0.005 (0.292)
Israel-Palestine Severity 0.319∗∗ (0.142)
Ex-Yugoslavia Severity 0.242∗ (0.133)
1991 0.063 (0.153)
1992 -0.346∗∗ (0.162)
1993 -0.492∗∗∗ (0.159)
1994 0.040 (0.146)
1995 -0.004 (0.147)
1996 1.152∗∗∗ (0.145)
1997 2.297∗∗∗ (0.150)
1998 2.574∗∗∗ (0.139)
1999 2.915∗∗∗ (0.170)
2000 3.400∗∗∗ (0.147)
Constant 4.785∗∗∗ (0.197)
N 2845
Log Lik. -14470.190

Note: Dependent variable is the first-difference of the daily returns of the Dow Jones Industrial Average.
T = 2845. GARCH model with standard errors in parentheses, replicating Schneider and Troeger (2006),
their Table 1. Two-tailed tests. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

of the WEIS scale) during the Israeli-Palestinian conflict on DJIA volatility. To produce

this simulation, we hold the Israel-Palestine Severity variable at 0 for days 1 and 2, raise

it to 1 on day 3, and return it to 0 on day 4 and thereafter. All other covariates are

held at 0. Our simulation shows that volatility increases by around 12 percent but—

with the exception of the maximum entropy bootstrap—this short-lived increase is

not statistically significantly different from the pre-shock level of volatility. Moreover,

the expected conditional error variance moves back to its original value following this

one-day conflict. In other words, while a 12 percent increase might be substantively
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meaningful, we find little evidence that such an increase is statistically significant.
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(c) Residual bootstrap

Figure 4: Effect of Palestinian/Israeli conflict severity.

Note: The black line shows median expected conditional error variance as a percentage of the pre-
shock variance. Grey: 75% confidence interval, medium blue: 90% confidence interval, light blue: 95%
confidence interval.

Our graphical approach also allows us to view the effects of more complex relation-

ships, for instance, whether repeated instances of severe conflict lead to larger changes

in volatility. In the sample examined by ST, consecutive days where conflict severity

reached maximum values on the Goldstein transformation of the WEIS scale are rel-

atively uncommon, but do occur (two successive days occur 19 percent of the time a

conflict occurs, and three successive days about 7 percent of the time). In Figure 5, we

show the effect of a three-day Israeli-Palestinian conflict (Israel-Palestine Severity) coded

as most severe on DJIA volatility (i.e., time points t = 3 through t = 5). In this scenario,

we see that a large and long-run permanent increase in volatility occurs, with volatility
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rising by about 20 percent at its peak over the original volatility level and returning to

a steady value of around 15 percent over the pre-shock conditional error variance.
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Figure 5: Effect of Palestinian/Israeli conflict: Three days of ongoing severity.

Note: The black line shows median expected conditional error variance as a percentage of the pre-
shock variance. Grey: 75% confidence interval, medium blue: 90% confidence interval, light blue: 95%
confidence interval.

The increase in Figure 5 is statistically significantly different from the pre-shock

values for both the parametric and maximum entropy bootstraps, although not for

the residual bootstrap. Which bootstrap should we rely on, given these discrepan-

cies? First, we stress that our Monte Carlo experiments in the SM tend to find that

the residual bootstrap constructs confidence intervals of the correct size relative to

other techniques. Second, users might examine whether results differ largely when

other, non-shocked covariates are set to other values as a form of “graphical robust-

ness.” Third, users can instead rely on short- and long-run effects plotted against the
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expected pre-shock value as easier to interpret, if sharp hypothesis tests are of interest,

as shown in the SM. Last, users might choose one technique but still report the others,

showing that while in terms of statistical significance our conclusions may differ given

different bootstrapping techniques, our substantive conclusions (here, that volatility

rises sharply in the short-run and persists in the long-run) would remain unchanged.

Overall ST’s results provide convincing support for their argument, but our graph-

ical approach produces additional inferences that would have gone unnoticed. It may

be that severe events only matter in a substantively significant way to stock market

volatility if they occur over consecutive days, at least during the Israeli-Palestinian

conflict and the US DJIA. In this case, severe one-off events appear not to be enough

to raise US stock market volatility in a meaningful, long-lasting way. Only consecutive

severe events achieve this effect, permanently increasing in market volatility.

Conclusion

Despite the usefulness of the ARCH-GARCH approach as a way to model volatility,

these models remain difficult to interpret. With few exceptions, scholars have relied

on parameter-based interpretations of the statistical and substantive significance of co-

variate effects in this equation, limiting the quality and range of inferences they can

make about the volatility dynamics of their series. In this study, we shed light into this

ARCH-GARCH “black box.” Using synthetic data, we show that conclusions about ex-

pected volatility depend on a number of factors, such as the persistence of the GARCH

term, the magnitude and direction of any shocks to the conditional error variance, and

the baseline values at which all covariates—including the main covariates of interest,

any interaction terms, and any controls—are held. This asymmetry strongly suggests

scholars find a way to move past relying on tables alone for interpretation.

To improve ARCH-GARCH model interpretation, we have proposed a series of

bootstrapping and graphical techniques to visualize the statistical and substantive ef-

fects of covariates on the conditional error variance of a series. Replicating two promi-
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nent studies, we show that our approach allows users to better understand and in-

terpret volatility and its temporal dynamics. It also shows that covariate coefficients

in conditional error variance equations are often statistically significant in the table of

results but not substantively significant when it comes to expected volatility. This is

important, as it supports findings in prior time series research (Williams and Whit-

ten 2011, 2012; Philips, Rutherford and Whitten 2016; Gandrud, Williams and Whitten

2016; Jordan and Philips 2018a,b) as well as in other types of models (King, Tomz and

Wittenberg 2000; Kropko and Harden 2020) which show that quantities of interest such

as expected values often provide more reliable substantive answers to our research

questions—and are far easier to communicate to readers—than tables of coefficient re-

sults. While we are not the first to examine and explain the benefits of simulation for

improving inferences from (conventional) time series models—and take inspiration

from much of the work listed above—we are the first to fully explore the importance

of this technique’s application to those who have theories about variance.

In undertaking this study, we aim to help scholars to take full advantage of the pow-

erful ARCH-GARCH modeling approach in asking and answering questions about the

volatility dynamics of their time series data. In doing so, we contribute to research in

time series political methodology dedicated to identifying best practices in model se-

lection and specification (e.g., Lebo, Walker and Clarke 2000; De Boef and Keele 2008;

Esarey 2016; Enns et al. 2016; Keele, Linn and Webb 2016; Lebo and Grant 2016; Free-

man 2016; Philips 2018; Wilkins 2018; Webb, Linn and Lebo 2019, 2020) by raising

awareness of the intricacies of ARCH-GARCH model specification, estimation, and

interpretation. To this end, we have created a Stata program to allow practitioners the

ability to visualize results from ARCH-GARCH models. These programs will facilitate

model interpretation and allow scholars to improve the quality and range of inferences

they are able to make.
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