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Abstract
Purpose – The purpose of this paper is to enhance the performance of robots in peg-in-hole assembly tasks, enabling them to swiftly and robustly
accomplish the task. It also focuses on the robot’s ability to generalize across assemblies with different hole sizes.
Design/methodology/approach – Human behavior in peg-in-hole assembly serves as inspiration, where individuals visually locate the hole firstly
and then continuously adjust the peg pose based on force/torque feedback during the insertion process. This paper proposes a novel framework that
integrate visual servo and adjustment based on force/torque feedback, the authors use deep neural network (DNN) and image processing techniques
to determine the pose of hole, then an incremental learning approach based on a broad learning system (BLS) is used to simulate human learning
ability, the number of adjustments required for insertion process is continuously reduced.
Findings – The author conducted experiments on visual servo, adjustment based on force/torque feedback, and the proposed framework. Visual
servo inferred the pixel position and orientation of the target hole in only about 0.12 s, and the robot achieved peg insertion with 1–3 adjustments
based on force/torque feedback. The success rate for peg-in-hole assembly using the proposed framework was 100%. These results proved the
effectiveness of the proposed framework.
Originality/value – This paper proposes a framework for peg-in-hole assembly that combines visual servo and adjustment based on force/torque
feedback. The assembly tasks are accomplished using DNN, image processing and BLS. To the best of the authors’ knowledge, no similar methods
were found in other people’s work. Therefore, the authors believe that this work is original.

Keywords Peg-in-hole assembly, Deep neural network, Broad learning system, Robot manipulation

Paper type Research paper

1. Introduction

Peg-in-hole assembly is a challenging task in the dexterous
manipulation of robots, primarily applied in industrial
assembly(Huang et al., 2013; Fang et al., 2016; Song et al.,
2021). The main challenge lies in its extremely low error
tolerance, particularly in transitional or interference fits, where
minor differences in position or orientation can lead to
assembly failure. Traditional visual servos used in robot
manipulations are often inadequate for the requirements of
peg-in-hole assembly tasks, as they are susceptible to errors
influenced by device performance and noise. Numerous
researchers have focused on this area, and typically conducted
research from two aspects: visual servo localization (Chang
et al., 2011; Liu et al., 2015; Chang and Wu, 2017) and
adjustment based on force/torque feedback (Chen and Liu,
2013; Song et al., 2016). However, their research on visual
servo often requires high-precision devices or camera

equipment, and on adjustment based on force/torque feedback
is less flexible, adjusting the orientation only in the hole and
taking longer to complete the task.
Visual servo is the most commonly used method in peg-in-

hole assembly, and researchers use various approaches to
enhance the accuracy(Fei et al., 2023). Traditional image
processing methods typically includes edge detection and
template matching to detect target positions (Zhang et al.,
2017; Gu et al., 2018). Chang et al. (2011) designed a visual
servo assembly system for microsystems using traditional image
processing methods and position-based control, requiring
precise visual guidance that is complex and expensive. The time
to complete an assembly was approximately 4min. Liu et al.
(2015) proposed an efficient relative pose estimation method
based on multi-microvision for long cylindrical components
assembly, using an estimation approach from coarse to fine,
more than ten adjustments in position and orientation
respectively are required to complete the task. Chang and Wu
(2017) designed a closed-loop visual servo controller for USB
insertion based on visual error, but the drawback is the lengthy
time required, with each assembly taking 74 s. Ma et al. (2020)



(Dong et al., 2023), we used BLS to transfer human assembly
skills to robot, but the peg-in-hole assembly was only
performed in the vertical direction. Spector and Di Castro
(2021) used deep reinforcement learning to learn a residual
impedance strategy, enabling trajectory correction for assembly
completion based on force/torque feedback.
Current adjustment based on force/torque feedback studies

are performed when the position of the hole is known. That is,
this method is only used to softly insert the hole at the final
stage, not to find the exact position of the hole. To establish a
comprehensive assembly system, it is imperative to integrate
both these techniques. Zhao et al. (2020) integrated visual
servo and force/torque feedback to achieve peg-in-hole
alignment. They used admittance control during the insertion
process. Kang et al. (2022) used visual estimation to determine
peg orientation and then located the peg position through
trajectory search. Liu et al. (2014) designed an automated
precision assembly system, using traditional image processing
methods for error measurement to guide robot arm and
platform alignment, ensuring assembly safety through force
control, one assembly task can be completed in less than 2min.
Learning-based methods are equally applicable when
combining these two techniques. Triyonoputro et al. (2019)
trained a DNNbased on images to predict hole positions, using
iterative visual servo to move the robot arm to the target
position. Impedance control was used during the insertion
process. It takes 70 s to complete an assembly. Spector and
Zacksenhouse (2021) and Spector et al. (2022) framed peg-in-
hole assembly as a regression problem and proposed the
InsertionNet, a fusion of visual and force information, to
accomplish routine insertion tasks. Shen et al. (2023)
introduced a DNN to estimate workpiece feature points for
inferring peg poses, combining visual servo and force control
for assembly realization.
Through the above literature research, we found the

following shortcomings in the current research on peg-in-hole
assembly:
� The use of visual servo alone is only feasible in the small-

part precision assembly, but this requires multiple high-
precision devices and camera equipment, which are high
cost; low-cost visual servo is difficult to satisfy the large-
size assembly tasks and must be combined with other
technologies;

� The research related to adjustment based on force/torque
feedback mainly focuses on controlling the insertion
process smoothly, the research on how to find the hole
position is relatively small and most of them are only
regulated in a single plane, which is inconsistent with the
actual assembly scenarios;

� Learning-based approaches are limited by factors such as
data sets, training equipment, etc., and it is difficult to
meet the need for rapid redeployment and lack of
versatility (Wu et al., 2023).

Humans’ behavior in peg-in-hole assembly has inspired our
approach, where individuals typically use visual cues to locate
the hole and then adjust the peg pose based on force/torque
feedback during the insertion process, achieving successful
assembly after multiple adjustments. Also due to the learning
ability of humans, when individuals assemble the same target

introduced an image-based pose alignment system that 
simultaneously adjusts position and orientation, applied in the 
assembly of small parts, but here the assembly task is carried 
out in a single plane, and 12 adjustments are needed to 
complete a task in about 56 s. Two-dimensional images can 
only provide position information and adjust position or 
orientation within a single plane, while the use of 3D point 
cloud data enhances pose estimation efficiency. Li et al. (2021) 
proposed a coarse-to-fine hole pose estimation method based 
on 3D point clouds, capable of estimating poses for arbitrary 
orientations. In recent years, learning-based visual servo have 
rapidly advanced. The structure of DNN, characterized by 
multiple layers of interconnected neurons, allows them to learn 
hierarchical representations of data (Xie et al., 2019; Zhao 
et al., 2019; Xie et al., 2022). The key advantage of learning-
based visual servo is its ability to automatically learn complex 
visual representations and control policies from large amounts 
of training data. Haugaard et al. (2021) used DNN based on 
visual sensors to simultaneously estimate the positions of the 
peg and hole for guiding assembly. Puang et al. (2020) 
introduced a novel learning-based visual servo method called 
keypoint-based visual servoing framework (KOVIS), where one 
network learns keypoint representations from images, and 
another network learns robot motions based on these key 
points, but there are only positional differences between the peg 
holes.
In part of small-part precision assembly tasks, researchers 

could use high-precision devices or camera equipment to 
complete the task, but this would undoubtedly be costly (Fan 
et al., 2023). For some large-size assembly tasks, adjustment 
based on force/torque feedback is essential. Chen and Liu 
(2013) proposed a robust impedance control algorithm for 
intelligent force control during PCB insertion. However, this 
method requires knowledge of the robot’s dynamic model. 
Song et al. (2016) investigated the insertion assembly of 
irregular geometric shapes, focusing on learning operational 
forces during human assembly using a Gaussian mixture 
model, and the time to complete an assembly was about 20 s. 
The success rate of this method is relatively low, and stability is 
poor. Park et al. (2013) mimicked human actions to locate 
holes along a specific trajectory, using a combination of force/
position control and passive compliant control during 
insertion, it takes about 20 s to complete an assembly, not 
taking into account orientation differences either. Jasim et al.
(2014) matched peg-in-hole contact states with force 
information to guide the search for hole poses. Park et al.
(2017) established a geometric model of contact states to guide 
pose adjustment alignment, using a force/position hybrid 
control during the insertion process. The experiments do not 
account for orientation differences, and it takes approximately 
6.3 s to complete an assembly. Song et al. (2021) proposed an 
assembly strategy based on the passive alignment principle, 
simultaneously using Gaussian mixture models and regression 
learning of human assembly’s compliant control skills. 
However, this method has a time-consuming teaching and 
learning process and limited generalization capability. Zou et al.
(2020) designed a multilayer perceptron (MLP) network to 
search for peg positions and proposed a variable impedance 
controller based on fuzzy Q-learning, achieving smooth 
insertion through force feedback control. In our previous work



efficient, requiring only 0.12 s to infer the pixel position
and orientation of the target holes, and the training time of
the object detection network is 0.95 h.

� We perform the peg pose adjustment based on force/
torque feedback and introduce an incremental learning
method, which ultimately requires only 1–3 adjustments
to complete the assembly. This is the first time that a
learning approach is introduced into the peg-in-hole
insertion process.

� The pose adjustment based on force/torque feedback is
with four degrees of freedom to adjust the position and
orientation at the same time, this is different from the
previous studies where only two degrees of freedom
adjustment is usually performed.

Themain contributions of this paper are:
� We proposed a novel peg-in-hole assembly framework

inspired by human behavior, which combines the visual
servo and adjustment based on force/torque feedback.
Experimental results show that the framework is effective
and stable.

� We introduced DNN-based object detection into
assembly tasks, where the chosen DNN is able to strike a
balance between GPU selection and training duration.

Our proposed visual servo workflow is able to quickly
obtain the target hole pixel position and orientation.

� We used the BLS for peg-in-hole insertion, starting the
task from any pose and adjusting the position and
orientation simultaneously. An incremental learning
method is introduced for the training of BLS, and the
trained BLS only needs 1–3 adjustments to complete the
assembly and has the ability of generalization.

The organization of this paper is as follows: Section 2
introduces the visual servo based on DNN and image
processing, Section 3 presents the adjustment based on force/
torque feedback, Section 4 presents experiments to evaluate the
effectiveness of the proposed framework, and Section 5
concludes the paper.

2. Visual servo based on deep neural network
and image processing

Visual servo serves as the foundation for achieving peg-in-hole
assembly. In recent years, DNN-based object detection has
rapidly advanced, capable of achieving real-time object
detection across different GPU types, making it highly suitable
for the speed requirements of this task. The workflow of visual
servo is shown in Figure 2. Following object detection, we
further process the obtained objects by target hole fitting to
acquire more accurate coordinates. Simultaneously, we extract
the point cloud normal vectors of the target region to achieve
precise retrieval of position and pose.

2.1 Deep neural network structure for object detection
We use the YOLOv7-tiny network for object detection, known
for its outstanding detection speed and accuracy in the range of
5FPS to 160FPS. YOLOv7 is a one-stage object detection
network (Wang et al., 2023) composed of three parts: input,
backbone and head. The input module preprocesses input
images to align them to a size of 640� 640, the backbone
module is responsible for feature extraction and the head
module predicts and outputs results. YOLOv7-tiny, designed
for edge GPUs, shows significant improvement in detection
performance compared to YOLOv4-tiny.

Figure 1 The proposed peg-in-hole assembly framework

hole multiple times, the number of adjustments will continue to 
decrease.
Taking this inspiration, we propose an assembly framework, 

as illustrated in Figure 1. Initially, we use DNN and image 
processing to preliminarily determine the pose of the target 
hole. The DNN used is an object detection network based on 
YOLOv7, while image processing focuses on target hole fitting 
and normal vector extraction. During the peg insertion process, 
we use an incremental learning approach to train a BLS, 
inputting force/torque data at the point of contact between the 
peg and the hole and outputting the next action for the peg 
movement. The purpose of introducing incremental learning is 
to simulate this human learning ability. Compared with 
previous studies, our proposed framework and experimental 
scenario setup have the following features:
� We use monocular vision for initial pose estimation, and

the vision devices used are all consumer grade and low 
cost.

� The visual servo workflow we designed is fast and



2.2 Image processing
The target holes detected by DNN is labeled by square bounding
box, which is different from the actual circular assembly holes.
Extracting normal vectors using the square bounding box leads to
excessive offsets and assembly failures.We use theHough gradient
method for circular fitting (Illingworth and Kittler, 1987),
consisting of two steps: center estimation and radius estimation.
During center estimation, we perform Canny edge detection, use
the Sobel operator to calculate pixel neighborhood gradient values
and identify the circle center at the intersection point along the
gradient direction of edge pixels. For radius estimation, we
calculate distances from edge pixels to the circle center and select
themost frequent distance value as the radius.
Based on the aforementioned methods, we obtain the

position of target holes. However, obtaining orientation
information is also crucial for guiding assembly. Using the
circular bounding box fitted by image processing, we solve for
the normal vector of the plane within the circular bounding
box, which means we obtain the normal vector of the target
hole. During the data set collection process, we simultaneously
obtain the depth map. First, the depth map of the target area is
converted into a point cloud by using the camera intrinsic
parameters; second, the plane within the neighborhood of each
point cloud is estimated using the least squares method and the
normal vector perpendicular to this plane is calculated to obtain
the normal vector at each point cloud. Finally, all the obtained
normal vectors are subjected to principal component analysis to
obtain the normal vector of the target hole.

3. Adjustment based on force/torque feedback

3.1 Data description and preprocessing
In the context of using the BLS for adjustment, it is essential to
first define the data description used. This paper is based on the
contact force/torque during peg-in-hole assembly to predict
actions that can correctly complete the assembly. The model’s
input comprises six-dimensional force/torque data denoted as
F ¼ fx fy fz rx ry rz½ �, obtained through force/torque
sensor. The model’s output is the difference between the
current pose and the successfully assembled pose, denoted as
d ¼ dT dR½ �. Here, dT ¼ dx dy½ � represents the translational
difference, indicated by a vector pointing from the current
position to the target position, and dR ¼ dRx dRy

� �
signifies the

rotational difference, represented by the rotation angles from
the current orientation to the target orientation. Because the
cross-sections of the peg and hole are both circular, we
currently do not consider rotation around the z-axis. The
calculation of d is illustrated in Figure 3 and is obtained through
the following equation:

dx ¼ �OA � cosa
dy ¼ �OA � sina

dRx ¼ �arctan
dy
OB

dRy ¼ �arctan
�dx
OB

(1)

whereOA represents the distance from the center point of the peg’s
end plane to the target position, andOB represents the depth of the
hole. The calculation of d is conducted in the O�X1Y1Z1

coordinate frame, aiming to facilitate robot control.
Due to the influence of various factors on the contact force/

torque during assembly, there is a certain degree of
measurement error. Additionally, the torque values in different
directions are relatively small compared to the contact force
data. Therefore, it is necessary to preprocess the force/torque to
enhance the model’s fitting capability. We use a normalization
approach for preprocessing force information. For the six-
dimensional force/torque F ¼ fx fy fz rx ry rz½ �, with
mean and standard deviation denoted as Fmean and Fstd, the
normalized values can be expressed as follows:

Fnorm ¼ F � Fmean

Fstd
(2)

3.2 Broad learning system
In this paper, we use BLS to model the insertion process, input
the contact force/torque data, and output the peg pose
adjustment. BLS (Chen and Liu, 2017) is based on the random
vector functional link network. The network structure is
relatively concise, lacking multiple layers of connections,

Figure 2 The workflow of visual servo

Figure 3 The coordinate relationship for computing d



without coupling between layers and it does not require gradient
descent to update weights. The computation speed is significantly
superior to deep learning. Precision in prediction can be enhanced
by increasing the “broad” of the network. The additional
computational load is also relatively lower compared to deep
learning, making it highly suitable for systems with high demands
on real-time prediction. Comparative experiments on modelling
usingBLS anddeep learningwill be shown in Section 4B.
The input of the BLS consists of mapped features and

enhancement nodes. The mapped feature is obtained through
linear transformation and activation function mapping of the
original input, while the enhancement node is obtained through
linear transformation and activation function mapping of the
mapped feature. Both the mapped features and enhancement
nodes consist of several nodes, each node encapsulating
different sets of nodes within the layer. This facilitates the
assembly of features extracted by other machine learning
models into the broad learning system.
As shown in Figure 4, the network structure diagram of the

broad learning system is illustrated, where X represents the
original input data, Y represents the output, W is the weights
and Zn ¼ Z1 Z2 . . . Zn½ � and Hm ¼ H1 H2 . . . Hm½ �
are the mapped feature and enhancement node, calculated
through the following equations:

Zi ¼ f XWei 1bei

� �
; i ¼ 1; . . . ; n

Hj ¼ j ZnWhj 1bhj

� �
; j ¼ 1; . . . ;m (3)

where f and j are activation functions, Wei and Whj are
randomly generated weight matrices with appropriate
dimensions. Typically, to prevent correlation in the input of
enhancement nodes, Whj is often orthogonal. bei and bhj are
randomly generated biases, and n and m represent the number
of mapped features and enhancement nodes, respectively. The
network’s input is a combination of the mapped features and
the enhancement nodes:

Y ¼ Z1; . . . ;Znjj ZnWh1 1bh1

� �
; . . . ; j ZnWhm 1bhm

� �h i
Wm

¼ Z1; . . . ;ZnjH1; . . . ;Hm½ �Wm

¼ ZnjHm½ �Wm

(4)

Given J ¼ ZnjHm½ �, then Wm ¼ J1Y. As J may be a singular
matrix, an optimization approach is employed to find the
pseudo-inverse:

argmin
W

: jjJW � Y jjs1
v 1 ljjW jjs2

u (5)

where u1 > 0; u2 > 0, u and v are typical norm regularization
terms and l represents constraints on the sumof weight squares
andW. When l ¼ 0, the above equation transforms into a least
squares problem, and the inverse solution can be directly
obtained. As l approaches infinity, the solution is constrained
and tends to 0. When u1 ¼ u2 ¼ u ¼ v ¼ 2, the above equation
becomes a ridge regressionmodel, given by:

W ¼ lI1 JJT
� ��1

JTY (6)

And:

J1 ¼ lim
l!0

lI1 JJT
� ��1

JT (7)

This yields the pseudo-inverse J1 of J, from which the weights
W of the network can be determined.

3.3 Incremental learning based on successful assembly
data
The BLS is highly suitable for incremental learning, and it can
be enhanced through methods such as enhancement-node-
based, mapped-feature-based and data-based approaches. In
the peg-in-hole assembly experiments, collecting a large data
set is time-consuming. Therefore, we adopt a data-based
incremental learning approach, supplementing new data after
each successful assembly to continuously improve the
network’s predictive accuracy.
When the kth adjustment becomes successful assembly, the

modified data set from the previous k – 1 adjustments can be
input into the network for training. The modified data setDa is
as follows:

Da ¼

Fnorm1

Xk�1

i¼1

ati
Xk�1

i¼1

ari

Fnorm2

Xk�1

i¼2

ati
Xk�1

i¼2

ari

Fnorm3

Xk�1

i¼3

ati
Xk�1

i¼3

ari

..

. ..
. ..

.

Fnormk�1 atk�1 ark�1

2
6666666666666666664

3
7777777777777777775

¼ Xa jYa½ � (8)

Figure 4 The structure of broad learning system

Peng Guo, Weiyong Si and Chenguang Yang



Ax ¼ f XaWe1 1be1

� �
; . . . ;f XaWen 1ben

� �h
jj Zn

xWh1 1bh1

� �
; . . . ; j Zn

xWhm 1bhm

� �� (9)

where Zn
x ¼ f XaWe1 1be1

� �
; . . . ;f XaWen 1ben

� �h i
is the

group of the incremental features updated byXa. TheWei ; Whj

and bei ; bhj are randomly generated during the initial of the
network.
According to the derivations in references (Chen and Liu,

2017), the weight update for the network is given by:

xWm
n ¼ Wm

n 1 YT
a 1AT

x W
m
n

� �
B (10)

where BT ¼ Cð Þ1 if C 6¼ 0
11DTDð Þ�1

Am
nð Þ1D if C ¼ 0

(
, DT ¼ AT

x

Am1
n andC ¼ AT

x �DTAm
n .

4. Experiment

4.1 Experiments for visual servo
Visual servo consists of both DNN-based object detection and
image processing. For the peg-in-hole assembly task, our first
goal is to use DNN to get the location of holes. We collected a
data set of 50 images with a training, testing and validation set
ratio of 7:2:1. Figure 5 illustrates the change in the loss function
during the training process, which shows the localization and
classification losses in the training and validation sets,
respectively, both of which indicating the effectiveness of the
training. We used an NVIDIA GeForce GTX 750 Ti edge
GPU, and the training took 0.95h, demonstrating the balance
achieved by YOLOv7-tiny in terms of efficiency on edge GPUs
and training time, allowing for quick deployment and retraining
in new scenarios.
After acquiring the target, we use the image processing

methods from Section 2 B to fit a circle and calculate the
normal vector of the target hole, Figure 6 shows the fitted
circle, demonstrating a close match with the actual assembly
holes, Figure 6 shows the normal vector, which aligns well with
the actual assembly hole. Thanks to the real-time detection
capabilities of the DNN and the efficient image processing, the
visual servo process is very quick. In our 30 tests, it takes an
average of only 0.12 s to infer the pixel position and orientation
of the target hole in a photograph.

4.2 Experiments for adjustment based on force/torque
feedback
In this paper, we will use the number of peg pose adjustments
to judge the validity of the model. Although this is different
from some experiments that take the time spent as a judgment
criterion, we think it is scientific in the experimental scenario of
this paper. The reason is that the time spent for successful
assembly depends not only on the number of adjustments but

also to a large extent on the speed of the robot arm. If it is
necessary to reduce the assembly success time, it is only
necessary to increase the speed of the robot arm. To ensure the
safety of the experiment, we set a smaller speed of the robot
arm, so the use of the number of peg pose adjustment can better
reflect the performance of themodel.

4.2.1 Simulation experiments
In the CoppeliaSim simulator, we constructed a robot
platform, as shown in Figure 7. The robot armmodel used was
UR5, with a circular peg of diameter 36mm mounted at the
end, and a circular hole of diameter 38mm placed on the
ground.
Generally, when the peg cannot be correctly assembled with the

hole, three typical situations, as illustrated in Figure 8, usually
occur. In robot assembly systems with visual servo, the second and
third situations are more likely to happen. Meanwhile, the force/
torque data generated in the first situation is similar to that in the
second situation. Therefore, we primarily selected data collection
points based on the second and third situations. Based on several
tests, the selection of data collection points was determined.
Taking OB ¼ 20mm, on two circular paths with radius of 4.5mm
and 1.5mm, respectively, we evenly distributed 16 data collection
points, as shown in Figure 9, where the red points represent the
data collection points.
Due to the small tolerance required for peg-in-hole assembly,

CoppeliaSim’s collision model struggles to accurately simulate
such fine contacts, resulting in inaccurate readings from the
force/torque measurement module. This discrepancy leads to

Figure 5 Localization (box) and classification (objectness) loss function
decreases during training

where Fnormi is the recorded force/torque data at the time of 
contact, ati and ari are the BLS-predicted next translational and 
rotational data, respectively. i 2 1; k � 1½ �.
At this point, the incremental representations of the mapped 

features and enhancement nodes are as follows:



erroneous data, rendering it unsupportive for data-based
incremental learning. Therefore, in the simulator, we primarily
aimed to verify the effectiveness of the proposed data
preprocessing and BLS. According to the data definition in
Section 3 A, we randomly generated data combinations within
the ranges OA 2 3;5mm½ �; OB 2 17;23mm½ � and a 2 0; 360o½ �,
defining them as the initial assembly poses for the peg. We used
collision force/torque data in the trained BLS to predict the
next action of the peg and recorded the number of experimental
trials until successful assembly. The distribution map of
randomly chosen initial positions is shown in Figure 9, where
the blue region represents the distribution of randomly chosen
initial positions, and the green region represents the area where
successful assembly is achieved.
We conducted three sets of experiments, each consisting of

assembly starting from 50 randomly generated positions. An
experiment was considered a failure if adjustments exceeded 30
times.The success rates for the three sets of experimentswere 92%,
98% and 98%, respectively, indicating a certain feasibility of our

assemblymethod.The average number of adjustments required for
successful assembly was calculated every five positions, as shown in
Table 1. Due to the randomness in the selection of initial positions,
the results also indicate a significant variation in the average
number of adjustments, mostly ranging between four and ten
adjustments in successful assembly scenarios.
We also use deep learning to build the model. Generally

speaking, a DNN consists of an input layer, a hidden layer and
an output layer, and each layer contains multiple neurons. In
this paper, the input layer contains six nodes representing the
input contact force/torque data, and the output layer contains
four nodes corresponding to the peg pose adjustment d as
described above. According to the number of hidden layers,
they are named NN_3, DNN_10, DNN_20 and DNN_50,
corresponding to the number of layers 3, 10, 20 and 50,
respectively. Each hidden layer contains 64 nodes, the
activation function used is ReLU and the residual connection
and dropout are also used inDNN_50.
Figure10 show the loss function changes during the training

process of each network. Due to the random nature of the
initialization of the neural network, although the initial loss
values of each network differ greatly, they all eventually reach
convergence, indicating that the network training is effective.
However, when the above trained neural networks were used
for peg-in-hole insertion, all of them showed a large error in the
prediction value leading to assembly failure. After adjusting the
peg’s pose, the peg has left the target hole, and it is impossible
to use themodel for the next prediction.
Due to less research on the neural network model for peg-in-

hole insertion, there is no better design paradigm, and the

Figure 7 The robot platform in CoppeliaSim simulator

Figure 8 Three typical assembly failure scenarios

Figure 9 The schematic of data collection and random initial points

Figure 6 Circular holes obtained by image processing, labeled by 
white lines (up); normal vector of the target assembly holes, marked by 
green arrows (down)



design of this model needs to be tried extensively. After these
comparisons, we believe that the model built using the BLS has
good performance, we will continue to use the model for
subsequent experiments.

4.2.2 Robot platform experiments
The robot platform we used consists of an Elite EC66 robot
arm with an ATI mini-45 force sensor mounted at the end and
a shaft of diameter 36mm. On the desk, there is a hole with a
diameter of 38mm.
Consistent with the experiments in the simulator, the

approach of selecting data collection points and randomly
generating initial positions are the same as described
previously. In the experiments, we initially conducted BLS
without any data preprocessing. The peg gradually moves away
from the hole, leading to experiment termination and failure.
This indicates that data preprocessing is essential for peg-in-
hole assembly experiments.
After introducing data preprocessing, we conducted three

sets of experiments, each starting assembly from 50 randomly
generated positions. An experiment was considered a failure if
adjustments exceeded 30 times, and the success rates for the
three sets of experiments were 100%. Simultaneously, we
performed data-based incremental learning, continually adding
new data to enhance the network’s fitting capability, as per the
data correction method in Section 3 C. The average number of

adjustments required for successful assembly was calculated
every five positions, as shown in Table 2. The results
demonstrate a gradual reduction in the average number of
adjustments with the progression of incremental learning.
Initially, an average of more than six adjustments was needed
for assembly, ultimately reducing to 1–3 adjustments, proving
the effectiveness of data preprocessing and data-based
incremental learning. As we set a smaller speed of robot arm
movement, the time to complete a set of experiments is about
2 h. Figure 11 illustrates an experimental scenario where
successful assembly is achieved after only two adjustments.
Figure 12 shows the force/torque data and the robot arm’s

z-axis data corresponding to this successful assembly. Our
criteria for successful assembly are as follows: when the
contact force/torque reaches a threshold, we check whether
the z-axis has reached the assembly success limit. If both
conditions are met, it is considered a successful assembly. If
either condition is not met, the assembly is deemed
unsuccessful, requiring further pose adjustments. From
Figure 12, it can be observed that the peg hole did not meet
the assembly success criteria in the first two contact but
achieved successful assembly after two pose adjustments. It
should be noted that during successful assembly, significant
forces in the z-direction are recorded, indicating the peg has
fully passed through the hole and was in contact with the
desk, as corroborated by the z-axis data.

Table 1 Results in simulator: the average number of adjustments for successful assembly in every five positions

Exp. No. 1–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40 41–45 46–50

1 3.4 5.8 3.5 8.4 4.3 4.4 6.2 5.4 3.3 9.8
2 5 6.8 6 4.4 5.4 6.6 5.2 6.4 3.8 4.6
3 12.4 5.2 7.4 14.6 6.2 3.2 9.2 3.8 6.6 8.8

Source: Authors’ own work

Figure 10 Plot of loss function changes during model training using deep learning building



4.2.3 Generalization experiment
In the experiments, we also validated the generalization
capability of the proposed method. We transferred the trained
BLS through incremental learning to assemblies with a peg
diameter of 18mm and a hole diameter of 20mm, maintaining
the same random initial position selection as described earlier.
We conducted two sets of experiments, each starting assembly
from 50 random positions, and the experimental results are
presented in Table 3. Figure 13 illustrates a schematic
representation of successful assembly after only two adjustments.
The results indicate that our proposed method exhibits good
generalization capability, enabling the trained network to be
transferred to assemblies with different sizes of pegs and holes.

4.3 Experiments for the proposed framework
We validated the effectiveness of the entire framework on a
robot platform, the camera used was a RealSense D455 and
other settings remained consistent with the aforementioned.
We conducted a total of 30 experiments, achieving a 100%
success rate in assembly. Figure 14 shows a complete
assembly at one time. Benefiting from the excellent real-
time detection performance of YOLOv7, this framework is
capable of swiftly completing initial visual localization. With
force/torque feedback, the assembly is accomplished in 1–3
adjustments.

5. Conclusion

This paper introduced a framework inspired by human
behavior for peg-in-hole assembly. The framework comprises
two components: visual servo and adjustment based on force/
torque feedback. The visual servo part uses monocular vision,
using the YOLOv7-tiny object detection network to determine
the position of the target hole. Further precision localization
and extraction of the target hole’s normal vector are
achieved through image processing. The adjustment based
on force/torque feedback uses BLS, taking peg and hole
contact force/torque data as input and producing the next
action for the peg. Incremental learning is used to enhance
the network’s predictive capability, ultimately achieving
assembly completion in 1–3 adjustments. We also validated
the generalization capability of the BLS, demonstrating that

Figure 11 A successful assembly after two adjustments

Figure 12 Force/torque and z-axis data for successful assembly after two adjustments

Table 2 Results in real: the average number of adjustments for successful assembly in every five positions

Exp. No. 1–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40 41–45 46–50

1 6 2.6 2.4 2.4 2 2.4 2.4 2.8 2 1.6
2 6.2 2.4 2.4 1.6 2 2.6 1.8 1.6 2.2 2.4
3 6.6 3.8 2 2.4 1.8 2.4 1.6 1.6 1.6 1.8

Source: Author’s own work



the trained network can be applied to peg-in-hole assemblies
of different sizes.
The advantages of this framework lie in its simplicity of

structure, using only a monocular camera for visual servo. The
selected DNN achieves a good balance between equipment
selection and training time, facilitating easy redeployment. The
BLS, based on incremental learning, exhibits fast training
speed, strong fitting capability and data preprocessing that
imparts a degree of generalization to the network. Our
experimental setup aligned with practical assembly scenarios,
starting assembly from any initial position and offering broad
application prospects. In the future, we plan to extend this work
to support the peg-in-hole assembly with different shapes.
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