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Abstract

This paper studies a modified Fermi-Pasta-Ulam-Tsingou (FPUT)-α Hamiltonian lattice, where
variability is introduced to the system through the potential parameters. By a transformation,
the system is equivalent to the FPUT-α lattice with random masses. We fix the energy level and
investigate how energy recurrences disappear as the percentage of variability increases from zero.
We observe that the disappearance of energy recurrences leads to either localization or thermal-
ization of normal-mode energy. When energy localization occurs, we derive a two-mode system by
using multiple-scale expansions to explain the route to localization as the percentage of variability
increases. Furthermore, we investigate the chaotic behavior of the system by computing the maxi-
mum Lyapunov exponent for different percentages of variability. Our results show that the number
of particles increases the chances of observing chaotic dynamics for small percentages of variability.
Meanwhile, the effect reverses as the percentage of variability introduced to the system rises from
zero.

Keywords: FPUT-α Hamiltonian, FPUT energy recurrences, variabilities, chaos, Lyapunov
exponents
2010 MSC: 00-01, 99-00

1. Introduction

Fermi, Pasta, and Ulam conducted numerical simulations in 1953 with Tsingou’s assistance.
They investigated the rate of approach to energy equipartition in a dynamical system describing
a one-dimensional particle chain with nonlinear forces between particles, known as the FPUT
lattice with fixed ends [1]. They expected that quadratic forces would allow continuous energy5

transfer from the initially excited first normal mode to higher-order normal modes, leading to
energy thermalization or mixing. Instead, energy exchange occurred only among a few modes before
returning down within one percent of its initial value, so the system appeared nearly periodic. This
recurrence phenomenon was confirmed over a longer period of time following the work in [2, 3],
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where authors also observed the appearance of super recurrence, in which more energy returned to10

the initially excited mode.
Nelson et al. [4] introduced disorder into the FPUT system in several different ways to study

its effect on energy recurrences. They observed that it can destroy energy recurrence and increase
thermalization as the percentage of variability in the system’s parameters increases. The effect
of disorder on the thermalization of lattice systems is usually studied through randomly varying15

particle masses. Considerably, the first study in disordered harmonic lattices was due to Allen and
Ford [5] who observed a finite thermal conductivity in the system, unlike the concept of Anderson
localization [6] in which the conductivity will exponentially decay to zero. This is because of the
delocalized low-frequency phonons [7], that prevents the disordered harmonic lattices from being a
thermal insulator. Li et al. [8] conducted the first systematic study of the mass disorder effect in20

anharmonic (FPUT) lattices connected to heat baths, followed by the work of, e.g., Dhar and Saito
[9] and Zhu et al. [10] on finding the correct conductivity exponent (see also Liu et al. [11] for a
review on the topic).

In this work, we are interested in investigating the localization of normal-mode energy for a
disordered FPUT-α system with fixed ends at a fixed energy level. The disorder is introduced into25

the system through the heterogeneity of the potential parameters and controlled by a variability
percentage. We show by a transformation that the system under consideration is equivalent to the
FPUT with mass disorders. We employ the same constant energy as in the initial FPUT experiment,
where the recurrence phenomenon was observed. Due to the disorder, we show that the recurrence
breaks down, which leads to energy localization. To explain the localization mechanism, we work in30

normal-mode space to establish a two-mode approximation for the FPUT-α system. Following the
works in [12, 13], this two-mode system can be interpreted as a two-frequency solution on q-tori.

The remainder of this paper is structured as follows: Section 2 examines the original FPUT
lattice with quadratic nonlinearity (i.e., the FPUT-α system) and discusses energy recurrences.
We introduce the disordered FPUT-α system in Section 3. The phenomena of energy recurrence35

breakdown are discussed in the same section. Using multiple-scale analysis, we derive a two normal-
mode approximation in normal-mode space in Section 4. Our analytical results explain why energy
recurrences fail when variability is introduced. Section 5 discusses chaos in the FPUT-α system
with or without variability by computing the maximum Lyapunov Exponent (mLE) to distinguish
between regular and chaotic dynamics. Finally, we conclude our study in Section 6.40

2. Mathematical model and dynamics of FPUT-α lattices

The FPUT-α lattice is a one-dimensional chain of particles connected by nonlinear forces acting
on adjacent particles. If xj(t) denotes the shift of the j-th particle from its equilibrium position as
a function of time t and pj(t) is its associated conjugate momentum as a function of time t, then
the Hamiltonian of the system is given by45

H(x, p) =

N∑
j=0

1

2
p2j +

N∑
j=0

1

2
(xj+1 − xj)

2
+

α

3
(xj+1 − xj)

3
= E, (1)

where fixed boundary conditions (fixed ends) x0 = xN+1 = 0 have been used. Here, E is the total,
fixed energy of the system, while α ≥ 0 is the nonlinearity strength. Therefore, the equations of
motion are given by

ẍj =(xj+1 − xj) + α(xj+1 − xj)
2 − (xj − xj−1)− α(xj − xj−1)

2. (2)
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If we define Q and P such that

x = AQ, p = AP, (3)

where x = [x1 x2 . . . xN ]T , p = [p1 p2 . . . pN ]T , Q = [Q1 Q2 . . . QN ]T , P = [P1 P2 . . . PN ]T ,50

and

A =

√
2

N + 1


sin

(
π

N+1

)
sin

(
2π

N+1

)
. . . sin

(
Nπ
N+1

)
sin

(
2π

N+1

)
sin

(
4π

N+1

)
. . . sin

(
2Nπ
N+1

)
...

...
. . .

...

sin
(

Nπ
N+1

)
sin

(
2Nπ
N+1

)
. . . sin

(
N2π
N+1

)

 , (4)

we can rewrite Hamiltonian (1) in the form

H =
1

2

N∑
k=1

(
P 2
k + ω2

kQ
2
k

)
+ αH3(Q1, Q2, . . . , QN ), (5)

whereH3 is a nonlinear function. Here, Q and P are the coordinates of the solution x. Furthermore,
the frequencies of the normal modes are given by the eigenvalues of A

ωk = 2 sin

(
kπ

2(N + 1)

)
. (6)

It is worth noting that the equations of motion in normal-mode coordinates are given by55

Q̈ = DQ+ αA−1F(Q), (7)

where

D =


−ω2

1 0 . . . 0
0 −ω2

2 0
...

. . .
...

0 0 . . . −ω2
N

 , F(Q) =


f1(Q)
f2(Q)

...
fN (Q)

 .

In this context, Q is the spatial oscillation of the normal mode, while P is its velocity. Then, the
energy of the k-mode can be defined by

Ek =
1

2

(
P 2
k + ω2

kQ
2
k

)
. (8)

Using Eq. (8) in Eq. (5) yields

H =

N∑
k=1

Ek + αH3(Q1, Q2, . . . , QN ).

For a relatively small nonlinear strength α, we have60

H ≈
N∑

k=1

Ek.
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From Eq. (7), we can see that the normal-mode transformation diagonalizes (uncouples) the
equations of motion of the linear Hamiltonian system, i.e., the Hamiltonian system (1) with α = 0.
However, the nonlinear system with α > 0 allows for energy sharing among various normal modes.
In their original work, Fermi, Pasta, Ulam, and Tsingou [1] excited the mode with k = 1 by
considering the following initial conditions65

xj = sin

(
πj

N + 1

)
, pj = 0, j = 1, 2, . . . , N. (9)

In terms of normal-mode coordinates, this problem corresponds to solving Eq. (7) with initial
conditions Q1 =

√
(N + 1)/2, Qk = 0 for k = 2, 3, . . . , N, and Q̇k = 0 for k = 1, 2, . . . , N . Fermi,

Pasta, Ulam, and Tsingou expected the energy to flow continuously and gradually from the initially
excited mode up to the higher-order (higher k) normal modes. This process would continue until
the system would reach energy equipartition. Surprisingly, they found that the energy was only70

shared among the first few modes before the system returned very close to its original configuration.
This phenomenon is called the FPUT recurrence, and the discrepancy between expectations and
numerical results is regarded as the FPUT paradox. An example of this phenomenon is shown in
Fig. 1 for N = 32 with initial energy E = 0.07471. Particularly, Fig. 1(a) shows the solution of
Eq. (2) under the initial conditions (9), which corresponds to the initial energy E = 0.07471. The75

resulting normal-mode energy for the first four modes (i.e., for k = 1, . . . , 4) is shown in Fig. 1(b),
where the repeating peak of the first mode occurs at approximately t = 104.

(a)

0 104 2 104
0

0.04

0.08

E
1

E
2

E
3

E
4

(b)

Figure 1: The evolution of xj(t) of the Hamiltonian system (1) with N = 32 and initial energy E = 0.07471 using
the initial condition in (9), where the top view of the oscillation envelop has been plotted in panel (a), and its
corresponding energy (8) for the first four normal modes (k = 1, . . . , 4) in panel (b). The FPUT recurrences can be
seen in panel (b), where the energy returns to the initially excited mode at approximately t = 104 (second maximum
of E1). Note that the numbers on the vertical axis in panel (a) are the number of particles from 1 to N = 32.

Shortly, at a fixed number of particles, the picture is the following. The time of equipartition, as
a function of initial energy, is plotted in Figure 8 of [14]. Then, it is proved as a consequence of the
Kolmogorov-Arnold-Moser theorem that for energy small enough, a large measure of initial data80

evolves with quasi-periodic motion for all times. The applicability of such a result is due to Rink for
the β model [15] and then by Henrici and Kappeler for an odd number of particles [16] and for an
even number of particles too [17]. Then, the ”metastable scenario” consists of the quasi-recurrence
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phenomenon for a certain (eventually large) time scale. This is rigorously proved to occur for energy
low enough either referring to the Korteweg-de Vries equation as an integrable model (see, e.g., [18]85

and, more recently, [19, 20, 21, 22]) or in relation with the Toda chain (see, e.g., [23, 24, 25, 26] and
references therein). For these higher values of initial energy, one numerically sees equipartition to
occur after a sufficiently long time, and, therefore, the recurrence phenomenon disappears.

3. Variability in the FPUT-α Hamiltonian

Let us consider now the FPUT-α system with variability whose Hamiltonian function is90

H(x, p) =

N∑
j=0

1

2

p2j
tj

+

N∑
j=0

1

2
(tj+1xj+1 − tjxj)

2
+

α

3
(tj+1xj+1 − tjxj)

3
= E, (10)

with fixed boundary conditions x0 = xN+1 = 0. Here, the variabilities tj are picked at random in
the following way: for a tolerance τ%, the values of tj are drawn from a Gaussian distribution with
mean 1 and standard deviation σ = 1/3 × 0.01τ . As a result, 99.73% the values of tj would fall
within the range [1− 0.01τ, 1 + 0.01τ ] [4]. Then, the equations of motion follow as

ẍj = tj−1xj−1 − 2tjxj + tj+1xj+1 + α
(
(tj+1xj+1 − tjxj)

2 − (tjxj − tj−1xj−1)
2
)
. (11)

Note that introducing x̃j = tjxj , Eq. (11) becomes95

1

tj
¨̃xj = x̃j−1 − 2x̃j + x̃j+1 + α

(
(x̃j+1 − x̃j)

2 − (x̃j − x̃j−1)
2
)
, (12)

with Hamiltonian

Ĥ(x̃, p̃) =

N∑
j=0

tj
2
p̃2j +

N∑
j=0

[
1

2
(x̃j+1 − x̃j)

2 +
α

3
(x̃j+1 − x̃j)

3

]
, (13)

where p̃j = pj/tj in Eq. (10). Equation (12) is nothing but the disordered FPUT lattice with mass
mj = 1/tj (see, e.g., [27] for an early study on normal mode frequencies of harmonic lattices with
random masses). In this report, we will work with Eq. (11) because it is convenient numerically,
especially when some |tj | becomes small (i.e., mj becomes large).100

Equation (11) can be written in the matrix form

ẍ = Sx+ αF(x), (14)

where

ẍ =


ẍ1

ẍ2

ẍ3

...
ẍN

 , x =


x1

x2

x3

...
xN

 , S =


−2t1 t2 0 . . . 0
t1 −2t2 t3 0
...

. . .
...

0 . . . tN−2 −2tN−1 tN
0 0 tN−1 −2tN

 ,

and F is some nonlinear vector function. Let

V = [v1 v2 · · · vN ] (15)
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denote a matrix where its columns vi are the eigenvectors of S with ∥vi∥ = 1, i = 1, . . . , N and the
corresponding eigenvalues λ1, λ2, . . . , λN . For convenience, let105

λk = −ω̂2
k, k = 1, . . . , N, (16)

where ω̂k ∈ R.
Note that tj = 1 for all j in the FPUT-α system without variability, so S becomes a tridiagonal

matrix. In this case, V is similar to A and λk = −ω2
k, k = 1, . . . , N , given in Eq. (6)[28].

Introducing the normal-mode transformation

x = MQ, (17a)

p′ = MP, (17b)

where p′j = pj/tj , M = kV, and k = cω̂1/
√
2E for some constant c ∈ R, the equations of motion110

(14) become

Q̈ = DQ+ αM−1F̂(Q), (18)

where D is a diagonal matrix with diagonal entries given by the eigenvalues of S and F̂ a nonlinear
vector function. Similarly to the previous section, the energy of normal-mode k is given by

Ek =
1

2

(
P 2
k + ω̂2

kQ
2
k

)
. (19)

Next, we investigate the influence of variability on the evolution of the normal-mode energy at a
fixed energy level, following [1]. In the same spirit as the original FPUT experiment, we choose the115

initial conditions in the physical space such that only the lowest mode is excited. The initial energy
employed in our computations is equal to the initial energy of the original FPUT-α system in Eq.
(1) under the initial conditions (9) for each number of particles N . Then, the initial conditions in
Eq. (11) are chosen by finding a constant c ∈ R such that

x(0) = cv1, p(0) = 0, (20)

satisfy Eq. (10) for a fixed energy E, which was obtained previously. In this context, v1 refers to120

the first column of matrix V as defined in Eq. (15). We note that in the normal-mode space, the
initial conditions read as

Q1(0) =

√
2E

ω̂1
, Qk(0) = 0, k = 2, . . . , N, Pj(0) = 0, j = 1, . . . , N. (21)

The time evolution of the solutions to system (11) with initial conditions (20) and its associated
normal-mode energy Ek of the first four modes for N = 32 particles and three different percentages
of tolerance, namely τ = 5%, τ = 50% and τ = 95%, are shown in Fig. 2. The initial energy of125

the system is E = 0.07471, which is similar to the initial energy in Fig. 1. Comparing panel (b)
in Figs. 1 and panels (b), (d), (f) in Fig. 2, we can see that the recurrence is weakening due to
the effect of variability, as evidenced by the declining peak of the mode energy E1. Then, as the
variability increases, it becomes more difficult to transmit energy from the lowest to the higher
modes, resulting in the localization of energy, shown in panels (d) and (f) in Fig. 2.130
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(c)
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(d)

(e)

0 104 2 104
0

0.04

0.08

E
1

E
2

E
3

E
4

(f)

Figure 2: Evolution of the energy E for the first four normal modes for the system in Eq. (11) with N = 32 particles.
Panels (a) and (b) are for τ = 5% tolerance, panels (c) and (d) for τ = 50% and panels (e) and (f) for τ = 95%
tolerance. Note that the numbers on the vertical axes in panels (a), (c), (e) are the number of particles from 1 to
N = 32.
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In the next section, we will explain why the energy exchange across normal modes decreases as
the percentage of variability increases. As a result, energy localization takes place in the energy-
mode space. The plots of normal-mode energies show that in the event of energy localization, most
of the normal-mode coordinates vanish in time. Thus, rather than working in real (physical) space,
it would be advantageous to work in the normal-mode coordinate system, given in Eq. (18), as we135

can approximate system (18) by taking into account only the first few normal modes. We present in
Fig. 3 the normal-mode energy from the approximation of Eq. (18) using 2, 4, and 8 normal modes,
while all other modes are fixed at 0, and using different percentages of variability to demonstrate
numerically that this approximation can be justified.

In terms of energy-recurrence period, we can observe in Fig. 3 that using 4 and 8 normal modes140

produces dynamics that are nearly identical to those seen in Figs. 1 in the absence of variability.
We can detect energy recurrence and localization even with 2 normal modes as the percentage of
variability increases. We can see in panels (d) and (f) in Fig. 2 and panels (g) and (j) in Fig. 3 that
a two normal-mode system yields an adequate approximation to Eq. (18). Therefore, we will look
at these two normal-mode approximations in the following section.145

4. Two normal-mode approximation

The majority of high-order modes are negligible when energy localization takes place, as illus-
trated in Fig. 2. Therefore, we set all high-order normal-mode values to zero, except the first two,
to obtain a two normal-mode approximation. In practice, we set Qk(t) = 0 for k = 3, 4, . . . , N in
Eq. (18). This gives us the following system150

Q̈1 = −ω̂2
1Q1 + ϵ

(
A1Q

2
1 +A2Q

2
2 +A3Q1Q2

)
, (22a)

Q̈2 = −ω̂2
2Q2 + ϵ

(
B1Q

2
1 +B2Q

2
2 +B3Q1Q2

)
, (22b)

where Ai, Bi ∈ R, i = 1, 2, 3 and ω̂k is given in Eq. (16).

4.1. Multiple-scale expansions

We consider the following asymptotic series

Q1 = X0(t, T ) + ϵX1(t, T ) + . . . , (23a)

Q2 = Y0(t, T ) + ϵY1(t, T ) + . . . , (23b)

where ω̂2 = 2ω̂1 + ϵ, |ϵ| ≪ 1, and T = ϵt is a slow-time variable. The leading-order approximations
to Eqs. (23) are given by155

X0 = q1(T )e
iω̂1t + q∗1(T )e

−iω̂1t, Y0 = q2(T )e
iω̂2t + q∗2(T )e

−iω̂2t, (24)

where i is the imaginary unit of the complex numbers, i.e., i2 = −1. Substituting Eqs. (23), (24)
into Eq. (22), expanding the equations in ϵ, and applying the standard solvability condition to avoid
secular terms appearing (see, e.g., [29]), we obtain

i
dq1(T )

dT
= q1(T ) + Ãq∗1q2, (25a)

i
dq2(T )

dT
= q2(T ) + B̃q21 , (25b)
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Figure 3: The evolution of normal-mode energy as obtained from integrating Eq. (18) using different normal-mode
numbers. In panels (a), (d), (g), and (j), two normal modes are used; in panels (b), (e), (h), and (k), four modes are
used, and in panels (c), (f), (i), and (l), eight modes are used. Each row represents different amounts of tolerance,
i.e. 0% (panels (a)-(c)), 5% (panels (d)-(f)), 50% (panels (g)-(i)), and 95% (panels (j)-(l)). The first four modes,
except for the two normal-mode system, are plotted in all panels, but they are active for 0% and 5% tolerance in
panels (a) and (f). For 95% tolerance, all modes except the first, are essentially 0.
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for q1 and q2, respectively, where Ã = A3/(2ω̂1) and B̃ = B1/(2ω̂2). Recalling Eqs. (21), the initial
conditions of system (25) are160

q1(0) =
Q1(0)

2
, q2(0) = 0. (26)

Our numerical computations show that both Ã and B̃ in Eq. (25), which are functions of τ , are
either positive or negative for fixed τ . However, Eq. (25) is invariant when Ã and B̃ have the same
sign, as we can use the transformation q̂2 = −q2. Therefore, we plot these parameters when both
Ã and B̃ are positive only as a function of τ for N = 32 particles and 100 realizations in Fig. 4.
These realizations have been computed by fixing τ and then opting for 100 sets of N = 32 randomly165

generated numbers.

0 10 20 30 40 50 60 70 80 90 100
10-6

10-4

10-2

100

102

104

(a)

0 10 20 30 40 50 60 70 80 90 100
10-6

10-4

10-2

100

102

104

(b)

Figure 4: The parameter values Ã and B̃ as a function of τ obtained numerically for N = 32. The solid black curve
is the parameter mean over 100 sets of variabilities at the same percentage, and the upper and lower black dashed
curve are their maximum and minimum values, respectively. Note the logarithmic scale on the vertical axis and that
both Ã and B̃ are always positive (see discussion in the text).

We compare the dynamics of normal modes Q1 and Q2 of Eq. (22) and its slow-time variable
approximations q1 and q2 of Eqs. (25) in Fig. 5, where it can be seen that qj is an envelope of Qj

for j = 1, 2.
Next, we describe the mechanism of energy localization when the percentage of variability τ170

increases. It is worth noting that as q2(0) = 0, the energy transmission from q1(t) to q2(t) is made
possible due to the nonlinear coupling coefficient B̃. Therefore, we will analyze the role of B̃ in
energy localization as we increase τ .

4.2. Equilibrium solutions

To analyze the equilibrium solutions of the envelope equations (25), it is practical to write q1175

and q2 in polar form q1 = r1e
iϕ1 and q2 = r2e

2iϕ2 , where r1 = |q1|, r2 = |q2|. We then define the
new variables

P = r21 + r22, (27a)

∆ = r21 − r22, (27b)

θ = ϕ2 − ϕ1. (27c)
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Figure 5: Plot of the evolution of normal-mode variables Q1 (blue curve) and Q2 (red curve) in time with their
envelopes q1 and q2 (black curves) from Eqs. (25) for τ = 0% in panel (a) and τ = 50% in panel (b).

Substituting Eqs. (27) into Eqs. (25), we derive the following set of equations (a similar derivation
can be found in [30])

Ṗ =
Ã− B̃

Ã+ B̃
∆̇, (28a)

∆̇ =

√
2 (P −∆) sin (2 θ) (P +∆)

(
Ã+ B̃

)
2

, (28b)

θ̇ = −
2 Ã cos (2 θ) (∆− P ) + B̃ cos (2 θ) (∆ + P )−

√
2 (P −∆)

2
√

2 (P −∆)
. (28c)

Integrating Eq. (28a), we obtain the constant of motion C, where180

C = P − Ã− B̃

Ã+ B̃
∆.

First, we will study the stability of the equilibria of the reduced system in Eqs. (28b), (28c).
Then, we will discuss the stability of the equilibria of its corresponding system given in Eq. (25).
To study the reduced system of Eqs. (28b), (28c), we restrict the phase difference θ in the interval
0 ≤ θ < π and obtain two equilibria, namely (θj ,∆j), j = 1, 2. The θj equilibria depend on Ã and

B̃, and are given by185

1. if Ã > 0 and B̃ > 0 or Ã < 0 and B̃ < 0 then θ1 = 0 and θ2 = π/2

2. if Ã > 0 and B̃ < 0, then θ1 = θ2 = π/2

3. if Ã < 0 and B̃ > 0, then θ1 = θ2 = 0.

11



Furthermore, ∆j equilibria, for j = 1, 2, are

∆j =

(
6 Ã2C − 3 ÃB̃C − (−1)j

√
1 + 6 Ã

(
Ã+ B̃

)
C − 1

)(
Ã+ B̃

)
18Ã2B̃

. (29)

Next, we study the stability of the equilibria, which is determined by the eigenvalues of the Jacobian190

matrix of Eqs. (28b), (28c), evaluated at the equilibria, i.e., by

λ
(j)
1,2 = ±

√
−3− 18Ã2C − 18ÃB̃C + 6(−1)j

√
1 + 6 Ã

(
Ã+ B̃

)
C

3
. (30)

Equation (29) implies that the equilibria exist when

1 + 6 Ã
(
Ã+ B̃

)
C ≥ 0. (31)

Using the initial conditions in Eq. (26), Eq. (31) becomes

1 + 12ÃB̃r21 ≥ 0.

Therefore, the threshold for the existence of the equilibrium is given by

1 + 12ÃB̃r21 = 0,

depicted by the blue curve in Fig. 6. The solid and dashed lines represent the curve below and195

above the line Ã+ B̃ = 0, respectively. The black dashed line represents the line Ã+ B̃ = 0.
When an equilibrium exists, the eigenvalues given in Eq. (30) are either real or purely imaginary,

indicating that the equilibria are a saddle-node or a centre. Using the initial conditions in Eqs.
(26), the thresholds that separate between real and purely imaginary eigenvalues are

1 + 12ÃB̃r21 = 0, (32)

1− 4ÃB̃r21 = 0. (33)

We plot in Fig. 6, Eqs. (32) and (33) as blue and red curves, respectively.200

System (28) with parameter values Ã and B̃ above the red curve in the first quadrant or below
the red curve in the third quadrant in Fig. 6 has two equilibria given in Eq. (29), which are both
centres and therefore stable. Conversely, if both parameters lie between the two red curves, then
one equilibrium is a centre, and the other a saddle-node.

Next, we will discuss the stability of the equilibria of Eq. (25). As this system can be transformed205

into Eqs. (28b) and (28c) in terms of ∆ and θ, we utilize Eqs. (28b) and (28c) to describe the
dynamics of Eq. (25). Equations (28) are obtained from Eqs. (25) by using Eqs. (27), where
both r1 and r2 are non-negative real numbers. Equation (28) requires P − ∆ > 0 to have real
solutions, whereas Eq. (27) requires P −∆ ≥ 0 and P +∆ ≥ 0, otherwise r1 and r2 will be complex
numbers. The region that fulfils these two inequalities is referred to as the well-defined region and is210

represented by the shaded area in Fig. 6. For instance, the well-defined region in the first quadrant
is bounded. There are two equilibria in the region above the red curve, while there is only one in
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Figure 6: Bifurcation diagram of the equilibria ∆1 and ∆2 in the (Ã, B̃)-space. The well-defined region for system
(25) is shown as the shaded area (see text for more details).
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the region below it. This means that Eqs. (25) and (28) have two equilibria in the region above
the red curve, whereas they share only one equilibrium in the region below it as ∆2 lies outside the
shaded region. To determine the boundary for ∆ in the well-defined region, we solve the inequalities215

P −∆ > 0 and P +∆ ≥ 0, which depend on Ã and B̃, as follow

• If Ã−B̃

Ã+B̃
≥ 1, then ∆ > max

{
∆1

crit,∆
2
crit

}
, where

∆1
crit =

C
(
Ã+ B̃

)
2B̃

and ∆2
crit = −

C
(
Ã+ B̃

)
2Ã

.

• If −1 ≤ Ã−B̃

Ã+B̃
< 1, then ∆2

crit ≤ ∆ < ∆1
crit.

• If Ã−B̃

Ã+B̃
< −1, then ∆ < min

{
∆1

crit,∆
2
crit

}
.

All types of the well-defined region in the (Ã,B̃)-plane are depicted in Fig. 6. We also plot the220

equilibria ∆j , j = 1, 2 and their nature in Fig. 6. Moreover, the values of ∆j are plotted in Fig. 7.
We plot in Fig. 7 (b) tanh(∆2/100) rather than ∆2 to better illustrate ∆2 as it approaches infinity

when Ã or B̃ approach zero.
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Figure 7: The color plot of ∆1 (in panel (a)) and tanh(∆2/100) (in panel (b)) as a function of Ã and B̃. Note that
the red, black dashed, and blue curves are the same curves as those in Fig. 6.

According to Fig. 4, we have obtained numerically that the parameter values for Eq. (25) are
either both positive or negative. Therefore, this equation can only occupy the first and third225

quadrants in Fig. 6. If both parameter values are positive (negative), then for a small percentage
of variability, both will be located above (below) the red curve in Fig. 6. In this case, Eq. (25) will
have two equilibria where both of them are centers, hence stable. Upon increasing the percentage
of variability further, both parameter values decrease, and at some percentage, they cross the red
curve. In this case, Eq. (25) will only have one stable equilibrium: a center. These two cases’ phase230

space is shown in Fig. 8. For τ = 0% or in the absence of variability, the parameter values are
Ã = 2.58 and B̃ = 0.65. The two stable equilibria are (θ1,∆1) = (0, 2.74) and (θ2,∆2) = (π/2, 1.98),
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Figure 8: Phase portraits of the (∆, θ) system given by Eqs. (28b), (28c) for τ = 0% in panel (a) and τ = 50% in
panel (b).

which are shown in Fig. 8a. For τ = 50%, the parameter values are Ã = 0.13 and B̃ = 0.03. The
stable equilibrium is (θ1,∆1) = (0, 4.16), which is shown in Fig. 8b. We can also determine the
boundary of the well-defined region as235

lim
B̃→0

∆1
crit = r21, lim

B̃→0
∆2

crit = 0, (34)

where we have used the initial conditions (26) in the limit computations. Equation (34) tells us

that ∆ in the well-defined region is positive definite as B̃ → 0. Recalling Eq. (27b), we conclude
that ∆ > 0 corresponds to energy localization as the magnitude of q1 is always greater than q2.

5. Effect of variability on dynamics

The FPUT-α system can be considered a truncation of the regular, integrable Toda system.240

As a result, the non-integrable FPUT-α system acts similarly to the integrable Toda system for a
period of time before exhibiting non-integrable behavior [31]. The length of this period, also known
as the lifetime of the metastable state, depends on the energy E and the number of particles N
[32]. For a small initial energy, the FPUT-α system persists in the metastable state for a long time,
causing energy thermalization to be difficult to observe numerically.245

It was concluded in [32] that the lifetime of the metastable state tm follows the scaling law
tm = 0.023× (Eα2)−4.9, while according to [33] (see, e.g., Fig. 1 therein) or [34] (see its Fig. 5), it
was rather tm ∼ (α2E/N)−5/4. Using those results as a mere guide, we expect to observe the regular
dynamics of the FPUT-α system (1) for t ≲ tm. Here, we keep the energy of system (10) fixed
and study how variability affects its dynamics. Particularly, we look at lattices of N = 4, 8, 16, 32250

particles in systems (1) (with no variability) and (10) (with variability) and utilize the maximum
Lyapunov exponent (mLE) [35, 36] to distinguish between regular and chaotic dynamics.

To calculate the mLE, we follow the trajectory of an initial condition

x(0) = (q1(0), . . . , qN (0), p1(0), . . . , pN (0)),
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as it evolves according to Hamilton’s equations of motion

ẋ = f(x) =

[
∂H

∂p
− ∂H

∂q

]T
,

and an accompanying deviation vector

w(0) = (δq1(0), . . . , δqN (0), δp1(0), . . . , δpN (0)),

that evolves according to the variational equation

ẇ =
∂f

∂x
(x(t)) ·w. (35)

Then, mLE is defined by255

λ = lim
t→∞

1

t
ln

||w(t)||
||w(0)||

,

where ln is the natural logarithm. If mLE approaches zero following the law 1/t, its trajectory
is regular; otherwise, if it converges to a positive value over time, then its trajectory is chaotic
[36]. Therefore, plotting mLE in log10-log10 scale is especially useful since it provides a better
visual aid, as the law 1/t is a line with a negative slope and serves as a guide to the eye. We use
the tangent-map approach [37] and Yoshida’s fourth-order symplectic integrator [38] to integrate260

the equations of motion (2) and (11) with their corresponding variational equations (following Eq.
(35)). We found that a time step of 0.01 keeps the relative energy error to less than 10−8. The
final integration time in all of our calculations is t = 108.

First, we investigate the case where there is no variability, namely the FPUT-α system (1) with
the equations of motion (2). We use the same initial condition in Eq. (9) for all N . This initial265

condition yields distinct energies for different N , i.e., E = 0.4775 for N = 4, E = 0.2714 for N = 8,
E = 0.1447 for N = 16, and E = 0.0747 for N = 32. Our results in Fig. 9 indicate that all
trajectories are regular up to t = 108, which is supported by the tendency of the mLEs to converge
to zero following the 1/t law. These findings are consistent with the fact that energy recurrences in
the homogeneous FPUT lattice (1) persist in the metastable state for exceptionally long periods of270

time, stalling the approach to energy equipartition [32]. This result provides direct, strong evidence
that energy recurrences are generated by regular trajectories. This then means the system cannot
reach energy equipartition.

Next, we consider the case with variability where the Hamiltonian is given in Eq. (10). For each
number of particles N , the initial conditions are given in Eq. (20), where the initial energy is similar275

to that in the case without variability. We compute the mLE for 40 realizations of variability for
τ = 5%, 50%, and 95%. For N = 4, all trajectories with τ = 5%, 50%, and 95% in panels (a)-(c)
of 10 seem to be regular up to the final integration time t = 108, which is shown by the mLEs’
tendency to converge to zero following the 1/t law. We see similar behavior for N = 8 and τ = 5%.
However, when τ = 50% and τ = 95%, there are three and four chaotic trajectories, respectively.280

The number of chaotic trajectories increases significantly for N = 16 and 32. The percentage of
chaotic trajectories (out of 40 realizations) as a function of N is depicted in Fig. 11, where the
increase is evident for τ = 5% and 50%. Nevertheless, when τ = 95%, the proportion of chaotic
trajectories only increases for N = 4, 8, 16 and then decreases when N = 32. These results imply
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Figure 9: Plot of mLE over time for the range of N values shown in the insets (denoted by distinct colors) of the
FPUT system (1). All axes are on a logarithmic scale. The dashed black line in panel (a) is the law of 1/t for regular
trajectories to guide the eye.

that a small percentage of tolerance has less effect on chaotic behavior than a bigger percentage for285

small N , which is reversed when N increases.
Now, we want to study how energy localization relates to trajectories’ chaotic characteristics.

In the absence of variability, the appearance of super recurrence when we integrate Eq. (2) for a
long time has been reported in [2, 39, 40, 3]. Therefore, the energy recurrence is an attribute of
a regular trajectory according to Fig. 9. Regarding variability, system (10) contains chaotic and290

regular trajectories, which depend on N and τ . We find that either energy recurrence or energy
localization occurs when the trajectory is regular. In contrast, chaotic trajectories correspond
to the thermalization of energy. In Fig. 12, we illustrate a particular instance of mLE and its
corresponding normal mode energy for N = 16 and τ = 5%, 50%, 95%, resulting from regular and
chaotic trajectories. We use a similar initial energy as in Fig. 10, i.e. E = 0.1447.295

The superrecurrence can be seen in panel (b) in Fig. 12 with a period of about 7 × 107, while
panel (d) shows the localization of energy in the first few normal modes. This localization is getting
stronger (no energy is transferred to other normal modes) if we consider the regular trajectory
with a higher tolerance percentage τ . Furthermore, the thermalization of energy due to chaotic
trajectories is shown in panel (f) in Fig. 12, where the energy is shared among all normal modes.300

6. Conclusion

In this paper, we have considered the disordered FPUT-α system for fixed energies. Using a two-
normal-mode approximation, which has been solved asymptotically by a multiple-scale expansion
method, we have explained the mechanism for energy localization when the percentage of variability
increases. While we only excited the first normal mode in this report, our preliminary results (not305

presented herein) also indicated that the conclusion still applies when a single higher mode is
excited. Hence, simultaneously exciting two or more modes that are “far apart” would only result
in “linear” dynamics (as the modes effectively do not interact with each other). The result that
there is no energy sharing among normal modes when there is randomness in the FPUT lattice as
in (11) with large enough variance σ, may therefore be formulated as the following conjecture:310
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Figure 10: Plot of mLE for 40 trajectories (denoted by distinct colors) with N = 4 in panels (a)-(c), N = 8 in panels
(d)-(f), N = 16 in panels (g)-(i), and N = 32 in panels (j)-(l). The tolerance is 5% in panels (a), (d), (g), (j), 50%
in panels (b), (e), (h), (k), and 95% in panels (c), (f), (i), (l). All axes are on a logarithmic scale. The dashed black
line in all panels is the law 1/t for regular trajectories to guide the eye.
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Figure 11: Percentage of chaotic trajectories as a function of N from Fig. 10 with τ = 5%, 50%, 95%.

Conjecture 6.1. There is a threshold variance σ0 such that if σ > σ0, then the energy of the kth
mode satisfies |Ek(t)− Ek(0)| ≪ 1 for k < k0 for a sufficiently long time.

It would definitely be a significant result if this statement could be proven. Our immediate future
work would be to consider, e.g., how σ0 would scale with N and how the localization phenomenon
would happen in the limit N → ∞. Our preliminary results also indicate that the coefficients of315

the coupling terms in the two-mode approximation (25), i.e., Ã and B̃, decrease with increasing N
for the same variability tolerance. This may mean that the larger the number of particles N , the
easier the system experiences energy localization due to disorder.

We also have studied the effect of variability on the chaotic behavior of the system by calculating
the maximum Lyapunov exponent for several realizations for the same variability percentage. We320

have found that it is more likely to observe chaotic trajectories as we increase the number of particles
N for 5% and 50% tolerance. However, at 95% tolerance, the percentage of chaotic trajectories
grows for N = 4, 8, 16 but slightly declines for N = 32. Moreover, we have also investigated the
connection between energy localization and the chaotic features of its trajectory. We have found
that when the trajectory is regular, either energy recurrence or energy localization occurs. On the325

other hand, a chaotic trajectory leads to energy thermalization. As our present study on chaotic
trajectories in the disordered system is rather limited to small numbers of particles, considering
large values of N is of interest, especially in the thermodynamics limit.
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Figure 12: The maximum Lyapunov exponent (mLE) and its corresponding normal-mode energy for N = 16 and
tolerance τ = 5% in panels (a)-(b), τ = 50% in panels (c)-(d), and τ = 95% in panels (e)-(f) .
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